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Joseph Edward Shigley (1909–1994) is undoubtedly one of the most known and
respected contributors in machine design education. He authored or co-authored eight
books, including Theory of Machines and Mechanisms (with John J. Uicker, Jr.), and
Applied Mechanics of Materials. He was Coeditor-in-Chief of the well-known Standard
Handbook of Machine Design. He began Machine Design as sole author in 1956, and
it evolved into Mechanical Engineering Design, setting the model for such textbooks.
He contributed to the first five editions of this text, along with co-authors Larry Mitchell
and Charles Mischke. Uncounted numbers of students across the world got their first
taste of machine design with Shigley’s textbook, which has literally become a classic.
Practically every mechanical engineer for the past half century has referenced termi-
nology, equations, or procedures as being from “Shigley.” McGraw-Hill is honored to
have worked with Professor Shigley for over 40 years, and as a tribute to his lasting
contribution to this textbook, its title officially reflects what many have already come to
call it—Shigley’s Mechanical Engineering Design.

Having received a Bachelor’s Degree in Electrical and Mechanical Engineering
from Purdue University and a Master of Science in Engineering Mechanics from The
University of Michigan, Professor Shigley pursued an academic career at Clemson
College from 1936 through 1954. This lead to his position as Professor and Head of
Mechanical Design and Drawing at Clemson College. He joined the faculty of the
Department of Mechanical Engineering of The University of Michigan in 1956, where
he remained for 22 years until his retirement in 1978.

Professor Shigley was granted the rank of Fellow of the American Society of
Mechanical Engineers in 1968. He received the ASME Mechanisms Committee Award
in 1974, the Worcester Reed Warner Medal for outstanding contribution to the perma-
nent literature of engineering in 1977, and the ASME Machine Design Award in 1985.

Joseph Edward Shigley indeed made a difference. His legacy shall continue.

Dedication to Joseph Edward Shigley
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Objectives
This text is intended for students beginning the study of mechanical engineering
design. The focus is on blending fundamental development of concepts with practi-
cal specification of components. Students of this text should find that it inherently
directs them into familiarity with both the basis for decisions and the standards of
industrial components. For this reason, as students transition to practicing engineers,
they will find that this text is indispensable as a reference text. The objectives of the
text are to:

• Cover the basics of machine design, including the design process, engineering
mechanics and materials, failure prevention under static and variable loading, and
characteristics of the principal types of mechanical elements

• Offer a practical approach to the subject through a wide range of real-world applica-
tions and examples

• Encourage readers to link design and analysis

• Encourage readers to link fundamental concepts with practical component specification.

New to This Edition
Enhancements and modifications to the ninth edition are described in the following
summaries:

• New and revised end-of-chapter problems. This edition includes 1017 end-of-
chapter problems, a 43 percent increase from the previous edition. Of these prob-
lems, 671 are new or revised, providing a fresh slate of problems that do not have
years of previous circulation. Particular attention has been given to adding
problems that provide more practice with the fundamental concepts. With an eye
toward both the instructor and the students, the problems assist in the process of
acquiring knowledge and practice. Multiple problems with variations are available
for the basic concepts, allowing for extra practice and for a rotation of similar
problems between semesters.

• Problems linked across multiple chapters. To assist in demonstrating the linkage of
topics between chapters, a series of multichapter linked problems is introduced.
Table 1–1 on p. 24 provides a guide to these problems. Instructors are encouraged
to select several of these linked problem series each semester to use in homework
assignments that continue to build upon the background knowledge gained in
previous assignments. Some problems directly build upon the results of previous
problems, which can either be provided by the instructor or by the students’ results
from working the previous problems. Other problems simply build upon the back-
ground context of previous problems. In all cases, the students are encouraged to
see the connectivity of a whole process. By the time a student has worked through

Preface

xv
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a series of linked problems, a substantial analysis has been achieved, addressing
such things as deflection, stress, static failure, dynamic failure, and multiple
component selection. Since it comes one assignment at a time, it is no more
daunting than regular homework assignments. Many of the linked problems blend
very nicely with the transmission case study developed throughout the book, and
detailed in Chap. 18.

• Content changes. The bulk of the content changes in this edition falls into categories
of pedagogy and keeping current. These changes include improved examples, clari-
fied presentations, improved notations, and updated references. A detailed list of
content changes is available on the resource website, www.mhhe.com/shigley.

A few content changes warrant particular mention for the benefit of instructors familiar
with previous editions. 

• Transverse shear stress is covered in greater depth (Sec. 3–11 and Ex. 3–7).
• The sections on strain energy and Castigliano’s method are modified in presenta-

tion of equations and examples, particularly in the deflections of curved members
(Secs. 4–7 through 4–9).

• The coverage of shock and impact loading is mathematically simplified by using an
energy approach (Sec. 4–17).

• The variable σrev is introduced to denote a completely reversed stress, avoiding
confusion with σa , which is the amplitude of alternating stress about a mean stress
(Sec. 6–8).

• The method for determining notch sensitivity for shear loading is modified to be
more consistent with currently available data (Sec. 6–10).

• For tension-loaded bolts, the yielding factor of safety is defined and distinguished
from the load factor (Sec. 8–9).

• The presentation of fatigue loading of bolted joints now handles general fluctuating
stresses, treating repeated loading as a special case (Sec. 8–11).

• The notation for bearing life now distinguishes more clearly and consistently be-
tween life in revolutions versus life in hours (Sec. 11–3).

• The material on tapered roller bearings is generalized to emphasize the concepts
and processes, and to be less dependent on specific manufacturer’s terminology
(Sec. 11–9).

• Streamlining for clarity to the student. There is a fine line between being compre-
hensive and being cumbersome and confusing. It is a continual process to refine
and maintain focus on the needs of the student. This text is first and foremost an
educational tool for the initial presentation of its topics to the developing engi-
neering student. Accordingly, the presentation has been examined with attentive-
ness to how the beginning student would likely understand it. Also recognizing
that this text is a valued reference for practicing engineers, the authors have en-
deavored to keep the presentation complete, accurate, properly referenced, and
straightforward.

Connect Engineering
The 9th edition also features McGraw-Hill Connect Engineering, a Web-based assign-
ment and assessment platform that allows instructors to deliver assignments, quizzes,
and tests easily online. Students can practice important skills at their own pace and on
their own schedule.

xvi Mechanical Engineering Design
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Additional media offerings available at www.mhhe.com/shigley include:

Student Supplements
• Tutorials—Presentation of major concepts, with visuals. Among the topics covered

are pressure vessel design, press and shrink fits, contact stresses, and design for static
failure.

• MATLAB® for machine design. Includes visual simulations and accompanying source
code. The simulations are linked to examples and problems in the text and demonstrate
the ways computational software can be used in mechanical design and analysis.

• Fundamentals of Engineering (FE) exam questions for machine design. Interactive
problems and solutions serve as effective, self-testing problems as well as excellent
preparation for the FE exam.

Instructor Supplements (under password protection)
• Solutions manual. The instructor’s manual contains solutions to most end-of-chapter

nondesign problems.

• PowerPoint® slides. Slides of important figures and tables from the text are provided
in PowerPoint format for use in lectures.

• C.O.S.M.O.S. A complete online solutions manual organization system that allows
instructors to create custom homework, quizzes, and tests using end-of-chapter
problems from the text.

Electronic Textbooks
Ebooks are an innovative way for students to save money and create a greener environ-
ment at the same time. An ebook can save students about half the cost of a traditional
textbook and offers unique features like a powerful search engine, highlighting, and the
ability to share notes with classmates using ebooks.

McGraw-Hill offers this text as an ebook. To talk about the ebook options, contact
your McGraw-Hill sales rep or visit the site www.coursesmart.com to learn more.
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List of Symbols

This is a list of common symbols used in machine design and in this book. Specialized
use in a subject-matter area often attracts fore and post subscripts and superscripts. 
To make the table brief enough to be useful, the symbol kernels are listed. See 
Table 14–1, pp. 735–736 for spur and helical gearing symbols, and Table 15–1, 
pp. 789–790 for bevel-gear symbols.

A Area, coefficient
A Area variate
a Distance, regression constant
â Regression constant estimate
a Distance variate
B Coefficient
Bhn Brinell hardness
B Variate
b Distance, Weibull shape parameter, range number, regression constant,

width
b̂ Regression constant estimate
b Distance variate
C Basic load rating, bolted-joint constant, center distance, coefficient of 

variation, column end condition, correction factor, specific heat capacity,
spring index

c Distance, viscous damping, velocity coefficient
CDF Cumulative distribution function
COV Coefficient of variation
c Distance variate
D Helix diameter
d Diameter, distance 
E Modulus of elasticity, energy, error
e Distance, eccentricity, efficiency, Naperian logarithmic base
F Force, fundamental dimension force
f Coefficient of friction, frequency, function
fom Figure of merit
G Torsional modulus of elasticity
g Acceleration due to gravity, function
H Heat, power
HB Brinell hardness
HRC Rockwell C-scale hardness
h Distance, film thickness
h̄C R Combined overall coefficient of convection and radiation heat transfer
I Integral, linear impulse, mass moment of inertia, second moment of area
i Index
i Unit vector in x-direction

xix

bud29281_fm_i-xxii_1.qxd  12/24/09  3:38 PM  Page xix epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



J Mechanical equivalent of heat, polar second moment of area, geometry factor
j Unit vector in the y-direction
K Service factor, stress-concentration factor, stress-augmentation factor,

torque coefficient
k Marin endurance limit modifying factor, spring rate
k k variate, unit vector in the z-direction
L Length, life, fundamental dimension length
� Life in hours
LN Lognormal distribution
l Length
M Fundamental dimension mass, moment
M Moment vector, moment variate
m Mass, slope, strain-strengthening exponent
N Normal force, number, rotational speed
N Normal distribution
n Load factor, rotational speed, safety factor
nd Design factor
P Force, pressure, diametral pitch
PDF Probability density function
p Pitch, pressure, probability
Q First moment of area, imaginary force, volume
q Distributed load, notch sensitivity
R Radius, reaction force, reliability, Rockwell hardness, stress ratio
R Vector reaction force
r Correlation coefficient, radius
r Distance vector
S Sommerfeld number, strength
S S variate
s Distance, sample standard deviation, stress
T Temperature, tolerance, torque, fundamental dimension time
T Torque vector, torque variate
t Distance, Student’s t-statistic, time, tolerance
U Strain energy
U Uniform distribution
u Strain energy per unit volume
V Linear velocity, shear force
v Linear velocity
W Cold-work factor, load, weight
W Weibull distribution
w Distance, gap, load intensity
w Vector distance
X Coordinate, truncated number
x Coordinate, true value of a number, Weibull parameter
x x variate
Y Coordinate
y Coordinate, deflection
y y variate
Z Coordinate, section modulus, viscosity
z Standard deviation of the unit normal distribution
z Variate of z

xx Mechanical Engineering Design
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List of Symbols xxi

α Coefficient, coefficient of linear thermal expansion, end-condition for
springs, thread angle

β Bearing angle, coefficient
� Change, deflection
δ Deviation, elongation
ε Eccentricity ratio, engineering (normal) strain
� Normal distribution with a mean of 0 and a standard deviation of s
ε True or logarithmic normal strain

 Gamma function
γ Pitch angle, shear strain, specific weight
λ Slenderness ratio for springs
L Unit lognormal with a mean of l and a standard deviation equal to COV
μ Absolute viscosity, population mean
ν Poisson ratio
ω Angular velocity, circular frequency
φ Angle, wave length
ψ Slope integral
ρ Radius of curvature
σ Normal stress
σ ′ Von Mises stress
S Normal stress variate
σ̂ Standard deviation
τ Shear stress
� Shear stress variate
θ Angle, Weibull characteristic parameter
¢ Cost per unit weight
$ Cost
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4 Mechanical Engineering Design

Mechanical design is a complex process, requiring many skills. Extensive relationships
need to be subdivided into a series of simple tasks. The complexity of the process
requires a sequence in which ideas are introduced and iterated.

We first address the nature of design in general, and then mechanical engineering
design in particular. Design is an iterative process with many interactive phases. Many
resources exist to support the designer, including many sources of information and an
abundance of computational design tools. Design engineers need not only develop com-
petence in their field but they must also cultivate a strong sense of responsibility and
professional work ethic.

There are roles to be played by codes and standards, ever-present economics, safety,
and considerations of product liability. The survival of a mechanical component is often
related through stress and strength. Matters of uncertainty are ever-present in engineer-
ing design and are typically addressed by the design factor and factor of safety, either
in the form of a deterministic (absolute) or statistical sense. The latter, statistical
approach, deals with a design’s reliability and requires good statistical data.

In mechanical design, other considerations include dimensions and tolerances,
units, and calculations.

The book consists of four parts. Part 1, Basics, begins by explaining some differ-
ences between design and analysis and introducing some fundamental notions and
approaches to design. It continues with three chapters reviewing material properties,
stress analysis, and stiffness and deflection analysis, which are the principles necessary
for the remainder of the book.

Part 2, Failure Prevention, consists of two chapters on the prevention of failure of
mechanical parts. Why machine parts fail and how they can be designed to prevent fail-
ure are difficult questions, and so we take two chapters to answer them, one on pre-
venting failure due to static loads, and the other on preventing fatigue failure due to
time-varying, cyclic loads.

In Part 3, Design of Mechanical Elements, the concepts of Parts 1 and 2 are applied
to the analysis, selection, and design of specific mechanical elements such as shafts,
fasteners, weldments, springs, rolling contact bearings, film bearings, gears, belts,
chains, and wire ropes.

Part 4, Analysis Tools, provides introductions to two important methods used in
mechanical design, finite element analysis and statistical analysis. This is optional study
material, but some sections and examples in Parts 1 to 3 demonstrate the use of these tools.

There are two appendixes at the end of the book. Appendix A contains many use-
ful tables referenced throughout the book. Appendix B contains answers to selected
end-of-chapter problems.

1–1 Design
To design is either to formulate a plan for the satisfaction of a specified need or to solve
a specific problem. If the plan results in the creation of something having a physical
reality, then the product must be functional, safe, reliable, competitive, usable, manu-
facturable, and marketable.

Design is an innovative and highly iterative process. It is also a decision-making
process. Decisions sometimes have to be made with too little information, occasion-
ally with just the right amount of information, or with an excess of partially contradictory
information. Decisions are sometimes made tentatively, with the right reserved to adjust
as more becomes known. The point is that the engineering designer has to be personally
comfortable with a decision-making, problem-solving role.
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Introduction to Mechanical Engineering Design 5

Design is a communication-intensive activity in which both words and pictures are
used, and written and oral forms are employed. Engineers have to communicate effec-
tively and work with people of many disciplines. These are important skills, and an
engineer’s success depends on them.

A designer’s personal resources of creativeness, communicative ability, and problem-
solving skill are intertwined with the knowledge of technology and first principles.
Engineering tools (such as mathematics, statistics, computers, graphics, and languages)
are combined to produce a plan that, when carried out, produces a product that is func-
tional, safe, reliable, competitive, usable, manufacturable, and marketable, regardless
of who builds it or who uses it.

1–2 Mechanical Engineering Design
Mechanical engineers are associated with the production and processing of energy and
with providing the means of production, the tools of transportation, and the techniques
of automation. The skill and knowledge base are extensive. Among the disciplinary
bases are mechanics of solids and fluids, mass and momentum transport, manufactur-
ing processes, and electrical and information theory. Mechanical engineering design
involves all the disciplines of mechanical engineering.

Real problems resist compartmentalization. A simple journal bearing involves fluid
flow, heat transfer, friction, energy transport, material selection, thermomechanical
treatments, statistical descriptions, and so on. A building is environmentally controlled.
The heating, ventilation, and air-conditioning considerations are sufficiently specialized
that some speak of heating, ventilating, and air-conditioning design as if it is separate
and distinct from mechanical engineering design. Similarly, internal-combustion engine
design, turbomachinery design, and jet-engine design are sometimes considered dis-
crete entities. Here, the leading string of words preceding the word design is merely a
product descriptor. Similarly, there are phrases such as machine design, machine-element
design, machine-component design, systems design, and fluid-power design. All of
these phrases are somewhat more focused examples of mechanical engineering design.
They all draw on the same bodies of knowledge, are similarly organized, and require
similar skills.

1–3 Phases and Interactions of the Design Process
What is the design process? How does it begin? Does the engineer simply sit down at
a desk with a blank sheet of paper and jot down some ideas? What happens next? What
factors influence or control the decisions that have to be made? Finally, how does the
design process end?

The complete design process, from start to finish, is often outlined as in Fig. 1–1.
The process begins with an identification of a need and a decision to do something
about it. After many iterations, the process ends with the presentation of the plans
for satisfying the need. Depending on the nature of the design task, several design
phases may be repeated throughout the life of the product, from inception to termi-
nation. In the next several subsections, we shall examine these steps in the design
process in detail.

Identification of need generally starts the design process. Recognition of the need
and phrasing the need often constitute a highly creative act, because the need may be
only a vague discontent, a feeling of uneasiness, or a sensing that something is not right.
The need is often not evident at all; recognition can be triggered by a particular adverse
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6 Mechanical Engineering Design

circumstance or a set of random circumstances that arises almost simultaneously. For
example, the need to do something about a food-packaging machine may be indicated
by the noise level, by a variation in package weight, and by slight but perceptible vari-
ations in the quality of the packaging or wrap.

There is a distinct difference between the statement of the need and the definition
of the problem. The definition of problem is more specific and must include all the spec-
ifications for the object that is to be designed. The specifications are the input and out-
put quantities, the characteristics and dimensions of the space the object must occupy,
and all the limitations on these quantities. We can regard the object to be designed as
something in a black box. In this case we must specify the inputs and outputs of the box,
together with their characteristics and limitations. The specifications define the cost, the
number to be manufactured, the expected life, the range, the operating temperature, and
the reliability. Specified characteristics can include the speeds, feeds, temperature lim-
itations, maximum range, expected variations in the variables, dimensional and weight
limitations, etc.

There are many implied specifications that result either from the designer’s par-
ticular environment or from the nature of the problem itself. The manufacturing
processes that are available, together with the facilities of a certain plant, constitute
restrictions on a designer’s freedom, and hence are a part of the implied specifica-
tions. It may be that a small plant, for instance, does not own cold-working machin-
ery. Knowing this, the designer might select other metal-processing methods that
can be performed in the plant. The labor skills available and the competitive situa-
tion also constitute implied constraints. Anything that limits the designer’s freedom
of choice is a constraint. Many materials and sizes are listed in supplier’s catalogs,
for instance, but these are not all easily available and shortages frequently occur.
Furthermore, inventory economics requires that a manufacturer stock a minimum
number of materials and sizes. An example of a specification is given in Sec. 1–17.
This example is for a case study of a power transmission that is presented throughout
this text.

The synthesis of a scheme connecting possible system elements is sometimes
called the invention of the concept or concept design. This is the first and most impor-
tant step in the synthesis task. Various schemes must be proposed, investigated, and

Figure 1–1

The phases in design,
acknowledging the many
feedbacks and iterations.

Identification of need

Definition of problem

Synthesis

Analysis and optimization

Evaluation

Presentation

Iteration
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Introduction to Mechanical Engineering Design 7

quantified in terms of established metrics.1 As the fleshing out of the scheme progresses,
analyses must be performed to assess whether the system performance is satisfactory or
better, and, if satisfactory, just how well it will perform. System schemes that do not
survive analysis are revised, improved, or discarded. Those with potential are optimized
to determine the best performance of which the scheme is capable. Competing schemes
are compared so that the path leading to the most competitive product can be chosen.
Figure 1–1 shows that synthesis and analysis and optimization are intimately and
iteratively related.

We have noted, and we emphasize, that design is an iterative process in which we
proceed through several steps, evaluate the results, and then return to an earlier phase
of the procedure. Thus, we may synthesize several components of a system, analyze and
optimize them, and return to synthesis to see what effect this has on the remaining parts
of the system. For example, the design of a system to transmit power requires attention
to the design and selection of individual components (e.g., gears, bearings, shaft).
However, as is often the case in design, these components are not independent. In order
to design the shaft for stress and deflection, it is necessary to know the applied forces.
If the forces are transmitted through gears, it is necessary to know the gear specifica-
tions in order to determine the forces that will be transmitted to the shaft. But stock
gears come with certain bore sizes, requiring knowledge of the necessary shaft diame-
ter. Clearly, rough estimates will need to be made in order to proceed through the
process, refining and iterating until a final design is obtained that is satisfactory for each
individual component as well as for the overall design specifications. Throughout the
text we will elaborate on this process for the case study of a power transmission design.

Both analysis and optimization require that we construct or devise abstract models
of the system that will admit some form of mathematical analysis. We call these mod-
els mathematical models. In creating them it is our hope that we can find one that will
simulate the real physical system very well. As indicated in Fig. 1–1, evaluation is a
significant phase of the total design process. Evaluation is the final proof of a success-
ful design and usually involves the testing of a prototype in the laboratory. Here we
wish to discover if the design really satisfies the needs. Is it reliable? Will it compete
successfully with similar products? Is it economical to manufacture and to use? Is it
easily maintained and adjusted? Can a profit be made from its sale or use? How likely
is it to result in product-liability lawsuits? And is insurance easily and cheaply
obtained? Is it likely that recalls will be needed to replace defective parts or systems?
The project designer or design team will need to address a myriad of engineering and
non-engineering questions.

Communicating the design to others is the final, vital presentation step in the design
process. Undoubtedly, many great designs, inventions, and creative works have been lost to
posterity simply because the originators were unable or unwilling to properly explain their
accomplishments to others. Presentation is a selling job. The engineer, when presenting a
new solution to administrative, management, or supervisory persons, is attempting to sell
or to prove to them that their solution is a better one. Unless this can be done successfully,
the time and effort spent on obtaining the solution have been largely wasted. When
designers sell a new idea, they also sell themselves. If they are repeatedly successful in
selling ideas, designs, and new solutions to management, they begin to receive salary
increases and promotions; in fact, this is how anyone succeeds in his or her profession.

1An excellent reference for this topic is presented by Stuart Pugh, Total Design—Integrated Methods for
Successful Product Engineering, Addison-Wesley, 1991. A description of the Pugh method is also provided
in Chap. 8, David G. Ullman, The Mechanical Design Process, 3rd ed., McGraw-Hill, 2003.
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8 Mechanical Engineering Design

Design Considerations

Sometimes the strength required of an element in a system is an important factor in the
determination of the geometry and the dimensions of the element. In such a situation
we say that strength is an important design consideration. When we use the expression
design consideration, we are referring to some characteristic that influences the design
of the element or, perhaps, the entire system. Usually quite a number of such charac-
teristics must be considered and prioritized in a given design situation. Many of the
important ones are as follows (not necessarily in order of importance):

1 Functionality 14 Noise
2 Strength/stress 15 Styling
3 Distortion/deflection/stiffness 16 Shape
4 Wear 17 Size
5 Corrosion 18 Control
6 Safety 19 Thermal properties
7 Reliability 20 Surface
8 Manufacturability 21 Lubrication
9 Utility 22 Marketability

10 Cost 23 Maintenance
11 Friction 24 Volume
12 Weight 25 Liability
13 Life 26 Remanufacturing/resource recovery

Some of these characteristics have to do directly with the dimensions, the material, the
processing, and the joining of the elements of the system. Several characteristics may
be interrelated, which affects the configuration of the total system.

1–4 Design Tools and Resources
Today, the engineer has a great variety of tools and resources available to assist in the
solution of design problems. Inexpensive microcomputers and robust computer soft-
ware packages provide tools of immense capability for the design, analysis, and simu-
lation of mechanical components. In addition to these tools, the engineer always needs
technical information, either in the form of basic science/engineering behavior or the
characteristics of specific off-the-shelf components. Here, the resources can range from
science/engineering textbooks to manufacturers’ brochures or catalogs. Here too, the
computer can play a major role in gathering information.2

Computational Tools

Computer-aided design (CAD) software allows the development of three-dimensional 
(3-D) designs from which conventional two-dimensional orthographic views with auto-
matic dimensioning can be produced. Manufacturing tool paths can be generated from the
3-D models, and in some cases, parts can be created directly from a 3-D database by using
a rapid prototyping and manufacturing method (stereolithography)—paperless manufac-
turing! Another advantage of a 3-D database is that it allows rapid and accurate calcula-
tions of mass properties such as mass, location of the center of gravity, and mass moments
of inertia. Other geometric properties such as areas and distances between points are
likewise easily obtained. There are a great many CAD software packages available such

2An excellent and comprehensive discussion of the process of “gathering information” can be found in
Chap. 4, George E. Dieter, Engineering Design, A Materials and Processing Approach, 3rd ed., 
McGraw-Hill, New York, 2000.
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Introduction to Mechanical Engineering Design 9

as Aries, AutoCAD, CadKey, I-Deas, Unigraphics, Solid Works, and ProEngineer, to
name a few.

The term computer-aided engineering (CAE) generally applies to all computer-
related engineering applications. With this definition, CAD can be considered as a sub-
set of CAE. Some computer software packages perform specific engineering analysis
and/or simulation tasks that assist the designer, but they are not considered a tool for the
creation of the design that CAD is. Such software fits into two categories: engineering-
based and non-engineering-specific. Some examples of engineering-based software for
mechanical engineering applications—software that might also be integrated within a
CAD system—include finite-element analysis (FEA) programs for analysis of stress
and deflection (see Chap. 19), vibration, and heat transfer (e.g., Algor, ANSYS, and
MSC/NASTRAN); computational fluid dynamics (CFD) programs for fluid-flow analy-
sis and simulation (e.g., CFD++, FIDAP, and Fluent); and programs for simulation of
dynamic force and motion in mechanisms (e.g., ADAMS, DADS, and Working Model).

Examples of non-engineering-specific computer-aided applications include software
for word processing, spreadsheet software (e.g., Excel, Lotus, and Quattro-Pro), and
mathematical solvers (e.g., Maple, MathCad, MATLAB,3 Mathematica, and TKsolver).

Your instructor is the best source of information about programs that may be available
to you and can recommend those that are useful for specific tasks. One caution, however:
Computer software is no substitute for the human thought process. You are the driver here;
the computer is the vehicle to assist you on your journey to a solution. Numbers generated
by a computer can be far from the truth if you entered incorrect input, if you misinterpreted
the application or the output of the program, if the program contained bugs, etc. It is your
responsibility to assure the validity of the results, so be careful to check the application and
results carefully, perform benchmark testing by submitting problems with known solu-
tions, and monitor the software company and user-group newsletters.

Acquiring Technical Information

We currently live in what is referred to as the information age, where information is gen-
erated at an astounding pace. It is difficult, but extremely important, to keep abreast of past
and current developments in one’s field of study and occupation. The reference in Footnote
2 provides an excellent description of the informational resources available and is highly
recommended reading for the serious design engineer. Some sources of information are:

• Libraries (community, university, and private). Engineering dictionaries and encyclo-
pedias, textbooks, monographs, handbooks, indexing and abstract services, journals,
translations, technical reports, patents, and business sources/brochures/catalogs.

• Government sources. Departments of Defense, Commerce, Energy, and Transportation;
NASA; Government Printing Office; U.S. Patent and Trademark Office; National
Technical Information Service; and National Institute for Standards and Technology.

• Professional societies. American Society of Mechanical Engineers, Society of
Manufacturing Engineers, Society of Automotive Engineers, American Society for
Testing and Materials, and American Welding Society.

• Commercial vendors. Catalogs, technical literature, test data, samples, and cost
information.

• Internet. The computer network gateway to websites associated with most of the
categories listed above.4

3MATLAB is a registered trademark of The MathWorks, Inc.
4Some helpful Web resources, to name a few, include www.globalspec.com, www.engnetglobal.com,
www.efunda.com, www.thomasnet.com, and www.uspto.gov.
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10 Mechanical Engineering Design

This list is not complete. The reader is urged to explore the various sources of
information on a regular basis and keep records of the knowledge gained.

1–5 The Design Engineer’s Professional Responsibilities
In general, the design engineer is required to satisfy the needs of customers (man-
agement, clients, consumers, etc.) and is expected to do so in a competent, responsi-
ble, ethical, and professional manner. Much of engineering course work and practical
experience focuses on competence, but when does one begin to develop engineering
responsibility and professionalism? To start on the road to success, you should start
to develop these characteristics early in your educational program. You need to cul-
tivate your professional work ethic and process skills before graduation, so that
when you begin your formal engineering career, you will be prepared to meet the
challenges.

It is not obvious to some students, but communication skills play a large role here,
and it is the wise student who continuously works to improve these skills—even if it
is not a direct requirement of a course assignment! Success in engineering (achieve-
ments, promotions, raises, etc.) may in large part be due to competence but if you can-
not communicate your ideas clearly and concisely, your technical proficiency may be
compromised.

You can start to develop your communication skills by keeping a neat and clear
journal/logbook of your activities, entering dated entries frequently. (Many companies
require their engineers to keep a journal for patent and liability concerns.) Separate
journals should be used for each design project (or course subject). When starting a
project or problem, in the definition stage, make journal entries quite frequently. Others,
as well as yourself, may later question why you made certain decisions. Good chrono-
logical records will make it easier to explain your decisions at a later date.

Many engineering students see themselves after graduation as practicing engineers
designing, developing, and analyzing products and processes and consider the need of
good communication skills, either oral or writing, as secondary. This is far from the
truth. Most practicing engineers spend a good deal of time communicating with others,
writing proposals and technical reports, and giving presentations and interacting with
engineering and nonengineering support personnel. You have the time now to sharpen
your communication skills. When given an assignment to write or make any presenta-
tion, technical or nontechnical, accept it enthusiastically, and work on improving your
communication skills. It will be time well spent to learn the skills now rather than on
the job.

When you are working on a design problem, it is important that you develop a
systematic approach. Careful attention to the following action steps will help you to
organize your solution processing technique.

• Understand the problem. Problem definition is probably the most significant step in the
engineering design process. Carefully read, understand, and refine the problem statement.

• Identify the knowns. From the refined problem statement, describe concisely what
information is known and relevant.

• Identify the unknowns and formulate the solution strategy. State what must be deter-
mined, in what order, so as to arrive at a solution to the problem. Sketch the compo-
nent or system under investigation, identifying known and unknown parameters.
Create a flowchart of the steps necessary to reach the final solution. The steps may
require the use of free-body diagrams; material properties from tables; equations
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Introduction to Mechanical Engineering Design 11

from first principles, textbooks, or handbooks relating the known and unknown
parameters; experimentally or numerically based charts; specific computational tools
as discussed in Sec. 1–4; etc.

• State all assumptions and decisions. Real design problems generally do not have
unique, ideal, closed-form solutions. Selections, such as the choice of materials, and
heat treatments, require decisions. Analyses require assumptions related to the
modeling of the real components or system. All assumptions and decisions should be
identified and recorded.

• Analyze the problem. Using your solution strategy in conjunction with your decisions
and assumptions, execute the analysis of the problem. Reference the sources of all
equations, tables, charts, software results, etc. Check the credibility of your results.
Check the order of magnitude, dimensionality, trends, signs, etc.

• Evaluate your solution. Evaluate each step in the solution, noting how changes in strat-
egy, decisions, assumptions, and execution might change the results, in positive or neg-
ative ways. Whenever possible, incorporate the positive changes in your final solution.

• Present your solution. Here is where your communication skills are important. At
this point, you are selling yourself and your technical abilities. If you cannot skill-
fully explain what you have done, some or all of your work may be misunderstood
and unaccepted. Know your audience.

As stated earlier, all design processes are interactive and iterative. Thus, it may be nec-
essary to repeat some or all of the above steps more than once if less than satisfactory
results are obtained.

In order to be effective, all professionals must keep current in their fields of
endeavor. The design engineer can satisfy this in a number of ways by: being an active
member of a professional society such as the American Society of Mechanical
Engineers (ASME), the Society of Automotive Engineers (SAE), and the Society of
Manufacturing Engineers (SME); attending meetings, conferences, and seminars of
societies, manufacturers, universities, etc.; taking specific graduate courses or programs
at universities; regularly reading technical and professional journals; etc. An engineer’s
education does not end at graduation.

The design engineer’s professional obligations include conducting activities in an
ethical manner. Reproduced here is the Engineers’ Creed from the National Society of
Professional Engineers (NSPE)5:

As a Professional Engineer I dedicate my professional knowledge and skill to the
advancement and betterment of human welfare.
I pledge:

To give the utmost of performance;
To participate in none but honest enterprise;
To live and work according to the laws of man and the highest standards of pro-
fessional conduct;
To place service before profit, the honor and standing of the profession before
personal advantage, and the public welfare above all other considerations.

In humility and with need for Divine Guidance, I make this pledge.

5Adopted by the National Society of Professional Engineers, June 1954. “The Engineer’s Creed.” Reprinted
by permission of the National Society of Professional Engineers. NSPE also publishes a much more extensive
Code of Ethics for Engineers with rules of practice and professional obligations. For the current revision, 
July 2007 (at the time of this book’s printing), see the website www.nspe.org/Ethics/CodeofEthics/index.html. 
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12 Mechanical Engineering Design

1–6 Standards and Codes
A standard is a set of specifications for parts, materials, or processes intended to
achieve uniformity, efficiency, and a specified quality. One of the important purposes
of a standard is to limit the multitude of variations that can arise from the arbitrary cre-
ation of a part, material, or process.

A code is a set of specifications for the analysis, design, manufacture, and con-
struction of something. The purpose of a code is to achieve a specified degree of safety,
efficiency, and performance or quality. It is important to observe that safety codes do
not imply absolute safety. In fact, absolute safety is impossible to obtain. Sometimes
the unexpected event really does happen. Designing a building to withstand a 120 mi/h
wind does not mean that the designers think a 140 mi/h wind is impossible; it simply
means that they think it is highly improbable.

All of the organizations and societies listed below have established specifications
for standards and safety or design codes. The name of the organization provides a clue
to the nature of the standard or code. Some of the standards and codes, as well as
addresses, can be obtained in most technical libraries or on the Internet. The organiza-
tions of interest to mechanical engineers are:

Aluminum Association (AA)
American Bearing Manufacturers Association (ABMA)
American Gear Manufacturers Association (AGMA)
American Institute of Steel Construction (AISC)
American Iron and Steel Institute (AISI)
American National Standards Institute (ANSI)
American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE)
American Society of Mechanical Engineers (ASME)
American Society of Testing and Materials (ASTM)
American Welding Society (AWS)
ASM International
British Standards Institution (BSI)
Industrial Fasteners Institute (IFI)
Institute of Transportation Engineers (ITE)
Institution of Mechanical Engineers (IMechE)
International Bureau of Weights and Measures (BIPM)
International Federation of Robotics (IFR)
International Standards Organization (ISO)
National Association of Power Engineers (NAPE)
National Institute for Standards and Technology (NIST)
Society of Automotive Engineers (SAE)

1–7 Economics
The consideration of cost plays such an important role in the design decision process
that we could easily spend as much time in studying the cost factor as in the study of
the entire subject of design. Here we introduce only a few general concepts and sim-
ple rules.

First, observe that nothing can be said in an absolute sense concerning costs.
Materials and labor usually show an increasing cost from year to year. But the costs
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of processing the materials can be expected to exhibit a decreasing trend because of
the use of automated machine tools and robots. The cost of manufacturing a single
product will vary from city to city and from one plant to another because of over-
head, labor, taxes, and freight differentials and the inevitable slight manufacturing
variations.

Standard Sizes

The use of standard or stock sizes is a first principle of cost reduction. An engineer who
specifies an AISI 1020 bar of hot-rolled steel 53 mm square has added cost to the prod-
uct, provided that a bar 50 or 60 mm square, both of which are preferred sizes, would
do equally well. The 53-mm size can be obtained by special order or by rolling or
machining a 60-mm square, but these approaches add cost to the product. To ensure that
standard or preferred sizes are specified, designers must have access to stock lists of the
materials they employ.

A further word of caution regarding the selection of preferred sizes is necessary.
Although a great many sizes are usually listed in catalogs, they are not all readily avail-
able. Some sizes are used so infrequently that they are not stocked. A rush order for
such sizes may add to the expense and delay. Thus you should also have access to a list
such as those in Table A–17 for preferred inch and millimeter sizes.

There are many purchased parts, such as motors, pumps, bearings, and fasteners,
that are specified by designers. In the case of these, too, you should make a special
effort to specify parts that are readily available. Parts that are made and sold in large
quantities usually cost somewhat less than the odd sizes. The cost of rolling bearings,
for example, depends more on the quantity of production by the bearing manufacturer
than on the size of the bearing.

Large Tolerances

Among the effects of design specifications on costs, tolerances are perhaps most sig-
nificant. Tolerances, manufacturing processes, and surface finish are interrelated and
influence the producibility of the end product in many ways. Close tolerances may
necessitate additional steps in processing and inspection or even render a part com-
pletely impractical to produce economically. Tolerances cover dimensional variation
and surface-roughness range and also the variation in mechanical properties resulting
from heat treatment and other processing operations.

Since parts having large tolerances can often be produced by machines with
higher production rates, costs will be significantly smaller. Also, fewer such parts will
be rejected in the inspection process, and they are usually easier to assemble. A plot
of cost versus tolerance/machining process is shown in Fig. 1–2, and illustrates the
drastic increase in manufacturing cost as tolerance diminishes with finer machining
processing.

Breakeven Points

Sometimes it happens that, when two or more design approaches are compared for cost,
the choice between the two depends on a set of conditions such as the quantity of pro-
duction, the speed of the assembly lines, or some other condition. There then occurs a
point corresponding to equal cost, which is called the breakeven point.

Introduction to Mechanical Engineering Design 13
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14 Mechanical Engineering Design

As an example, consider a situation in which a certain part can be manufactured at
the rate of 25 parts per hour on an automatic screw machine or 10 parts per hour on a
hand screw machine. Let us suppose, too, that the setup time for the automatic is 3 h and
that the labor cost for either machine is $20 per hour, including overhead. Figure 1–3 is
a graph of cost versus production by the two methods. The breakeven point for this
example corresponds to 50 parts. If the desired production is greater than 50 parts, the
automatic machine should be used.

Figure 1–2

Cost versus tolerance/
machining process.
(From David G. Ullman, The
Mechanical Design Process,
3rd ed., McGraw-Hill, New
York, 2003.)

Figure 1–3

A breakeven point.
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Introduction to Mechanical Engineering Design 15

Cost Estimates

There are many ways of obtaining relative cost figures so that two or more designs
can be roughly compared. A certain amount of judgment may be required in some
instances. For example, we can compare the relative value of two automobiles by
comparing the dollar cost per pound of weight. Another way to compare the cost of
one design with another is simply to count the number of parts. The design having
the smaller number of parts is likely to cost less. Many other cost estimators can be
used, depending upon the application, such as area, volume, horsepower, torque,
capacity, speed, and various performance ratios.6

1–8 Safety and Product Liability
The strict liability concept of product liability generally prevails in the United States.
This concept states that the manufacturer of an article is liable for any damage or harm
that results because of a defect. And it doesn’t matter whether the manufacturer knew
about the defect, or even could have known about it. For example, suppose an article
was manufactured, say, 10 years ago. And suppose at that time the article could not have
been considered defective on the basis of all technological knowledge then available.
Ten years later, according to the concept of strict liability, the manufacturer is still
liable. Thus, under this concept, the plaintiff needs only to prove that the article was
defective and that the defect caused some damage or harm. Negligence of the manu-
facturer need not be proved.

The best approaches to the prevention of product liability are good engineering in
analysis and design, quality control, and comprehensive testing procedures. Advertising
managers often make glowing promises in the warranties and sales literature for a prod-
uct. These statements should be reviewed carefully by the engineering staff to eliminate
excessive promises and to insert adequate warnings and instructions for use.

1–9 Stress and Strength
The survival of many products depends on how the designer adjusts the maximum
stresses in a component to be less than the component’s strength at critical locations.
The designer must allow the maximum stress to be less than the strength by a sufficient
margin so that despite the uncertainties, failure is rare.

In focusing on the stress-strength comparison at a critical (controlling) location,
we often look for “strength in the geometry and condition of use.” Strengths are the
magnitudes of stresses at which something of interest occurs, such as the proportional
limit, 0.2 percent-offset yielding, or fracture (see Sec. 2–1). In many cases, such events
represent the stress level at which loss of function occurs.

Strength is a property of a material or of a mechanical element. The strength of an
element depends on the choice, the treatment, and the processing of the material.
Consider, for example, a shipment of springs. We can associate a strength with a spe-
cific spring. When this spring is incorporated into a machine, external forces are applied
that result in load-induced stresses in the spring, the magnitudes of which depend on its
geometry and are independent of the material and its processing. If the spring is
removed from the machine unharmed, the stress due to the external forces will return

6For an overview of estimating manufacturing costs, see Chap. 11, Karl T. Ulrich and Steven D. Eppinger,
Product Design and Development, 3rd ed., McGraw-Hill, New York, 2004.
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16 Mechanical Engineering Design

to zero. But the strength remains as one of the properties of the spring. Remember, then,
that strength is an inherent property of a part, a property built into the part because of
the use of a particular material and process.

Various metalworking and heat-treating processes, such as forging, rolling, and
cold forming, cause variations in the strength from point to point throughout a part. The
spring cited above is quite likely to have a strength on the outside of the coils different
from its strength on the inside because the spring has been formed by a cold winding
process, and the two sides may not have been deformed by the same amount.
Remember, too, therefore, that a strength value given for a part may apply to only a par-
ticular point or set of points on the part.

In this book we shall use the capital letter S to denote strength, with appropriate
subscripts to denote the type of strength. Thus, Sy is a yield strength, Su an ultimate
strength, Ssy a shear yield strength, and Se an endurance strength.

In accordance with accepted engineering practice, we shall employ the Greek let-
ters σ (sigma) and τ (tau) to designate normal and shear stresses, respectively. Again,
various subscripts will indicate some special characteristic. For example, σ1 is a princi-
pal normal stress, σy a normal stress component in the y direction, and σr a normal stress
component in the radial direction.

Stress is a state property at a specific point within a body, which is a function of
load, geometry, temperature, and manufacturing processing. In an elementary course in
mechanics of materials, stress related to load and geometry is emphasized with some
discussion of thermal stresses. However, stresses due to heat treatments, molding,
assembly, etc. are also important and are sometimes neglected. A review of stress analy-
sis for basic load states and geometry is given in Chap. 3.

1–10 Uncertainty
Uncertainties in machinery design abound. Examples of uncertainties concerning stress
and strength include

• Composition of material and the effect of variation on properties.

• Variations in properties from place to place within a bar of stock.

• Effect of processing locally, or nearby, on properties.

• Effect of nearby assemblies such as weldments and shrink fits on stress conditions.

• Effect of thermomechanical treatment on properties.

• Intensity and distribution of loading.

• Validity of mathematical models used to represent reality.

• Intensity of stress concentrations.

• Influence of time on strength and geometry.

• Effect of corrosion.

• Effect of wear.

• Uncertainty as to the length of any list of uncertainties.

Engineers must accommodate uncertainty. Uncertainty always accompanies change.
Material properties, load variability, fabrication fidelity, and validity of mathematical
models are among concerns to designers.

There are mathematical methods to address uncertainties. The primary techniques
are the deterministic and stochastic methods. The deterministic method establishes a
design factor based on the absolute uncertainties of a loss-of-function parameter and a
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Introduction to Mechanical Engineering Design 17

maximum allowable parameter. Here the parameter can be load, stress, deflection, etc.
Thus, the design factor nd is defined as

nd = loss-of-function parameter

maximum allowable parameter
(1–1)

If the parameter is load, then the maximum allowable load can be found from

Maximum allowable load = loss-of-function load

nd
(1–2)

EXAMPLE 1–1 Consider that the maximum load on a structure is known with an uncertainty of ±20 per-
cent, and the load causing failure is known within ±15 percent. If the load causing fail-
ure is nominally 2000 lbf, determine the design factor and the maximum allowable load
that will offset the absolute uncertainties.

Solution To account for its uncertainty, the loss-of-function load must increase to 1/0.85, whereas
the maximum allowable load must decrease to 1/1.2. Thus to offset the absolute uncer-
tainties the design factor, from Eq. (1–1), should be

Answer nd = 1/0.85

1/1.2
= 1.4

From Eq. (1–2), the maximum allowable load is found to be

Answer Maximum allowable load = 2000

1.4
= 1400 lbf

Stochastic methods (see Chap. 20) are based on the statistical nature of the design
parameters and focus on the probability of survival of the design’s function (that is, on
reliability). Sections 5–13 and 6–17 demonstrate how this is accomplished.

1–11 Design Factor and Factor of Safety
A general approach to the allowable load versus loss-of-function load problem is the
deterministic design factor method, and sometimes called the classical method of
design. The fundamental equation is Eq. (1–1) where nd is called the design factor. All
loss-of-function modes must be analyzed, and the mode leading to the smallest design
factor governs. After the design is completed, the actual design factor may change as
a result of changes such as rounding up to a standard size for a cross section or using
off-the-shelf components with higher ratings instead of employing what is calculated
by using the design factor. The factor is then referred to as the factor of safety, n. The
factor of safety has the same definition as the design factor, but it generally differs
numerically.

Since stress may not vary linearly with load (see Sec. 3–19), using load as the loss-of-
function parameter may not be acceptable. It is more common then to express the design
factor in terms of a stress and a relevant strength. Thus Eq. (1–1) can be rewritten as

nd = loss-of-function strength

allowable stress
= S

σ (or τ )
(1–3)
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18 Mechanical Engineering Design

The stress and strength terms in Eq. (1–3) must be of the same type and units. Also, the
stress and strength must apply to the same critical location in the part.

EXAMPLE 1–2 A rod with a cross-sectional area of A and loaded in tension with an axial force of P �
2000 lbf undergoes a stress of σ = P/A. Using a material strength of 24 kpsi and a
design factor of 3.0, determine the minimum diameter of a solid circular rod. Using
Table A–17, select a preferred fractional diameter and determine the rod’s factor of safety.

Solution Since A = πd2/4, σ = P/A, and from Eq. (1–3), σ = S/nd , then

σ = P

A
= P

πd2/4
= S

nd

Solving for d yields

Answer d =
(

4Pnd

πS

)1/2

=
(

4(2000)3

π(24 000)

)1/2

= 0.564 in

From Table A–17, the next higher preferred size is 5
8 in � 0.625 in. Thus, when nd is

replaced with n in the equation developed above, the factor of safety n is

Answer n = πSd2

4P
= π(24 000)0.6252

4(2000)
= 3.68

Thus rounding the diameter has increased the actual design factor.

1–12 Reliability
In these days of greatly increasing numbers of liability lawsuits and the need to conform to
regulations issued by governmental agencies such as EPA and OSHA, it is very important
for the designer and the manufacturer to know the reliability of their product. The reliabil-
ity method of design is one in which we obtain the distribution of stresses and the distribu-
tion of strengths and then relate these two in order to achieve an acceptable success rate.

The statistical measure of the probability that a mechanical element will not fail in
use is called the reliability of that element. The reliability R can be expressed by

R = 1 � pf (1–4)

where pf is the probability of failure, given by the number of instances of failures per
total number of possible instances. The value of R falls in the range 0 � R � 1. A reli-
ability of R = 0.90 means that there is a 90 percent chance that the part will perform
its proper function without failure. The failure of 6 parts out of every 1000 manufactured
might be considered an acceptable failure rate for a certain class of products. This rep-
resents a reliability of

R = 1 − 6

1000
= 0.994

or 99.4 percent.
In the reliability method of design, the designer’s task is to make a judicious selec-

tion of materials, processes, and geometry (size) so as to achieve a specific reliability
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goal. Thus, if the objective reliability is to be 99.4 percent, as above, what combination
of materials, processing, and dimensions is needed to meet this goal? If a mechanical
system fails when any one component fails, the system is said to be a series system. If
the reliability of component i is Ri in a series system of n components, then the relia-
bility of the system is given by

R =
n∑

i=1

Ri (1–5)

For example, consider a shaft with two bearings having reliabilities of 95 percent and
98 percent. From Eq. (1–5), the overall reliability of the shaft system is then

R = R1 R2 = 0.95 (0.98) = 0.93

or 93 percent.
Analyses that lead to an assessment of reliability address uncertainties, or their

estimates, in parameters that describe the situation. Stochastic variables such as stress,
strength, load, or size are described in terms of their means, standard deviations, and
distributions. If bearing balls are produced by a manufacturing process in which a
diameter distribution is created, we can say upon choosing a ball that there is uncertainty
as to size. If we wish to consider weight or moment of inertia in rolling, this size uncer-
tainty can be considered to be propagated to our knowledge of weight or inertia. There
are ways of estimating the statistical parameters describing weight and inertia from
those describing size and density. These methods are variously called propagation of
error, propagation of uncertainty, or propagation of dispersion. These methods are
integral parts of analysis or synthesis tasks when probability of failure is involved.

It is important to note that good statistical data and estimates are essential to per-
form an acceptable reliability analysis. This requires a good deal of testing and valida-
tion of the data. In many cases, this is not practical and a deterministic approach to the
design must be undertaken.

1–13 Dimensions and Tolerances
The following terms are used generally in dimensioning:

• Nominal size. The size we use in speaking of an element. For example, we may spec-
ify a 1 1

2 -in pipe or a 1
2 -in bolt. Either the theoretical size or the actual measured size

may be quite different. The theoretical size of a 1 1
2 -in pipe is 1.900 in for the outside

diameter. And the diameter of the 1
2 -in bolt, say, may actually measure 0.492 in.

• Limits. The stated maximum and minimum dimensions.

• Tolerance. The difference between the two limits.

• Bilateral tolerance. The variation in both directions from the basic dimension. That
is, the basic size is between the two limits, for example, 1.005 ± 0.002 in. The two
parts of the tolerance need not be equal.

• Unilateral tolerance. The basic dimension is taken as one of the limits, and variation
is permitted in only one direction, for example,

1.005 +0.004
−0.000 in

• Clearance. A general term that refers to the mating of cylindrical parts such as a bolt
and a hole. The word clearance is used only when the internal member is smaller than
the external member. The diametral clearance is the measured difference in the two
diameters. The radial clearance is the difference in the two radii.

Introduction to Mechanical Engineering Design 19
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20 Mechanical Engineering Design

EXAMPLE 1–3 A shouldered screw contains three hollow right circular cylindrical parts on the screw
before a nut is tightened against the shoulder. To sustain the function, the gap w must
equal or exceed 0.003 in. The parts in the assembly depicted in Fig. 1–4 have dimen-
sions and tolerances as follows:

a = 1.750 ± 0.003 in b = 0.750 ± 0.001 in

c = 0.120 ± 0.005 in d = 0.875 ± 0.001 in

Figure 1–4

An assembly of three
cylindrical sleeves of lengths a,
b, and c on a shoulder bolt
shank of length a. The gap w is
of interest.

a

b c d w

All parts except the part with the dimension d are supplied by vendors. The part con-
taining the dimension d is made in-house.
(a) Estimate the mean and tolerance on the gap w.
(b) What basic value of d will assure that w � 0.003 in?

Solution (a) The mean value of w is given by

Answer w̄ = ā − b̄ − c̄ − d̄ = 1.750 − 0.750 − 0.120 − 0.875 = 0.005 in

For equal bilateral tolerances, the tolerance of the gap is

Answer tw =
∑

all

t = 0.003 + 0.001 + 0.005 + 0.001 = 0.010 in

Then, w = 0.005 ± 0.010 in, and

wmax = w̄ + tw = 0.005 + 0.010 = 0.015 in

wmin = w̄ − tw = 0.005 − 0.010 = −0.005 in

Thus, both clearance and interference are possible.
(b) If wmin is to be 0.003 in, then, w̄ = wmin + tw = 0.003 + 0.010 = 0.013 in. Thus,

Answer d̄ = ā − b̄ − c̄ − w̄ = 1.750 − 0.750 − 0.120 − 0.013 = 0.867 in

• Interference. The opposite of clearance, for mating cylindrical parts in which the
internal member is larger than the external member (e.g., press-fits).

• Allowance. The minimum stated clearance or the maximum stated interference for
mating parts.

When several parts are assembled, the gap (or interference) depends on the dimen-
sions and tolerances of the individual parts.
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Introduction to Mechanical Engineering Design 21

The previous example represented an absolute tolerance system. Statistically, gap
dimensions near the gap limits are rare events. Using a statistical tolerance system, the
probability that the gap falls within a given limit is determined.7 This probability deals
with the statistical distributions of the individual dimensions. For example, if the distri-
butions of the dimensions in the previous example were normal and the tolerances, t, were
given in terms of standard deviations of the dimension distribution, the standard devia-

tion of the gap w̄ would be tw =
√∑

all

t2 . However, this assumes a normal distribution

for the individual dimensions, a rare occurrence. To find the distribution of w and/or the
probability of observing values of w within certain limits requires a computer simulation
in most cases. Monte Carlo computer simulations are used to determine the distribution
of w by the following approach:

1 Generate an instance for each dimension in the problem by selecting the value of
each dimension based on its probability distribution.

2 Calculate w using the values of the dimensions obtained in step 1.
3 Repeat steps 1 and 2 N times to generate the distribution of w. As the number of

trials increases, the reliability of the distribution increases.

1–14 Units
In the symbolic units equation for Newton’s second law, F � ma,

F = M LT −2 (1–6)

F stands for force, M for mass, L for length, and T for time. Units chosen for any three
of these quantities are called base units. The first three having been chosen, the fourth
unit is called a derived unit. When force, length, and time are chosen as base units, the
mass is the derived unit and the system that results is called a gravitational system of
units. When mass, length, and time are chosen as base units, force is the derived unit
and the system that results is called an absolute system of units.

In some English-speaking countries, the U.S. customary foot-pound-second system
(fps) and the inch-pound-second system (ips) are the two standard gravitational systems
most used by engineers. In the fps system the unit of mass is

M = FT 2

L
= (pound-force)(second)2

foot
= lbf · s2/ft = slug (1–7)

Thus, length, time, and force are the three base units in the fps gravitational system.
The unit of force in the fps system is the pound, more properly the pound-force. We

shall often abbreviate this unit as lbf; the abbreviation lb is permissible however, since
we shall be dealing only with the U.S. customary gravitational system. In some branches
of engineering it is useful to represent 1000 lbf as a kilopound and to abbreviate it as
kip. Note: In Eq. (1–7) the derived unit of mass in the fps gravitational system is the
lbf · s2/ft and is called a slug; there is no abbreviation for slug.

The unit of mass in the ips gravitational system is

M = FT 2

L
= (pound-force)(second)2

inch
= lbf · s2/in (1–8)

The mass unit lbf · s2/in has no official name.

7See Chapter 20 for a description of the statistical terminology.
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22 Mechanical Engineering Design

The International System of Units (SI) is an absolute system. The base units
are the meter, the kilogram (for mass), and the second. The unit of force is derived
by using Newton’s second law and is called the newton. The units constituting the
newton (N) are

F = ML

T 2
= (kilogram)(meter)

(second)2
= kg · m/s2 = N (1–9)

The weight of an object is the force exerted upon it by gravity. Designating the weight
as W and the acceleration due to gravity as g, we have

W = mg (1–10)

In the fps system, standard gravity is g � 32.1740 ft/s2. For most cases this is rounded
off to 32.2. Thus the weight of a mass of 1 slug in the fps system is

W = mg = (1 slug)(32.2 ft /s2) = 32.2 lbf

In the ips system, standard gravity is 386.088 or about 386 in/s2. Thus, in this system,
a unit mass weighs

W = (1 lbf · s2/in)(386 in/s2) = 386 lbf

With SI units, standard gravity is 9.806 or about 9.81 m/s. Thus, the weight of a 1-kg
mass is

W = (1 kg)(9.81 m/s2) = 9.81 N

A series of names and symbols to form multiples and submultiples of SI units has
been established to provide an alternative to the writing of powers of 10. Table A–1
includes these prefixes and symbols.

Numbers having four or more digits are placed in groups of three and separated by
a space instead of a comma. However, the space may be omitted for the special case of
numbers having four digits. A period is used as a decimal point. These recommenda-
tions avoid the confusion caused by certain European countries in which a comma
is used as a decimal point, and by the English use of a centered period. Examples of
correct and incorrect usage are as follows:

1924 or 1 924 but not 1,924
0.1924 or 0.192 4 but not 0.192,4
192 423.618 50 but not 192,423.61850

The decimal point should always be preceded by a zero for numbers less than unity.

1–15 Calculations and Significant Figures
The discussion in this section applies to real numbers, not integers. The accuracy of a real
number depends on the number of significant figures describing the number. Usually, but
not always, three or four significant figures are necessary for engineering accuracy. Unless
otherwise stated, no less than three significant figures should be used in your calculations.
The number of significant figures is usually inferred by the number of figures given
(except for leading zeros). For example, 706, 3.14, and 0.002 19 are assumed to be
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numbers with three significant figures. For trailing zeros, a little more clarification is nec-
essary. To display 706 to four significant figures insert a trailing zero and display either
706.0, 7.060 × 102, or 0.7060 × 103. Also, consider a number such as 91 600. Scientific
notation should be used to clarify the accuracy. For three significant figures express the
number as 91.6 × 103. For four significant figures express it as 91.60 × 103.

Computers and calculators display calculations to many significant figures. However,
you should never report a number of significant figures of a calculation any greater than
the smallest number of significant figures of the numbers used for the calculation. Of
course, you should use the greatest accuracy possible when performing a calculation. For
example, determine the circumference of a solid shaft with a diameter of d = 0.40 in. The
circumference is given by C = πd . Since d is given with two significant figures, C should
be reported with only two significant figures. Now if we used only two significant figures
for π our calculator would give C = 3.1 (0.40) = 1.24 in. This rounds off to two signif-
icant figures as C = 1.2 in. However, using π = 3.141 592 654 as programmed in the
calculator, C = 3.141 592 654 (0.40) = 1.256 637 061 in. This rounds off to C = 1.3
in, which is 8.3 percent higher than the first calculation. Note, however, since d is given
with two significant figures, it is implied that the range of d is 0.40 ± 0.005. This means
that the calculation of C is only accurate to within ±0.005/0.40 = ±0.0125 = ±1.25%.
The calculation could also be one in a series of calculations, and rounding each calcula-
tion separately may lead to an accumulation of greater inaccuracy. Thus, it is considered
good engineering practice to make all calculations to the greatest accuracy possible and
report the results within the accuracy of the given input.

1–16 Design Topic Interdependencies
One of the characteristics of machine design problems is the interdependencies of the
various elements of a given mechanical system. For example, a change from a spur gear
to a helical gear on a drive shaft would add axial components of force, which would
have implications on the layout and size of the shaft, and the type and size of the bear-
ings. Further, even within a single component, it is necessary to consider many differ-
ent facets of mechanics and failure modes, such as excessive deflection, static yielding,
fatigue failure, contact stress, and material characteristics. However, in order to provide
significant attention to the details of each topic, most machine design textbooks focus
on these topics separately and give end-of-chapter problems that relate only to that
specific topic.

To help the reader see the interdependence between the various design topics, this
textbook presents many ongoing and interdependent problems in the end-of-chapter
problem sections. Each row of Table 1–1 shows the problem numbers that apply to the
same mechanical system that is being analyzed according to the topics being presented
in that particular chapter. For example, in the second row, Probs. 3–40, 5-65, and 5–66
correspond to a pin in a knuckle joint that is to be analyzed for stresses in Chap. 3 and
then for static failure in Chap. 5. This is a simple example of interdependencies, but as
can be seen in the table, other systems are analyzed with as many as 10 separate prob-
lems. It may be beneficial to work through some of these continuing sequences as the
topics are covered to increase your awareness of the various interdependencies.

In addition to the problems given in Table 1–1, Sec. 1–17 describes a power trans-
mission case study where various interdependent analyses are performed throughout
the book, when appropriate in the presentation of the topics. The final results of the case
study are then presented in Chap. 18.
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24 Mechanical Engineering Design

1–17 Power Transmission Case Study Specifications
A case study incorporating the many facets of the design process for a power transmis-
sion speed reducer will be considered throughout this textbook. The problem will be
introduced here with the definition and specification for the product to be designed.
Further details and component analysis will be presented in subsequent chapters.
Chapter 18 provides an overview of the entire process, focusing on the design sequence,
the interaction between the component designs, and other details pertinent to transmis-
sion of power. It also contains a complete case study of the power transmission speed
reducer introduced here.

Many industrial applications require machinery to be powered by engines or elec-
tric motors. The power source usually runs most efficiently at a narrow range of rota-
tional speed. When the application requires power to be delivered at a slower speed than
supplied by the motor, a speed reducer is introduced. The speed reducer should trans-
mit the power from the motor to the application with as little energy loss as practical,
while reducing the speed and consequently increasing the torque. For example, assume
that a company wishes to provide off-the-shelf speed reducers in various capacities and
speed ratios to sell to a wide variety of target applications. The marketing team has

Table 1–1

Problem Numbers for Linked End-of-Chapter Problems*

3–1 4–50 4–74

3–40 5–65 5–66

3–68 4–23 4–29 4–35 5–39 6–37 7–7 11–14

3–69 4–24 4–30 4–36 5–40 6–38 7–8 11–15

3–70 4–25 4–31 4–37 5–41 6–39 7–9 11–16

3–71 4–26 4–32 4–38 5–42 6–40 7–10 11–17

3–72 4–27 4–33 4–39 5–43 6–41 7–11 7–19 7–20 7–34 11–27 11–28 13–38 14–36

3–73 4–28 4–34 4–40 5–44 6–42 7–12 7–21 7–22 7–35 11–29 11–30 13–39 14–37

3–74 5–45 6–43 7–13 11–41 13–42

3–76 5–46 6–44 7–14 11–42 13–42

3–77 5–47 6–45 7–15 11–18 13–40 14–38

3–79 5–48 6–46 7–16 11–19 13–41 14–39

3–80 4–41 4–71 5–49 6–47

3–81 5–50 6–48

3–82 5–51 6–49

3–83 5–52 6–50

3–84 4–43 4–73 5–53 5–56 6–51

3–85 5–54 6–52

3–86 5–55 6–53

3–87 5–56

*Each row corresponds to the same mechanical component repeated for a different design concept.
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determined a need for one of these speed reducers to satisfy the following customer
requirements.

Design Requirements

Power to be delivered: 20 hp
Input speed: 1750 rev/min
Output speed: 85 rev/min
Targeted for uniformly loaded applications, such as conveyor belts, blowers,
and generators
Output shaft and input shaft in-line
Base mounted with 4 bolts
Continuous operation
6-year life, with 8 hours/day, 5 days/wk
Low maintenance
Competitive cost
Nominal operating conditions of industrialized locations
Input and output shafts standard size for typical couplings

In reality, the company would likely design for a whole range of speed ratios for
each power capacity, obtainable by interchanging gear sizes within the same overall
design. For simplicity, in this case study only one speed ratio will be considered.

Notice that the list of customer requirements includes some numerical specifics, but
also includes some generalized requirements, e.g., low maintenance and competitive cost.
These general requirements give some guidance on what needs to be considered in the
design process, but are difficult to achieve with any certainty. In order to pin down these
nebulous requirements, it is best to further develop the customer requirements into a set of
product specifications that are measurable. This task is usually achieved through the work
of a team including engineering, marketing, management, and customers. Various tools
may be used (see footnote 1, p. 7) to prioritize the requirements, determine suitable
metrics to be achieved, and to establish target values for each metric. The goal of this
process is to obtain a product specification that identifies precisely what the product must
satisfy. The following product specifications provide an appropriate framework for this
design task.

Design Specifications

Power to be delivered: 20 hp
Power efficiency: >95%
Steady state input speed: 1750 rev/min
Maximum input speed: 2400 rev/min
Steady-state output speed: 82–88 rev/min
Usually low shock levels, occasional moderate shock
Input and output shafts extend 4 in outside gearbox
Input and output shaft diameter tolerance: ±0.001 in
Input and output shafts in-line: concentricity ±0.005 in, alignment ±0.001 rad
Maximum allowable loads on input shaft: axial, 50 lbf; transverse, 100 lbf
Maximum allowable loads on output shaft: axial, 50 lbf; transverse, 500 lbf
Maximum gearbox size: 14-in � 14-in base, 22-in height
Base mounted with 4 bolts
Mounting orientation only with base on bottom
100% duty cycle

Introduction to Mechanical Engineering Design 25
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Maintenance schedule: lubrication check every 2000 hours; change of lubrica-
tion every 8000 hours of operation; gears and bearing life >12,000 hours;
infinite shaft life; gears, bearings, and shafts replaceable
Access to check, drain, and refill lubrication without disassembly or opening of
gasketed joints.
Manufacturing cost per unit: <$300
Production: 10,000 units per year
Operating temperature range: −10◦ to 120◦F
Sealed against water and dust from typical weather
Noise: <85 dB from 1 meter

PROBLEMS
1–1 Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to

your university’s library or the appropriate internet website, and, using the Thomas Register of
American Manufacturers (www.thomasnet.com), report on the information obtained on five
manufacturers or suppliers.

1–2 Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to the
Internet, and, using a search engine, report on the information obtained on five manufacturers or
suppliers.

1–3 Select an organization listed in Sec. 1–6, go to the Internet, and list what information is available
on the organization.

1–4 Go to the Internet and connect to the NSPE website (www.nspe.org/ethics). Read the history of
the Code of Ethics and briefly discuss your reading.

1–5 Go to the Internet and connect to the NSPE website (www.nspe.org/ethics). Read the complete
NSPE Code of Ethics for Engineers and briefly discuss your reading.

1–6 Go to the Internet and connect to the NSPE website (www.nspe.org/ethics). Go to Ethics Resources
and review one or more of the topics given. A sample of some of the topics may be:
(a) Education Publications
(b) Ethics Case Search
(c) Ethics Exam
(d ) FAQ
(e) Milton Lunch Contest
( f ) Other Resources
(g) You Be the Judge
Briefly discuss your reading.

1–7 Estimate the relative cost of grinding a steel part to a tolerance of ±0.0005 in versus turning it to
a tolerance of ±0.003 in.

1–8 The costs to manufacture a part using methods A and B are estimated by CA = 10 + 0.8 P and
CB = 60 + 0.8 P − 0.005 P 2 respectively, where the cost C is in dollars and P is the number of
parts. Estimate the breakeven point.

1–9 A cylindrical part of diameter d is loaded by an axial force P. This causes a stress of P�A, where
A = πd2/4. If the load is known with an uncertainty of ±10 percent, the diameter is known
within ±5 percent (tolerances), and the stress that causes failure (strength) is known within ±15
percent, determine the minimum design factor that will guarantee that the part will not fail.
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1–10 When one knows the true values x1 and x2 and has approximations X1 and X2 at hand, one can
see where errors may arise. By viewing error as something to be added to an approximation to
attain a true value, it follows that the error ei , is related to Xi , and xi as xi = Xi + ei

(a) Show that the error in a sum X1 + X2 is

(x1 + x2) − (X1 + X2) = e1 + e2

(b) Show that the error in a difference X1 − X2 is

(x1 − x2) − (X1 − X2) = e1 − e2

(c) Show that the error in a product X1 X2 is

x1x2 − X1 X2 = X1 X2

(
e1

X1
+ e2

X2

)
(d ) Show that in a quotient X1/X2 the error is

x1

x2
− X1

X2
= X1

X2

(
e1

X1
− e2

X2

)
1–11 Use the true values x1 = √

7 and x2 = √
8

(a) Demonstrate the correctness of the error equation from Prob. 1–10 for addition if three cor-
rect digits are used for X1 and X2.

(b) Demonstrate the correctness of the error equation for addition using three-digit significant
numbers for X1 and X2.

1–12 A solid circular rod of diameter d undergoes a bending moment M = 1000 lbf � in inducing a
stress σ = 16M�(πd3). Using a material strength of 25 kpsi and a design factor of 2.5, deter-
mine the minimum diameter of the rod. Using Table A–17 select a preferred fractional diameter
and determine the resulting factor of safety.

1–13 A mechanical system comprises three subsystems in series with reliabilities of 98, 96, and
94 percent. What is the overall reliability of the system?

1–14 Three blocks A, B, and C and a grooved block D have dimensions a, b, c, and d as follows:

a = 1.500 ± 0.001 in b = 2.000 ± 0.003 in

c = 3.000 ± 0.004 in d = 6.520 ± 0.010 in

(a) Determine the mean gap w̄ and its tolerance.
(b) Determine the mean size of d that will assure that w ≥ 0.010 in.

1–15 The volume of a rectangular parallelepiped is given by V = xyz. If

x = a ±�a, y = b ±�b, z = c ±�c, show that

�V

V̄
=�a

ā
+�b

b̄
+�c

c̄

d

a b

B C

D

A

cw
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Use this result to determine the bilateral tolerance on the volume of a rectangular parallelepiped
with dimensions

a = 1.500 ± 0.002 in b = 1.875 ± 0.003 in c = 3.000 ± 0.004 in

1–16 A pivot in a linkage has a pin in the figure whose dimension a ± ta is to be established. The
thickness of the link clevis is 1.500 ± 0.005 in. The designer has concluded that a gap of between
0.004 and 0.05 in will satisfactorily sustain the function of the linkage pivot. Determine the
dimension a and its tolerance.

1–17 A circular cross section O ring has the dimensions shown in the figure. In particular, an AS 568A
standard No. 240 O ring has an inside diameter Di and a cross-section diameter d of

Di = 3.734 ± 0.028 in d = 0.139 ± 0.004 in

Estimate the mean outside diameter D̄o and its bilateral tolerance.

For the table given, repeat Prob. 1–17 for the following O rings, given the AS 568A standard
number. Solve Problems 1–18 and 1–19 using SI units. Solve Problems 1–20 and 1–21 using ips
units. Note: The solutions require research.

Problem number 1–18 1–19 1–20 1–21

AS 568A No. 110 220 160 320

1–22 Convert the following to appropriate ips units:
(a) A stress, σ = 150 MPa.
(b) A force, F = 2 kN.
(c) A moment, M = 150 N � m.
(d ) An area, A = 1 500 mm2.
(e) A second moment of area, I = 750 cm4.
( f ) A modulus of elasticity, E = 145 GPa.
(g) A speed, v = 75 km/h.
(h) A volume, V = 1 liter.

1–18 to
1–21

Di d

D0

Pin

a ± ta 0.042 ± 0.002
1.500 ± 0.005

Snap ring

Clevis

28 Mechanical Engineering Design28 Mechanical Engineering Design

Problem 1–16

Dimensions in inches.

Problem 1–17
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1–23 Convert the following to appropriate SI units:
(a) A length, l = 5 ft.
(b) A stress, σ = 90 kpsi.
(c) A pressure, p = 25 psi.
(d ) A section modulus, Z = 12 in3.
(e) A unit weight, w = 0.208 lbf/in.
( f ) A deflection, � = 0.001 89 in.
(g) A velocity, v = 1 200 ft/min.
(h) A unit strain, � = 0.002 15 in/in.
(i) A volume, V = 1830 in3.

1–24 Generally, final design results are rounded to or fixed to three digits because the given data can-
not justify a greater display. In addition, prefixes should be selected so as to limit number strings
to no more than four digits to the left of the decimal point. Using these rules, as well as those for
the choice of prefixes, solve the following relations:
(a) σ = M�Z, where M = 1770 lbf � in and Z = 0.934 in3.
(b) σ = F�A, where F = 9440 lbf and A = 23.8 in2.
(c) y = Fl 3�3EI, where F = 270 lbf, l = 31.5 in, E = 30 Mpsi, and I = 0.154 in4.
(d) θ = Tl�GJ, where T = 9 740 lbf � in, l = 9.85 in, G = 11.3 Mpsi, and d = 1.00 in.

1–25 Repeat Prob. 1–24 for the following:
(a) σ = F�wt, where F = 1 kN, w = 25 mm, and t = 5 mm.
(b) I = bh3�12, where b = 10 mm and h = 25 mm.
(c) I = πd 4�64, where d = 25.4 mm.
(d) τ = 16 T�πd 3, where T = 25 N � m, and d = 12.7 mm.

1–26 Repeat Prob. 1–24 for:
(a) τ = F�A, where A = πd 2�4, F = 2 700 lbf, and d = 0.750 in.
(b) σ = 32 Fa�πd 3, where F = 180 lbf, a = 31.5 in, and d = 1.25 in.
(c) Z = π (do

4 � di
4)�(32 do) for do = 1.50 in and di = 1.00 in.

(d) k = (d 4 G)�(8 D3 N), where d = 0.062 5 in, G = 11.3 Mpsi, D = 0.760 in, and N = 32 
(a dimensionless number).
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32 Mechanical Engineering Design

1See ASTM standards E8 and E-8 m for standard dimensions.

The selection of a material for a machine part or a structural member is one of the most
important decisions the designer is called on to make. The decision is usually made
before the dimensions of the part are established. After choosing the process of creat-
ing the desired geometry and the material (the two cannot be divorced), the designer can
proportion the member so that loss of function can be avoided or the chance of loss of
function can be held to an acceptable risk.

In Chaps. 3 and 4, methods for estimating stresses and deflections of machine
members are presented. These estimates are based on the properties of the material
from which the member will be made. For deflections and stability evaluations, for
example, the elastic (stiffness) properties of the material are required, and evaluations
of stress at a critical location in a machine member require a comparison with the
strength of the material at that location in the geometry and condition of use. This
strength is a material property found by testing and is adjusted to the geometry and con-
dition of use as necessary.

As important as stress and deflection are in the design of mechanical parts, the
selection of a material is not always based on these factors. Many parts carry no loads
on them whatever. Parts may be designed merely to fill up space or for aesthetic quali-
ties. Members must frequently be designed to also resist corrosion. Sometimes temper-
ature effects are more important in design than stress and strain. So many other factors
besides stress and strain may govern the design of parts that the designer must have the
versatility that comes only with a broad background in materials and processes.

2–1 Material Strength and Stiffness
The standard tensile test is used to obtain a variety of material characteristics and
strengths that are used in design. Figure 2–l illustrates a typical tension-test specimen
and its characteristic dimensions.1 The original diameter d0 and the gauge length l0,
used to measure the deflections, are recorded before the test is begun. The specimen is
then mounted in the test machine and slowly loaded in tension while the load P and
deflection are observed. The load is converted to stress by the calculation

σ = P

A0
(2–1)

where A0 = 1
4πd2

0 is the original area of the specimen.

d0

l0

P P

Figure 2–1

A typical tension-test specimen. Some of the standard
dimensions used for d0 are 2.5, 6.25, and 12.5 mm and
0.505 in, but other sections and sizes are in use. Common
gauge lengths l0 used are 10, 25, and 50 mm and 1 and 2 in.
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Figure 2–2

Stress-strain diagram obtained
from the standard tensile test
(a) Ductile material; (b) brittle
material.
pl marks the proportional limit;
el, the elastic limit; y, the
offset-yield strength as defined
by offset strain a; u, the
maximum or ultimate strength;
and f, the fracture strength.

2Usage varies. For a long time engineers used the term ultimate strength, hence the subscript u in Su or Sut .
However, in material science and metallurgy the term tensile strength is used.

The deflection, or extension of the gauge length, is given by l − l0 where l is the
gauge length corresponding to the load P. The normal strain is calculated from

ε = l − l0

l0
(2–2)

The results are plotted as a stress-strain diagram. Figure 2–2 depicts typical stress-
strain diagrams for ductile and brittle materials. Ductile materials deform much more
than brittle materials.

Point pl in Fig. 2–2a is called the proportional limit. This is the point at which the
curve first begins to deviate from a straight line. No permanent set will be observable
in the specimen if the load is removed at this point. In the linear range, the uniaxial
stress-strain relation is given by Hooke’s law as

σ = Eε (2–3)

where the constant of proportionality E, the slope of the linear part of the stress-strain
curve, is called Young’s modulus or the modulus of elasticity. E is a measure of the
stiffness of a material, and since strain is dimensionless, the units of E are the same as
stress. Steel, for example, has a modulus of elasticity of about 30 Mpsi (207 GPa)
regardless of heat treatment, carbon content, or alloying. Stainless steel is about
27.5 Mpsi (190 GPa).

Point el in Fig. 2–2 is called the elastic limit. If the specimen is loaded beyond this
point, the deformation is said to be plastic and the material will take on a permanent set
when the load is removed. Between pl and el the diagram is not a perfectly straight
line, even though the specimen is elastic.

During the tension test, many materials reach a point at which the strain begins to
increase very rapidly without a corresponding increase in stress. This point is called the
yield point. Not all materials have an obvious yield point, especially for brittle
materials. For this reason, yield strength Sy is often defined by an offset method as
shown in Fig. 2–2, where line ay is drawn at slope E. Point a corresponds to a definite
or stated amount of permanent set, usually 0.2 percent of the original gauge length
(ε = 0.002), although 0.01, 0.1, and 0.5 percent are sometimes used.

The ultimate, or tensile, strength Su or Sut corresponds to point u in Fig. 2–2 and
is the maximum stress reached on the stress-strain diagram.2 As shown in Fig. 2–2a,
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some materials exhibit a downward trend after the maximum stress is reached and frac-
ture at point f on the diagram. Others, such as some of the cast irons and high-strength
steels, fracture while the stress-strain trace is still rising, as shown in Fig. 2–2b, where
points u and f are identical.

As noted in Sec. 1–9, strength, as used in this book, is a built-in property of a mate-
rial, or of a mechanical element, because of the selection of a particular material or
process or both. The strength of a connecting rod at the critical location in the geome-
try and condition of use, for example, is the same no matter whether it is already an ele-
ment in an operating machine or whether it is lying on a workbench awaiting assembly
with other parts. On the other hand, stress is something that occurs in a part, usually as
a result of its being assembled into a machine and loaded. However, stresses may be
built into a part by processing or handling. For example, shot peening produces a com-
pressive stress in the outer surface of a part, and also improves the fatigue strength of
the part. Thus, in this book we will be very careful in distinguishing between strength,
designated by S, and stress, designated by σ or τ .

The diagrams in Fig. 2–2 are called engineering stress-strain diagrams because the
stresses and strains calculated in Eqs. (2–1) and (2–2) are not true values. The stress
calculated in Eq. (2–1) is based on the original area before the load is applied. In real-
ity, as the load is applied the area reduces so that the actual or true stress is larger than
the engineering stress. To obtain the true stress for the diagram the load and the cross-
sectional area must be measured simultaneously during the test. Figure 2–2a represents
a ductile material where the stress appears to decrease from points u to f. Typically,
beyond point u the specimen begins to “neck” at a location of weakness where the area
reduces dramatically, as shown in Fig. 2–3. For this reason, the true stress is much higher
than the engineering stress at the necked section.

The engineering strain given by Eq. (2–2) is based on net change in length from the
original length. In plotting the true stress-strain diagram, it is customary to use a term
called true strain or, sometimes, logarithmic strain. True strain is the sum of the incre-
mental elongations divided by the current gauge length at load P, or

ε =
∫ l

l0

dl

l
= ln

l

l0
(2–4)

where the symbol ε is used to represent true strain. The most important characteristic
of a true stress-strain diagram (Fig. 2–4) is that the true stress continually increases all
the way to fracture. Thus, as shown in Fig. 2–4, the true fracture stress σ f is greater than
the true ultimate stress σu . Contrast this with Fig. 2–2a, where the engineering fracture
strength Sf is less than the engineering ultimate strength Su.

Compression tests are more difficult to conduct, and the geometry of the test spec-
imens differs from the geometry of those used in tension tests. The reason for this is that
the specimen may buckle during testing or it may be difficult to distribute the stresses
evenly. Other difficulties occur because ductile materials will bulge after yielding.
However, the results can be plotted on a stress-strain diagram also, and the same
strength definitions can be applied as used in tensile testing. For most ductile materials
the compressive strengths are about the same as the tensile strengths. When substantial
differences occur between tensile and compressive strengths, however, as is the case with

Figure 2–3

Tension specimen after
necking.
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Figure 2–4

True stress-strain diagram
plotted in Cartesian
coordinates.

the cast irons, the tensile and compressive strengths should be stated separately, Sut,
Suc , where Suc is reported as a positive quantity.

Torsional strengths are found by twisting solid circular bars and recording the torque
and the twist angle. The results are then plotted as a torque-twist diagram. The shear
stresses in the specimen are linear with respect to radial location, being zero at the cen-
ter of the specimen and maximum at the outer radius r (see Chap. 3). The maximum shear
stress τmax is related to the angle of twist θ by

τmax = Gr

l0
θ (2–5)

where θ is in radians, r is the radius of the specimen, l0 is the gauge length, and G is
the material stiffness property called the shear modulus or the modulus of rigidity. The
maximum shear stress is also related to the applied torque T as

τmax = T r

J
(2–6)

where J = 1
2πr4 is the polar second moment of area of the cross section.

The torque-twist diagram will be similar to Fig. 2–2, and, using Eqs. (2–5) and
(2–6), the modulus of rigidity can be found as well as the elastic limit and the torsional
yield strength Ssy . The maximum point on a torque-twist diagram, corresponding to
point u on Fig. 2–2, is Tu. The equation

Ssu = Tur

J
(2–7)

defines the modulus of rupture for the torsion test. Note that it is incorrect to call Ssu

the ultimate torsional strength, as the outermost region of the bar is in a plastic state at
the torque Tu and the stress distribution is no longer linear.

All of the stresses and strengths defined by the stress-strain diagram of Fig. 2–2 and
similar diagrams are specifically known as engineering stresses and strengths or nomi-
nal stresses and strengths. These are the values normally used in all engineering design
calculations. The adjectives engineering and nominal are used here to emphasize that
the stresses are computed by using the original or unstressed cross-sectional area of the
specimen. In this book we shall use these modifiers only when we specifically wish to
call attention to this distinction.
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In addition to providing strength values for a material, the stress-strain diagram
provides insight into the energy-absorbing characteristics of a material. This is because
the stress-strain diagram involves both loads and deflections, which are directly related
to energy. The capacity of a material to absorb energy within its elastic range is called
resilience. The modulus of resilience uR of a material is defined as the energy absorbed per
unit volume without permanent deformation, and is equal to the area under the stress-
strain curve up to the elastic limit. The elastic limit is often approximated by the yield
point, since it is more readily determined, giving

u R
∼=

∫ εy

0
σdε (2–8)

where εy is the strain at the yield point. If the stress-strain is linear to the yield point,
then the area under the curve is simply a triangular area; thus

u R
∼= 1

2
Syεy = 1

2
(Sy)(Sy/E) = S2

y

2E
(2–9)

This relationship indicates that for two materials with the same yield strength, the
less stiff material (lower E), will have a greater resilience, that is, an ability to absorb
more energy without yielding.

The capacity of a material to absorb energy without fracture is called toughness.
The modulus of toughness uT of a material is defined as the energy absorbed per unit
volume without fracture, which is equal to the total area under the stress-strain curve up
to the fracture point, or

uT =
∫ ε f

0
σdε (2–10)

where ε f is the strain at the fracture point. This integration is often performed graphi-
cally from the stress-strain data, or a rough approximation can be obtained by using the
average of the yield and ultimate strengths and the strain at fracture to calculate an area;
that is,

uT
∼=

(
Sy + Sut

2

)
ε f (2–11)

The units of toughness and resilience are energy per unit volume (lbf � in/in3 or J/m3),
which are numerically equivalent to psi or Pa. These definitions of toughness and
resilience assume the low strain rates that are suitable for obtaining the stress-strain
diagram. For higher strain rates, see Sec. 2–5 for impact properties.

2–2 The Statistical Significance of Material Properties
There is some subtlety in the ideas presented in the previous section that should be pon-
dered carefully before continuing. Figure 2–2 depicts the result of a single tension test
(one specimen, now fractured). It is common for engineers to consider these important
stress values (at points pl, el, y, u , and f ) as properties and to denote them as strengths
with a special notation, uppercase S, in lieu of lowercase sigma σ, with subscripts
added: Spl for proportional limit, Sy for yield strength, Su for ultimate tensile strength
(Sut or Suc , if tensile or compressive sense is important).

If there were 1000 nominally identical specimens, the values of strength obtained
would be distributed between some minimum and maximum values. It follows that the
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description of strength, a material property, is distributional and thus is statistical in
nature. Chapter 20 provides more detail on statistical considerations in design. Here we
will simply describe the results of one example, Ex. 20–4. Consider the following table,
which is a histographic report containing the maximum stresses of 1000 tensile tests on
a 1020 steel from a single heat. Here we are seeking the ultimate tensile strength Sut . The
class frequency is the number of occurrences within a 1 kpsi range given by the class
midpoint. For example, 18 maximum stress values occurred in the range of 57 to 58 kpsi.

Figure 2–5

Histogram for 1000 tensile
tests on a 1020 steel from a
single heat.
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Ultimate tensile strength, kpsi

Class Frequency fi 2 18 23 31 83 109 138 151 139 130 82 49 28 11 4 2

Class Midpoint 56.5 57.5 58.5 59.5 60.5 61.5 62.5 63.5 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5
xi, kpsi

The probability density is defined as the number of occurrences divided by the total
sample number. The bar chart in Fig. 2–5 depicts the histogram of the probability den-
sity. If the data is in the form of a Gaussian or normal distribution, the probability
density function determined in Ex. 20–4 is

f (x) = 1

2.594
√

2π
exp

[
−1

2

(
x − 63.62

2.594

)2
]

where the mean stress is 63.62 kpsi and the standard deviation is 2.594 kpsi. A plot
of f (x) is also included in Fig. 2–5. The description of the strength Sut is then
expressed in terms of its statistical parameters and its distribution type. In this case
Sut = N(63.62, 2.594) kpsi, indicating a normal distribution with a mean stress of
63.62 kpsi and a standard deviation of 2.594 kpsi.

Note that the test program has described 1020 property Sut, for only one heat of
one supplier. Testing is an involved and expensive process. Tables of properties are
often prepared to be helpful to other persons. A statistical quantity is described by its
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mean, standard deviation, and distribution type. Many tables display a single number,
which is often the mean, minimum, or some percentile, such as the 99th percentile.
Always read the foonotes to the table. If no qualification is made in a single-entry table,
the table is subject to serious doubt.

Since it is no surprise that useful descriptions of a property are statistical in nature,
engineers, when ordering property tests, should couch the instructions so the data gen-
erated are enough for them to observe the statistical parameters and to identify the dis-
tributional characteristic. The tensile test program on 1000 specimens of 1020 steel is
a large one. If you were faced with putting something in a table of ultimate tensile
strengths and constrained to a single number, what would it be and just how would your
footnote read?

2–3 Strength and Cold Work
Cold working is the process of plastic straining below the recrystallization temperature
in the plastic region of the stress-strain diagram. Materials can be deformed plastically
by the application of heat, as in forging or hot rolling, but the resulting mechanical
properties are quite different from those obtained by cold working. The purpose of this
section is to explain what happens to the significant mechanical properties of a material
when that material is cold worked.

Consider the stress-strain diagram of Fig. 2–6a. Here a material has been stressed
beyond the yield strength at y to some point i, in the plastic region, and then the load
removed. At this point the material has a permanent plastic deformation εp . If the load
corresponding to point i is now reapplied, the material will be elastically deformed by
the amount εe. Thus at point i the total unit strain consists of the two components εp and
εe and is given by the equation

ε = εp + εe (a)

This material can be unloaded and reloaded any number of times from and to point i,
and it is found that the action always occurs along the straight line that is approximately
parallel to the initial elastic line Oy. Thus

εe = σi

E
(b)
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Figure 2–6

(a) Stress-strain diagram
showing unloading and
reloading at point i in the
plastic region; (b) analogous
load-deformation diagram.
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The material now has a higher yield point, is less ductile as a result of a reduction in
strain capacity, and is said to be strain-hardened. If the process is continued, increasing
εp , the material can become brittle and exhibit sudden fracture.

It is possible to construct a similar diagram, as in Fig. 2–6b, where the abscissa is
the area deformation and the ordinate is the applied load. The reduction in area corre-
sponding to the load Pf , at fracture, is defined as

R = A0 − Af

A0
= 1 − Af

A0
(2–12)

where A0 is the original area. The quantity R in Eq. (2–12) is usually expressed in per-
cent and tabulated in lists of mechanical properties as a measure of ductility. See
Appendix Table A–20, for example. Ductility is an important property because it mea-
sures the ability of a material to absorb overloads and to be cold-worked. Thus such
operations as bending, drawing, heading, and stretch forming are metal-processing
operations that require ductile materials.

Figure 2–6b can also be used to define the quantity of cold work. The cold-work
factor W is defined as

W = A0 − A′
i

A0
≈ A0 − Ai

A0
(2–13)

where A′
i corresponds to the area after the load Pi has been released. The approxima-

tion in Eq. (2–13) results because of the difficulty of measuring the small diametral
changes in the elastic region. If the amount of cold work is known, then Eq. (2–13) can
be solved for the area A′

i . The result is

A′
i = A0(1 − W ) (2–14)

Cold working a material produces a new set of values for the strengths, as can
be seen from stress-strain diagrams. Datsko3 describes the plastic region of the true
stress–true strain diagram by the equation

σ = σ0ε
m (2–15)

where σ = true stress

σ0 = a strength coefficient, or strain-strengthening coefficient

ε = true plastic strain

m = strain-strengthening exponent

It can be shown4 that

m = εu (2–16)

provided that the load-deformation curve exhibits a stationary point (a place of zero
slope).

3Joseph Datsko, “Solid Materials,” Chap. 32 in Joseph E. Shigley, Charles R. Mischke, and Thomas 
H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004. See also
Joseph Datsko, “New Look at Material Strength,” Machine Design, vol. 58, no. 3, Feb. 6, 1986, pp. 81–85.
4See Sec. 5–2, J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed., McGraw-Hill,
New York, 2001.
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Difficulties arise when using the gauge length to evaluate the true strain in the
plastic range, since necking causes the strain to be nonuniform. A more satisfactory
relation can be obtained by using the area at the neck. Assuming that the change in vol-
ume of the material is small, Al = A0 l0. Thus, l/ l0 = A0/A, and the true strain is
given by

ε = ln
l

l0
= ln

A0

A
(2–17)

Returning to Fig. 2–6b, if point i is to the left of point u, that is, Pi < Pu , then the
new yield strength is

S′
y = Pi

A′
i

= σ0ε
m
i Pi ≤ Pu (2–18)

Because of the reduced area, that is, because A′
i < A0, the ultimate strength also

changes, and is

S′
u = Pu

A′
i

(c)

Since Pu = Su A0, we find, with Eq. (2–14), that

S′
u = Su A0

A0(1 − W )
= Su

1 − W
εi ≤ εu (2–19)

which is valid only when point i is to the left of point u.
For points to the right of u, the yield strength is approaching the ultimate strength,

and, with small loss in accuracy,

S′
u

.= S′
y

.= σ0ε
m
i εi > εu (2–20)

A little thought will reveal that a bar will have the same ultimate load in tension after
being strain-strengthened in tension as it had before. The new strength is of interest
to us not because the static ultimate load increases, but—since fatigue strengths
are correlated with the local ultimate strengths—because the fatigue strength im-
proves. Also the yield strength increases, giving a larger range of sustainable elastic
loading.

EXAMPLE 2–1 An annealed AISI 1018 steel (see Table A–22) has Sy = 32.0 kpsi, Su = 49.5 kpsi,
σ f = 91.1 kpsi, σ0 = 90 kpsi, m = 0.25, and ε f = 1.05 in/in. Find the new values of
the strengths if the material is given 15 percent cold work.

Solution From Eq. (2–16), we find the true strain corresponding to the ultimate strength to be

εu = m = 0.25

The ratio A0/Ai is, from Eq. (2–13),

A0

Ai
= 1

1 − W
= 1

1 − 0.15
= 1.176
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The true strain corresponding to 15 percent cold work is obtained from Eq. (2–17). Thus

εi = ln
A0

Ai
= ln 1.176 = 0.1625

Since εi < εu , Eqs. (2–18) and (2–19) apply. Therefore,

Answer S′
y = σ0ε

m
i = 90(0.1625)0.25 = 57.1 kpsi

Answer S′
u = Su

1 − W
= 49.5

1 − 0.15
= 58.2 kpsi

2–4 Hardness
The resistance of a material to penetration by a pointed tool is called hardness. Though
there are many hardness-measuring systems, we shall consider here only the two in
greatest use.

Rockwell hardness tests are described by ASTM standard hardness method E–18
and measurements are quickly and easily made, they have good reproducibility, and
the test machine for them is easy to use. In fact, the hardness number is read directly
from a dial. Rockwell hardness scales are designated as A, B, C, . . . , etc. The inden-
ters are described as a diamond, a 1

16 -in-diameter ball, and a diamond for scales A, B,
and C, respectively, where the load applied is either 60, 100, or 150 kg. Thus the
Rockwell B scale, designated RB , uses a 100-kg load and a No. 2 indenter, which is
a 1

16 -in-diameter ball. The Rockwell C scale RC uses a diamond cone, which is the
No. 1 indenter, and a load of 150 kg. Hardness numbers so obtained are relative.
Therefore a hardness RC = 50 has meaning only in relation to another hardness num-
ber using the same scale.

The Brinell hardness is another test in very general use. In testing, the indenting
tool through which force is applied is a ball and the hardness number HB is found as
a number equal to the applied load divided by the spherical surface area of the inden-
tation. Thus the units of HB are the same as those of stress, though they are seldom
used. Brinell hardness testing takes more time, since HB must be computed from the
test data. The primary advantage of both methods is that they are nondestructive in
most cases. Both are empirically and directly related to the ultimate strength of the
material tested. This means that the strength of parts could, if desired, be tested part
by part during manufacture.

Hardness testing provides a convenient and nondestructive means of estimating the
strength properties of materials. The Brinell hardness test is particularly well known for
this estimation, since for many materials the relationship between the minimum
ultimate strength and the Brinell hardness number is roughly linear. The constant of
proportionality varies between classes of materials, and is also dependent on the load
used to determine the hardness. There is a wide scatter in the data, but for rough approx-
imations for steels, the relationship is generally accepted as

Su =
{

0.5HB kpsi

3.4HB MPa
(2–21)

Materials 41
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5D. E. Krause, “Gray Iron—A Unique Engineering Material,” ASTM Special Publication 455, 1969,
pp. 3–29, as reported in Charles F. Walton (ed.), Iron Castings Handbook, Iron Founders Society, Inc., 
Cleveland, 1971, pp. 204, 205.
6Ibid.

Similar relationships for cast iron can be derived from data supplied by Krause.5

The minimum strength, as defined by the ASTM, is found from these data to be

Su =
{

0.23HB − 12.5 kpsi

1.58HB − 86 MPa
(2–22)

Walton6 shows a chart from which the SAE minimum strength can be obtained, which
is more conservative than the values obtained from Eq. (2–22).

EXAMPLE 2–2 It is necessary to ensure that a certain part supplied by a foundry always meets or
exceeds ASTM No. 20 specifications for cast iron (see Table A–24). What hardness
should be specified? 

Solution From Eq. (2–22), with (Su)min = 20 kpsi, we have

Answer HB = Su + 12.5

0.23
= 20 + 12.5

0.23
= 141

If the foundry can control the hardness within 20 points, routinely, then specify
145 < HB < 165. This imposes no hardship on the foundry and assures the designer
that ASTM grade 20 will always be supplied at a predictable cost.

2–5 Impact Properties
An external force applied to a structure or part is called an impact load if the time of
application is less than one-third the lowest natural period of vibration of the part or
structure. Otherwise it is called simply a static load.

The Charpy (commonly used) and Izod (rarely used) notched-bar tests utilize bars of
specified geometries to determine brittleness and impact strength. These tests are helpful
in comparing several materials and in the determination of low-temperature brittleness. In
both tests the specimen is struck by a pendulum released from a fixed height, and the
energy absorbed by the specimen, called the impact value, can be computed from the
height of swing after fracture, but is read from a dial that essentially “computes” the result.

The effect of temperature on impact values is shown in Fig. 2–7 for a material
showing a ductile-brittle transition. Not all materials show this transition. Notice the
narrow region of critical temperatures where the impact value increases very rapidly. In
the low-temperature region the fracture appears as a brittle, shattering type, whereas the
appearance is a tough, tearing type above the critical-temperature region. The critical
temperature seems to be dependent on both the material and the geometry of the notch.
For this reason designers should not rely too heavily on the results of notched-bar tests.

The average strain rate used in obtaining the stress-strain diagram is about
0.001 in/(in · s) or less. When the strain rate is increased, as it is under impact conditions,
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A mean trace shows the effect
of temperature on impact
values. The result of interest is
the brittle-ductile transition
temperature, often defined as
the temperature at which the
mean trace passes through the
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temperature is dependent on
the geometry of the notch,
which is why the Charpy
V notch is closely defined.
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Influence of strain rate on
tensile properties.

the strengths increase, as shown in Fig. 2–8. In fact, at very high strain rates the yield
strength seems to approach the ultimate strength as a limit. But note that the curves show
little change in the elongation. This means that the ductility remains about the same.
Also, in view of the sharp increase in yield strength, a mild steel could be expected to
behave elastically throughout practically its entire strength range under impact conditions.

The Charpy and Izod tests really provide toughness data under dynamic, rather than
static, conditions. It may well be that impact data obtained from these tests are as depen-
dent on the notch geometry as they are on the strain rate. For these reasons it may be bet-
ter to use the concepts of notch sensitivity, fracture toughness, and fracture mechanics,
discussed in Chaps. 5 and 6, to assess the possibility of cracking or fracture.

2–6 Temperature Effects
Strength and ductility, or brittleness, are properties affected by the temperature of the
operating environment.

The effect of temperature on the static properties of steels is typified by the
strength versus temperature chart of Fig. 2–9. Note that the tensile strength changes
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Creep-time curve.

only a small amount until a certain temperature is reached. At that point it falls off
rapidly. The yield strength, however, decreases continuously as the environmental tem-
perature is increased. There is a substantial increase in ductility, as might be expected,
at the higher temperatures.

Many tests have been made of ferrous metals subjected to constant loads for long
periods of time at elevated temperatures. The specimens were found to be permanently
deformed during the tests, even though at times the actual stresses were less than the
yield strength of the material obtained from short-time tests made at the same temper-
ature. This continuous deformation under load is called creep.

One of the most useful tests to have been devised is the long-time creep test under
constant load. Figure 2–10 illustrates a curve that is typical of this kind of test. The
curve is obtained at a constant stated temperature. A number of tests are usually run
simultaneously at different stress intensities. The curve exhibits three distinct regions.
In the first stage are included both the elastic and the plastic deformation. This stage shows
a decreasing creep rate, which is due to the strain hardening. The second stage shows
a constant minimum creep rate caused by the annealing effect. In the third stage the
specimen shows a considerable reduction in area, the true stress is increased, and a
higher creep eventually leads to fracture.

When the operating temperatures are lower than the transition temperature
(Fig. 2–7), the possibility arises that a part could fail by a brittle fracture. This subject
will be discussed in Chap. 5.

Of course, heat treatment, as will be shown, is used to make substantial changes in
the mechanical properties of a material.
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Figure 2–9

A plot of the results of 145 tests
of 21 carbon and alloy steels
showing the effect of operating
temperature on the yield
strength Sy and the ultimate
strength Sut . The ordinate is 
the ratio of the strength at the
operating temperature to the
strength at room temperature.
The standard deviations were
0.0442 ≤ σ̂Sy ≤ 0.152 for Sy

and 0.099 ≤ σ̂Sut ≤ 0.11 for
Sut . (Data source: E. A.
Brandes (ed.), Smithells Metal
Reference Book, 6th ed.,
Butterworth, London, 1983
pp. 22–128 to 22–131.)
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7Many of the materials discussed in the balance of this chapter are listed in the Appendix tables. Be sure to
review these.

Heating due to electric and gas welding also changes the mechanical properties.
Such changes may be due to clamping during the welding process, as well as heating;
the resulting stresses then remain when the parts have cooled and the clamps have been
removed. Hardness tests can be used to learn whether the strength has been changed by
welding, but such tests will not reveal the presence of residual stresses.

2–7 Numbering Systems
The Society of Automotive Engineers (SAE) was the first to recognize the need, and to
adopt a system, for the numbering of steels. Later the American Iron and Steel Institute
(AISI) adopted a similar system. In 1975 the SAE published the Unified Numbering
System for Metals and Alloys (UNS); this system also contains cross-reference num-
bers for other material specifications.7 The UNS uses a letter prefix to designate the
material, as, for example, G for the carbon and alloy steels, A for the aluminum alloys,
C for the copper-base alloys, and S for the stainless or corrosion-resistant steels. For
some materials, not enough agreement has as yet developed in the industry to warrant
the establishment of a designation.

For the steels, the first two numbers following the letter prefix indicate the compo-
sition, excluding the carbon content. The various compositions used are as follows:

G10 Plain carbon

G11 Free-cutting carbon steel with
more sulfur or phosphorus

G13 Manganese

G23 Nickel

G25 Nickel

G31 Nickel-chromium

G33 Nickel-chromium

G40 Molybdenum

G41 Chromium-molybdenum

G43 Nickel-chromium-molybdenum

The second number pair refers to the approximate carbon content. Thus, G10400 is a
plain carbon steel with a nominal carbon content of 0.40 percent (0.37 to 0.44 percent).
The fifth number following the prefix is used for special situations. For example, the old
designation AISI 52100 represents a chromium alloy with about 100 points of carbon.
The UNS designation is G52986.

The UNS designations for the stainless steels, prefix S, utilize the older AISI des-
ignations for the first three numbers following the prefix. The next two numbers are
reserved for special purposes. The first number of the group indicates the approximate
composition. Thus 2 is a chromium-nickel-manganese steel, 3 is a chromium-nickel
steel, and 4 is a chromium alloy steel. Sometimes stainless steels are referred to by their
alloy content. Thus S30200 is often called an 18-8 stainless steel, meaning 18 percent
chromium and 8 percent nickel.

G46 Nickel-molybdenum

G48 Nickel-molybdenum

G50 Chromium

G51 Chromium

G52 Chromium

G61 Chromium-vanadium

G86 Chromium-nickel-molybdenum

G87 Chromium-nickel-molybdenum

G92 Manganese-silicon

G94 Nickel-chromium-molybdenum
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The prefix for the aluminum group is the letter A. The first number following the
prefix indicates the processing. For example, A9 is a wrought aluminum, while A0 is
a casting alloy. The second number designates the main alloy group as shown in
Table 2–1. The third number in the group is used to modify the original alloy or to
designate the impurity limits. The last two numbers refer to other alloys used with the
basic group.

The American Society for Testing and Materials (ASTM) numbering system for
cast iron is in widespread use. This system is based on the tensile strength. Thus ASTM
A18 speaks of classes; e.g., 30 cast iron has a minimum tensile strength of 30 kpsi. Note
from Appendix A-24, however, that the typical tensile strength is 31 kpsi. You should
be careful to designate which of the two values is used in design and problem work
because of the significance of factor of safety.

2–8 Sand Casting
Sand casting is a basic low-cost process, and it lends itself to economical production
in large quantities with practically no limit to the size, shape, or complexity of the part
produced.

In sand casting, the casting is made by pouring molten metal into sand molds. A
pattern, constructed of metal or wood, is used to form the cavity into which the molten
metal is poured. Recesses or holes in the casting are produced by sand cores introduced
into the mold. The designer should make an effort to visualize the pattern and casting
in the mold. In this way the problems of core setting, pattern removal, draft, and solid-
ification can be studied. Castings to be used as test bars of cast iron are cast separately
and properties may vary.

Steel castings are the most difficult of all to produce, because steel has the highest
melting temperature of all materials normally used for casting. This high temperature
aggravates all casting problems.

The following rules will be found quite useful in the design of any sand casting:

1 All sections should be designed with a uniform thickness.
2 The casting should be designed so as to produce a gradual change from section to

section where this is necessary.
3 Adjoining sections should be designed with generous fillets or radii.
4 A complicated part should be designed as two or more simple castings to be

assembled by fasteners or by welding.

Steel, gray iron, brass, bronze, and aluminum are most often used in castings. The
minimum wall thickness for any of these materials is about 5 mm, though with partic-
ular care, thinner sections can be obtained with some materials.

Table 2–1

Aluminum Alloy

Designations

Aluminum 99.00% pure and greater Ax1xxx

Copper alloys Ax2xxx

Manganese alloys Ax3xxx

Silicon alloys Ax4xxx

Magnesium alloys Ax5xxx

Magnesium-silicon alloys Ax6xxx

Zinc alloys Ax7xxx 
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2–9 Shell Molding
The shell-molding process employs a heated metal pattern, usually made of cast iron,
aluminum, or brass, which is placed in a shell-molding machine containing a mixture
of dry sand and thermosetting resin. The hot pattern melts the plastic, which, together
with the sand, forms a shell about 5 to 10 mm thick around the pattern. The shell is then
baked at from 400 to 700°F for a short time while still on the pattern. It is then stripped
from the pattern and placed in storage for use in casting.

In the next step the shells are assembled by clamping, bolting, or pasting; they are
placed in a backup material, such as steel shot; and the molten metal is poured into the
cavity. The thin shell permits the heat to be conducted away so that solidification takes
place rapidly. As solidification takes place, the plastic bond is burned and the mold col-
lapses. The permeability of the backup material allows the gases to escape and the cast-
ing to air-cool. All this aids in obtaining a fine-grain, stress-free casting.

Shell-mold castings feature a smooth surface, a draft that is quite small, and close
tolerances. In general, the rules governing sand casting also apply to shell-mold casting.

2–10 Investment Casting
Investment casting uses a pattern that may be made from wax, plastic, or other material.
After the mold is made, the pattern is melted out. Thus a mechanized method of casting a
great many patterns is necessary. The mold material is dependent upon the melting point
of the cast metal. Thus a plaster mold can be used for some materials while others would
require a ceramic mold. After the pattern is melted out, the mold is baked or fired; when
firing is completed, the molten metal may be poured into the hot mold and allowed to cool.

If a number of castings are to be made, then metal or permanent molds may be suit-
able. Such molds have the advantage that the surfaces are smooth, bright, and accurate,
so that little, if any, machining is required. Metal-mold castings are also known as die
castings and centrifugal castings.

2–11 Powder-Metallurgy Process
The powder-metallurgy process is a quantity-production process that uses powders from
a single metal, several metals, or a mixture of metals and nonmetals. It consists essen-
tially of mechanically mixing the powders, compacting them in dies at high pressures, and
heating the compacted part at a temperature less than the melting point of the major
ingredient. The particles are united into a single strong part similar to what would be
obtained by melting the same ingredients together. The advantages are (1) the elimina-
tion of scrap or waste material, (2) the elimination of machining operations, (3) the low
unit cost when mass-produced, and (4) the exact control of composition. Some of the dis-
advantages are (1) the high cost of dies, (2) the lower physical properties, (3) the higher
cost of materials, (4) the limitations on the design, and (5) the limited range of materials
that can be used. Parts commonly made by this process are oil-impregnated bearings,
incandescent lamp filaments, cemented-carbide tips for tools, and permanent magnets.
Some products can be made only by powder metallurgy: surgical implants, for example.
The structure is different from what can be obtained by melting the same ingredients.

2–12 Hot-Working Processes
By hot working are meant such processes as rolling, forging, hot extrusion, and hot
pressing, in which the metal is heated above its recrystallation temperature.
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Hot rolling is usually used to create a bar of material of a particular shape and
dimension. Figure 2–11 shows some of the various shapes that are commonly produced
by the hot-rolling process. All of them are available in many different sizes as well as
in different materials. The materials most available in the hot-rolled bar sizes are steel,
aluminum, magnesium, and copper alloys.

Tubing can be manufactured by hot-rolling strip or plate. The edges of the strip are
rolled together, creating seams that are either butt-welded or lap-welded. Seamless tub-
ing is manufactured by roll-piercing a solid heated rod with a piercing mandrel.

Extrusion is the process by which great pressure is applied to a heated metal billet
or blank, causing it to flow through a restricted orifice. This process is more common
with materials of low melting point, such as aluminum, copper, magnesium, lead, tin,
and zinc. Stainless steel extrusions are available on a more limited basis.

Forging is the hot working of metal by hammers, presses, or forging machines. In
common with other hot-working processes, forging produces a refined grain structure
that results in increased strength and ductility. Compared with castings, forgings have
greater strength for the same weight. In addition, drop forgings can be made smoother
and more accurate than sand castings, so that less machining is necessary. However, the
initial cost of the forging dies is usually greater than the cost of patterns for castings,
although the greater unit strength rather than the cost is usually the deciding factor
between these two processes.

2–13 Cold-Working Processes
By cold working is meant the forming of the metal while at a low temperature (usually
room temperature). In contrast to parts produced by hot working, cold-worked parts
have a bright new finish, are more accurate, and require less machining.

Cold-finished bars and shafts are produced by rolling, drawing, turning, grinding,
and polishing. Of these methods, by far the largest percentage of products are made by
the cold-rolling and cold-drawing processes. Cold rolling is now used mostly for the
production of wide flats and sheets. Practically all cold-finished bars are made by cold
drawing but even so are sometimes mistakenly called “cold-rolled bars.” In the drawing
process, the hot-rolled bars are first cleaned of scale and then drawn by pulling them
through a die that reduces the size about 1

32 to 1
16 in. This process does not remove

material from the bar but reduces, or “draws” down, the size. Many different shapes of
hot-rolled bars may be used for cold drawing.

Cold rolling and cold drawing have the same effect upon the mechanical proper-
ties. The cold-working process does not change the grain size but merely distorts it.
Cold working results in a large increase in yield strength, an increase in ultimate

Round Square Half oval

(a) Bar shapes

Flat Hexagon

(b) Structural shapes

Wide flange Channel Angle Tee Zee

Figure 2–11

Common shapes available
through hot rolling.
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strength and hardness, and a decrease in ductility. In Fig. 2–12 the properties of a cold-
drawn bar are compared with those of a hot-rolled bar of the same material.

Heading is a cold-working process in which the metal is gathered, or upset. This
operation is commonly used to make screw and rivet heads and is capable of producing a
wide variety of shapes. Roll threading is the process of rolling threads by squeezing and
rolling a blank between two serrated dies. Spinning is the operation of working sheet mate-
rial around a rotating form into a circular shape. Stamping is the term used to describe
punch-press operations such as blanking, coining, forming, and shallow drawing.

2–14 The Heat Treatment of Steel
Heat treatment of steel refers to time- and temperature-controlled processes that relieve
residual stresses and/or modifies material properties such as hardness (strength), duc-
tility, and toughness. Other mechanical or chemical operations are sometimes grouped
under the heading of heat treatment. The common heat-treating operations are anneal-
ing, quenching, tempering, and case hardening.

Annealing

When a material is cold- or hot-worked, residual stresses are built in, and, in addition, the
material usually has a higher hardness as a result of these working operations. These oper-
ations change the structure of the material so that it is no longer represented by the equi-
librium diagram. Full annealing and normalizing is a heating operation that permits the
material to transform according to the equilibrium diagram. The material to be annealed
is heated to a temperature that is approximately 100°F above the critical temperature. It is
held at this temperature for a time that is sufficient for the carbon to become dissolved and
diffused through the material. The object being treated is then allowed to cool slowly, usu-
ally in the furnace in which it was treated. If the transformation is complete, then it is said
to have a full anneal. Annealing is used to soften a material and make it more ductile, to
relieve residual stresses, and to refine the grain structure.

The term annealing includes the process called normalizing. Parts to be normalized
may be heated to a slightly higher temperature than in full annealing. This produces a
coarser grain structure, which is more easily machined if the material is a low-carbon steel.
In the normalizing process the part is cooled in still air at room temperature. Since this
cooling is more rapid than the slow cooling used in full annealing, less time is available for
equilibrium, and the material is harder than fully annealed steel. Normalizing is often used
as the final treating operation for steel. The cooling in still air amounts to a slow quench.
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Quenching

Eutectoid steel that is fully annealed consists entirely of pearlite, which is obtained
from austenite under conditions of equilibrium. A fully annealed hypoeutectoid steel
would consist of pearlite plus ferrite, while hypereutectoid steel in the fully annealed
condition would consist of pearlite plus cementite. The hardness of steel of a given
carbon content depends upon the structure that replaces the pearlite when full anneal-
ing is not carried out.

The absence of full annealing indicates a more rapid rate of cooling. The rate of
cooling is the factor that determines the hardness. A controlled cooling rate is called
quenching. A mild quench is obtained by cooling in still air, which, as we have seen, is
obtained by the normalizing process. The two most widely used media for quenching
are water and oil. The oil quench is quite slow but prevents quenching cracks caused by
rapid expansion of the object being treated. Quenching in water is used for carbon steels
and for medium-carbon, low-alloy steels.

The effectiveness of quenching depends upon the fact that when austenite is cooled
it does not transform into pearlite instantaneously but requires time to initiate and com-
plete the process. Since the transformation ceases at about 800°F, it can be prevented
by rapidly cooling the material to a lower temperature. When the material is cooled
rapidly to 400°F or less, the austenite is transformed into a structure called martensite.
Martensite is a supersaturated solid solution of carbon in ferrite and is the hardest and
strongest form of steel.

If steel is rapidly cooled to a temperature between 400 and 800°F and held there
for a sufficient length of time, the austenite is transformed into a material that is gener-
ally called bainite. Bainite is a structure intermediate between pearlite and martensite.
Although there are several structures that can be identified between the temperatures
given, depending upon the temperature used, they are collectively known as bainite. By
the choice of this transformation temperature, almost any variation of structure may be
obtained. These range all the way from coarse pearlite to fine martensite.

Tempering

When a steel specimen has been fully hardened, it is very hard and brittle and has high
residual stresses. The steel is unstable and tends to contract on aging. This tendency
is increased when the specimen is subjected to externally applied loads, because the
resultant stresses contribute still more to the instability. These internal stresses can
be relieved by a modest heating process called stress relieving, or a combination of
stress relieving and softening called tempering or drawing. After the specimen has been
fully hardened by being quenched from above the critical temperature, it is reheated to
some temperature below the critical temperature for a certain period of time and then
allowed to cool in still air. The temperature to which it is reheated depends upon the
composition and the degree of hardness or toughness desired.8 This reheating operation
releases the carbon held in the martensite, forming carbide crystals. The structure
obtained is called tempered martensite. It is now essentially a superfine dispersion of
iron carbide(s) in fine-grained ferrite.

The effect of heat-treating operations upon the various mechanical properties of a
low alloy steel is shown graphically in Fig. 2–13.

8For the quantitative aspects of tempering in plain carbon and low-alloy steels, see Charles R. Mischke, “The
Strength of Cold-Worked and Heat-Treated Steels,” Chap. 33 in Joseph E. Shigley, Charles R. Mischke, and
Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.
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The effect of thermal-
mechanical history on the
mechanical properties of AISI
4340 steel. (Prepared by the
International Nickel Company.)

9W. Crafts and J. L. Lamont, Hardenability and Steel Selection, Pitman and Sons, London, 1949. 
10Charles R. Mischke, Chap. 33 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), 
Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004, p. 33.9.

Case Hardening

The purpose of case hardening is to produce a hard outer surface on a specimen of low-
carbon steel while at the same time retaining the ductility and toughness in the core.
This is done by increasing the carbon content at the surface. Either solid, liquid, or
gaseous carburizing materials may be used. The process consists of introducing the part
to be carburized into the carburizing material for a stated time and at a stated tempera-
ture, depending upon the depth of case desired and the composition of the part. The part
may then be quenched directly from the carburization temperature and tempered, or in
some cases it must undergo a double heat treatment in order to ensure that both the core
and the case are in proper condition. Some of the more useful case-hardening processes
are pack carburizing, gas carburizing, nitriding, cyaniding, induction hardening, and
flame hardening. In the last two cases carbon is not added to the steel in question, gen-
erally a medium carbon steel, for example SAE/AISI 1144.

Quantitative Estimation of Properties of Heat-Treated Steels

Courses in metallurgy (or material science) for mechanical engineers usually present
the addition method of Crafts and Lamont for the prediction of heat-treated properties
from the Jominy test for plain carbon steels.9 If this has not been in your prerequisite
experience, then refer to the Standard Handbook of Machine Design, where the addi-
tion method is covered with examples.10 If this book is a textbook for a machine
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elements course, it is a good class project (many hands make light work) to study the
method and report to the class.

For low-alloy steels, the multiplication method of Grossman11 and Field12 is
explained in the Standard Handbook of Machine Design (Secs. 29.6 and 33.6).

Modern Steels and Their Properties Handbook explains how to predict the Jominy
curve by the method of Grossman and Field from a ladle analysis and grain size.13

Bethlehem Steel has developed a circular plastic slide rule that is convenient to the purpose.

2–15 Alloy Steels
Although a plain carbon steel is an alloy of iron and carbon with small amounts of
manganese, silicon, sulfur, and phosphorus, the term alloy steel is applied when one or
more elements other than carbon are introduced in sufficient quantities to modify its
properties substantially. The alloy steels not only possess more desirable physical
properties but also permit a greater latitude in the heat-treating process.

Chromium

The addition of chromium results in the formation of various carbides of chromium that
are very hard, yet the resulting steel is more ductile than a steel of the same hardness pro-
duced by a simple increase in carbon content. Chromium also refines the grain structure
so that these two combined effects result in both increased toughness and increased hard-
ness. The addition of chromium increases the critical range of temperatures and moves
the eutectoid point to the left. Chromium is thus a very useful alloying element.

Nickel

The addition of nickel to steel also causes the eutectoid point to move to the left and
increases the critical range of temperatures. Nickel is soluble in ferrite and does not
form carbides or oxides. This increases the strength without decreasing the ductility.
Case hardening of nickel steels results in a better core than can be obtained with plain
carbon steels. Chromium is frequently used in combination with nickel to obtain the
toughness and ductility provided by the nickel and the wear resistance and hardness
contributed by the chromium.

Manganese

Manganese is added to all steels as a deoxidizing and desulfurizing agent, but if the sul-
fur content is low and the manganese content is over 1 percent, the steel is classified as a
manganese alloy. Manganese dissolves in the ferrite and also forms carbides. It causes
the eutectoid point to move to the left and lowers the critical range of temperatures. It
increases the time required for transformation so that oil quenching becomes practicable.

Silicon

Silicon is added to all steels as a deoxidizing agent. When added to very-low-carbon
steels, it produces a brittle material with a low hysteresis loss and a high magnetic
permeability. The principal use of silicon is with other alloying elements, such as
manganese, chromium, and vanadium, to stabilize the carbides.

11M. A. Grossman, AIME, February 1942.
12J. Field, Metals Progress, March 1943.
13Modern Steels and Their Properties, 7th ed., Handbook 2757, Bethlehem Steel, 1972, pp. 46–50.
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Molybdenum

While molybdenum is used alone in a few steels, it finds its greatest use when combined
with other alloying elements, such as nickel, chromium, or both. Molybdenum forms
carbides and also dissolves in ferrite to some extent, so that it adds both hardness and
toughness. Molybdenum increases the critical range of temperatures and substantially
lowers the transformation point. Because of this lowering of the transformation point,
molybdenum is most effective in producing desirable oil-hardening and air-hardening
properties. Except for carbon, it has the greatest hardening effect, and because it also
contributes to a fine grain size, this results in the retention of a great deal of toughness.

Vanadium

Vanadium has a very strong tendency to form carbides; hence it is used only in small
amounts. It is a strong deoxidizing agent and promotes a fine grain size. Since some vana-
dium is dissolved in the ferrite, it also toughens the steel. Vanadium gives a wide harden-
ing range to steel, and the alloy can be hardened from a higher temperature. It is very
difficult to soften vanadium steel by tempering; hence, it is widely used in tool steels.

Tungsten

Tungsten is widely used in tool steels because the tool will maintain its hardness even
at red heat. Tungsten produces a fine, dense structure and adds both toughness and hard-
ness. Its effect is similar to that of molybdenum, except that it must be added in greater
quantities.

2–16 Corrosion-Resistant Steels
Iron-base alloys containing at least 12 percent chromium are called stainless steels.
The most important characteristic of these steels is their resistance to many, but not all,
corrosive conditions. The four types available are the ferritic chromium steels, the
austenitic chromium-nickel steels, and the martensitic and precipitation-hardenable
stainless steels.

The ferritic chromium steels have a chromium content ranging from 12 to 27 per-
cent. Their corrosion resistance is a function of the chromium content, so that alloys
containing less than 12 percent still exhibit some corrosion resistance, although they
may rust. The quench-hardenability of these steels is a function of both the chromium
and the carbon content. The very high carbon steels have good quench hardenability up
to about 18 percent chromium, while in the lower carbon ranges it ceases at about
13 percent. If a little nickel is added, these steels retain some degree of hardenability up
to 20 percent chromium. If the chromium content exceeds 18 percent, they become dif-
ficult to weld, and at the very high chromium levels the hardness becomes so great that
very careful attention must be paid to the service conditions. Since chromium is expen-
sive, the designer will choose the lowest chromium content consistent with the corro-
sive conditions.

The chromium-nickel stainless steels retain the austenitic structure at room tem-
perature; hence, they are not amenable to heat treatment. The strength of these steels
can be greatly improved by cold working. They are not magnetic unless cold-worked.
Their work hardenability properties also cause them to be difficult to machine. All
the chromium-nickel steels may be welded. They have greater corrosion-resistant prop-
erties than the plain chromium steels. When more chromium is added for greater cor-
rosion resistance, more nickel must also be added if the austenitic properties are to be
retained.
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2–17 Casting Materials
Gray Cast Iron

Of all the cast materials, gray cast iron is the most widely used. This is because it has
a very low cost, is easily cast in large quantities, and is easy to machine. The principal
objections to the use of gray cast iron are that it is brittle and that it is weak in tension.
In addition to a high carbon content (over 1.7 percent and usually greater than 2 percent),
cast iron also has a high silicon content, with low percentages of sulfur, manganese,
and phosphorus. The resultant alloy is composed of pearlite, ferrite, and graphite, and
under certain conditions the pearlite may decompose into graphite and ferrite. The
resulting product then contains all ferrite and graphite. The graphite, in the form of
thin flakes distributed evenly throughout the structure, darkens it; hence, the name gray
cast iron.

Gray cast iron is not readily welded, because it may crack, but this tendency may
be reduced if the part is carefully preheated. Although the castings are generally used in
the as-cast condition, a mild anneal reduces cooling stresses and improves the machin-
ability. The tensile strength of gray cast iron varies from 100 to 400 MPa (15 to 60 kpsi),
and the compressive strengths are 3 to 4 times the tensile strengths. The modulus of
elasticity varies widely, with values extending all the way from 75 to 150 GPa (11 to
22 Mpsi).

Ductile and Nodular Cast Iron

Because of the lengthy heat treatment required to produce malleable cast iron, engineers
have long desired a cast iron that would combine the ductile properties of malleable
iron with the ease of casting and machining of gray iron and at the same time would
possess these properties in the as-cast conditions. A process for producing such a material
using magnesium-containing material seems to fulfill these requirements.

Ductile cast iron, or nodular cast iron, as it is sometimes called, is essentially the
same as malleable cast iron, because both contain graphite in the form of spheroids.
However, ductile cast iron in the as-cast condition exhibits properties very close to
those of malleable iron, and if a simple 1-h anneal is given and is followed by a slow
cool, it exhibits even more ductility than the malleable product. Ductile iron is made by
adding MgFeSi to the melt; since magnesium boils at this temperature, it is necessary
to alloy it with other elements before it is introduced.

Ductile iron has a high modulus of elasticity (172 GPa or 25 Mpsi) as compared
with gray cast iron, and it is elastic in the sense that a portion of the stress-strain
curve is a straight line. Gray cast iron, on the other hand, does not obey Hooke’s law,
because the modulus of elasticity steadily decreases with increase in stress. Like
gray cast iron, however, nodular iron has a compressive strength that is higher than
the tensile strength, although the difference is not as great. In 40 years it has become
extensively used.

White Cast Iron

If all the carbon in cast iron is in the form of cementite and pearlite, with no graphite
present, the resulting structure is white and is known as white cast iron. This may be
produced in two ways. The composition may be adjusted by keeping the carbon and
silicon content low, or the gray-cast-iron composition may be cast against chills in order
to promote rapid cooling. By either method, a casting with large amounts of cementite
is produced, and as a result the product is very brittle and hard to machine but also very
resistant to wear. A chill is usually used in the production of gray-iron castings in order
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to provide a very hard surface within a particular area of the casting, while at the same
time retaining the more desirable gray structure within the remaining portion. This pro-
duces a relatively tough casting with a wear-resistant area.

Malleable Cast Iron

If white cast iron within a certain composition range is annealed, a product called
malleable cast iron is formed. The annealing process frees the carbon so that it is pres-
ent as graphite, just as in gray cast iron but in a different form. In gray cast iron the
graphite is present in a thin flake form, while in malleable cast iron it has a nodular
form and is known as temper carbon. A good grade of malleable cast iron may have
a tensile strength of over 350 MPa (50 kpsi), with an elongation of as much as 18 per-
cent. The percentage elongation of a gray cast iron, on the other hand, is seldom over
1 percent. Because of the time required for annealing (up to 6 days for large and
heavy castings), malleable iron is necessarily somewhat more expensive than gray
cast iron.

Alloy Cast Irons

Nickel, chromium, and molybdenum are the most common alloying elements used in
cast iron. Nickel is a general-purpose alloying element, usually added in amounts up to
5 percent. Nickel increases the strength and density, improves the wearing qualities, and
raises the machinability. If the nickel content is raised to 10 to 18 percent, an austenitic
structure with valuable heat- and corrosion-resistant properties results. Chromium
increases the hardness and wear resistance and, when used with a chill, increases the
tendency to form white iron. When chromium and nickel are both added, the hardness
and strength are improved without a reduction in the machinability rating. Molybdenum
added in quantities up to 1.25 percent increases the stiffness, hardness, tensile strength,
and impact resistance. It is a widely used alloying element.

Cast Steels

The advantage of the casting process is that parts having complex shapes can be man-
ufactured at costs less than fabrication by other means, such as welding. Thus the
choice of steel castings is logical when the part is complex and when it must also have
a high strength. The higher melting temperatures for steels do aggravate the casting
problems and require closer attention to such details as core design, section thicknesses,
fillets, and the progress of cooling. The same alloying elements used for the wrought
steels can be used for cast steels to improve the strength and other mechanical proper-
ties. Cast-steel parts can also be heat-treated to alter the mechanical properties, and,
unlike the cast irons, they can be welded.

2–18 Nonferrous Metals
Aluminum

The outstanding characteristics of aluminum and its alloys are their strength-weight
ratio, their resistance to corrosion, and their high thermal and electrical conductivity.
The density of aluminum is about 2770 kg/m3 (0.10 lbf/in3), compared with 7750 kg/m3

(0.28 lbf/in3) for steel. Pure aluminum has a tensile strength of about 90 MPa (13 kpsi),
but this can be improved considerably by cold working and also by alloying with other
materials. The modulus of elasticity of aluminum, as well as of its alloys, is 71.7 GPa
(10.4 Mpsi), which means that it has about one-third the stiffness of steel.
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Considering the cost and strength of aluminum and its alloys, they are among the
most versatile materials from the standpoint of fabrication. Aluminum can be processed
by sand casting, die casting, hot or cold working, or extruding. Its alloys can be machined,
press-worked, soldered, brazed, or welded. Pure aluminum melts at 660°C (1215°F),
which makes it very desirable for the production of either permanent or sand-mold
castings. It is commercially available in the form of plate, bar, sheet, foil, rod, and tube
and in structural and extruded shapes. Certain precautions must be taken in joining
aluminum by soldering, brazing, or welding; these joining methods are not recommended
for all alloys.

The corrosion resistance of the aluminum alloys depends upon the formation of a
thin oxide coating. This film forms spontaneously because aluminum is inherently very
reactive. Constant erosion or abrasion removes this film and allows corrosion to take
place. An extra-heavy oxide film may be produced by the process called anodizing. In
this process the specimen is made to become the anode in an electrolyte, which may be
chromic acid, oxalic acid, or sulfuric acid. It is possible in this process to control the
color of the resulting film very accurately.

The most useful alloying elements for aluminum are copper, silicon, manganese,
magnesium, and zinc. Aluminum alloys are classified as casting alloys or wrought
alloys. The casting alloys have greater percentages of alloying elements to facilitate
casting, but this makes cold working difficult. Many of the casting alloys, and some of
the wrought alloys, cannot be hardened by heat treatment. The alloys that are heat-
treatable use an alloying element that dissolves in the aluminum. The heat treatment
consists of heating the specimen to a temperature that permits the alloying element to
pass into solution, then quenching so rapidly that the alloying element is not precipi-
tated. The aging process may be accelerated by heating slightly, which results in even
greater hardness and strength. One of the better-known heat-treatable alloys is duralu-
minum, or 2017 (4 percent Cu, 0.5 percent Mg, 0.5 percent Mn). This alloy hardens in
4 days at room temperature. Because of this rapid aging, the alloy must be stored under
refrigeration after quenching and before forming, or it must be formed immediately
after quenching. Other alloys (such as 5053) have been developed that age-harden much
more slowly, so that only mild refrigeration is required before forming. After forming,
they are artificially aged in a furnace and possess approximately the same strength and
hardness as the 2024 alloys. Those alloys of aluminum that cannot be heat-treated can
be hardened only by cold working. Both work hardening and the hardening produced
by heat treatment may be removed by an annealing process.

Magnesium

The density of magnesium is about 1800 kg/m3 (0.065 lb/in3), which is two-thirds that
of aluminum and one-fourth that of steel. Since it is the lightest of all commercial met-
als, its greatest use is in the aircraft and automotive industries, but other uses are now
being found for it. Although the magnesium alloys do not have great strength, because
of their light weight the strength-weight ratio compares favorably with the stronger
aluminum and steel alloys. Even so, magnesium alloys find their greatest use in appli-
cations where strength is not an important consideration. Magnesium will not withstand
elevated temperatures; the yield point is definitely reduced when the temperature is
raised to that of boiling water.

Magnesium and its alloys have a modulus of elasticity of 45 GPa (6.5 Mpsi) in ten-
sion and in compression, although some alloys are not as strong in compression as in
tension. Curiously enough, cold working reduces the modulus of elasticity. A range of
cast magnesium alloys are also available.
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Titanium

Titanium and its alloys are similar in strength to moderate-strength steel but weigh half
as much as steel. The material exhibits very good resistence to corrosion, has low ther-
mal conductivity, is nonmagnetic, and has high-temperature strength. Its modulus of
elasticity is between those of steel and aluminum at 16.5 Mpsi (114 GPa). Because of
its many advantages over steel and aluminum, applications include: aerospace and mil-
itary aircraft structures and components, marine hardware, chemical tanks and process-
ing equipment, fluid handling systems, and human internal replacement devices. The
disadvantages of titanium are its high cost compared to steel and aluminum and the dif-
ficulty of machining it.

Copper-Base Alloys

When copper is alloyed with zinc, it is usually called brass. If it is alloyed with another
element, it is often called bronze. Sometimes the other element is specified too, as, for ex-
ample, tin bronze or phosphor bronze. There are hundreds of variations in each category.

Brass with 5 to 15 Percent Zinc
The low-zinc brasses are easy to cold work, especially those with the higher zinc con-
tent. They are ductile but often hard to machine. The corrosion resistance is good. Alloys
included in this group are gilding brass (5 percent Zn), commercial bronze (10 percent Zn),
and red brass (15 percent Zn). Gilding brass is used mostly for jewelry and articles to
be gold-plated; it has the same ductility as copper but greater strength, accompanied by
poor machining characteristics. Commercial bronze is used for jewelry and for forgings
and stampings, because of its ductility. Its machining properties are poor, but it has
excellent cold-working properties. Red brass has good corrosion resistance as well as
high-temperature strength. Because of this it is used a great deal in the form of tubing or
piping to carry hot water in such applications as radiators or condensers.

Brass with 20 to 36 Percent Zinc
Included in the intermediate-zinc group are low brass (20 percent Zn), cartridge brass
(30 percent Zn), and yellow brass (35 percent Zn). Since zinc is cheaper than copper,
these alloys cost less than those with more copper and less zinc. They also have better
machinability and slightly greater strength; this is offset, however, by poor corrosion
resistance and the possibility of cracking at points of residual stresses. Low brass is very
similar to red brass and is used for articles requiring deep-drawing operations. Of the
copper-zinc alloys, cartridge brass has the best combination of ductility and strength.
Cartridge cases were originally manufactured entirely by cold working; the process
consisted of a series of deep draws, each draw being followed by an anneal to place the
material in condition for the next draw, hence the name cartridge brass. Although the
hot-working ability of yellow brass is poor, it can be used in practically any other fab-
ricating process and is therefore employed in a large variety of products.

When small amounts of lead are added to the brasses, their machinability is greatly
improved and there is some improvement in their abilities to be hot-worked. The
addition of lead impairs both the cold-working and welding properties. In this group are
low-leaded brass (32 1

2 percent Zn, 1
2 percent Pb), high-leaded brass (34 percent Zn,

2 percent Pb), and free-cutting brass (35 1
2 percent Zn, 3 percent Pb). The low-leaded

brass is not only easy to machine but has good cold-working properties. It is used for
various screw-machine parts. High-leaded brass, sometimes called engraver’s brass, is
used for instrument, lock, and watch parts. Free-cutting brass is also used for screw-
machine parts and has good corrosion resistance with excellent mechanical properties.
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Admiralty metal (28 percent Zn) contains 1 percent tin, which imparts excellent cor-
rosion resistance, especially to saltwater. It has good strength and ductility but only fair
machining and working characteristics. Because of its corrosion resistance it is used in
power-plant and chemical equipment. Aluminum brass (22 percent Zn) contains 2 percent
aluminum and is used for the same purposes as admiralty metal, because it has nearly the
same properties and characteristics. In the form of tubing or piping, it is favored over
admiralty metal, because it has better resistance to erosion caused by high-velocity water.

Brass with 36 to 40 Percent Zinc
Brasses with more than 38 percent zinc are less ductile than cartridge brass and cannot
be cold-worked as severely. They are frequently hot-worked and extruded. Muntz metal
(40 percent Zn) is low in cost and mildly corrosion-resistant. Naval brass has the same
composition as Muntz metal except for the addition of 0.75 percent tin, which con-
tributes to the corrosion resistance.

Bronze
Silicon bronze, containing 3 percent silicon and 1 percent manganese in addition to the
copper, has mechanical properties equal to those of mild steel, as well as good corro-
sion resistance. It can be hot- or cold-worked, machined, or welded. It is useful wher-
ever corrosion resistance combined with strength is required.

Phosphor bronze, made with up to 11 percent tin and containing small amounts of
phosphorus, is especially resistant to fatigue and corrosion. It has a high tensile strength
and a high capacity to absorb energy, and it is also resistant to wear. These properties
make it very useful as a spring material.

Aluminum bronze is a heat-treatable alloy containing up to 12 percent aluminum. This
alloy has strength and corrosion-resistance properties that are better than those of brass, and
in addition, its properties may be varied over a wide range by cold working, heat treating,
or changing the composition. When iron is added in amounts up to 4 percent, the alloy has
a high endurance limit, a high shock resistance, and excellent wear resistance.

Beryllium bronze is another heat-treatable alloy, containing about 2 percent beryl-
lium. This alloy is very corrosion resistant and has high strength, hardness, and resis-
tance to wear. Although it is expensive, it is used for springs and other parts subjected
to fatigue loading where corrosion resistance is required.

With slight modification most copper-based alloys are available in cast form.

2–19 Plastics
The term thermoplastics is used to mean any plastic that flows or is moldable when heat
is applied to it; the term is sometimes applied to plastics moldable under pressure. Such
plastics can be remolded when heated.

A thermoset is a plastic for which the polymerization process is finished in a hot
molding press where the plastic is liquefied under pressure. Thermoset plastics cannot
be remolded.

Table 2–2 lists some of the most widely used thermoplastics, together with some
of their characteristics and the range of their properties. Table 2–3, listing some of the
thermosets, is similar. These tables are presented for information only and should not
be used to make a final design decision. The range of properties and characteristics that
can be obtained with plastics is very great. The influence of many factors, such as cost,
moldability, coefficient of friction, weathering, impact strength, and the effect of fillers
and reinforcements, must be considered. Manufacturers’ catalogs will be found quite
helpful in making possible selections.
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Table 2–2

The Thermoplastics Source: These data have been obtained from the Machine Design Materials Reference Issue, published by Penton/IPC,
Cleveland. These reference issues are published about every 2 years and constitute an excellent source of data on a great variety of materials.

Table 2–3

The Thermosets Source: These data have been obtained from the Machine Design Materials Reference Issue, published by Penton/IPC,
Cleveland. These reference issues are published about every 2 years and constitute an excellent source of data on a great variety of materials.

Su E Hardness Elongation Dimensional Heat Chemical
Name kpsi Mpsi Rockwell % Stability Resistance Resistance Processing

ABS group 2–8 0.10–0.37 60–110R 3–50 Good * Fair EMST

Acetal group 8–10 0.41–0.52 80–94M 40–60 Excellent Good High M

Acrylic 5–10 0.20–0.47 92–110M 3–75 High * Fair EMS

Fluoroplastic 0.50–7 · · · 50–80D 100–300 High Excellent Excellent MPR†

group

Nylon 8–14 0.18–0.45 112–120R 10–200 Poor Poor Good CEM

Phenylene 7–18 0.35–0.92 115R, 106L 5–60 Excellent Good Fair EFM
oxide

Polycarbonate 8–16 0.34–0.86 62–91M 10–125 Excellent Excellent Fair EMS

Polyester 8–18 0.28–1.6 65–90M 1–300 Excellent Poor Excellent CLMR

Polyimide 6–50 · · · 88–120M Very low Excellent Excellent Excellent† CLMP

Polyphenylene 14–19 0.11 122R 1.0 Good Excellent Excellent M
sulfide

Polystyrene 1.5–12 0.14–0.60 10–90M 0.5–60 · · · Poor Poor EM
group

Polysulfone 10 0.36 120R 50–100 Excellent Excellent Excellent† EFM

Polyvinyl 1.5–7.5 0.35–0.60 65–85D 40–450 · · · Poor Poor EFM
chloride

*Heat-resistant grades available.
†With exceptions.
C Coatings L Laminates R Resins E Extrusions M Moldings S Sheet F Foams P Press and sinter methods T Tubing

Su E Hardness Elongation Dimensional Heat Chemical
Name kpsi Mpsi Rockwell % Stability Resistance Resistance Processing

Alkyd 3–9 0.05–0.30 99M* · · · Excellent Good Fair M

Allylic 4–10 · · · 105–120M · · · Excellent Excellent Excellent CM

Amino 5–8 0.13–0.24 110–120M 0.30–0.90 Good Excellent* Excellent* LR
group

Epoxy 5–20 0.03–0.30* 80–120M 1–10 Excellent Excellent Excellent CMR

Phenolics 5–9 0.10–0.25 70–95E · · · Excellent Excellent Good EMR

Silicones 5–6 · · · 80–90M · · · · · · Excellent Excellent CLMR

*With exceptions.
C Coatings L Laminates R Resins E Extrusions M Moldings S Sheet F Foams P Press and sinter methods T Tubing
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2–20 Composite Materials14

Composite materials are formed from two or more dissimilar materials, each of which
contributes to the final properties. Unlike metallic alloys, the materials in a composite
remain distinct from each other at the macroscopic level.

Most engineering composites consist of two materials: a reinforcement called a
filler and a matrix. The filler provides stiffness and strength; the matrix holds the mate-
rial together and serves to transfer load among the discontinuous reinforcements. The
most common reinforcements, illustrated in Fig. 2–14, are continuous fibers, either
straight or woven, short chopped fibers, and particulates. The most common matrices
are various plastic resins although other materials including metals are used.

Metals and other traditional engineering materials are uniform, or isotropic, in nature.
This means that material properties, such as strength, stiffness, and thermal conductivity,
are independent of both position within the material and the choice of coordinate system.
The discontinuous nature of composite reinforcements, though, means that material prop-
erties can vary with both position and direction. For example, an epoxy resin reinforced
with continuous graphite fibers will have very high strength and stiffness in the direction
of the fibers, but very low properties normal or transverse to the fibers. For this reason,
structures of composite materials are normally constructed of multiple plies (laminates)
where each ply is oriented to achieve optimal structural stiffness and strength performance.

High strength-to-weight ratios, up to 5 times greater than those of high-strength
steels, can be achieved. High stiffness-to-weight ratios can also be obtained, as much as
8 times greater than those of structural metals. For this reason, composite materials are
becoming very popular in automotive, marine, aircraft, and spacecraft applications
where weight is a premium.

The directionality of properties of composite materials increases the complexity of
structural analyses. Isotropic materials are fully defined by two engineering constants:
Young’s modulus E and Poisson’s ratio ν. A single ply of a composite material, however,
requires four constants, defined with respect to the ply coordinate system. The constants
are two Young’s moduli (the longitudinal modulus in the direction of the fibers, E1, and
the transverse modulus normal to the fibers, E2), one Poisson’s ratio (ν12, called the major
Poisson’s ratio), and one shear modulus (G12). A fifth constant, the minor Poisson’s ratio,
ν21, is determined through the reciprocity relation, ν21/E2 = ν12/E1. Combining this
with multiple plies oriented at different angles makes structural analysis of complex struc-
tures unapproachable by manual techniques. For this reason, computer software is avail-
able to calculate the properties of a laminated composite construction.15

Particulate
composite

Randomly oriented
short fiber composite

Unidirectional continuous
fiber composite

Woven fabric
composite

Figure 2–14

Composites categorized by
type of reinforcement.

14For references see I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford
University Press, 1994, and ASM Engineered Materials Handbook: Composites, ASM International,
Materials Park, OH, 1988.
15About Composite Materials Software listing, http://composite.about.com/cs/software/index.htm.
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2–21 Materials Selection
As stated earlier, the selection of a material for a machine part or structural member is
one of the most important decisions the designer is called on to make. Up to this point
in this chapter we have discussed many important material physical properties, various
characteristics of typical engineering materials, and various material production pro-
cesses. The actual selection of a material for a particular design application can be an
easy one, say, based on previous applications (1020 steel is always a good candidate
because of its many positive attributes), or the selection process can be as involved and
daunting as any design problem with the evaluation of the many material physical, eco-
nomical, and processing parameters. There are systematic and optimizing approaches
to material selection. Here, for illustration, we will only look at how to approach some
material properties. One basic technique is to list all the important material properties
associated with the design, e.g., strength, stiffness, and cost. This can be prioritized by
using a weighting measure depending on what properties are more important than
others. Next, for each property, list all available materials and rank them in order begin-
ning with the best material; e.g., for strength, high-strength steel such as 4340 steel
should be near the top of the list. For completeness of available materials, this might
require a large source of material data. Once the lists are formed, select a manageable
amount of materials from the top of each list. From each reduced list select the materi-
als that are contained within every list for further review. The materials in the reduced
lists can be graded within the list and then weighted according to the importance of
each property.

M. F. Ashby has developed a powerful systematic method using materials selec-
tion charts.16 This method has also been implemented in a software package called
CES Edupack.17 The charts display data of various properties for the families and
classes of materials listed in Table 2–4. For example, considering material stiffness
properties, a simple bar chart plotting Young’s modulus E on the y axis is shown 

16M. F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-Heinemann,
Oxford, 2005.
17Produced by Granta Design Limited. See www.grantadesign.com.

Family Classes Short Name

Aluminum alloys Al alloys
Copper alloys Cu alloys
Lead alloys Lead alloys
Magnesium alloys Mg alloys
Nickel alloys Ni alloys
Carbon steels Steels
Stainless steels Stainless steels
Tin alloys Tin alloys
Titanium alloys Ti alloys
Tungsten alloys W alloys
Lead alloys Pb alloys
Zinc alloys Zn alloys

Metals
(the metals and alloys of
engineering)

Table 2–4

Material Families and

Classes

(continued)
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Family Classes Short Name

Alumina Al2O3

Aluminum nitride AlN
Boron carbide B4C
Silicon carbide SiC
Silicon nitride Si3N4

Tungsten carbide WC
Brick Brick
Concrete Concrete
Stone Stone

Soda-lime glass Soda-lime glass
Borosilicate glass Borosilicate glass
Silica glass Silica glass
Glass ceramic Glass ceramic

Acrylonitrile butadiene styrene ABS
Cellulose polymers CA
Ionomers Ionomers
Epoxies Epoxy
Phenolics Phenolics
Polyamides (nylons) PA
Polycarbonate PC
Polyesters Polyester 
Polyetheretherkeytone PEEK
Polyethylene PE
Polyethylene terephalate PET or PETE
Polymethylmethacrylate PMMA
Polyoxymethylene(Acetal) POM
Polypropylene PP
Polystyrene PS
Polytetrafluorethylene PTFE
Polyvinylchloride PVC

Butyl rubber Butyl rubber
EVA EVA
Isoprene Isoprene
Natural rubber Natural rubber
Polychloroprene (Neoprene) Neoprene
Polyurethane PU
Silicon elastomers Silicones

Carbon-fiber reinforced polymers CFRP
Glass-fiber reinforced polymers GFRP
SiC reinforced aluminum Al-SiC
Flexible polymer foams Flexible foams
Rigid polymer foams Rigid foams
Cork Cork
Bamboo Bamboo
Wood Wood

From M. F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-Heinemann,
Oxford, 2005. Table 4–1, pp. 49–50.

Ceramics
Technical ceramics (fine
ceramics capable of 
load-bearing application)

Nontechnical ceramics
(porous ceramics of
construction)

Glasses

Polymers
(the thermoplastics and
thermosets of engineering)

Elastomers
(engineering rubbers, natural
and synthetic)

Hybrids
Composites

Foams

Natural materials

Table 2–4 (continued)

62
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in Fig. 2–15. Each vertical line represents the range of values of E for a particular
material. Only some of the materials are labeled. Now, more material information
can be displayed if the x axis represents another material property, say density. 
Figure 2–16, called a “bubble” chart, represents Young’s modulus E plotted against
density ρ. The line ranges for each material property plotted two-dimensionally now
form ellipses, or bubbles. Groups of bubbles outlined according to the material families
of Table 2–4 are also shown. This plot is more useful than the two separate bar charts
of each property. Now, we also see how stiffness/weight for various materials relate.
The ratio of Young’s modulus to density, E�r, is known as the specific modulus, or
specific stiffness. This ratio is of particular interest when it is desired to minimize
weight where the primary design limitation is deflection, stiffness, or natural frequency,
rather than strength. Machine parts made from materials with higher specific modulus
will exhibit lower deflection, higher stiffness, and higher natural frequency.

In the lower right corner of the chart in Figure 2–16, dotted lines indicate ratios of
Eb�r. Several parallel dotted lines are shown for b= 1 that represent different values of
the specific modulus E�r. This allows simple comparison of the specific modulus
between materials. It can be seen, for example, that some woods and aluminum alloys have
about the same specific modulus as steels. Different values of b allow comparisons for

Tungsten carbides

Low-alloy steel

Copper alloys

Nickel alloys

Titanium alloys

Soda-lime glass

GFRP, epoxy matrix (isotropic)

Flexible polymer foam (VLD)

Cast iron, gray

Wood, typical along grain

Acrylonitrile butadiene styrene (ABS)

Y
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Polyester
Wood, typical across grain

Rigid polymer foam (MD)

Polyurethane

Butyl rubber
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1
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1e-3

1e-4

Cork

Figure 2–15

Young’s modulus E for various materials. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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various relationships between stiffness and weight, such as in different loading
conditions. The relationship is linear (β = 1) for axial loading, but nonlinear (β = 1�2)
for bending loading [see Eq. (2–31) and its development]. Since the plot is on a log-log
scale, the exponential functions still plot as straight lines. The β = 1 lines can also be
used to represent constant values of the speed of sound in a material, since the rela-
tionship between E and r is linear in the equation for the speed of sound in a material,
c = (E�r)1�2. The same can be shown for natural frequency, which is a function of the
ratio of stiffness to mass.

To see how β fits into the mix, consider the following. The performance metric P
of a structural element depends on (1) the functional requirements, (2) the geometry,
and (3) the material properties of the structure. That is,

or, symbolically,

P = f (F, G, M) (2–23)

P � [(functional         ),requirements F
         (material        )]properties M

         (geometric      ),parameters G
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Figure 2–16

Young’s modulus E versus density ρ for various materials. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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If the function is separable, which it often is, we can write Eq. (2–23) as

P = f1(F) · f2(G) · f3(M) (2–24)

For optimum design, we desire to maximize or minimize P. With regards to material
properties alone, this is done by maximizing or minimizing f3(M), called the material
efficiency coefficient.

For illustration, say we want to design a light, stiff, end-loaded cantilever beam with
a circular cross section. For this we will use the mass m of the beam for the performance
metric to minimize. The stiffness of the beam is related to its material and geometry. The
stiffness of a beam is given by k = F/δ, where F and δ are the end load and deflection,
respectively (see Chap. 4). The end deflection of an end-loaded cantilever beam is given
in Table A–9, beam 1, as δ = ymax = (Fl3)/(3E I ), where E is Young’s modulus, I the
second moment of the area, and l the length of the beam. Thus, the stiffness is given by

k = F

δ
= 3E I

l3
(2–25)

From Table A–18, the second moment of the area of a circular cross section is

I = π D4

64
= A2

4π
(2–26)

where D and A are the diameter and area of the cross section, respectively. Substituting
Eq. (2–26) in (2–25) and solving for A, we obtain

A =
(

4πkl3

3E

)1/2

(2–27)

The mass of the beam is given by

m = Alρ (2–28)

Substituting Eq. (2–27) into (2–28) and rearranging yields

m = 2

√
π

3
(k1/2)(l5/2)

( ρ

E1/2

)
(2–29)

Equation (2–29) is of the form of Eq. (2–24). The term 2
√

π/3 is simply a constant and
can be associated with any function, say f1(F). Thus, f1(F) = 2

√
π/3(k1/2) is the func-

tional requirement, stiffness; f2(G) = (l5/2), the geometric parameter, length; and the
material efficiency coefficient

f3(M) = ρ

E1/2
(2–30)

is the material property in terms of density and Young’s modulus. To minimize m we
want to minimize f3(M), or maximize

M = E1/2

ρ
(2–31)

where M is called the material index, and β = 1
2 . Returning to Fig. 2–16, draw lines of

various values of E1/2/ρ as shown in Fig. 2–17. Lines of increasing M move up and to
the left as shown. Thus, we see that good candidates for a light, stiff, end-loaded can-
tilever beam with a circular cross section are certain woods, composites, and ceramics.

Other limits/constraints may warrant further investigation. Say, for further illustra-
tion, the design requirements indicate that we need a Young’s modulus greater than

Materials 65
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Figure 2–18

The search region of Fig. 2–16
further reduced by restricting 
E ≥ 50 GPa, (From M. F.
Ashby, Materials Selection in
Mechanical Design, 3rd ed.,
Elsevier Butterworth-
Heinemann, Oxford, 2005.)

Figure 2–17

A schematic E versus ρ chart
showing a grid of lines for
various values the material
index M = E1/2/ρ. (From 
M. F. Ashby, Materials Selection
in Mechanical Design, 3rd ed.,
Elsevier Butterworth-
Heinemann, Oxford, 2005.)
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50 GPa. Figure 2–18 shows how this further restricts the search region. This eliminates
woods as a possible material.

Another commonly useful chart, shown in Fig. 2–19, represents strength versus
density for the material families. The ratio of strength to density is known as specific
strength, and is particularly useful when it is desired to minimize weight where the pri-
mary design limitation is strength, rather than deflection. The guidelines in the lower
right corner represent different relationships between strength and density, in the form
of Sb�r. Following an approach similar to that used before, it can be shown that for
axial loading, b = 1, and for bending loading, b = 2�3.

Certainly, in a given design exercise, there will be other considerations such as
environment, cost, availability, and machinability, and other charts may be necessary to
investigate. Also, we have not brought in the material process selection part of the pic-
ture. If done properly, material selection can result in a good deal of bookkeeping. This
is where software packages such as CES Edupack become very effective.
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PROBLEMS
2–1 Determine the tensile and yield strengths for the following materials:

(a) UNS G10200 hot-rolled steel.
(b) SAE 1050 cold-drawn steel.
(c) AISI 1141 steel quenched and tempered at 540°C.
(d ) 2024-T4 aluminum alloy.
(e) Ti-6Al-4V annealed titanium alloy.

2–2 Assume you were specifying an AISI 1060 steel for an application. Using Table A–21,
(a) how would you specify it if you desired to maximize the yield strength?
(b) how would you specify it if you desired to maximize the ductility?

2–3 Determine the yield strength-to-weight density ratios (specific strength) in units of kN � m/kg for
AISI 1018 CD steel, 2011-T6 aluminum, Ti-6Al-4V titanium alloy, and ASTM No. 40 gray cast iron.

2–4 Determine the stiffness-to-weight density ratios (specific modulus) in units of inches for AISI 1018
CD steel, 2011-T6 aluminum, Ti-6Al-4V titanium alloy, and ASTM No. 40 gray cast iron.

2–5 Poisson’s ratio ν is a material property and is the ratio of the lateral strain and the longitudinal
strain for a member in tension. For a homogeneous, isotropic material, the modulus of rigidity G
is related to Young’s modulus as

G = E

2(1 + ν)

Materials 67

Figure 2–19

Strength S versus density ρ for various materials. For metals, S is the 0.2 percent offset yield strength. For polymers, S is the 1 percent yield
strength. For ceramics and glasses, S is the compressive crushing strength. For composites, S is the tensile strength. For elastomers, S is the tear
strength. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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Using the tabulated values of G and E in Table A–5, calculate Poisson’s ratio for steel, aluminum,
beryllium copper, and gray cast iron. Determine the percent difference between the calculated
values and the values tabulated in Table A–5.

2–6 A specimen of steel having an initial diameter of 0.503 in was tested in tension using a gauge
length of 2 in. The following data were obtained for the elastic and plastic states:

Note that there is some overlap in the data. 
(a) Plot the engineering or nominal stress-strain diagram using two scales for the unit strain ε,

one scale from zero to about 0.02 in/in and the other scale from zero to maximum strain.
(b) From this diagram find the modulus of elasticity, the 0.2 percent offset yield strength, the ulti-

mate strength, and the percent reduction in area.
(c) Characterize the material as ductile or brittle. Explain your reasoning.
(d ) Identify a material specification from Table A–20 that has a reasonable match to the data.

2–7 Compute the true stress and the logarithmic strain using the data of Prob. 2–6 and plot the results on
log-log paper. Then find the plastic strength coefficient σ0 and the strain-strengthening exponent m.
Find also the yield strength and the ultimate strength after the specimen has had 20 percent cold work. 

2–8 The stress-strain data from a tensile test on a cast-iron specimen are

Engineering
stress, kpsi 5 10 16 19 26 32 40 46 49 54

Engineering strain, 0.20 0.44 0.80 1.0 1.5 2.0 2.8 3.4 4.0 5.0
� � 10�3 in/in

Plot the stress-strain locus and find the 0.1 percent offset yield strength, and the tangent modulus
of elasticity at zero stress and at 20 kpsi. 

2–9 A part made from annealed AISI 1018 steel undergoes a 20 percent cold-work operation.
(a) Obtain the yield strength and ultimate strength before and after the cold-work operation.

Determine the percent increase in each strength.
(b) Determine the ratios of ultimate strength to yield strength before and after the cold-work

operation. What does the result indicate about the change of ductility of the part?

2–10 Repeat Prob. 2–9 for a part made from hot-rolled AISI 1212 steel.

2–11 Repeat Prob. 2–9 for a part made from 2024-T4 aluminum alloy.

2–12 A steel member has a Brinell of HB = 275. Estimate the ultimate strength of the steel in MPa.

Plastic State
Load P Area Ai

lbf in2

8 800 0.1984

9 200 0.1978

9 100 0.1963 

13 200 0.1924 

15 200 0.1875

17 000 0.1563

16 400 0.1307

14 800 0.1077

Elastic State
Load P Elongation

lbf in

1 000 0.0004

2 000 0.0006

3 000 0.0010 

4 000 0.0013

7 000 0.0023

8 400 0.0028

8 800 0.0036

9 200 0.0089

68 Mechanical Engineering Design
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2–13 A gray cast iron part has a Brinell hardness number of HB = 200. Estimate the ultimate strength
of the part in kpsi. Make a reasonable assessment of the likely grade of cast iron by comparing
both hardness and strength to material options in Table A–24.

2–14 A part made from 1040 hot-rolled steel is to be heat treated to increase its strength to approxi-
mately 100 kpsi. What Brinell hardness number should be expected from the heat-treated part?

2–15 Brinell hardness tests were made on a random sample of 10 steel parts during processing. The
results were HB values of 230, 232(2), 234, 235(3), 236(2), and 239. Estimate the mean and
standard deviation of the ultimate strength in kpsi.

2–16 Repeat Prob. 2–15 assuming the material to be cast iron.

2–17 For the material in Prob. 2–6: (a) Determine the modulus of resilience, and (b) Estimate the mod-
ulus of toughness, assuming that the last data point corresponds to fracture.

2–18 Some commonly used plain carbon steels are AISI 1010, 1018, and 1040. Research these steels
and provide a comparative summary of their characteristics, focusing on aspects that make each
one unique for certain types of application. Product application guides provided on the Internet
by steel manufacturers and distributors are one source of information.

2–19 Repeat Prob. 2–18 for the commonly used alloy steels, AISI 4130 and 4340.  

2–20 An application requires the support of an axial load of 100 kips with a round rod without exceed-
ing the yield strength of the material. Assume the current cost per pound for round stock is given
in the table below for several materials that are being considered. Material properties are avail-
able in Tables A–5, A–20, A–21, and A–24. Select one of the materials for each of the following
additional design goals.
(a) Minimize diameter.
(b) Minimize weight.
(c) Minimize cost.
(d) Minimize axial deflection.

Materials 69

Material Cost/lbf

1020 HR $0.27

1020 CD $0.30

1040 Q&T @800°F $0.35

4140 Q&T @800°F $0.80

Wrought Al 2024 T3 $1.10

Titanium alloy (Ti-6Al-4V) $7.00

A 1-in-diameter rod, 3 ft long, of unknown material is found in a machine shop. A variety of
inexpensive nondestructive tests are readily available to help determine the material, as described
below:
(a) Visual inspection.
(b) Scratch test: Scratch the surface with a file; observe color of underlying material and depth

of scratch.
(c) Check if it is attracted to a magnet.
(d ) Measure weight (±0.05 lbf ).
(e) Inexpensive bending deflection test: Clamp one end in a vise, leaving 24 in cantilevered.

Apply a force of 100 lbf (±1 lbf ). Measure deflection of the free end (within ±1�32 in).
( f ) Brinell hardness test.

2–21 to
2–23
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Choose which tests you would actually perform, and in what sequence, to minimize time and
cost, but to determine the material with a reasonable level of confidence. The table below pro-
vides results that would be available to you if you choose to perform a given test.  Explain your
process, and include any calculations. You may assume the material is one listed in Table A–5. If
it is carbon steel, try to determine an approximate specification from Table A–20.

70 Mechanical Engineering Design

Test Results if test were made
Prob. 2–21 Prob. 2–22 Prob. 2–23

(a) Dark gray, rough surface Silvery gray, smooth surface Reddish-brown, tarnished,

finish, moderate scale finish, slightly tarnished smooth surface finish

(b) Metallic gray, moderate Silvery gray, deep scratch Shiny brassy color, deep

scratch scratch

(c) Magnetic Not magnetic Not magnetic

(d) W = 7.95 lbf W = 2.90 lbf W = 9.00 lbf

(e) d = 5�16 in d = 7�8 in d = 17�32 in

( f ) HB = 200 HB = 95 HB = 70

2–24 Search the website noted in Sec. 2–20 (http://composite.about.com/cs/software/) and report your
findings. Your instructor may wish to elaborate on the level of this report. The website contains a
large variety of resources. The activity for this problem can be divided among the class. 

2–25 Research the material Inconel, briefly described in Table A–5. Compare it to various carbon and
alloy steels in stiffness, strength, ductility, and toughness. What makes this material so special?

2–26 Consider a rod transmitting a tensile force. The following materials are being considered: tung-
sten carbide, high-carbon heat-treated steel, polycarbonate polymer, aluminum alloy. Using the
Ashby charts, recommend one or two of the materials for a design situation in which failure is by
exceeding the strength of the material, and it is desired to minimize the weight.

2–27 Repeat Prob. 2–26, except that the design situation is failure by excessive deflection, and it is
desired to minimize the weight.

2–28 Consider a cantilever beam that is loaded with a transverse force at its tip. The following materials
are being considered: tungsten carbide, high-carbon heat-treated steel, polycarbonate polymer,
aluminum alloy. Using the Ashby charts, recommend one or two of the materials for a design
situation in which failure is by exceeding the strength of the material and it is desired to minimize
the weight.

2–29 Repeat Prob. 2–28, except that the design situation is failure by excessive deflection, and it is
desired to minimize the weight.

2–30 For an axially loaded rod, prove that b = 1 for the Eb�r guidelines in Fig. 2–16.

2–31 For an axially loaded rod, prove that b = 1 for the Sb�r guidelines in Fig. 2–19.

2–32 For a cantilever beam loaded in bending, prove that b= 1�2 for the E b�r guidelines in Fig. 2–16.

2–33 For a cantilever beam loaded in bending, prove that b= 2�3 for the Sb�r guidelines in Fig. 2–19.

2–34 Consider a tie rod transmitting a tensile force F. The corresponding tensile stress is given by
σ = F/A, where A is the area of the cross section. The deflection of the rod is given by Eq. (4–3),
which is δ = (Fl)/(AE), where l is the length of the rod. Using the Ashby charts of Figs. 2–16
and 2–19, explore what ductile materials are best suited for a light, stiff, and strong tie rod.
Hint: Consider stiffness and strength separately.
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72 Mechanical Engineering Design

One of the main objectives of this book is to describe how specific machine components
function and how to design or specify them so that they function safely without failing
structurally. Although earlier discussion has described structural strength in terms of
load or stress versus strength, failure of function for structural reasons may arise from
other factors such as excessive deformations or deflections. 

Here it is assumed that the reader has completed basic courses in statics of rigid
bodies and mechanics of materials and is quite familiar with the analysis of loads, and
the stresses and deformations associated with the basic load states of simple prismatic
elements. In this chapter and Chap. 4 we will review and extend these topics briefly.
Complete derivations will not be presented here, and the reader is urged to return to
basic textbooks and notes on these subjects.

This chapter begins with a review of equilibrium and free-body diagrams associated
with load-carrying components. One must understand the nature of forces before
attempting to perform an extensive stress or deflection analysis of a mechanical com-
ponent. An extremely useful tool in handling discontinuous loading of structures
employs Macaulay or singularity functions. Singularity functions are described in
Sec. 3–3 as applied to the shear forces and bending moments in beams. In Chap. 4, the
use of singularity functions will be expanded to show their real power in handling
deflections of complex geometry and statically indeterminate problems.

Machine components transmit forces and motion from one point to another. The
transmission of force can be envisioned as a flow or force distribution that can be fur-
ther visualized by isolating internal surfaces within the component. Force distributed
over a surface leads to the concept of stress, stress components, and stress transforma-
tions (Mohr’s circle) for all possible surfaces at a point.

The remainder of the chapter is devoted to the stresses associated with the basic
loading of prismatic elements, such as uniform loading, bending, and torsion, and topics
with major design ramifications such as stress concentrations, thin- and thick-walled
pressurized cylinders, rotating rings, press and shrink fits, thermal stresses, curved beams,
and contact stresses.

3–1 Equilibrium and Free-Body Diagrams
Equilibrium

The word system will be used to denote any isolated part or portion of a machine or
structure—including all of it if desired—that we wish to study. A system, under this
definition, may consist of a particle, several particles, a part of a rigid body, an entire
rigid body, or even several rigid bodies.

If we assume that the system to be studied is motionless or, at most, has constant
velocity, then the system has zero acceleration. Under this condition the system is said
to be in equilibrium. The phrase static equilibrium is also used to imply that the system
is at rest. For equilibrium, the forces and moments acting on the system balance such
that ∑

F = 0 (3–1)∑
M = 0 (3–2)

which states that the sum of all force and the sum of all moment vectors acting upon a
system in equilibrium is zero.
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Free-Body Diagrams

We can greatly simplify the analysis of a very complex structure or machine by suc-
cessively isolating each element and studying and analyzing it by the use of free-body
diagrams. When all the members have been treated in this manner, the knowledge
obtained can be assembled to yield information concerning the behavior of the total sys-
tem. Thus, free-body diagramming is essentially a means of breaking a complicated
problem into manageable segments, analyzing these simple problems, and then, usually,
putting the information together again.

Using free-body diagrams for force analysis serves the following important purposes:

• The diagram establishes the directions of reference axes, provides a place to record
the dimensions of the subsystem and the magnitudes and directions of the known
forces, and helps in assuming the directions of unknown forces.

• The diagram simplifies your thinking because it provides a place to store one thought
while proceeding to the next.

• The diagram provides a means of communicating your thoughts clearly and unam-
biguously to other people.

• Careful and complete construction of the diagram clarifies fuzzy thinking by bringing
out various points that are not always apparent in the statement or in the geometry
of the total problem. Thus, the diagram aids in understanding all facets of the problem.

• The diagram helps in the planning of a logical attack on the problem and in setting
up the mathematical relations.

• The diagram helps in recording progress in the solution and in illustrating the
methods used.

• The diagram allows others to follow your reasoning, showing all forces.

EXAMPLE 3–1 Figure 3–1a shows a simplified rendition of a gear reducer where the input and output
shafts AB and CD are rotating at constant speeds ωi and ωo, respectively. The input and
output torques (torsional moments) are Ti = 240 lbf · in and To, respectively. The shafts
are supported in the housing by bearings at A, B, C, and D. The pitch radii of gears G1

and G2 are r1 = 0.75 in and r2 = 1.5 in, respectively. Draw the free-body diagrams of
each member and determine the net reaction forces and moments at all points.

Solution First, we will list all simplifying assumptions.

1 Gears G1 and G2 are simple spur gears with a standard pressure angle φ = 20°
(see Sec. 13–5).

2 The bearings are self-aligning and the shafts can be considered to be simply
supported.

3 The weight of each member is negligible.
4 Friction is negligible.
5 The mounting bolts at E, F, H, and I are the same size.

The separate free-body diagrams of the members are shown in Figs. 3–1b–d. Note that
Newton’s third law, called the law of action and reaction, is used extensively where
each member mates. The force transmitted between the spur gears is not tangential but
at the pressure angle φ. Thus, N = F tan φ.
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74 Mechanical Engineering Design

Summing moments about the x axis of shaft AB in Fig. 3–1d gives∑
Mx = F(0.75) − 240 = 0

F = 320 lbf

The normal force is N = 320 tan 20° = 116.5 lbf.
Using the equilibrium equations for Figs. 3–1c and d, the reader should verify that:

RAy = 192 lbf, RAz = 69.9 lbf, RBy = 128 lbf, RBz = 46.6 lbf, RCy = 192 lbf, RCz =
69.9 lbf, RDy = 128 lbf, RDz = 46.6 lbf, and To = 480 lbf · in. The direction of the output
torque To is opposite ωo because it is the resistive load on the system opposing the motion ωo.

Note in Fig. 3–1b the net force from the bearing reactions is zero whereas the net
moment about the x axis is (1.5 + 0.75) (192) + (1.5 + 0.75) (128) = 720 lbf · in. This
value is the same as Ti + To = 240 + 480 = 720 lbf · in, as shown in Fig. 3–1a. The
reaction forces RE , RF , RH , and RI , from the mounting bolts cannot be determined
from the equilibrium equations as there are too many unknowns. Only three equations
are available, 

∑
Fy = ∑

Fz = ∑
Mx = 0. In case you were wondering about assump-

tion 5, here is where we will use it (see Sec. 8–12). The gear box tends to rotate about
the x axis because of a pure torsional moment of 720 lbf · in. The bolt forces must provide
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(a) Gear reducer; (b–d) free-body diagrams. Diagrams are not drawn to scale.
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an equal but opposite torsional moment. The center of rotation relative to the bolts lies at
the centroid of the bolt cross-sectional areas. Thus if the bolt areas are equal: the center
of rotation is at the center of the four bolts, a distance of

√
(4/2)2 + (5/2)2 = 3.202 in

from each bolt; the bolt forces are equal (RE = RF = RH = RI = R), and each bolt force
is perpendicular to the line from the bolt to the center of rotation. This gives a net torque
from the four bolts of 4R(3.202) = 720. Thus, RE = RF = RH = RI = 56.22 lbf.

3–2 Shear Force and Bending Moments in Beams
Figure 3–2a shows a beam supported by reactions R1 and R2 and loaded by the con-
centrated forces F1, F2, and F3. If the beam is cut at some section located at x = x1 and
the left-hand portion is removed as a free body, an internal shear force V and bending
moment M must act on the cut surface to ensure equilibrium (see Fig. 3–2b). The shear
force is obtained by summing the forces on the isolated section. The bending moment is
the sum of the moments of the forces to the left of the section taken about an axis through
the isolated section. The sign conventions used for bending moment and shear force in this
book are shown in Fig. 3–3. Shear force and bending moment are related by the equation 

V = d M

dx
(3–3)

Sometimes the bending is caused by a distributed load q(x), as shown in Fig. 3–4;
q(x) is called the load intensity with units of force per unit length and is positive in the

Figure 3–2

Free-body diagram of simply-
supported beam with V and M
shown in positive directions.

Figure 3–3

Sign conventions for bending
and shear.

Figure 3–4

Distributed load on beam.

Positive bending

Positive shear Negative shear

Negative bending

x

y q (x)

x1x1

y y

F1 F2 F3 F1

xx

R1 R2 R1

V

M

(a) (b)
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76 Mechanical Engineering Design

positive y direction. It can be shown that differentiating Eq. (3–3) results in

dV

dx
= d2 M

dx2
= q (3–4)

Normally the applied distributed load is directed downward and labeled w (e.g., see
Fig. 3–6). In this case, w = −q.

Equations (3–3) and (3–4) reveal additional relations if they are integrated. Thus,
if we integrate between, say, xA and xB , we obtain∫ VB

VA

dV = VB − VA =
∫ xB

xA

q dx (3–5)

which states that the change in shear force from A to B is equal to the area of the load-
ing diagram between xA and xB .

In a similar manner,∫ MB

MA

d M = MB − MA =
∫ xB

xA

V dx (3–6)

which states that the change in moment from A to B is equal to the area of the shear-
force diagram between xA and xB .

Function Graph of fn (x) Meaning

〈x − a〉−2 = 0 x �= a

〈x − a〉−2 = ±∞ x = a∫
〈x − a〉−2 dx = 〈x − a〉−1

Concentrated 〈x − a〉−1 = 0 x �= a
force 〈x − a〉−1 = +∞ x = a
(unit impulse) ∫

〈x − a〉−1 dx = 〈x − a〉0

Unit step 〈x − a〉0 =
{

0 x < a

1 x ≥ a∫
〈x − a〉0 dx = 〈x − a〉1

Ramp 〈x − a〉1 =
{

0 x < a

x − a x ≥ a∫
〈x − a〉1 dx = 〈x − a〉2

2

†W. H. Macaulay, “Note on the deflection of beams,” Messenger of Mathematics, vol. 48, pp. 129–130, 1919.

x

〈x – a〉–2

a

x

〈x – a〉–1

a

x

〈x – a〉0

a

1

x

〈x – a〉1

a

1

1

Table 3–1

Singularity (Macaulay†)

Functions
Concentrated
moment
(unit doublet)
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3–3 Singularity Functions
The four singularity functions defined in Table 3–1, using the angle brackets 〈 〉, consti-
tute a useful and easy means of integrating across discontinuities. By their use, general
expressions for shear force and bending moment in beams can be written when the beam
is loaded by concentrated moments or forces. As shown in the table, the concentrated
moment and force functions are zero for all values of x not equal to a. The functions are
undefined for values of x = a. Note that the unit step and ramp functions are zero only
for values of x that are less than a. The integration properties shown in the table con-
stitute a part of the mathematical definition too. The first two integrations of q(x) for
V (x) and M(x) do not require constants of integration provided all loads on the beam
are accounted for in q(x). The examples that follow show how these functions are used.

EXAMPLE 3–2 Derive the loading, shear-force, and bending-moment relations for the beam of Fig. 3–5a.

Solution Using Table 3–1 and q(x) for the loading function, we find

Answer q = R1〈x〉−1 − 200〈x − 4〉−1 − 100〈x − 10〉−1 + R2〈x − 20〉−1 (1)

Integrating successively gives

Answer V =
∫

q dx = R1〈x〉0 − 200〈x − 4〉0 − 100〈x − 10〉0 + R2〈x − 20〉0 (2)

Answer M =
∫

V dx = R1〈x〉1 − 200〈x − 4〉1 − 100〈x − 10〉1 + R2〈x − 20〉1 (3)

Note that V � M � 0 at x � 0�.
The reactions R1 and R2 can be found by taking a summation of moments and

forces as usual, or they can be found by noting that the shear force and bending moment
must be zero everywhere except in the region 0 ≤ x ≤ 20 in. This means that Eq. (2)

Figure 3–5

(a) Loading diagram for a
simply-supported beam. 
(b) Shear-force diagram. 
(c) Bending-moment diagram.
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78 Mechanical Engineering Design

should give V = 0 at x slightly larger than 20 in. Thus

R1 − 200 − 100 + R2 = 0 (4)

Since the bending moment should also be zero in the same region, we have, from Eq. (3),

R1(20) − 200(20 − 4) − 100(20 − 10) = 0 (5)

Equations (4) and (5) yield the reactions R1� 210 lbf and R2 � 90 lbf.
The reader should verify that substitution of the values of R1 and R2 into Eqs. (2)

and (3) yield Figs. 3–5b and c.

(a)

(b)

D

CBA

y

q

x

10 in

7 in

3 in

R1

M1

20 lbf/in 240 lbf � in

x

V (lbf)

O

Step
Ramp

(c)

x

M (lbf � in)

O

–160

80

Parabolic Step

80

240

Ramp
Slope = 80 lbf � in/in

Figure 3–6

(a) Loading diagram for a
beam cantilevered at A.
(b) Shear-force diagram.
(c) Bending-moment diagram.

EXAMPLE 3–3 Figure 3–6a shows the loading diagram for a beam cantilevered at A with a uniform
load of 20 lbf/in acting on the portion 3 in ≤ x ≤ 7 in, and a concentrated counter-
clockwise moment of 240 lbf · in at x = 10 in. Derive the shear-force and bending-
moment relations, and the support reactions M1 and R1.

Solution Following the procedure of Example 3–2, we find the load intensity function to be

q = −M1〈x〉−2 + R1〈x〉−1 − 20〈x − 3〉0 + 20〈x − 7〉0 − 240〈x − 10〉−2 (1)

Note that the 20〈x − 7〉0 term was necessary to “turn off” the uniform load at C.
Integrating successively gives

Answers V = −M1〈x〉−1 + R1〈x〉0 − 20〈x − 3〉1 + 20〈x − 7〉1 − 240〈x − 10〉−1 (2)

M = −M1〈x〉0 + R1〈x〉1 − 10〈x − 3〉2 + 10〈x − 7〉2 − 240〈x − 10〉0 (3)

The reactions are found by making x slightly larger than 10 in, where both V and M are
zero in this region. Noting that 〈10〉−1 = 0, Eq. (2) will then give

−M1(0) + R1(1) − 20(10 − 3) + 20(10 − 7) − 240(0) = 0
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Figure 3–7

Stress components on surface
normal to x direction.
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Answer which yields R1 = 80 lbf.
From Eq. (3) we get

−M1(1) + 80(10) − 10(10 − 3)2 + 10(10 − 7)2 − 240(1) = 0

Answer which yields M1 = 160 lbf · in.

Figures 3–6b and c show the shear-force and bending-moment diagrams. Note that
the impulse terms in Eq. (2), −M1〈x〉−1 and −240〈x − 10〉−1, are physically not forces
and are not shown in the V diagram. Also note that both the M1 and 240 lbf · in
moments are counterclockwise and negative singularity functions; however, by the con-
vention shown in Fig. 3–2 the M1 and 240 lbf · in are negative and positive bending
moments, respectively, which is reflected in Fig. 3–6c.

3–4 Stress
When an internal surface is isolated as in Fig. 3–2b, the net force and moment acting on
the surface manifest themselves as force distributions across the entire area. The force
distribution acting at a point on the surface is unique and will have components in the
normal and tangential directions called normal stress and tangential shear stress,
respectively. Normal and shear stresses are labeled by the Greek symbols σ and τ ,
respectively. If the direction of σ is outward from the surface it is considered to be a ten-
sile stress and is a positive normal stress. If σ is into the surface it is a compressive stress
and commonly considered to be a negative quantity. The units of stress in U.S.
Customary units are pounds per square inch (psi). For SI units, stress is in newtons per
square meter (N/m2); 1 N/m2 = 1 pascal (Pa).

3–5 Cartesian Stress Components
The Cartesian stress components are established by defining three mutually orthogo-
nal surfaces at a point within the body. The normals to each surface will establish the
x, y, z Cartesian axes. In general, each surface will have a normal and shear stress. The
shear stress may have components along two Cartesian axes. For example, Fig. 3–7
shows an infinitesimal surface area isolation at a point Q within a body where the sur-
face normal is the x direction. The normal stress is labeled σx . The symbol σ indi-
cates a normal stress and the subscript x indicates the direction of the surface normal.
The net shear stress acting on the surface is (τx)net which can be resolved into com-
ponents in the y and z directions, labeled as τxy and τxz , respectively (see Fig. 3–7).

Q

y

x

z

�x

�xy

�xz

(�x)net
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80 Mechanical Engineering Design

Note that double subscripts are necessary for the shear. The first subscript indicates
the direction of the surface normal whereas the second subscript is the direction of
the shear stress.

The state of stress at a point described by three mutually perpendicular surfaces is
shown in Fig. 3–8a. It can be shown through coordinate transformation that this is suf-
ficient to determine the state of stress on any surface intersecting the point. As the
dimensions of the cube in Fig. 3–8a approach zero, the stresses on the hidden faces
become equal and opposite to those on the opposing visible faces. Thus, in general, a
complete state of stress is defined by nine stress components, σx , σy, σz, τxy,

τxz, τyx , τyz, τzx , and τzy .

For equilibrium, in most cases, “cross-shears” are equal, hence

τyx = τxy τzy = τyz τxz = τzx (3–7)

This reduces the number of stress components for most three-dimensional states of
stress from nine to six quantities, σx , σy, σz, τxy, τyz, and τzx .

A very common state of stress occurs when the stresses on one surface are zero.
When this occurs the state of stress is called plane stress. Figure 3–8b shows a state of
plane stress, arbitrarily assuming that the normal for the stress-free surface is the
z direction such that σz = τzx = τzy = 0. It is important to note that the element in
Fig. 3–8b is still a three-dimensional cube. Also, here it is assumed that the cross-shears
are equal such that τyx = τxy, and τyz = τzy = τxz = τzx = 0.

3–6 Mohr’s Circle for Plane Stress
Suppose the dx dy dz element of Fig. 3–8b is cut by an oblique plane with a normal n at
an arbitrary angle φ counterclockwise from the x axis as shown in Fig. 3–9. Here, we are
concerned with the stresses σ and τ that act upon this oblique plane. By summing the
forces caused by all the stress components to zero, the stresses σ and τ are found to be

σ = σx + σy

2
+ σx − σy

2
cos 2φ + τxy sin 2φ (3–8)

τ = −σx − σy

2
sin 2φ + τxy cos 2φ (3–9)

Equations (3–8) and (3–9) are called the plane-stress transformation equations.

y y

x

�y

�yx

�xy

�xy

�xy

�x y

�xy

�xz

�x

�x

�y

�x

�y

�z

x

z

�yz

�zy

�z x

(a) (b)

Figure 3–8

(a) General three-dimensional
stress. (b) Plane stress with
“cross-shears” equal.
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Differentiating Eq. (3–8) with respect to φ and setting the result equal to zero
maximizes σ and gives 

tan 2φp = 2τxy

σx − σy
(3–10)

Equation (3–10) defines two particular values for the angle 2φp, one of which defines
the maximum normal stress σ1 and the other, the minimum normal stress σ2. These two
stresses are called the principal stresses, and their corresponding directions, the princi-
pal directions. The angle between the two principal directions is 90°. It is important to
note that Eq. (3–10) can be written in the form

σx − σy

2
sin 2φp − τxy cos 2φp = 0 (a)

Comparing this with Eq. (3–9), we see that τ = 0, meaning that the perpendicular sur-
faces containing principal stresses have zero shear stresses.

In a similar manner, we differentiate Eq. (3–9), set the result equal to zero, and obtain

tan 2φs = −σx − σy

2τxy
(3–11)

Equation (3–11) defines the two values of 2φs at which the shear stress τ reaches an
extreme value. The angle between the two surfaces containing the maximum shear
stresses is 90°. Equation (3–11) can also be written as

σx − σy

2
cos 2φp + τxy sin 2φp = 0 (b)

Substituting this into Eq. (3–8) yields

σ = σx + σy

2
(3–12)

Equation (3–12) tells us that the two surfaces containing the maximum shear stresses
also contain equal normal stresses of (σx + σy)/2.

Comparing Eqs. (3–10) and (3–11), we see that tan 2φs is the negative reciprocal
of tan 2φp. This means that 2φs and 2φp are angles 90° apart, and thus the angles
between the surfaces containing the maximum shear stresses and the surfaces contain-
ing the principal stresses are ±45◦.

Formulas for the two principal stresses can be obtained by substituting the 
angle 2φp from Eq. (3–10) in Eq. (3–8). The result is

σ1, σ2 = σx + σy

2
±

√(
σx − σy

2

)2

+ τ 2
xy (3–13)

x

n

y

�

�
�

�
�x

�xy dx
ds

dy

��

�y
�xy

dx

dsdy

Figure 3–9
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In a similar manner the two extreme-value shear stresses are found to be

τ1, τ2 = ±
√(

σx − σy

2

)2

+ τ 2
xy (3–14)

Your particular attention is called to the fact that an extreme value of the shear stress
may not be the same as the actual maximum value. See Sec. 3–7.

It is important to note that the equations given to this point are quite sufficient for
performing any plane stress transformation. However, extreme care must be exercised
when applying them. For example, say you are attempting to determine the principal
state of stress for a problem where σx = 14 MPa, σy = −10 MPa, and τxy = −16 MPa.
Equation (3–10) yields φp = −26.57◦ and 63.43°, which locate the principal stress sur-
faces, whereas, Eq. (3–13) gives σ1 = 22 MPa and σ2 = −18 MPa for the principal
stresses. If all we wanted was the principal stresses, we would be finished. However,
what if we wanted to draw the element containing the principal stresses properly ori-
ented relative to the x, y axes? Well, we have two values of φp and two values for the
principal stresses. How do we know which value of φp corresponds to which value of
the principal stress? To clear this up we would need to substitute one of the values of
φp into Eq. (3–8) to determine the normal stress corresponding to that angle.

A graphical method for expressing the relations developed in this section, called
Mohr’s circle diagram, is a very effective means of visualizing the stress state at a point
and keeping track of the directions of the various components associated with plane stress.
Equations (3–8) and (3–9) can be shown to be a set of parametric equations for σ and τ ,
where the parameter is 2φ. The parametric relationship between σ and τ is that of a cir-
cle plotted in the σ, τ plane, where the center of the circle is located at C = (σ, τ) =
[(σx + σy)/2, 0] and has a radius of R =

√
[(σx − σy)/2]2 + τ 2

xy . A problem arises in
the sign of the shear stress. The transformation equations are based on a positive φ
being counterclockwise, as shown in Fig. 3–9. If a positive τ were plotted above the
σ axis, points would rotate clockwise on the circle 2φ in the opposite direction of
rotation on the element. It would be convenient if the rotations were in the same
direction. One could solve the problem easily by plotting positive τ below the axis.
However, the classical approach to Mohr’s circle uses a different convention for the
shear stress.

Mohr’s Circle Shear Convention

This convention is followed in drawing Mohr’s circle:

• Shear stresses tending to rotate the element clockwise (cw) are plotted above the
σ axis.

• Shear stresses tending to rotate the element counterclockwise (ccw) are plotted below
the σ axis.

For example, consider the right face of the element in Fig. 3–8b. By Mohr’s circle con-
vention the shear stress shown is plotted below the σ axis because it tends to rotate the
element counterclockwise. The shear stress on the top face of the element is plotted
above the σ axis because it tends to rotate the element clockwise.

In Fig. 3–10 we create a coordinate system with normal stresses plotted along the
abscissa and shear stresses plotted as the ordinates. On the abscissa, tensile (positive)
normal stresses are plotted to the right of the origin O and compressive (negative) nor-
mal stresses to the left. On the ordinate, clockwise (cw) shear stresses are plotted up;
counterclockwise (ccw) shear stresses are plotted down.
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Using the stress state of Fig. 3–8b, we plot Mohr’s circle, Fig. 3–10, by first look-
ing at the right surface of the element containing σx to establish the sign of σx and the
cw or ccw direction of the shear stress. The right face is called the x face where
φ = 0◦. If σx is positive and the shear stress τxy is ccw as shown in Fig. 3–8b, we can
establish point A with coordinates (σx , τ

ccw
xy ) in Fig. 3–10. Next, we look at the top y

face, where φ = 90◦, which contains σy, and repeat the process to obtain point B with
coordinates (σy, τ

cw
xy ) as shown in Fig. 3–10. The two states of stress for the element

are �φ = 90◦ from each other on the element so they will be 2�φ = 180◦ from each
other on Mohr’s circle. Points A and B are the same vertical distance from the σ axis.
Thus, AB must be on the diameter of the circle, and the center of the circle C is where
AB intersects the σ axis. With points A and B on the circle, and center C, the complete
circle can then be drawn. Note that the extended ends of line AB are labeled x and y
as references to the normals to the surfaces for which points A and B represent the
stresses.

The entire Mohr’s circle represents the state of stress at a single point in a struc-
ture. Each point on the circle represents the stress state for a specific surface intersect-
ing the point in the structure. Each pair of points on the circle 180° apart represent the
state of stress on an element whose surfaces are 90° apart. Once the circle is drawn, the
states of stress can be visualized for various surfaces intersecting the point being ana-
lyzed. For example, the principal stresses σ1 and σ2 are points D and E, respectively,
and their values obviously agree with Eq. (3–13). We also see that the shear stresses
are zero on the surfaces containing σ1 and σ2. The two extreme-value shear stresses, one
clockwise and one counterclockwise, occur at F and G with magnitudes equal to the
radius of the circle. The surfaces at F and G each also contain normal stresses of
(σx + σy)/2 as noted earlier in Eq. (3–12). Finally, the state of stress on an arbitrary
surface located at an angle φ counterclockwise from the x face is point H.

Load and Stress Analysis 83
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Figure 3–10

Mohr’s circle diagram.
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At one time, Mohr’s circle was used graphically where it was drawn to scale very
accurately and values were measured by using a scale and protractor. Here, we are strictly
using Mohr’s circle as a visualization aid and will use a semigraphical approach, calculat-
ing values from the properties of the circle. This is illustrated by the following example.

EXAMPLE 3–4 A stress element has σx = 80 MPa and τxy = 50 MPa cw, as shown in Fig. 3–11a.
(a) Using Mohr’s circle, find the principal stresses and directions, and show these

on a stress element correctly aligned with respect to the xy coordinates. Draw another
stress element to show τ1 and τ2, find the corresponding normal stresses, and label the
drawing completely.

(b) Repeat part a using the transformation equations only.

Solution (a) In the semigraphical approach used here, we first make an approximate freehand
sketch of Mohr’s circle and then use the geometry of the figure to obtain the desired
information.

Draw the σ and τ axes first (Fig. 3–11b) and from the x face locate σx = 80 MPa
along the σ axis. On the x face of the element, we see that the shear stress is 50 MPa in
the cw direction. Thus, for the x face, this establishes point A (80, 50cw) MPa.
Corresponding to the y face, the stress is σ = 0 and τ = 50 MPa in the ccw direction.
This locates point B (0, 50ccw) MPa. The line AB forms the diameter of the required cir-
cle, which can now be drawn. The intersection of the circle with the σ axis defines σ1

and σ2 as shown. Now, noting the triangle AC D, indicate on the sketch the length of the
legs AD and C D as 50 and 40 MPa, respectively. The length of the hypotenuse AC is

Answer τ1 =
√

(50)2 + (40)2 = 64.0 MPa

and this should be labeled on the sketch too. Since intersection C is 40 MPa from the
origin, the principal stresses are now found to be

Answer σ1 = 40 + 64 = 104 MPa and σ2 = 40 − 64 = −24 MPa

The angle 2φ from the x axis cw to σ1 is

Answer 2φp = tan−1 50
40 = 51.3◦

To draw the principal stress element (Fig. 3–11c), sketch the x and y axes parallel
to the original axes. The angle φp on the stress element must be measured in the same
direction as is the angle 2φp on the Mohr circle. Thus, from x measure 25.7° (half of
51.3°) clockwise to locate the σ1 axis. The σ2 axis is 90° from the σ1 axis and the stress
element can now be completed and labeled as shown. Note that there are no shear
stresses on this element.

The two maximum shear stresses occur at points E and F in Fig. 3–11b. The two
normal stresses corresponding to these shear stresses are each 40 MPa, as indicated.
Point E is 38.7° ccw from point A on Mohr’s circle. Therefore, in Fig. 3–11d, draw a
stress element oriented 19.3° (half of 38.7°) ccw from x. The element should then be
labeled with magnitudes and directions as shown.

In constructing these stress elements it is important to indicate the x and y direc-
tions of the original reference system. This completes the link between the original
machine element and the orientation of its principal stresses.
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(b) The transformation equations are programmable. From Eq. (3–10),

φp = 1

2
tan−1

(
2τxy

σx − σy

)
= 1

2
tan−1

(
2(−50)

80

)
= −25.7◦, 64.3◦

From Eq. (3–8), for the first angle φp = −25.7◦,

σ = 80 + 0

2
+ 80 − 0

2
cos[2(−25.7)] + (−50) sin[2(−25.7)] = 104.03 MPa

The shear on this surface is obtained from Eq. (3–9) as

τ = −80 − 0

2
sin[2(−25.7)] + (−50) cos[2(−25.7)] = 0 MPa

which confirms that 104.03 MPa is a principal stress. From Eq. (3–8), for φp = 64.3◦,

σ = 80 + 0

2
+ 80 − 0

2
cos[2(64.3)] + (−50) sin[2(64.3)] = −24.03 MPa

Figure 3–11

All stresses in MPa.
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Substituting φp = 64.3◦ into Eq. (3–9) again yields τ = 0, indicating that −24.03 MPa
is also a principal stress. Once the principal stresses are calculated they can be ordered
such that σ1 ≥ σ2. Thus, σ1 = 104.03 MPa and σ2 = −24.03 MPa.

Answer

Since for σ1 = 104.03 MPa, φp = −25.7◦, and since φ is defined positive ccw in the
transformation equations, we rotate clockwise 25.7° for the surface containing σ1. We
see in Fig. 3–11c that this totally agrees with the semigraphical method.

To determine τ1 and τ2, we first use Eq. (3–11) to calculate φs :

φs = 1

2
tan−1

(
−σx − σy

2τxy

)
= 1

2
tan−1

(
− 80

2(−50)

)
= 19.3◦, 109.3◦

For φs = 19.3◦, Eqs. (3–8) and (3–9) yield

Answer σ = 80 + 0

2
+ 80 − 0

2
cos[2(19.3)] + (−50) sin[2(19.3)] = 40.0 MPa

τ = −80 − 0

2
sin[2(19.3)] + (−50) cos[2(19.3)] = −64.0 MPa

Remember that Eqs. (3–8) and (3–9) are coordinate transformation equations. Imagine
that we are rotating the x, y axes 19.3° counterclockwise and y will now point up and
to the left. So a negative shear stress on the rotated x face will point down and to the
right as shown in Fig. 3–11d. Thus again, results agree with the semigraphical method.

For φs = 109.3◦, Eqs. (3–8) and (3–9) give σ = 40.0 MPa and τ = +64.0 MPa.
Using the same logic for the coordinate transformation we find that results again agree
with Fig. 3–11d.

3–7 General Three-Dimensional Stress
As in the case of plane stress, a particular orientation of a stress element occurs in space
for which all shear-stress components are zero. When an element has this particular ori-
entation, the normals to the faces are mutually orthogonal and correspond to the prin-
cipal directions, and the normal stresses associated with these faces are the principal
stresses. Since there are three faces, there are three principal directions and three prin-
cipal stresses σ1, σ2, and σ3. For plane stress, the stress-free surface contains the third
principal stress which is zero.

In our studies of plane stress we were able to specify any stress state σx , σy , and
τxy and find the principal stresses and principal directions. But six components of
stress are required to specify a general state of stress in three dimensions, and the
problem of determining the principal stresses and directions is more difficult. In
design, three-dimensional transformations are rarely performed since most maxi-
mum stress states occur under plane stress conditions. One notable exception is con-
tact stress, which is not a case of plane stress, where the three principal stresses are
given in Sec. 3–19. In fact, all states of stress are truly three-dimensional, where
they might be described one- or two-dimensionally with respect to specific coordi-
nate axes. Here it is most important to understand the relationship among the three
principal stresses. The process in finding the three principal stresses from the six
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stress components σx , σy, σz, τxy, τyz, and τzx , involves finding the roots of the cubic
equation1

σ 3 − (σx + σy + σz)σ
2 + (

σxσy + σxσz + σyσz − τ 2
xy − τ 2

yz − τ 2
zx

)
σ

− (
σxσyσz + 2τxyτyzτzx − σxτ

2
yz − σyτ

2
zx − σzτ

2
xy

) = 0 (3–15)

In plotting Mohr’s circles for three-dimensional stress, the principal normal
stresses are ordered so that σ1 ≥ σ2 ≥ σ3. Then the result appears as in Fig. 3–12a. The
stress coordinates σ , τ for any arbitrarily located plane will always lie on the bound-
aries or within the shaded area.

Figure 3–12a also shows the three principal shear stresses τ1/2, τ2/3, and τ1/3.2

Each of these occurs on the two planes, one of which is shown in Fig. 3–12b. The fig-
ure shows that the principal shear stresses are given by the equations

τ1/2 = σ1 − σ2

2
τ2/3 = σ2 − σ3

2
τ1/3 = σ1 − σ3

2
(3–16)

Of course, τmax = τ1/3 when the normal principal stresses are ordered (σ1 > σ2 > σ3),
so always order your principal stresses. Do this in any computer code you generate and
you’ll always generate τmax.

3–8 Elastic Strain
Normal strain ε is defined and discussed in Sec. 2–1 for the tensile specimen and is
given by Eq. (2–2) as ε = δ/ l , where δ is the total elongation of the bar within the
length l. Hooke’s law for the tensile specimen is given by Eq. (2–3) as

σ = Eε (3–17)

where the constant E is called Young’s modulus or the modulus of elasticity.

�1/2

�1/3

�

�2/3

�1�2�3
�

(b)(a)

�1/2

�1

�

�2

Figure 3–12

Mohr’s circles for three-
dimensional stress.

1For development of this equation and further elaboration of three-dimensional stress transformations see:
Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New York,
1999, pp. 46–78.
2Note the difference between this notation and that for a shear stress, say, τxy . The use of the shilling mark is
not accepted practice, but it is used here to emphasize the distinction.
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When a material is placed in tension, there exists not only an axial strain, but also
negative strain (contraction) perpendicular to the axial strain. Assuming a linear,
homogeneous, isotropic material, this lateral strain is proportional to the axial strain. If
the axial direction is x, then the lateral strains are εy = εz = −νεx . The constant of pro-
portionality v is called Poisson’s ratio, which is about 0.3 for most structural metals.
See Table A–5 for values of v for common materials.

If the axial stress is in the x direction, then from Eq. (3–17)

εx = σx

E
εy = εz = −ν

σx

E
(3–18)

For a stress element undergoing σx , σy , and σz simultaneously, the normal strains
are given by

εx = 1

E

[
σx − ν(σy + σz)

]
εy = 1

E

[
σy − ν(σx + σz)

]
(3–19)

εz = 1

E

[
σz − ν(σx + σy)

]
Shear strain γ is the change in a right angle of a stress element when subjected to

pure shear stress, and Hooke’s law for shear is given by

τ = Gγ (3–20)

where the constant G is the shear modulus of elasticity or modulus of rigidity. 
It can be shown for a linear, isotropic, homogeneous material, the three elastic con-

stants are related to each other by

E = 2G(1 + ν) (3–21)

3–9 Uniformly Distributed Stresses
The assumption of a uniform distribution of stress is frequently made in design. The
result is then often called pure tension, pure compression, or pure shear, depending
upon how the external load is applied to the body under study. The word simple is some-
times used instead of pure to indicate that there are no other complicating effects.
The tension rod is typical. Here a tension load F is applied through pins at the ends of
the bar. The assumption of uniform stress means that if we cut the bar at a section
remote from the ends and remove one piece, we can replace its effect by applying a uni-
formly distributed force of magnitude σA to the cut end. So the stress σ is said to be
uniformly distributed. It is calculated from the equation

σ = F

A
(3–22)

This assumption of uniform stress distribution requires that:

• The bar be straight and of a homogeneous material

• The line of action of the force contains the centroid of the section

• The section be taken remote from the ends and from any discontinuity or abrupt
change in cross section
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For simple compression, Eq. (3–22) is applicable with F normally being consid-
ered a negative quantity. Also, a slender bar in compression may fail by buckling, and
this possibility must be eliminated from consideration before Eq. (3–22) is used.3

Another type of loading that assumes a uniformly distributed stress is known as
direct shear. This occurs when there is a shearing action with no bending. An example
is the action on a piece of sheet metal caused by the two blades of tin snips. Bolts and
pins that are loaded in shear often have direct shear. Think of a cantilever beam with a
force pushing down on it. Now move the force all the way up to the wall so there is no
bending moment, just a force trying to shear the beam off the wall. This is direct shear.
Direct shear is usually assumed to be uniform across the cross section, and is given by

τ = V

A
(3–23)

where V is the shear force and A is the area of the cross section that is being sheared.
The assumption of uniform stress is not accurate, particularly in the vicinity where the
force is applied, but the assumption generally gives acceptable results.

3–10 Normal Stresses for Beams in Bending
The equations for the normal bending stresses in straight beams are based on the fol-
lowing assumptions.

• The beam is subjected to pure bending. This means that the shear force is zero, and
that no torsion or axial loads are present (for most engineering applications it is as-
sumed that these loads affect the bending stresses minimally).

• The material is isotropic and homogeneous.

• The material obeys Hooke’s law.

• The beam is initially straight with a cross section that is constant throughout the
beam length.

• The beam has an axis of symmetry in the plane of bending.

• The proportions of the beam are such that it would fail by bending rather than by
crushing, wrinkling, or sidewise buckling.

• Plane cross sections of the beam remain plane during bending.

In Fig. 3–13 we visualize a portion of a straight beam acted upon by a positive
bending moment M shown by the curved arrow showing the physical action of the
moment together with a straight arrow indicating the moment vector. The x axis is
coincident with the neutral axis of the section, and the xz plane, which contains the

3See Sec. 4–11.

Figure 3–13

Straight beam in positive
bending.

M

M

x

y

z
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neutral axes of all cross sections, is called the neutral plane. Elements of the beam
coincident with this plane have zero stress. The location of the neutral axis with
respect to the cross section is coincident with the centroidal axis of the cross section.

The bending stress varies linearly with the distance from the neutral axis, y, and is
given by

σx = − My

I
(3–24)

where I is the second-area moment about the z axis. That is,

I =
∫

y2d A (3–25)

The stress distribution given by Eq. (3–24) is shown in Fig. 3–14. The maximum magni-
tude of the bending stress will occur where y has the greatest magnitude. Designating σmax

as the maximum magnitude of the bending stress, and c as the maximum magnitude of y

σmax = Mc

I
(3–26a)

Equation (3–24) can still be used to ascertain whether σmax is tensile or compressive.
Equation (3–26a) is often written as

σmax = M

Z
(3–26b)

where Z = I/c is called the section modulus.

EXAMPLE 3–5 A beam having a T section with the dimensions shown in Fig. 3–15 is subjected to a bend-
ing moment of 1600 N · m, about the negative z axis, that causes tension at the top surface.
Locate the neutral axis and find the maximum tensile and compressive bending stresses.

Solution Dividing the T section into two rectangles, numbered 1 and 2, the total area is 
A � 12(75) � 12(88) � 1956 mm2. Summing the area moments of these rectangles
about the top edge, where the moment arms of areas 1 and 2 are 6 mm and (12 �
88/2) � 56 mm respectively, we have

1956c1 = 12(75)(6) + 12(88)(56)

and hence c1 = 32.99 mm. Therefore c2 = 100 − 32.99 = 67.01 mm.
Next we calculate the second moment of area of each rectangle about its own cen-

troidal axis. Using Table A–18, we find for the top rectangle

I1 = 1

12
bh3 = 1

12
(75)123 = 1.080 × 104 mm4

Compression

Neutral axis, Centroidal axis

Tension

x

c

y

y

Figure 3–14

Bending stresses according to
Eq. (3–24).
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75

12

12

2

c2

z

c1

100

1

yFigure 3–15

Dimensions in millimeters.

For the bottom rectangle, we have

I2 = 1

12
(12)883 = 6.815 × 105 mm4

We now employ the parallel-axis theorem to obtain the second moment of area of the
composite figure about its own centroidal axis. This theorem states

Iz = Ica + Ad2

where Ica is the second moment of area about its own centroidal axis and Iz is the sec-
ond moment of area about any parallel axis a distance d removed. For the top rectan-
gle, the distance is

d1 = 32.99 − 6 = 26.99 mm

and for the bottom rectangle,

d2 = 67.01 − 88

2
= 23.01 mm

Using the parallel-axis theorem for both rectangles, we now find that

I = [1.080 × 104 + 12(75)26.992] + [6.815 × 105 + 12(88)23.012]

= 1.907 × 106 mm4

Finally, the maximum tensile stress, which occurs at the top surface, is found to be

Answer σ = Mc1

I
= 1600(32.99)10−3

1.907(10−6)
= 27.68(106) Pa = 27.68 MPa

Similarly, the maximum compressive stress at the lower surface is found to be

Answer σ = − Mc2

I
= −1600(67.01)10−3

1.907(10−6)
= −56.22(106) Pa = −56.22 MPa
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Two-Plane Bending

Quite often, in mechanical design, bending occurs in both xy and xz planes. Considering
cross sections with one or two planes of symmetry only, the bending stresses are given by

σx = − Mz y

Iz
+ Myz

Iy
(3–27)

where the first term on the right side of the equation is identical to Eq. (3–24), My is
the bending moment in the xz plane (moment vector in y direction), z is the distance
from the neutral y axis, and Iy is the second area moment about the y axis.

For noncircular cross sections, Eq. (3–27) is the superposition of stresses caused
by the two bending moment components. The maximum tensile and compressive bend-
ing stresses occur where the summation gives the greatest positive and negative stresses,
respectively. For solid circular cross sections, all lateral axes are the same and the plane
containing the moment corresponding to the vector sum of Mz and My contains the
maximum bending stresses. For a beam of diameter d the maximum distance from the
neutral axis is d/2, and from Table A–18, I = πd4/64. The maximum bending stress for
a solid circular cross section is then

σm = Mc

I
= (M2

y + M2
z )1/2(d/2)

πd4/64
= 32

πd3
(M2

y + M2
z )1/2 (3–28)

EXAMPLE 3–6 As shown in Fig. 3–16a, beam OC is loaded in the xy plane by a uniform load of
50 lbf/in, and in the xz plane by a concentrated force of 100 lbf at end C. The beam is
8 in long.

50 lbf/in

C

A

z

x

1.5 in

0.75 in

(a)

y

BO

100 lbf

50 lbf/in

1600 lbf-in

Mz

(lbf-in)

0

�1600

400 lbf

(b)

x

x

CO

y

100 lbf

100 lbf

800 lbf-in

My

(lbf-in)
800

0

(c)

x

CO

z

x

Figure 3–16

(a) Beam loaded in two
planes; (b) loading and
bending-moment diagrams
in xy plane; (c) loading and
bending-moment diagrams
in xz plane.
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Beams with Asymmetrical Sections4

The bending stress equations, given by Eqs. (3–24) and (3–27), can also be applied to
beams having asymmetrical cross sections, provided the planes of bending coincide
with the area principal axes of the section. The method for determining the orientation
of the area principal axes and the values of the corresponding principal second-area
moments can be found in any statics book. If a section has an axis of symmetry, that
axis and its perpendicular axis are the area principal axes.

For example, consider a beam in bending, using an equal leg angle as shown in
Table A–6. Equation (3–27) cannot be used if the bending moments are resolved about
axis 1–1 and/or axis 2–2. However, Eq. (3–27) can be used if the moments are resolved

(a) For the cross section shown determine the maximum tensile and compressive
bending stresses and where they act.

(b) If the cross section was a solid circular rod of diameter, d = 1.25 in, determine
the magnitude of the maximum bending stress.

Solution (a) The reactions at O and the bending-moment diagrams in the xy and xz planes are
shown in Figs. 3–16b and c, respectively. The maximum moments in both planes occur
at O where

(Mz)O = −1

2
(50)82 = −1600 lbf-in (My)O = 100(8) = 800 lbf-in

The second moments of area in both planes are

Iz = 1

12
(0.75)1.53 = 0.2109 in4 Iy = 1

12
(1.5)0.753 = 0.05273 in4

The maximum tensile stress occurs at point A, shown in Fig. 3–16a, where the maxi-
mum tensile stress is due to both moments. At A, yA = 0.75 in and z A = 0.375 in. Thus,
from Eq. (3–27)

Answer (σx)A = −−1600(0.75)

0.2109
+ 800(0.375)

0.05273
= 11 380 psi = 11.38 kpsi

The maximum compressive bending stress occurs at point B where, yB = −0.75 in and
zB = −0.375 in. Thus

Answer (σx)B = −−1600(−0.75)

0.2109
+ 800(−0.375)

0.05273
= −11 380 psi = −11.38 kpsi

(b) For a solid circular cross section of diameter, d = 1.25 in, the maximum bending
stress at end O is given by Eq. (3–28) as

Answer σm = 32

π(1.25)3

[
8002 + (−1600)2]1/2 = 9329 psi = 9.329 kpsi

4For further discussion, see Sec. 5.3, Richard G. Budynas, Advanced Strength and Applied Stress Analysis,
2nd ed.,McGraw-Hill, New York, 1999.

bud29281_ch03_071-146.qxd  11/25/09  4:55PM  Page 93 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



94 Mechanical Engineering Design

about axis 3–3 and its perpendicular axis (let us call it, say, axis 4–4). Note, for this
cross section, axis 4–4 is an axis of symmetry. Table A–6 is a standard table, and for
brevity, does not directly give all the information needed to use it. The orientation of
the area principal axes and the values of I2–2, I3–3, and I4–4 are not given because they
can be determined as follows. Since the legs are equal, the principal axes are oriented
±45° from axis 1–1, and I2–2 � I1–1. The second-area moment I3–3 is given by

I3−3 = A(k3−3)
2 (a)

where k3–3 is called the radius of gyration. The sum of the second-area moments for a
cross section is invariant, so I1–1 � I2–2 � I3–3 � I4–4. Thus, I4–4 is given by

I4−4 = 2 I1−1 − I3−3 (b)

where I2–2 � I1–1. For example, consider a 3 � 3 � 1
4 angle. Using Table A–6 and Eqs.

(a) and (b), I3–3 � 1.44 (0.592)2 � 0.505 in4, and I4–4 � 2 (1.24) � 0.505 � 1.98 in4.

3–11 Shear Stresses for Beams in Bending
Most beams have both shear forces and bending moments present. It is only occasion-
ally that we encounter beams subjected to pure bending, that is to say, beams having
zero shear force. The flexure formula is developed on the assumption of pure bending.
This is done, however, to eliminate the complicating effects of shear force in the devel-
opment. For engineering purposes, the flexure formula is valid no matter whether a
shear force is present or not. For this reason, we shall utilize the same normal bending-
stress distribution [Eqs. (3–24) and (3–26)] when shear forces are also present.

In Fig. 3–17a we show a beam segment of constant cross section subjected to a
shear force V and a bending moment M at x. Because of external loading and V, the
shear force and bending moment change with respect to x. At x + dx the shear force
and bending moment are V + dV and M + d M , respectively. Considering forces in the
x direction only, Fig. 3–17b shows the stress distribution σx due to the bending
moments. If dM is positive, with the bending moment increasing, the stresses on the
right face, for a given value of y, are larger in magnitude than the stresses on the left
face. If we further isolate the element by making a slice at y = y1 (see Fig. 3–17b), the
net force in the x direction will be directed to the left with a value of ∫ c

y1

(d M)y

I
d A

as shown in the rotated view of Fig. 3–17c. For equilibrium, a shear force on the bottom
face, directed to the right, is required. This shear force gives rise to a shear stress τ ,
where, if assumed uniform, the force is τb dx . Thus

τb dx =
∫ c

y1

(d M)y

I
d A (a)

The term dM/I can be removed from within the integral and b dx placed on the right
side of the equation; then, from Eq. (3–3) with V = d M/dx , Eq. (a) becomes

τ = V

I b

∫ c

y1

yd A (3–29)

In this equation, the integral is the first moment of the area A′ with respect to the neu-
tral axis (see Fig. 3–17c). This integral is usually designated as Q. Thus

Q =
∫ c

y1

yd A = ȳ′ A′ (3–30)
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where, for the isolated area y1 to c, ȳ′ is the distance in the y direction from the neutral
plane to the centroid of the area A′. With this, Eq. (3–29) can be written as

τ = V Q

I b
(3–31)

This stress is known as the transverse shear stress. It is always accompanied with bend-
ing stress.

In using this equation, note that b is the width of the section at y = y1. Also, I is
the second moment of area of the entire section about the neutral axis.

Because cross shears are equal, and area A′ is finite, the shear stress τ given by 
Eq. (3–31) and shown on area A′ in Fig. 3–17c occurs only at y = y1. The shear stress
on the lateral area varies with y, normally maximum at y = 0 (where ȳ′A′ is maximum)
and zero at the outer fibers of the beam where A′ � 0.

The shear stress distribution in a beam depends on how Q/b varies as a function
of y1. Here we will show how to determine the shear stress distribution for a beam with
a rectangular cross section and provide results of maximum values of shear stress for
other standard cross sections. Figure 3–18 shows a portion of a beam with a rectangu-
lar cross section, subjected to a shear force V and a bending moment M. As a result of
the bending moment, a normal stress σ is developed on a cross section such as A–A,
which is in compression above the neutral axis and in tension below. To investigate the
shear stress at a distance y1 above the neutral axis, we select an element of area d A at
a distance y above the neutral axis. Then, d A = b dy, and so Eq. (3–30) becomes

Q =
∫ c

y1

y d A = b
∫ c

y1

y dy = by2

2

∣∣∣∣c

y1

= b

2

(
c2 − y2

1

)
(b)

Substituting this value for Q into Eq. (3–31) gives 

τ = V

2I

(
c2 − y2

1

)
(3–32)

This is the general equation for shear stress in a rectangular beam. To learn something
about it, let us make some substitutions. From Table A–18, the second moment of area
for a rectangular section is I = bh3/12; substituting h = 2c and A = bh = 2bc gives

I = Ac2

3
(c)

(a)

dx

w(x)
y

x
M � dM

V � dV

M

V

x

x

dx

c

(b)

�x � � �
My
I

dMy
I��x � �

My
I �

y1

(c)

F � 
dM y

I

x

dx
y

A�

b �
�

c

y1Figure 3–17

Beam section isolation. Note:
Only forces shown in x
direction on dx element in (b).
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If we now use this value of I for Eq. (3–32) and rearrange, we get

τ = 3V

2A

(
1 − y2

1

c2

)
(3–33)

We note that the maximum shear stress exists when y1 = 0, which is at the bending neu-
tral axis. Thus 

τmax = 3V

2A
(3–34)

for a rectangular section. As we move away from the neutral axis, the shear stress
decreases parabolically until it is zero at the outer surfaces where y1 = ±c, as shown
in Fig. 3–18c. Horizontal shear stress is always accompanied by vertical shear stress
of the same magnitude, and so the distribution can be diagrammed as shown in 
Fig. 3–18d. Figure 3–18c shows that the shear τ on the vertical surfaces varies with
y. We are almost always interested in the horizontal shear, τ in Fig. 3–18d, which is
nearly uniform over dx with constant y � y1. The maximum horizontal shear occurs
where the vertical shear is largest. This is usually at the neutral axis but may not be
if the width b is smaller somewhere else. Furthermore, if the section is such that b
can be minimized on a plane not horizontal, then the horizontal shear stress occurs
on an inclined plane. For example, with tubing, the horizontal shear stress occurs on
a radial plane and the corresponding “vertical shear” is not vertical, but tangential.

The distributions of transverse shear stresses for several commonly used cross sec-
tions are shown in Table 3–2. The profiles represent the VQ/Ib relationship, which is a
function of the distance y from the neutral axis. For each profile, the formula for the
maximum value at the neutral axis is given. Note that the expression given for the
I beam is a commonly used approximation that is reasonable for a standard I beam with
a thin web. Also, the profile for the I beam is idealized. In reality the transition from the
web to the flange is quite complex locally, and not simply a step change.

Figure 3–18

Transverse shear stresses in a
rectangular beam.
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Load and Stress Analysis 97

It is significant to observe that the transverse shear stress in each of these common
cross sections is maximum on the neutral axis, and zero on the outer surfaces. Since this
is exactly the opposite of where the bending and torsional stresses have their maximum
and minimum values, the transverse shear stress is often not critical from a design
perspective. 

Let us examine the significance of the transverse shear stress, using as an example
a cantilever beam of length L, with rectangular cross section b � h, loaded at the free end
with a transverse force F. At the wall, where the bending moment is the largest, at a dis-
tance y from the neutral axis, a stress element will include both bending stress and
transverse shear stress. In Sec. 5–4 it will be shown that a good measure of the com-
bined effects of multiple stresses on a stress element is the maximum shear stress.
Inserting the bending stress (My/I) and the transverse shear stress (VQ/Ib) into the
maximum shear stress equation, Eq. (3–14), we obtain a general equation for the max-
imum shear stress in a cantilever beam with a rectangular cross section. This equation
can then be normalized with respect to L/h and y/c, where c is the distance from the
neutral axis to the outer surface (h/2), to give 

τmax =
√(σ

2

)2
+ τ 2= 3F

2bh

√
4(L/h)2(y/c)2 + [

1 − (y/c)2
]2

(d)

To investigate the significance of transverse shear stress, we plot τmax as a function
of L/h for several values of y/c, as shown in Fig. 3–19. Since F and b appear only as
linear multipliers outside the radical, they will only serve to scale the plot in the verti-
cal direction without changing any of the relationships. Notice that at the neutral axis
where y/c � 0, τmax is constant for any length beam, since the bending stress is zero at
the neutral axis and the transverse shear stress is independent of L. On the other hand,
on the outer surface where y/c � 1, τmax increases linearly with L/h because of the
bending moment. For y/c between zero and one, τmax is nonlinear for low values of L/h,
but behaves linearly as L/h increases, displaying the dominance of the bending stress
as the moment arm increases. We can see from the graph that the critical stress element
(the largest value of τmax) will always be either on the outer surface (y/c � 1) or at the
neutral axis (y/c � 0), and never between. Thus, for the rectangular cross section, the
transition between these two locations occurs at L/h � 0.5 where the line for y/c � 1
crosses the horizontal line for y/c � 0. The critical stress element is either on the outer

Table 3–2

Formulas for Maximum

Transverse Shear Stress

from VQ/Ib

Beam Shape Formula Beam Shape Formula

Rectangular

�avc =
V
A

Circular

�avc =
V
A

Hollow, thin-walled round

�avc =
V
A�max = 3V

2A

�max = 4V

3A

�max = 2V

A

�max
.= V

Aweb

Structural I beam (thin-walled)

Aweb 
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98 Mechanical Engineering Design

surface where the transverse shear is zero, or if L/h is small enough, it is on the neutral
axis where the bending stress is zero. 

The conclusions drawn from Fig. 3–19 are generally similar for any cross section
that does not increase in width farther away from the neutral axis. This notably includes
solid round cross sections, but not I beams or channels. Care must be taken with I beams
and channels that have thin webs that extend far enough from the neutral axis that the
bending and shear may both be significant on the same stress element (See Ex. 3–7). For
any common cross section beam, if the beam length to height ratio is greater than 10, the
transverse shear stress is generally considered negligible compared to the bending stress
at any point within the cross section.

EXAMPLE 3–7 A beam 12 in long is to support a load of 488 lbf acting 3 in from the left support, as
shown in Fig. 3–20a. The beam is an I beam with the cross-sectional dimensions
shown. To simplify the calculations, assume a cross section with square corners, as
shown in Fig. 3–20c. Points of interest are labeled (a, b, c, and d) at distances y from
the neutral axis of 0 in, 1.240� in, 1.240� in, and 1.5 in (Fig. 3–20c). At the critical
axial location along the beam, find the following information. 

(a) Determine the profile of the distribution of the transverse shear stress, obtain-
ing values at each of the points of interest. 

(b) Determine the bending stresses at the points of interest.
(c) Determine the maximum shear stresses at the points of interest, and compare them.

Solution First, we note that the transverse shear stress is not likely to be negligible in this case
since the beam length to height ratio is much less than 10, and since the thin web and
wide flange will allow the transverse shear to be large. The loading, shear-force, and
bending-moment diagrams are shown in Fig. 3–20b. The critical axial location is at
x � 3� where the shear force and the bending moment are both maximum.

(a) We obtain the area moment of inertia I by evaluating I for a solid 3.0-in � 2.33-in
rectangular area, and then subtracting the two rectangular areas that are not part of the
cross section. 

I = (2.33)(3.00)3

12
− 2

[
(1.08)(2.48)3

12

]
= 2.50 in4

Figure 3–19

Plot of maximum shear stress
for a cantilever beam,
combining the effects of
bending and transverse shear
stresses.
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Load and Stress Analysis 99

Finding Q at each point of interest using Eq. (3–30) gives

Qa =
(

1.24 + 0.260

2

)
[(2.33)(0.260)] +

(
1.24

2

)
[(1.24)(0.170)] = 0.961 in3

Qb = Qc =
(

1.24 + 0.260

2

)
[(2.33)(0.260)] = 0.830 in3

Qd = (1.5)(0) = 0 in3
p

Applying Eq. (3–31) at each point of interest, with V and I constant for each point, and
b equal to the width of the cross section at each point, shows that the magnitudes of the
transverse shear stresses are

Answer τa = VQa

Iba
= (366)(0.961)

(2.50)(0.170)
= 828 psi

τb = VQb

Ibb
= (366)(0.830)

(2.50)(0.170)
= 715 psi

τc = VQc

Ibc
= (366)(0.830)

(2.50)(2.33)
= 52.2 psi

τd = VQd

Ibd
= (366)(0)

(2.50)(2.33)
= 0 psi

Figure 3–20

R1 = 366 lbf R2 = 122 lbf

488 lbf
9 in3 in

y

x
O

3.00 in

2.33 in

0.170 in

0.260 in

(a)

y

366 lbf 122 lbf

366 lbf

2122 lbf

1098 lbf � in

488 lbf

xO

O

O

(b)

1.08 in

1.24 in

0.260 in d
c

b

a

(c)

�b

�c�d

�a

�

(d)

y
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100 Mechanical Engineering Design

The magnitude of the idealized transverse shear stress profile through the beam
depth will be as shown in Fig. 3–20d. 

(b) The bending stresses at each point of interest are

Answer σa = Mya

I
= (1098)(0)

2.50
= 0 psi

σb = σc = − Myb

I
= − (1098)(1.24)

2.50
= −545 psi

σd = − Myd

I
= − (1098)(1.50)

2.50
= −659 psi

(c) Now at each point of interest, consider a stress element that includes the bend-
ing stress and the transverse shear stress. The maximum shear stress for each stress
element can be determined by Mohr’s circle, or analytically by Eq. (3–14) with
σy = 0,

τmax =
√(σ

2

)2
+ τ 2

Thus, at each point

τmax,a =
√

0 + (828)2 = 828 psi

τmax,b =
√(−545

2

)2

+ (715)2 = 765 psi

τmax,c =
√(−545

2

)2

+ (52.2)2 = 277 psi

τmax,d =
√(−659

2

)2

+ 0 = 330 psi

Answer Interestingly, the critical location is at point a where the maximum shear stress is the
largest, even though the bending stress is zero. The next critical location is at point b in
the web, where the thin web thickness dramatically increases the transverse shear stress
compared to points c or d. These results are counterintuitive, since both points a and b
turn out to be more critical than point d, even though the bending stress is maximum at
point d. The thin web and wide flange increase the impact of the transverse shear stress.
If the beam length to height ratio were increased, the critical point would move from
point a to point b, since the transverse shear stress at point a would remain constant,
but the bending stress at point b would increase. The designer should be particularly
alert to the possibility of the critical stress element not being on the outer surface with
cross sections that get wider farther from the neutral axis, particularly in cases with
thin web sections and wide flanges. For rectangular and circular cross sections, how-
ever, the maximum bending stresses at the outer surfaces will dominate, as was shown
in Fig. 3–19.
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Load and Stress Analysis 101

3–12 Torsion
Any moment vector that is collinear with an axis of a mechanical element is called a
torque vector, because the moment causes the element to be twisted about that axis. A
bar subjected to such a moment is also said to be in torsion.

As shown in Fig. 3–21, the torque T applied to a bar can be designated by drawing
arrows on the surface of the bar to indicate direction or by drawing torque-vector arrows
along the axes of twist of the bar. Torque vectors are the hollow arrows shown on the
x axis in Fig. 3–21. Note that they conform to the right-hand rule for vectors.

The angle of twist, in radians, for a solid round bar is

θ = T l

G J
(3–35)

where T = torque

l = length

G = modulus of rigidity

J = polar second moment of area

Shear stresses develop throughout the cross section. For a round bar in torsion,
these stresses are proportional to the radius ρ and are given by

τ = Tρ

J
(3–36)

Designating r as the radius to the outer surface, we have

τmax = T r

J
(3–37)

The assumptions used in the analysis are:

• The bar is acted upon by a pure torque, and the sections under consideration are
remote from the point of application of the load and from a change in diameter.

• The material obeys Hooke’s law.

• Adjacent cross sections originally plane and parallel remain plane and parallel after
twisting, and any radial line remains straight.

Figure 3–21

x

y

l
T

A

d x
B

T

r
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The last assumption depends upon the axisymmetry of the member, so it does not
hold true for noncircular cross sections. Consequently, Eqs. (3–35) through (3–37)
apply only to circular sections. For a solid round section,

J = πd4

32
(3–38)

where d is the diameter of the bar. For a hollow round section,

J = π

32

(
d4

o − d4
i

)
(3–39)

where the subscripts o and i refer to the outside and inside diameters, respectively.
There are some applications in machinery for noncircular cross section members

and shafts where a regular polygonal cross section is useful in transmitting torque to a
gear or pulley that can have an axial change in position. Because no key or keyway is
needed, the possibility of a lost key is avoided. The development of equations for stress
and deflection for torsional loading of noncircular cross sections can be obtained from
the mathematical theory of elasticity. In general, the shear stress does not vary linearly
with the distance from the axis, and depends on the specific cross section. In fact, for a
rectangular section bar the shear stress is zero at the corners where the distance from
the axis is the largest. The maximum shearing stress in a rectangular b × c section bar
occurs in the middle of the longest side b and is of the magnitude

τmax = T

αbc2

.= T

bc2

(
3 + 1.8

b/c

)
(3–40)

where b is the width (longer side) and c is the thickness (shorter side). They can not be
interchanged. The parameter α is a factor that is a function of the ratio b/c as shown in
the following table.5 The angle of twist is given by

θ = T l

βbc3G
(3–41)

where β is a function of b/c, as shown in the table.

b/c 1.00 1.50 1.75 2.00 2.50 3.00 4.00 6.00 8.00 10 ∞

α 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 0.313 0.333

β 0.141 0.196 0.214 0.228 0.249 0.263 0.281 0.299 0.307 0.313 0.333

Equation (3–40) is also approximately valid for equal-sided angles; these can be con-
sidered as two rectangles, each of which is capable of carrying half the torque.6

It is often necessary to obtain the torque T from a consideration of the power and
speed of a rotating shaft. For convenience when U. S. Customary units are used, three
forms of this relation are

H = FV

33 000
= 2πT n

33 000(12)
= T n

63 025
(3–42)

102 Mechanical Engineering Design

5S. Timoshenko, Strength of Materials, Part I, 3rd ed., D. Van Nostrand Company, New York, 1955, p. 290.
6For other sections see W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed.,
McGraw-Hill, New York, 2002.
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where H = power, hp

T = torque, lbf · in

n = shaft speed, rev/min

F = force, lbf

V = velocity, ft/min

When SI units are used, the equation is

H = T ω (3–43)

where H = power, W

T = torque, N · m

ω = angular velocity, rad/s

The torque T corresponding to the power in watts is given approximately by

T = 9.55
H

n
(3–44)

where n is in revolutions per minute.

EXAMPLE 3–8 Figure 3–22 shows a crank loaded by a force F = 300 lbf that causes twisting and
bending of a 3

4 -in-diameter shaft fixed to a support at the origin of the reference system.
In actuality, the support may be an inertia that we wish to rotate, but for the purposes
of a stress analysis we can consider this a statics problem.

(a) Draw separate free-body diagrams of the shaft AB and the arm BC, and com-
pute the values of all forces, moments, and torques that act. Label the directions of the
coordinate axes on these diagrams.

(b) Compute the maxima of the torsional stress and the bending stress in the arm
BC and indicate where these act.

(c) Locate a stress element on the top surface of the shaft at A, and calculate all the
stress components that act upon this element.

(d ) Determine the maximum normal and shear stresses at A.

Load and Stress Analysis 103

Figure 3–22
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104 Mechanical Engineering Design

Solution (a) The two free-body diagrams are shown in Fig. 3–23. The results are

At end C of arm BC: F = −300j lbf, TC = −450k lbf · in

At end B of arm BC: F = 300j lbf, M1 = 1200i lbf · in, T1 = 450k lbf · in

At end B of shaft AB: F = −300j lbf, T2 = −1200i lbf · in, M2 = −450k lbf · in

At end A of shaft AB: F = 300j lbf, MA = 1950k lbf · in, TA = 1200i lbf · in

(b) For arm BC, the bending moment will reach a maximum near the shaft at B.
If we assume this is 1200 lbf · in, then the bending stress for a rectangular section
will be

Answer σ = M

I/c
= 6M

bh2
= 6(1200)

0.25(1.25)2
= 18 400 psi = 18.4 kpsi

Of course, this is not exactly correct, because at B the moment is actually being trans-
ferred into the shaft, probably through a weldment.

For the torsional stress, use Eq. (3–43). Thus

Answer τmax = T

bc2

(
3 + 1.8

b/c

)
= 450

1.25(0.252)

(
3 + 1.8

1.25/0.25

)
= 19 400 psi = 19.4 kpsi

This stress occurs at the middle of the 1 1
4 -in side.

(c) For a stress element at A, the bending stress is tensile and is

Answer σx = M

I/c
= 32M

πd3
= 32(1950)

π(0.75)3
= 47 100 psi = 47.1 kpsi

Figure 3–23
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Load and Stress Analysis 105

The torsional stress is

Answer τxz = −T

J/c
= −16T

πd3
= −16(1200)

π(0.75)3
= −14 500 psi = −14.5 kpsi

where the reader should verify that the negative sign accounts for the direction of τxz .
(d) Point A is in a state of plane stress where the stresses are in the xz plane. Thus

the principal stresses are given by Eq. (3–13) with subscripts corresponding to the
x, z axes.

Answer The maximum normal stress is then given by

σ1 = σx + σz

2
+

√(
σx − σz

2

)2

+ τ 2
xz

= 47.1 + 0

2
+

√(
47.1 − 0

2

)2

+ (−14.5)2 = 51.2 kpsi

Answer The maximum shear stress at A occurs on surfaces different than the surfaces contain-
ing the principal stresses or the surfaces containing the bending and torsional shear
stresses. The maximum shear stress is given by Eq. (3–14), again with modified sub-
scripts, and is given by

τ1 =
√(

σx − σz

2

)2

+ τ 2
xz =

√(
47.1 − 0

2

)2

+ (−14.5)2 = 27.7 kpsi

EXAMPLE 3–9 The 1.5-in-diameter solid steel shaft shown in Fig. 3–24a is simply supported at the ends.
Two pulleys are keyed to the shaft where pulley B is of diameter 4.0 in and pulley C is of
diameter 8.0 in. Considering bending and torsional stresses only, determine the locations
and magnitudes of the greatest tensile, compressive, and shear stresses in the shaft.

Solution Figure 3–24b shows the net forces, reactions, and torsional moments on the shaft.
Although this is a three-dimensional problem and vectors might seem appropriate, we
will look at the components of the moment vector by performing a two-plane analysis.
Figure 3–24c shows the loading in the xy plane, as viewed down the z axis, where bend-
ing moments are actually vectors in the z direction. Thus we label the moment diagram
as Mz versus x. For the xz plane, we look down the y axis, and the moment diagram is
My versus x as shown in Fig. 3–24d.

The net moment on a section is the vector sum of the components. That is,

M =
√

M2
y + M2

z (1)

At point B,
MB =

√
20002 + 80002 = 8246 lbf · in

At point C,
MC =

√
40002 + 40002 = 5657 lbf · in
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Max. compression
and shear

E

�

(e)

F

Max. tension
and shear

� = tan–1 = 76°8000
2000
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Figure 3–24
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Thus the maximum bending moment is 8246 lbf · in and the maximum bending stress
at pulley B is

σ = M d/2

πd4/64
= 32M

πd3
= 32(8246)

π(1.53)
= 24 890 psi = 24.89 kpsi

The maximum torsional shear stress occurs between B and C and is

τ = T d/2

πd4/32
= 16T

πd3
= 16(1600)

π(1.53)
= 2414 psi = 2.414 kpsi

The maximum bending and torsional shear stresses occur just to the right of pulley
B at points E and F as shown in Fig. 3–24e. At point E, the maximum tensile stress will
be σ1 given by

Answer σ1 = σ

2
+

√(
σ

2

)2

+ τ 2 = 24.89

2
+

√(
24.89

2

)2

+ 2.4142 = 25.12 kpsi

At point F, the maximum compressive stress will be σ2 given by

Answer σ2 = −σ

2
−

√(−σ

2

)2

+ τ 2 = −24.89

2
−

√(−24.89

2

)2

+ 2.4142 = −25.12 kpsi

The extreme shear stress also occurs at E and F and is

Answer τ1 =
√(±σ

2

)2

+ τ 2 =
√(±24.89

2

)2

+ 2.4142 = 12.68 kpsi

Closed Thin-Walled Tubes (t �� r)7

In closed thin-walled tubes, it can be shown that the product of shear stress times thickness
of the wall τ t is constant, meaning that the shear stress τ is inversely proportional to the
wall thickness t. The total torque T on a tube such as depicted in Fig. 3–25 is given by

T =
∫

τ tr ds = (τ t)
∫

r ds = τ t (2Am) = 2Amtτ

where Am is the area enclosed by the section median line. Solving for τ gives

τ = T

2Amt
(3–45)

For constant wall thickness t, the angular twist (radians) per unit of length of the tube
θ1 is given by

θ1 = T Lm

4G A2
mt

(3–46)

7See Sec. 3–13, F. P. Beer, E. R. Johnston, and J. T. De Wolf, Mechanics of Materials, 5th ed., McGraw-Hill,
NewYork, 2009.

bud29281_ch03_071-146.qxd  11/24/09  3:02PM  Page 107 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



108 Mechanical Engineering Design

where Lm is the length of the section median line. These equations presume the buck-
ling of the tube is prevented by ribs, stiffeners, bulkheads, and so on, and that the
stresses are below the proportional limit.

EXAMPLE 3–10 A welded steel tube is 40 in long, has a 1
8 -in wall thickness, and a 2.5-in by 3.6-in

rectangular cross section as shown in Fig. 3–26. Assume an allowable shear stress of
11 500 psi and a shear modulus of 11.5(106) psi.

(a) Estimate the allowable torque T.
(b) Estimate the angle of twist due to the torque.

Solution (a) Within the section median line, the area enclosed is

Am = (2.5 − 0.125)(3.6 − 0.125) = 8.253 in2

and the length of the median perimeter is

Lm = 2[(2.5 − 0.125) + (3.6 − 0.125)] = 11.70 in

Answer From Eq. (3–45) the torque T is

T = 2Amtτ = 2(8.253)0.125(11 500) = 23 730 lbf · in

Answer (b) The angle of twist θ from Eq. (3–46) is

θ = θ1l = T Lm

4G A2
mt

l = 23 730(11.70)

4(11.5 × 106)(8.2532)(0.125)
(40) = 0.0284 rad = 1.62◦

t

d s

r

�

dAm =     rds1
2

Median line

Figure 3–25

The depicted cross section is
elliptical, but the section need
not be symmetrical nor of
constant thickness.

2.5 in

3.6 in

40 in

1
8

in

Figure 3–26

A rectangular steel tube
produced by welding.
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EXAMPLE 3–11 Compare the shear stress on a circular cylindrical tube with an outside diameter of 1 in
and an inside diameter of 0.9 in, predicted by Eq. (3–37), to that estimated by
Eq. (3–45).

Solution From Eq. (3–37),

τmax = T r

J
= T r

(π/32)
(
d4

o − d4
i

) = T (0.5)

(π/32)(14 − 0.94)
= 14.809T

From Eq. (3–45),

τ = T

2Amt
= T

2(π0.952/4)0.05
= 14.108T

Taking Eq. (3–37) as correct, the error in the thin-wall estimate is −4.7 percent.

Open Thin-Walled Sections

When the median wall line is not closed, the section is said to be an open section. Fig-
ure 3–27 presents some examples. Open sections in torsion, where the wall is thin, have
relations derived from the membrane analogy theory8 resulting in:

τ = Gθ1c = 3T

Lc2
(3–47)

where τ is the shear stress, G is the shear modulus, θ1 is the angle of twist per unit
length, T is torque, and L is the length of the median line. The wall thickness is
designated c (rather than t) to remind you that you are in open sections. By study-
ing the table that follows Eq. (3–41) you will discover that membrane theory pre-
sumes b/c → ∞. Note that open thin-walled sections in torsion should be avoided
in design. As indicated in Eq. (3–47), the shear stress and the angle of twist are
inversely proportional to c2 and c3, respectively. Thus, for small wall thickness,
stress and twist can become quite large. For example, consider the thin round tube
with a slit in Fig. 3–27. For a ratio of wall thickness of outside diameter of
c/do = 0.1, the open section has greater magnitudes of stress and angle of twist by
factors of 12.3 and 61.5, respectively, compared to a closed section of the same
dimensions.

8See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970, Sec. 109.

L

cFigure 3–27

Some open thin-wall sections.
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EXAMPLE 3–12 A 12-in-long strip of steel is 1
8 in thick and 1 in wide, as shown in Fig. 3–28. If the

allowable shear stress is 11 500 psi and the shear modulus is 11.5(106) psi, find the
torque corresponding to the allowable shear stress and the angle of twist, in degrees,
(a) using Eq. (3–47) and (b) using Eqs. (3–40) and (3–41).

Solution (a) The length of the median line is 1 in. From Eq. (3–47),

T = Lc2τ

3
= (1)(1/8)211 500

3
= 59.90 lbf · in

θ = θ1l = τ l

Gc
= 11 500(12)

11.5(106)(1/8)
= 0.0960 rad = 5.5°

A torsional spring rate kt can be expressed as T/θ :

kt = 59.90/0.0960 = 624 lbf · in/rad

(b) From Eq. (3–40),

T = τmaxbc2

3 + 1.8/(b/c)
= 11 500(1)(0.125)2

3 + 1.8/(1/0.125)
= 55.72 lbf · in

From Eq. (3–41), with b/c = 1/0.125 = 8,

θ = T l

βbc3G
= 55.72(12)

0.307(1)0.1253(11.5)106
= 0.0970 rad = 5.6°

kt = 55.72/0.0970 = 574 lbf · in/rad

The cross section is not thin, where b should be greater than c by at least a factor
of 10. In estimating the torque, Eq. (3–47) provides a value of 7.5 percent higher than
Eq. (3–40), and is 8.5 percent higher than when the table on page 102 is used.

3–13 Stress Concentration
In the development of the basic stress equations for tension, compression, bending, and
torsion, it was assumed that no geometric irregularities occurred in the member under
consideration. But it is quite difficult to design a machine without permitting some
changes in the cross sections of the members. Rotating shafts must have shoulders
designed on them so that the bearings can be properly seated and so that they will take
thrust loads; and the shafts must have key slots machined into them for securing pul-
leys and gears. A bolt has a head on one end and screw threads on the other end, both
of which account for abrupt changes in the cross section. Other parts require holes, oil
grooves, and notches of various kinds. Any discontinuity in a machine part alters the
stress distribution in the neighborhood of the discontinuity so that the elementary stress
equations no longer describe the state of stress in the part at these locations. Such dis-
continuities are called stress raisers, and the regions in which they occur are called
areas of stress concentration. Stress concentrations can also arise from some irregular-
ity not inherent in the member, such as tool marks, holes, notches, grooves, or threads. 

1 in

T

1
8

in

Figure 3–28

The cross-section of a thin strip
of steel subjected to a torsional
moment T.
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A theoretical, or geometric, stress-concentration factor Kt or Kts is used to relate
the actual maximum stress at the discontinuity to the nominal stress. The factors are
defined by the equations

Kt = σmax

σ0
Kts = τmax

τ0
(3–48)

where Kt is used for normal stresses and Kts for shear stresses. The nominal stress σ0 or
τ0 is the stress calculated by using the elementary stress equations and the net area, or
net cross section. Sometimes the gross cross section is used instead, and so it is always
wise to double check the source of Kt or Kts before calculating the maximum stress.

The stress-concentration factor depends for its value only on the geometry of the
part. That is, the particular material used has no effect on the value of Kt. This is why
it is called a theoretical stress-concentration factor.

The analysis of geometric shapes to determine stress-concentration factors is a
difficult problem, and not many solutions can be found. Most stress-concentration
factors are found by using experimental techniques.9 Though the finite-element
method has been used, the fact that the elements are indeed finite prevents finding the
true maximum stress. Experimental approaches generally used include photoelasticity,
grid methods, brittle-coating methods, and electrical strain-gauge methods. Of course,
the grid and strain-gauge methods both suffer from the same drawback as the finite-
element method.

Stress-concentration factors for a variety of geometries may be found in
Tables A–15 and A–16.

An example is shown in Fig. 3–29, that of a thin plate loaded in tension where the
plate contains a centrally located hole.

In static loading, stress-concentration factors are applied as follows. In ductile
materials (ε f ≥ 0.05), the stress-concentration factor is not usually applied to predict
the critical stress, because plastic strain in the region of the stress is localized and
has a strengthening effect. In brittle materials (ε f < 0.05), the geometric stress-
concentration factor Kt is applied to the nominal stress before comparing it with
strength. Gray cast iron has so many inherent stress raisers that the stress raisers intro-
duced by the designer have only a modest (but additive) effect.

9The best source book is W. D. Pilkey and D. F. Pilkey, Peterson’s Stress Concentration Factors, 3rd ed.,
John Wiley & Sons, New York, 2008.

Figure 3–29

Thin plate in tension or simple
compression with a transverse
central hole. The net tensile
force is F = σwt, where t is
the thickness of the plate. The
nominal stress is given by

σ0 = F

(w − d)t
= w

(w − d)
σ

0
2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2.2

2.4

2.6

2.8

3.0

d/w

Kt

d

w �
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112 Mechanical Engineering Design

Consider a part made of a ductile material and loaded by a gradually applied sta-
tic load such that the stress in an area of a stress concentration goes beyond the yield
strength. The yielding will be restricted to a very small region, and the permanent
deformation as well as the residual stresses after the load is released will be insignifi-
cant and normally can be tolerated. If yielding does occur, the stress distribution
changes and tends toward a more uniform distribution. In the region where yielding
occurs, there is little danger of fracture of a ductile material, but if the possibility of a
brittle fracture exists, the stress concentration must be taken seriously. Brittle fracture
is not just limited to brittle materials. Materials often thought of as being ductile can
fail in a brittle manner under certain conditions, e.g., any single application or combi-
nation of cyclic loading, rapid application of static loads, loading at low temperatures,
and parts containing defects in their material structures (see Sec. 5–12). The effects on
a ductile material of processing, such as hardening, hydrogen embrittlement, and
welding, may also accelerate failure. Thus, care should always be exercised when deal-
ing with stress concentrations. 

For dynamic loading, the stress concentration effect is significant for both ductile
and brittle materials and must always be taken into account (see Sec. 6–10).

EXAMPLE 3–13 The 2-mm-thick bar shown in Fig. 3–30 is loaded axially with a constant force of 10 kN.
The bar material has been heat treated and quenched to raise its strength, but as a con-
sequence it has lost most of its ductility. It is desired to drill a hole through the center
of the 40-mm face of the plate to allow a cable to pass through it. A 4-mm hole is suf-
ficient for the cable to fit, but an 8-mm drill is readily available. Will a crack be more
likely to initiate at the larger hole, the smaller hole, or at the fillet? 

Solution Since the material is brittle, the effect of stress concentrations near the discontinuities
must be considered. Dealing with the hole first, for a 4-mm hole, the nominal stress is 

σ0 = F

A
= F

(w − d)t
= 10 000

(40 − 4)2
= 139 MPa

The theoretical stress concentration factor, from Fig. A–15–1, with d/w � 4/40 � 0.1,
is Kt � 2.7. The maximum stress is 

Answer σmax = Ktσ0 = 2.7(139) = 380 MPa

Similarly, for an 8-mm hole, 

σ0 = F

A
= F

(w − d)t
= 10 000

(40 − 8)2
= 156 MPa

With d/w = 8/40 = 0.2, then Kt � 2.5, and the maximum stress is

Figure 3–30

40 mm 34 mm

1 mm rad

10 kN
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Answer σmax = Ktσ0 = 2.5(156) = 390 MPa

Though the stress concentration is higher with the 4-mm hole, in this case the increased
nominal stress with the 8-mm hole has more effect on the maximum stress. 

For the fillet,

σ0 = F

A
= 10 000

(34)2
= 147 MPa

From Table A–15–5, D/d = 40/34 = 1.18, and r/d = 1/34 = 0.026. Then Kt = 2.5.

Answer σmax = Ktσ0 = 2.5(147) = 368 MPa

Answer The crack will most likely occur with the 8-mm hole, next likely would be the 4-mm
hole, and least likely at the fillet.

3–14 Stresses in Pressurized Cylinders
Cylindrical pressure vessels, hydraulic cylinders, gun barrels, and pipes carrying fluids
at high pressures develop both radial and tangential stresses with values that depend
upon the radius of the element under consideration. In determining the radial stress σr

and the tangential stress σt , we make use of the assumption that the longitudinal
elongation is constant around the circumference of the cylinder. In other words, a right
section of the cylinder remains plane after stressing.

Referring to Fig. 3–31, we designate the inside radius of the cylinder by ri, the out-
side radius by ro, the internal pressure by pi, and the external pressure by po. Then it can
be shown that tangential and radial stresses exist whose magnitudes are10

σt = pir2
i − por2

o − r2
i r2

o (po − pi )/r2

r2
o − r2

i
(3–49)

σr = pir2
i − por2

o + r2
i r2

o (po − pi )/r2

r2
o − r2

i

As usual, positive values indicate tension and negative values, compression.
For the special case of po = 0, Eq. (3–49) gives

σt = r2
i pi

r2
o − r2

i

(
1 + r2

o

r2

)
(3–50)

σr = r2
i pi

r2
o − r2

i

(
1 − r2

o

r2

)

10See Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New
York, 1999, pp. 348–352.

po

r

dr

ri ro

pi

Figure 3–31

A cylinder subjected to both
internal and external pressure.
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The equations of set (3–50) are plotted in Fig. 3–32 to show the distribution of stresses
over the wall thickness. It should be realized that longitudinal stresses exist when the
end reactions to the internal pressure are taken by the pressure vessel itself. This stress
is found to be

σl = pir2
i

r2
o − r2

i

(3–51)

We further note that Eqs. (3–49), (3–50), and (3–51) apply only to sections taken a sig-
nificant distance from the ends and away from any areas of stress concentration.

Thin-Walled Vessels

When the wall thickness of a cylindrical pressure vessel is about one-tenth, or less, of
its radius, the radial stress that results from pressurizing the vessel is quite small com-
pared with the tangential stress. Under these conditions the tangential stress can be
obtained as follows: Let an internal pressure p be exerted on the wall of a cylinder of
thickness t and inside diameter di. The force tending to separate two halves of a unit
length of the cylinder is pdi . This force is resisted by the tangential stress, also called
the hoop stress, acting uniformly over the stressed area. We then have pdi = 2tσt , or

(σt)av = pdi

2t
(3–52)

This equation gives the average tangential stress and is valid regardless of the wall thick-
ness. For a thin-walled vessel an approximation to the maximum tangential stress is

(σt)max = p(di + t)

2t
(3–53)

where di + t is the average diameter.
In a closed cylinder, the longitudinal stress σl exists because of the pressure upon

the ends of the vessel. If we assume this stress is also distributed uniformly over the
wall thickness, we can easily find it to be

σl = pdi

4t
(3–54)

   (a) Tangential stress
distribution

(b) Radial stress
    distribution

ro

ro
pi

pi

�t

�r

po = 0 po = 0

ri

ri

Figure 3–32

Distribution of stresses in a
thick-walled cylinder subjected
to internal pressure.
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EXAMPLE 3–14 An aluminum-alloy pressure vessel is made of tubing having an outside diameter of 8 in
and a wall thickness of 1

4 in.
(a) What pressure can the cylinder carry if the permissible tangential stress is

12 kpsi and the theory for thin-walled vessels is assumed to apply?
(b) On the basis of the pressure found in part (a), compute the stress components

using the theory for thick-walled cylinders.

Solution (a) Here di = 8 − 2(0.25) = 7.5 in, ri = 7.5/2 = 3.75 in, and ro = 8/2 = 4 in. Then
t/ri = 0.25/3.75 = 0.067. Since this ratio is less than 0.1, the theory for thin-walled
vessels should yield safe results.

We first solve Eq. (3–53) to obtain the allowable pressure. This gives

Answer p = 2t (σt)max

di + t
= 2(0.25)(12)(10)3

7.5 + 0.25
= 774 psi

(b) The maximum tangential stress will occur at the inside radius, and so we use
r = ri in the first equation of Eq. (3–50). This gives

Answer (σt)max = r2
i pi

r2
o − r2

i

(
1 + r2

o

r2
i

)
= pi

r2
o + r2

i

r2
o − r2

i

= 774
42 + 3.752

42 − 3.752
= 12 000 psi

Similarly, the maximum radial stress is found, from the second equation of Eq. (3–50)
to be

Answer σr = −pi = −774 psi

The stresses σt and σr are principal stresses, since there is no shear on these surfaces.
Note that there is no significant difference in the stresses in parts (a) and (b), and so the
thin-wall theory can be considered satisfactory for this problem.

3–15 Stresses in Rotating Rings
Many rotating elements, such as flywheels and blowers, can be simplified to a rotating
ring to determine the stresses. When this is done it is found that the same tangential and
radial stresses exist as in the theory for thick-walled cylinders except that they are
caused by inertial forces acting on all the particles of the ring. The tangential and radial
stresses so found are subject to the following restrictions:

• The outside radius of the ring, or disk, is large compared with the thickness ro ≥ 10t.

• The thickness of the ring or disk is constant.

• The stresses are constant over the thickness.

The stresses are11

σt = ρω2

(
3 + ν

8

)(
r2

i + r2
o + r2

i r2
o

r2
− 1 + 3ν

3 + ν
r2

)
(3–55)

σr = ρω2

(
3 + ν

8

)(
r2

i + r2
o − r2

i r2
o

r2
− r2

)
11Ibid, pp. 348–357.
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where r is the radius to the stress element under consideration, ρ is the mass density,
and ω is the angular velocity of the ring in radians per second. For a rotating disk, use
ri = 0 in these equations.

3–16 Press and Shrink Fits
When two cylindrical parts are assembled by shrinking or press fitting one part upon
another, a contact pressure is created between the two parts. The stresses resulting from
this pressure may easily be determined with the equations of the preceding sections.

Figure 3–33 shows two cylindrical members that have been assembled with a shrink
fit. Prior to assembly, the outer radius of the inner member was larger than the inner radius
of the outer member by the radial interference δ.. After assembly, an interference contact
pressure p develops between the members at the nominal radius R, causing radial stresses
σr = −p in each member at the contacting surfaces. This pressure is given by12

p = δ

R

[
1

Eo

(
r2

o + R2

r2
o − R2

+ νo

)
+ 1

Ei

(
R2 + r2

i

R2 − r2
i

− νi

)] (3–56)

where the subscripts o and i on the material properties correspond to the outer and
inner members, respectively. If the two members are of the same material with
Eo = Ei = E, νo = vi , the relation simplifies to

p = Eδ

2R3

[
(r2

o − R2)(R2 − r2
i )

r2
o − r2

i

]
(3–57)

For Eqs. (3–56) or (3–57), diameters can be used in place of R, ri , and ro, provided δ is
the diametral interference (twice the radial interference).

With p, Eq. (3–49) can be used to determine the radial and tangential stresses in
each member. For the inner member, po = p and pi = 0, For the outer member, po = 0
and pi = p. For example, the magnitudes of the tangential stresses at the transition
radius R are maximum for both members. For the inner member

(σt)i

∣∣∣∣
r=R

= −p
R2 + r2

i

R2 − r2
i

(3–58)

12Ibid, pp. 348–354.

(a) (b)

�

ri

R

ro

Figure 3–33

Notation for press and shrink
fits. (a) Unassembled parts;
(b) after assembly.
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and, for the outer member

(σt)o

∣∣∣∣
r=R

= p
r2

o + R2

r2
o − R2

(3–59)

Assumptions

It is assumed that both members have the same length. In the case of a hub that has been
press-fitted onto a shaft, this assumption would not be true, and there would be an increased
pressure at each end of the hub. It is customary to allow for this condition by employing a
stress-concentration factor. The value of this factor depends upon the contact pressure and
the design of the female member, but its theoretical value is seldom greater than 2.

3–17 Temperature Effects
When the temperature of an unrestrained body is uniformly increased, the body expands,
and the normal strain is

εx = εy = εz = α(�T ) (3–60)

where α is the coefficient of thermal expansion and �T is the temperature change, in
degrees. In this action the body experiences a simple volume increase with the compo-
nents of shear strain all zero.

If a straight bar is restrained at the ends so as to prevent lengthwise expansion and
then is subjected to a uniform increase in temperature, a compressive stress will develop
because of the axial constraint. The stress is

σ = −εE = −α(�T )E (3–61)

In a similar manner, if a uniform flat plate is restrained at the edges and also sub-
jected to a uniform temperature rise, the compressive stress developed is given by the
equation

σ = −α(�T )E

1 − ν
(3–62)

The stresses expressed by Eqs. (3–61) and (3–62) are called thermal stresses.
They arise because of a temperature change in a clamped or restrained member. Such
stresses, for example, occur during welding, since parts to be welded must be clamped
before welding. Table 3–3 lists approximate values of the coefficients of thermal
expansion.

Material Celsius Scale (°C�1) Fahrenheit Scale (°F−1)

Aluminum 23.9(10)−6 13.3(10)−6

Brass, cast 18.7(10)−6 10.4(10)−6

Carbon steel 10.8(10)−6 6.0(10)−6

Cast iron 10.6(10)−6 5.9(10)−6

Magnesium 25.2(10)−6 14.0(10)−6

Nickel steel 13.1(10)−6 7.3(10)−6

Stainless steel 17.3(10)−6 9.6(10)−6

Tungsten 4.3(10)−6 2.4(10)−6

Table 3–3

Coefficients of Thermal

Expansion (Linear 

Mean Coefficients 

for the Temperature

Range 0–100°C)
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3–18 Curved Beams in Bending13

The distribution of stress in a curved flexural member is determined by using the
following assumptions:

• The cross section has an axis of symmetry in the plane of bending.

• Plane cross sections remain plane after bending.

• The modulus of elasticity is the same in tension as in compression.

We shall find that the neutral axis and the centroidal axis of a curved beam,
unlike the axes of a straight beam, are not coincident and also that the stress does
not vary linearly from the neutral axis. The notation shown in Fig. 3–34 is defined
as follows:

ro = radius of outer fiber

ri = radius of inner fiber

h = depth of section

co = distance from neutral axis to outer fiber

ci = distance from neutral axis to inner fiber

rn = radius of neutral axis

rc = radius of centroidal axis

e = distance from centroidal axis to neutral axis

M = bending moment; positive M decreases curvature

Figure 3–34 shows that the neutral and centroidal axes are not coincident. The location
of the neutral axis with respect to the center of curvature O is given by the equation

rn = A∫
d A

r

(3–63)

Figure 3–34

Note that y is positive in the
direction toward the center of
curvature, point O.

O

	

d	

O

r
rn

rc

e
y

rn

ri

ro

co

y

a b' b

c
M

h

Neutral axis

Centroidal
axis

d
c'

ci

M

13For a complete development of the relations in this section, see Richard G. Budynas, Advanced Strength
and Applied Stress Analysis, 2nd ed., Mcgraw-Hill, New York, 1999, pp. 309–317.
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Furthermore, it can be shown that the stress distribution is given by

σ = My

Ae(rn − y)
(3–64)

where M is positive in the direction shown in Fig. 3–34. The stress distribution given
by Eq. (3–64) is hyperbolic and not linear as is the case for straight beams. The critical
stresses occur at the inner and outer surfaces where y = ci and y =�co, respectively,
and are

σi = Mci

Aeri
σo = − Mco

Aero
(3–65)

These equations are valid for pure bending. In the usual and more general case, such as
a crane hook, the U frame of a press, or the frame of a C clamp, the bending moment is
due to a force acting at a distance from the cross section under consideration. Thus, the
cross section transmits a bending moment and an axial force. The axial force is located
at the centroidal axis of the section and the bending moment is then computed at this
location. The tensile or compressive stress due to the axial force, from Eq. (3–22), is then
added to the bending stresses given by Eqs. (3–64) and (3–65) to obtain the resultant
stresses acting on the section.

EXAMPLE 3–15 Plot the distribution of stresses across section A–A of the crane hook shown in
Fig. 3–35a. The cross section is rectangular, with b = 0.75 in and h = 4 in, and the load
is F = 5000 lbf.

Solution Since A = bh, we have d A = b dr and, from Eq. (3–63),

rn = A∫
d A

r

= bh∫ ro

ri

b

r
dr

= h

ln
ro

ri

(1)

From Fig. 3–35b, we see that ri = 2 in, ro = 6 in, rc = 4 in, and A = 3 in2. Thus, from
Eq. (1),

rn = h

ln(ro/ri )
= 4

ln 6
2

= 3.641 in

and the eccentricity is e = rc − rn = 4 − 3.641 = 0.359 in. The moment M is positive
and is M = Frc = 5000(4) = 20 000 lbf · in. Adding the axial component of stress to
Eq. (3–64) gives

σ = F

A
+ My

Ae(rn − y)
= 5000

3
+ (20 000)(3.641 − r)

3(0.359)r
(2)

Substituting values of r from 2 to 6 in results in the stress distribution shown in
Fig. 3–35c. The stresses at the inner and outer radii are found to be 16.9 and −5.63 kpsi,
respectively, as shown.
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120 Mechanical Engineering Design

Figure 3–35

(a) Plan view of crane hook;
(b) cross section and notation;
(c) resulting stress distribution.
There is no stress concentration.

Note in the hook example, the symmetrical rectangular cross section causes the
maximum tensile stress to be 3 times greater than the maximum compressive stress. If
we wanted to design the hook to use material more effectively we would use more
material at the inner radius and less material at the outer radius. For this reason, trape-
zoidal, T, or unsymmetric I, cross sections are commonly used. Sections most fre-
quently encountered in the stress analysis of curved beams are shown in Table 3–4.

Alternative Calculations for e
Calculating rn and rc mathematically and subtracting the difference can lead to large
errors if not done carefully, since rn and rc are typically large values compared to e.
Since e is in the denominator of Eqs. (3–64) and (3–65), a large error in e can lead to
an inaccurate stress calculation. Furthermore, if you have a complex cross section that
the tables do not handle, alternative methods for determining e are needed. For a quick
and simple approximation of e, it can be shown that14

e
.= I

rc A
(3–66)

rc

rn

y

e

2 in

r

6 in

4 in

(a)

�

2 3

+

–

4 5 6
r

16.9 kpsi

–5.63 kpsi

Section A–A

(b)

(c)

2-in R.

AA
F

6-in R.
0.75 in

14Ibid., pp. 317–321. Also presents a numerical method.
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Table 3–4

Formulas for Sections 

of Curved Beams

rc = ri + h

2

rn = h

ln (ro/ri )

rc = ri + h

3

bi + 2bo

bi + bo

rn = A

bo − bi + [(biro − bori )/h] ln(ro/ri )

rc = ri + bi c 2
1 + 2boc1c2 + boc 2

2

2(boc2 + bi c1)

rn = bi c1 + boc2

bi ln[(ri + c1)/ri )] + bo ln[ro/(ri + c1)]

rc = ri + R

rn = R2

2

(
rc −

√
r2

c − R2

)

rc = ri +
1

2
h2t + 1

2
t2
i (bi − t) + to(bo − t)(h − to/2)

ti (bi − t) + to(bo − t) + ht

rn = ti (bi − t) + to(bo − t) + hto

bi ln
ri + t

ri
+ t ln

ro − to
ri + ti

+ bo ln
ro

ro − to

rc = ri +
1

2
h2t + 1

2
t2
i (b − t) + to(b − t)(h − to/2)

ht + (b − t)(ti + to)

rn = (b − t)(ti + to) + ht

b

(
ln

ri + ti
ri

+ ln
ro

ro − to

)
+ t ln

ro − to
ri + ti

h

rn

ri

rc

ro

rc

h

rnbi

bo

e

ri

ro

rn
rc

c2

c1

bi

bo

e

ri

ro

rn
ri

rc

eR

h

ro

e

bo

to

ti

bi

ri

rn
rc

t

b

to

ti

h

ro

ri

rn
rc

e
t
2

t
2
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This approximation is good for a large curvature where e is small with rn
.= rc .

Substituting Eq. (3–66) into Eq. (3–64), with rn − y = r , gives

σ
.= My

I

rc

r
(3–67)

If rn
.= rc , which it should be to use Eq. (3–67), then it is only necessary to calculate rc,

and to measure y from this axis. Determining rc for a complex cross section can be done
easily by most CAD programs or numerically as shown in the before-mentioned refer-
ence. Observe that as the curvature increases, r → rc , and Eq. (3–67) becomes the
straight-beam formulation, Eq. (3–24). Note that the negative sign is missing because y
in Fig. 3–34 is vertically downward, opposite that for the straight-beam equation.

EXAMPLE 3–16 Consider the circular section in Table 3–4 with rc = 3 in and R = 1 in. Determine e by
using the formula from the table and approximately by using Eq. (3–66). Compare the
results of the two solutions.

Solution Using the formula from Table 3–4 gives

rn = R2

2
(
rc − √

r2
c − R2

) = 12

2
(
3 − √

32 − 1
) = 2.914 21 in

This gives an eccentricity of

Answer e = rc − rn = 3 − 2.914 21 = 0.085 79 in

The approximate method, using Eq. (3–66), yields

Answer e
.= I

rc A
= π R4/4

rc(π R2)
= R2

4rc
= 12

4(3)
= 0.083 33 in

This differs from the exact solution by −2.9 percent.

3–19 Contact Stresses
When two bodies having curved surfaces are pressed together, point or line contact
changes to area contact, and the stresses developed in the two bodies are three-
dimensional. Contact-stress problems arise in the contact of a wheel and a rail, in auto-
motive valve cams and tappets, in mating gear teeth, and in the action of rolling
bearings. Typical failures are seen as cracks, pits, or flaking in the surface material.

The most general case of contact stress occurs when each contacting body has a
double radius of curvature; that is, when the radius in the plane of rolling is different
from the radius in a perpendicular plane, both planes taken through the axis of the con-
tacting force. Here we shall consider only the two special cases of contacting spheres
and contacting cylinders.15 The results presented here are due to Hertz and so are fre-
quently known as Hertzian stresses.

15A more comprehensive presentation of contact stresses may be found in Arthur P. Boresi and Richard
J. Schmidt, Advanced Mechanics of Materials, 6th ed., Wiley, New York, 2003, pp. 589–623.
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Spherical Contact

When two solid spheres of diameters d1 and d2 are pressed together with a force
F, a circular area of contact of radius a is obtained. Specifying E1, ν1 and E2, ν2 as the
respective elastic constants of the two spheres, the radius a is given by the equation

a = 3

√
3F

8

(
1 − ν2

1

) /
E1 + (

1 − ν2
2

) /
E2

1/d1 + 1/d2

(3–68)

The pressure distribution within the contact area of each sphere is hemispherical, as shown
in Fig. 3–36b. The maximum pressure occurs at the center of the contact area and is

pmax = 3F

2πa2
(3–69)

Equations (3–68) and (3–69) are perfectly general and also apply to the contact of
a sphere and a plane surface or of a sphere and an internal spherical surface. For a plane
surface, use d = ∞. For an internal surface, the diameter is expressed as a negative
quantity.

The maximum stresses occur on the z axis, and these are principal stresses. Their
values are

σ1 = σ2 = σx = σy = −pmax

⎡⎢⎢⎣(
1 −

∣∣∣∣ z

a

∣∣∣∣ tan−1 1

|z/a|
)

(1 + ν) − 1

2

(
1 + z2

a2

)
⎤⎥⎥⎦

(3–70)

σ3 = σz = −pmax

1 + z2

a2
(3–71)

F

F

z

(a)

x

y y

F

F

z

(b)

d1

d2

2a

Figure 3–36

(a) Two spheres held in contact
by force F; (b) contact stress
has a hemispherical distribution
across contact zone diameter 2a.
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124 Mechanical Engineering Design

These equations are valid for either sphere, but the value used for Poisson’s ratio
must correspond with the sphere under consideration. The equations are even more com-
plicated when stress states off the z axis are to be determined, because here the x and y
coordinates must also be included. But these are not required for design purposes,
because the maxima occur on the z axis.

Mohr’s circles for the stress state described by Eqs. (3–70) and (3–71) are a point
and two coincident circles. Since σ1 = σ2, we have τ1/2 = 0 and

τmax = τ1/3 = τ2/3 = σ1 − σ3

2
= σ2 − σ3

2
(3–72)

Figure 3–37 is a plot of Eqs. (3–70), (3–71), and (3–72) for a distance to 3a below the
surface. Note that the shear stress reaches a maximum value slightly below the surface.
It is the opinion of many authorities that this maximum shear stress is responsible for
the surface fatigue failure of contacting elements. The explanation is that a crack orig-
inates at the point of maximum shear stress below the surface and progresses to the sur-
face and that the pressure of the lubricant wedges the chip loose.

Cylindrical Contact

Figure 3–38 illustrates a similar situation in which the contacting elements are two
cylinders of length l and diameters d1 and d2. As shown in Fig. 3–38b, the area of con-
tact is a narrow rectangle of width 2b and length l, and the pressure distribution is
elliptical. The half-width b is given by the equation

b =
√

2F

πl

(
1 − ν2

1

) /
E1 + (

1 − ν2
2

) /
E2

1/d1 + 1/d2

(3–73)

The maximum pressure is

pmax = 2F

πbl
(3–74)
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Figure 3–37

Magnitude of the stress
components below the surface
as a function of the maximum
pressure of contacting spheres.
Note that the maximum shear
stress is slightly below the
surface at z = 0.48a and is
approximately 0.3pmax. The
chart is based on a Poisson
ratio of 0.30. Note that the
normal stresses are all
compressive stresses.
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Equations (3–73) and (3–74) apply to a cylinder and a plane surface, such as a rail, by mak-
ing d = ∞ for the plane surface. The equations also apply to the contact of a cylinder and
an internal cylindrical surface; in this case d is made negative for the internal surface. 

The stress state along the z axis is given by the equations

σx = −2νpmax

(√
1 + z2

b2
−

∣∣∣∣ z

b

∣∣∣∣
)

(3–75)

σy = −pmax

⎛⎜⎜⎝ 1 + 2
z2

b2√
1 + z2

b2

− 2

∣∣∣∣ z

b

∣∣∣∣
⎞⎟⎟⎠ (3–76)

σ3 = σz = −pmax√
1 + z2/b2

(3–77)

These three equations are plotted in Fig. 3–39 up to a distance of 3b below the surface.
For 0 ≤ z ≤ 0.436b, σ1 = σx , and τmax = (σ1 − σ3)/2 = (σx − σz)/2. For z ≥ 0.436b,

σ1 = σy, and τmax = (σy − σz)/2. A plot of τmax is also included in Fig. 3–39, where the
greatest value occurs at z/b = 0.786 with a value of 0.300 pmax.

Hertz (1881) provided the preceding mathematical models of the stress field when the
contact zone is free of shear stress. Another important contact stress case is line of contact
with friction providing the shearing stress on the contact zone. Such shearing stresses are
small with cams and rollers, but in cams with flatfaced followers, wheel-rail contact, and
gear teeth, the stresses are elevated above the Hertzian field. Investigations of the effect on
the stress field due to normal and shear stresses in the contact zone were begun theoretically
by Lundberg (1939), and continued by Mindlin (1949), Smith-Liu (1949), and Poritsky
(1949) independently. For further detail, see the reference cited in Footnote 15, p. 122.

F

F

z

(a)

x

x

y
l

y

F

F

z

(b)

d1

d2

2b

Figure 3–38

(a) Two right circular cylinders
held in contact by forces F
uniformly distributed along
cylinder length l. (b) Contact
stress has an elliptical
distribution across the
contact zone width 2b.
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Magnitude of the stress
components below the surface
as a function of the maximum
pressure for contacting
cylinders. The largest value of
�max occurs at z/b = 0.786. Its
maximum value is 0.30pmax.
The chart is based on a Poisson
ratio of 0.30. Note that all
normal stresses are
compressive stresses.
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3–20 Summary
The ability to quantify the stress condition at a critical location in a machine element
is an important skill of the engineer. Why? Whether the member fails or not is assessed
by comparing the (damaging) stress at a critical location with the corresponding mate-
rial strength at this location. This chapter has addressed the description of stress.

Stresses can be estimated with great precision where the geometry is sufficiently
simple that theory easily provides the necessary quantitative relationships. In other
cases, approximations are used. There are numerical approximations such as finite
element analysis (FEA, see Chap. 19), whose results tend to converge on the true val-
ues. There are experimental measurements, strain gauging, for example, allowing infer-
ence of stresses from the measured strain conditions. Whatever the method(s), the goal
is a robust description of the stress condition at a critical location.

The nature of research results and understanding in any field is that the longer we
work on it, the more involved things seem to be, and new approaches are sought to
help with the complications. As newer schemes are introduced, engineers, hungry for
the improvement the new approach promises, begin to use the approach. Optimism
usually recedes, as further experience adds concerns. Tasks that promised to extend
the capabilities of the nonexpert eventually show that expertise is not optional.

In stress analysis, the computer can be helpful if the necessary equations are available.
Spreadsheet analysis can quickly reduce complicated calculations for parametric studies,
easily handling “what if ” questions relating trade-offs (e.g., less of a costly material or
more of a cheaper material). It can even give insight into optimization opportunities.

When the necessary equations are not available, then methods such as FEA are
attractive, but cautions are in order. Even when you have access to a powerful FEA
code, you should be near an expert while you are learning. There are nagging questions
of convergence at discontinuities. Elastic analysis is much easier than elastic-plastic
analysis. The results are no better than the modeling of reality that was used to formulate
the problem. Chapter 19 provides an idea of what finite-element analysis is and how it
can be used in design. The chapter is by no means comprehensive in finite-element the-
ory and the application of finite elements in practice. Both skill sets require much expo-
sure and experience to be adept.
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PROBLEMS
Problems marked with an asterisk (*) are linked with problems in other chapters, as summarized
in Table 1–1 of Sec. 1–16, p. 24.

Sketch a free-body diagram of each element in the figure. Compute the magnitude and direction
of each force using an algebraic or vector method, as specified. 

3–1* to
3–4

Problem 3–1* Problem 3–2

Problem 3–3 Problem 3–4

O BA C

y

x

R1 R2

9 kN 5 kN

900300 300

CO

y

A B
x

8 in 6 in

40 lbf/in500 lbf

6 in

O BA C

y

x

R1 R2

2 kN 4 kN

1 m 1 m1.2 m
O CA B D

y

x

R1 R2 R3

400 lbf

Hinge

40 lbf/in

4 in 4 in 2 in 10 in

6 in 12 in

B

y

O

12 in

C

A

100 lbf

x

10 in 10 in 10 in

10 in

C

B

A

100 lbf

O

OA

B D

E

51

3

4

y

C

2

30°
F = 400 N

x

9 m

60° 60°1.9 m

1

F = 0.8 kN

A

B
y

O
x

3

2

0.
9 

m

60°

For the beam shown, find the reactions at the supports and plot the shear-force and bending-
moment diagrams. Label the diagrams properly and provide values at all key points.

3–5 to
3–8

Problem 3–5

Dimensions in millimeters

Problem 3–6

Problem 3–7 Problem 3–8
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3–9 Repeat Prob. 3–5 using singularity functions exclusively (including reactions).

3–10 Repeat Prob. 3–6 using singularity functions exclusively (including reactions).

3–11 Repeat Prob. 3–7 using singularity functions exclusively (including reactions).

3–12 Repeat Prob. 3–8 using singularity functions exclusively (including reactions).

3–13 For a beam from Table A–9, as specified by your instructor, find general expressions for the
loading, shear-force, bending-moment, and support reactions. Use the method specified by your
instructor.

3–14 A beam carrying a uniform load is simply supported with the supports set back a distance a from
the ends as shown in the figure. The bending moment at x can be found from summing moments
to zero at section x : ∑

M = M + 1

2
w(a + x)2 − 1

2
wlx = 0

or

M = w

2
[lx − (a + x)2]

where w is the loading intensity in lbf/in. The designer wishes to minimize the necessary weight
of the supporting beam by choosing a setback resulting in the smallest possible maximum bend-
ing stress.
(a) If the beam is configured with a = 2.25 in, l = 10 in, and w = 100 lbf/in, find the magnitude

of the severest bending moment in the beam.
(b) Since the configuration in part (a) is not optimal, find the optimal setback a that will result in

the lightest-weight beam.

3–15 For each of the plane stress states listed below, draw a Mohr’s circle diagram properly labeled,
find the principal normal and shear stresses, and determine the angle from the x axis to σ1. Draw
stress elements as in Fig. 3–11c and d and label all details.
(a) σx = 20 kpsi, σy = −10 kpsi, τxy = 8 kpsi cw
(b) σx = 16 kpsi, σy = 9 kpsi, τxy = 5 kpsi ccw
(c) σx = 10 kpsi, σy = 24 kpsi, τxy = 6 kpsi ccw
(d ) σx = −12 kpsi, σy = 22 kpsi, τxy = 12 kpsi cw

3–16 Repeat Prob. 3–15 for:
(a) σx = −8 MPa, σy = 7 MPa, τxy = 6 MPa cw
(b) σx = 9 MPa, σy = −6 MPa, τxy = 3 MPa cw
(c) σx = −4 MPa, σy = 12 MPa, τxy = 7 MPa ccw
(d ) σx = 6 MPa, σy = −5 MPa, τxy = 8 MPa ccw

x

xa a

l

w, lbf/in

w(a + x)

V

M

wl
2

Problem 3–14
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3–17 Repeat Prob. 3–15 for:
(a) σx = 12 kpsi, σy = 6 kpsi, τxy = 4 kpsi cw
(b) σx = 30 kpsi, σy = −10 kpsi, τxy = 10 kpsi ccw
(c) σx = −10 kpsi, σy = 18 kpsi, τxy = 9 kpsi cw
(d ) σx = 9 kpsi, σy = 19 kpsi, τxy = 8 kpsi cw

3–18 For each of the stress states listed below, find all three principal normal and shear stresses. Draw
a complete Mohr’s three-circle diagram and label all points of interest.
(a) σx = −80 MPa, σy = −30 MPa, τxy = 20 MPa cw
(b) σx = 30 MPa, σy = −60 MPa, τxy = 30 MPa cw
(c) σx = 40 MPa, σz = −30 MPa, τxy = 20 MPa ccw
(d ) σx = 50 MPa, σz = −20 MPa, τxy = 30 MPa cw

3–19 Repeat Prob. 3–18 for:
(a) σx = 10 kpsi, σy = −4 kpsi
(b) σx = 10 kpsi, τxy = 4 kpsi ccw
(c) σx = −2 kpsi, σy = −8 kpsi, τxy = 4 kpsi cw
(d ) σx = 10 kpsi, σy = −30 kpsi, τxy = 10 kpsi ccw

3–20 The state of stress at a point is σx = −6, σy = 18, σz = −12, τxy = 9, τyz = 6, and τzx =
−15 kpsi. Determine the principal stresses, draw a complete Mohr’s three-circle diagram, label-
ing all points of interest, and report the maximum shear stress for this case.

3–21 Repeat Prob. 3–20 with σx = 20, σy = 0, σz = 20, τxy = 40, τyz = −20
√

2, and τzx = 0 kpsi.

3–22 Repeat Prob. 3–20 with σx = 10, σy = 40, σz = 40, τxy = 20, τyz = −40, and τzx = −20 MPa.

3–23 A 3
4 -in-diameter steel tension rod is 5 ft long and carries a load of 15 kip. Find the tensile stress,

the total deformation, the unit strains, and the change in the rod diameter.

3–24 Repeat Prob. 3–23 except change the rod to aluminum and the load to 3000 lbf.

3–25 A 30-mm-diameter copper rod is 1 m long with a yield strength of 70 MPa. Determine the axial
force necessary to cause the diameter of the rod to reduce by 0.01 percent, assuming elastic defor-
mation. Check that the elastic deformation assumption is valid by comparing the axial stress to
the yield strength.

3–26 A diagonal aluminum alloy tension rod of diameter d and initial length l is used in a rectangular frame
to prevent collapse. The rod can safely support a tensile stress of σ allow. If d = 0.5 in, l = 8 ft, and
σallow = 20 kpsi, determine how much the rod must be stretched to develop this allowable stress.

3–27 Repeat Prob. 3–26 with d = 16 mm, l = 3 m, and σallow = 140 MPa.

3–28 Repeat Prob. 3–26 with d = 5
8 in, l = 10 ft, and σallow = 15 kpsi.

3–29 Electrical strain gauges were applied to a notched specimen to determine the stresses in the notch.
The results were εx = 0.0019 and εy = −0.00072. Find σx and σy if the material is carbon steel.

3–30 Repeat Prob. 3–29 for a material of aluminum.

3–31 The Roman method for addressing uncertainty in design was to build a copy of a design that was
satisfactory and had proven durable. Although the early Romans did not have the intellectual
tools to deal with scaling size up or down, you do. Consider a simply supported, rectangular-cross-
section beam with a concentrated load F, as depicted in the figure.
(a) Show that the stress-to-load equation is

F = σbh2l

6ac
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a

l

cF

R2

R1

h

b

3–32 Using our experience with concentrated loading on a simple beam, Prob. 3–31, consider a uni-
formly loaded simple beam (Table A–9–7). 
(a) Show that the stress-to-load equation for a rectangular-cross-section beam is given by

W = 4

3

σbh2

l
where W = wl.

(b) Subscript every parameter with m (for model) and divide the model equation into the proto-
type equation. Introduce the scale factor s as in Prob. 3–31, setting σm /σ = 1. Express Wm

and wm in terms of the scale factor, and comment on what you have learned.

3–33 The Chicago North Shore & Milwaukee Railroad was an electric railway running between the
cities in its corporate title. It had passenger cars as shown in the figure, which weighed 104.4 kip,
had 32-ft, 8-in truck centers, 7-ft-wheelbase trucks, and a coupled length of 55 ft, 3 1

4 in. Consider
the case of a single car on a 100-ft-long, simply supported deck plate girder bridge. 
(a) What was the largest bending moment in the bridge?
(b) Where on the bridge was the moment located?
(c) What was the position of the car on the bridge?
(d ) Under which axle is the bending moment?

Problem 3–33

Copyright 1963 by Central Electric Railfans Association, Bull. 107, p. 145, reproduced by permission.
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32 ft, 8 in
7 ft

(b) Subscript every parameter with m (for model) and divide into the above equation. Introduce
a scale factor, s = am /a = bm /b = cm /c etc. Since the Roman method was to not “lean on”
the material any more than the proven design, set σm /σ = 1. Express Fm in terms of the scale
factors and F, and comment on what you have learned.
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Load and Stress Analysis 131

3–34 For each section illustrated, find the second moment of area, the location of the neutral axis, and
the distances from the neutral axis to the top and bottom surfaces. Consider that the section is
transmitting a positive bending moment about the z axis, Mz, where Mz = 10 kip · in if the dimen-
sions of the section are given in ips units, or Mz = 1.13 kN . m if the dimensions are in SI units.
Determine the resulting stresses at the top and bottom surfaces and at every abrupt change in the
cross section.

For the beam illustrated in the figure, find the locations and magnitudes of the maximum tensile
bending stress due to M and the maximum shear stress due to V.

3–35 to
3–38

1 in 3
8

in

3
8

in

1
2

in

3
8

in 3
4

1    in

y

z

D

C

B

A

(b)(a)

z

25 mm
D

C

B

A

40 mm

6 mm
25 mm

25 mm

4 in

y

z

C

B

A

(d)

7
8
  in

1
2

2    in

7
8

in

y

y

z 75

12.5 

12.5

100

25
50

100

Dimensions in mm(c)

D

C

B
A

12.5

Problem 3–34

Problem 3–35 Problem 3–36

Problem 3–37 Problem 3–38

O

y

A B
x

4500 N

300 mm 150 mm

20 mm

40 mm 2 in

O B

y

x

8 in 8 inA

1 inw = 100 lbf/in

3
4 in

O A B C

y

x

5 in 15 in 5 in

3000 lbf 1000 lbf

2 in
A B

y

x

100 mm 200 mm

w = 6 kN/mm

O
50 mm dia
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132 Mechanical Engineering Design

3–39 The figure illustrates a number of beam sections. Use an allowable bending stress of 12 kpsi for
steel and find the maximum safe uniformly distributed load that each beam can carry if the given
lengths are between simple supports.
(a) Standard 2-in × 1

4 -in tube, 48 in long
(b) Hollow steel tube 3 by 2 in, outside dimensions, formed from 3

16 -in material and welded,
60 in long 

(c) Steel angles 2 1
2 × 2 1

2 × 1
4 in and 60 in long

(d) A 6.0 lbf/ft, 3-in steel channel, 60 in long

(d )

z

y

(c)

z

y

(a)

z

y

(b)

z

y

3–40* A pin in a knuckle joint carrying a tensile load F deflects somewhat on account of this loading, mak-
ing the distribution of reaction and load as shown in part (b) of the figure. A common simplification
is to assume uniform load distributions, as shown in part (c). To further simplify, designers may con-
sider replacing the distributed loads with point loads, such as in the two models shown in parts d
and e. If a = 0.5 in, b = 0.75 in, d = 0.5 in, and F = 1000 lbf, estimate the maximum bending stress
and the maximum shear stress due to V for the three simplified models.  Compare the three models
from a designer’s perspective in terms of accuracy, safety, and modeling time.

Problem 3–39

Problem 3–40*

a a

d

b

(a)

F

F

(b)

b aa

(c)

a + b

a + bb
2

(d )

(e)

a + b

b
2

3–41 Repeat Prob. 3–40 for a = 6 mm, b = 18 mm, d = 12 mm, and F = 4 kN.

3–42 For the knuckle joint described in Prob. 3–40, assume the maximum allowable tensile stress in
the pin is 30 kpsi and the maximum allowable shearing stress in the pin is 15 kpsi. Use the model
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Problem 3–44

CBA

1800 lbf
300 lbf/in

30 in10 in

3 in

3 in

1 in

Cross section (enlarged)

1 in

Load and Stress Analysis 133

shown in part c of the figure to determine a minimum pin diameter for each of the following
potential failure modes.  
(a) Consider failure based on bending at the point of maximum bending stress in the pin.
(b) Consider failure based on the average shear stress on the pin cross section at the interface

plane of the knuckle and clevis.
(c) Consider failure based on shear at the point of the maximum transverse shear stress in the pin.

3–43 The figure illustrates a pin tightly fitted into a hole of a substantial member. A usual analysis
is one that assumes concentrated reactions R and M at distance l from F. Suppose the reaction
is distributed linearly along distance a. Is the resulting moment reaction larger or smaller than
the concentrated reaction? What is the loading intensity q? What do you think of using the
usual assumption?

3–45 A cantilever beam with a 1-in-diameter round cross section is loaded at the tip with a trans-
verse force of 1000 lbf, as shown in the figure. The cross section at the wall is also shown, with
labeled points A at the top, B at the center, and C at the midpoint between A and B. Study the

Problem 3–43

Problem 3–45

Cross section at the wall

z

y

A

C

B

y

z

L

x

1 in dia.

1000 lbf

l
F

a

3–44 For the beam shown, determine (a) the maximum tensile and compressive bending stresses,
(b) the maximum shear stress due to V, and (c) the maximum shear stress in the beam.
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134 Mechanical Engineering Design

significance of the transverse shear stress in combination with bending by performing the
following steps.
(a) Assume L = 10 in. For points A, B, and C, sketch three-dimensional stress elements, labeling

the coordinate directions and showing all stresses. Calculate magnitudes of the stresses on the
stress elements. Do not neglect transverse shear stress. Calculate the maximum shear stress
for each stress element.

(b) For each stress element in part (a), calculate the maximum shear stress if the transverse shear
stress is neglected. Determine the percent error for each stress element from neglecting the
transverse shear stress.

(c) Repeat the problem for L = 4, 1, and 0.1 in. Compare the results and state any conclusions
regarding the significance of the transverse shear stress in combination with bending.

3–46 Consider a simply supported beam of rectangular cross section of constant width b and variable
depth h, so proportioned that the maximum stress σx at the outer surface due to bending is con-
stant, when subjected to a load F at a distance a from the left support and a distance c from the
right support. Show that the depth h at location x is given by 

h =
√

6Fcx

lbσmax
0 ≤ x ≤ a

3–47 In Prob. 3–46, h → 0 as x → 0, which cannot occur. If the maximum shear stress τmax due to
direct shear is to be constant in this region, show that the depth h at location x is given by

h = 3

2

Fc

lbτmax
0 ≤ x ≤ 3

8

Fcσmax

lbτ 2
max

3–48 and The beam shown is loaded in the xy and xz planes. 
3–49 (a) Find the yz components of the reactions at the supports. 

(b) Plot the shear-force and bending-moment diagrams for the xy and xz planes. Label the dia-
grams properly and provide the values at key points. 

(c) Determine the net shear-force and bending-moment at the key points of part (b).
(d) Determine the maximum tensile bending stress. For Prob. 3–48, use the cross section given in

Prob. 3–34, part (a). For Prob. 3–49, use the cross section given in Prob. 3–39, part (b).

2 kN/m

1.5 m

1.5 kN

0.5 m
1 m

A
O

B

C
x

y

z

30°

R1y

R1z

R2y

R2z

1000 lbf

600 lbf

4 in

6 in
4

1
1

3
A

O

B x

z

y

Problem 3–48 Problem 3–49

3–50 Two steel thin-wall tubes in torsion of equal length are to be compared. The first is of square cross
section, side length b, and wall thickness t. The second is a round of diameter b and wall thick-
ness t. The largest allowable shear stress is τall and is to be the same in both cases. How does the
angle of twist per unit length compare in each case?
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1 in

1 in
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3–52 The thin-walled open cross-section shown is transmitting torque T. The angle of twist per unit
length of each leg can be determined separately using Eq. (3–47) and is given by 

θ1 = 3Ti

GLi c3
i

where for this case, i = 1, 2, 3, and Ti represents the torque in leg i. Assuming that the angle of
twist per unit length for each leg is the same, show that

T = Gθ1

3

3∑
i=1

Li c
3
i and τmax = Gθ1cmax

Problem 3–51

Problem 3–52

c2

c3

c1

L 2

TL1 L3

3–53 to Using the results from Prob. 3–52, consider a steel section with τallow = 12 kpsi. 
3–55 (a) Determine the torque transmitted by each leg and the torque transmitted by the entire section.

(b) Determine the angle of twist per unit length.

Problem
Number c1 L1 c2 L2 c3 L3

3–53 2 mm 20 mm 3 mm 30 mm 0 0

3–54 1
16 in 3

4 in 1
8 in 1 in 1

16 in 5
8 in

3–55 2 mm 20 mm 3 mm 30 mm 2 mm 25 mm

3–56 Two 300-mm-long rectangular steel strips are placed together as shown. Using a maximum allow-
able shear stress of 80 MPa, determine the maximum torque and angular twist, and the torsional

3–51 Consider a 1-in-square steel thin-walled tube loaded in torsion. The tube has a wall thickness
t = 1

16 in, is 36 in long, and has a maximum allowable shear stress of 12 kpsi. Determine the max-
imum torque that can be applied and the corresponding angle of twist of the tube.
(a) Assume that the internal radius at the corners ri = 0.
(b) Assume that the internal radius at the corners is more realistically ri = 1

8 in.
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136 Mechanical Engineering Design

spring rate. Compare these with a single strip of cross section 30 mm by 4 mm. Solve the prob-
lem two ways: (a) using Eqs. (3–40) and (3–41), and (b) using Eq. (3–47). Compare and discuss
your results

4 mm

2 mm

30 mm
T

Problem 3–56

3–57 Using a maximum allowable shear stress of 70 MPa, find the shaft diameter needed to transmit
40 kW when
(a) The shaft speed is 2500 rev/min. 
(b) The shaft speed is 250 rev/min.

3–58 Repeat Prob. 3–57 with an allowable shear stress of 20 kpsi and a power of 50 hp.

3–59 Using an allowable shear stress of 50 MPa, determine the power that can be transmitted at 2000 rpm
through a shaft with a 30-mm diameter.

3–60 A 20-mm-diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is
not to exceed 110 MPa when one end is twisted through an angle of 15°, what must be the length
of the bar?

3–61 A 2-ft-long steel bar with a 3
4 -in diameter is to be used as a torsion spring. If the torsional stress

in the bar is not to exceed 30 kpsi, what is the maximum angle of twist of the bar?  

3–62 A 40-mm-diameter solid steel shaft, used as a torque transmitter, is replaced with a hollow
shaft having a 40-mm OD and a 36-mm ID. If both materials have the same strength, what is
the percentage reduction in torque transmission? What is the percentage reduction in shaft
weight?

3–63 Generalize Prob. 3–62 for a solid shaft of diameter d replaced with a hollow shaft of the same
material with an outside diameter d, and an inside diameter that is a fraction of the outside diam-
eter, x × d, where x is any fraction between zero and one. Obtain expressions for percentage
reduction in torque transmission and percentage reduction in weight in terms of only x. Notice
that the length and diameter of the shaft, and the material, are not needed for this comparison.
Plot both results on the same axis for the range 0 < x < 1. From the plot, what is the approxi-
mate value of x to obtain the greatest difference between the percent decrease in weight and the
percent decrease in torque?

3–64 A hollow steel shaft is to transmit 4200 N · m of torque and is to be sized so that the torsional
stress does not exceed 120 MPa.
(a) If the inside diameter is 70 percent of the outside diameter, what size shaft should be used?

Use preferred sizes.
(b) What is the stress on the inside of the shaft when full torque is applied?

3–65 The figure shows an endless-belt conveyor drive roll. The roll has a diameter 120 mm and is
driven at 10 rev/min by a geared-motor source rated at 1.5 kW. Determine a suitable shaft diam-
eter dC for an allowable torsional stress of 80 MPa.
(a) What would be the stress in the shaft you have sized if the motor starting torque is twice the

running torque?
(b) Is bending stress likely to be a problem? What is the effect of different roll lengths B on

bending?
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Load and Stress Analysis 137

Problem 3–65

Problem 3–68* Problem 3–69*

3–66 The conveyer drive roll in the figure for Prob. 3–65 is 5 in in diameter and is driven at 8 rev/min
by a geared-motor source rated at 1 hp. Find a suitable shaft diameter dC based on an allowable
torsional stress of 15 kpsi.

3–67 Consider two shafts in torsion, each of the same material, length, and cross-sectional area. One
shaft has a solid square cross section and the other shaft has a solid circular section.
(a) Which shaft has the greater maximum shear stress and by what percentage?
(b) Which shaft has the greater angular twist θ and by what percentage?

3–68* to A countershaft carrying two V-belt pulleys is shown in the figure. Pulley A receives power from a 
3–71* motor through a belt with the belt tensions shown. The power is transmitted through the shaft and

delivered to the belt on pulley B. Assume the belt tension on the loose side at B is 15 percent of
the tension on the tight side.
(a) Determine the tensions in the belt on pulley B, assuming the shaft is running at a constant

speed.
(b) Find the magnitudes of the bearing reaction forces, assuming the bearings act as simple

supports.
(c) Draw shear-force and bending-moment diagrams for the shaft. If needed, make one set for the

horizontal plane and another set for the vertical plane.
(d) At the point of maximum bending moment, determine the bending stress and the torsional

shear stress.
(e) At the point of maximum bending moment, determine the principal stresses and the maximum

shear stress.

A

8-in dia.
75 lbf

500 lbf
z

12 in

18 in

10 in

O

T1

T2

y

C
B

10-in dia.

1 -in dia.
x

1
4

O

T1 B

230 mm

T2

C

30-mm dia.

A

250-mm dia.

400-mm dia.

1800 N

z

y

x

280 mm

270 N

300 mm
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138 Mechanical Engineering Design

3–72* to A gear reduction unit uses the countershaft shown in the figure. Gear A receives power from 
3–73* another gear with the transmitted force FA applied at the 20� pressure angle as shown. The power

is transmitted through the shaft and delivered through gear B through a transmitted force FB at
the pressure angle shown.
(a) Determine the force FB, assuming the shaft is running at a constant speed.
(b) Find the magnitudes of the bearing reaction forces, assuming the bearings act as simple supports.
(c) Draw shear-force and bending-moment diagrams for the shaft. If needed, make one set for the

horizontal plane and another set for the vertical plane.
(d) At the point of maximum bending moment, determine the bending stress and the torsional

shear stress.
(e) At the point of maximum bending moment, determine the principal stresses and the maximum

shear stress.

x

300 lbf

50 lbf

z

8

8

8 dia.

6 dia.

6

y

1 dia.

T2

T1

O

A

B

C

z

300

400

150

O

y

250 dia.

20 dia.

A

45°

T2

T1

45 N 300 N

B

C

300 dia.

x

Problem 3–71*

Dimensions in millimeters.

Problem 3–70*

Dimensions in inches.

z

y

16 in

14 in

9 in

20°

O

FB

A

x

Gear A
20-in dia.

1.25-in dia.

Gear B
8-in dia.

20°

C

B

� 300 lbfFA

z

400 mm

350 mm

O

B C

y

20°

Gear A, 600-mm dia.

x

300 mm 25°

Gear B, 300-mm dia.

50-mm dia.

A

� 11 kNFA

FB

Problem 3–72* Problem 3–73*

3–74* In the figure, shaft AB transmits power to shaft CD through a set of bevel gears contacting at point
E. The contact force at E on the gear of shaft CD is determined to be (FE)CD = –92.8i – 362.8j +
808.0k lbf. For shaft CD: (a) draw a free-body diagram and determine the reactions at C and D
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�

T = 100 N�m

e = 75 mm
f = 250 mm

d = 30 mm

g = 125 mm
a = 150 mm

b = 250 mm

c = 125 mm

DA

y

x

B

C

a

a

GE F

P
P

y

z

T

Load and Stress Analysis 139

Problem 3–74*

Problem 3–77*

assuming simple supports (assume also that bearing C carries the thrust load), (b) draw the shear-
force and bending-moment diagrams, (c) for the critical stress element, determine the torsional
shear stress, the bending stress, and the axial stress, and (d) for the critical stress element, deter-
mine the principal stresses and the maximum shear stress.

3–75 Repeat Prob. 3–74 except for a contact force at E of (FE)CD = –46.6i – 140j + 406k lbf and a
shaft diameter of 1.0 in.

3–76* Repeat the analysis of Prob. 3–74 for shaft AB. Assume that bearing A carries the thrust load. 

3–77* A torque T = 100 N · m is applied to the shaft EFG, which is running at constant speed and con-
tains gear F. Gear F transmits torque to shaft ABCD through gear C, which drives the chain
sprocket at B, transmitting a force P as shown. Sprocket B, gear C, and gear F have pitch diam-
eters of a = 150, b = 250, and c = 125 mm, respectively. The contact force between the gears is
transmitted through the pressure angle φ = 20°. Assuming no frictional losses and consider-
ing the bearings at A, D, E, and G to be simple supports, locate the point on shaft ABCD that
contains the maximum tensile bending and maximum torsional shear stresses. Combine these
stresses and determine the maximum principal normal and shear stresses in the shaft.

3.63 in

2.50 in

1.30 in

C

D

E

BA

x

y

3 in
3.88 in

6.50 in

0.88-in dia.

1.13-in dia.

3–78 Repeat Prob. 3–77 with the chain parallel to the z axis with P in the positive z direction.

3–79* Repeat Prob. 3–77 with T = 900 lbf · in, a = 6 in, b = 5 in, c = 10 in, d = 1.375 in, e = 4 in,
f = 10 in, and g = 6 in.

3–80* The cantilevered bar in the figure is made from a ductile material and is statically loaded with
Fy = 200 lbf and Fx = Fz = 0. Analyze the stress situation in rod AB by obtaining the follow-
ing information.
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Problem 3–80*

Problem 3–84*

3–81* Repeat Prob. 3–80 with Fx = 0, Fy = 175 lbf, and Fz = 100 lbf.

3–82* Repeat Prob. 3–80 with Fx = 75 lbf, Fy = −200 lbf, and Fz = 100 lbf.

3–83* For the handle in Prob. 3–80, one potential failure mode is twisting of the flat plate BC. Determine
the maximum value of the shear stress due to torsion in the main section of the plate, ignoring
the complexities of the interfaces at B and C.

3–84* The cantilevered bar in the figure is made from a ductile material and is statically loaded with 
Fy = 250 lbf and Fx = Fz = 0. Analyze the stress situation in the small diameter at the shoulder at 
A by obtaining the following information.

(a) Determine the precise location of the critical stress element.
(b) Sketch the critical stress element and determine magnitudes and directions for all stresses act-

ing on it. (Transverse shear may only be neglected if you can justify this decision.)
(c) For the critical stress element, determine the principal stresses and the maximum shear stress.

A

z

y

2 in

5 in

x

C

B

6 in

1
4 in

1-in dia.
Fy

Fz
Fx

1 1
2 in

A

-in R.1
8

1 -in dia.1
2

z

1-in dia.

2 in

2 in

12 in

B

C

x

O

y

D

9 in

1 1
2 -in dia.

3
4 -in dia.-in dia.Fy

Fz
Fx
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(a) Determine the precise location of the critical stress element at the cross section at A.
(b) Sketch the critical stress element and determine magnitudes and directions for all stresses

acting on it. (Transverse shear may be neglected if you can justify this decision.)
(c) For the critical stress element, determine the principal stresses and the maximum shear stress.

3–85* Repeat Prob. 3–84 with Fx = 300 lbf, Fy = 250 lbf, and Fz = 0.

3–86* Repeat Prob. 3–84 with Fx = 300 lbf, Fy = 250 lbf, and Fz = –100 lbf.

3–87* Repeat Prob. 3–84 for a brittle material, requiring the inclusion of stress concentration in the
fillet radius.

3–88 Repeat Prob. 3–84 with Fx = 300 lbf, Fy = 250 lbf, and Fz = 0, and for a brittle material, requir-
ing the inclusion of stress concentration in the fillet radius.

3–89 Repeat Prob. 3–84 with Fx = 300 lbf, Fy = 250 lbf, and Fz = –100 lbf, and for a brittle material,
requiring the inclusion of stress concentration in the fillet radius.

3–90 The figure shows a simple model of the loading of a square thread of a power screw transmitting
an axial load F with an application of torque T. The torque is balanced by the frictional force Ff

acting along the top surface of the thread. The forces on the thread are considered to be distrib-
uted along the circumference of the mean diameter dm over the number of engaged threads, nt.
From the figure, dm = dr + p/2, where dr is the root diameter of the thread and p is the pitch of
the thread.
(a) Considering the thread to be a cantilever beam as shown in the cutaway view, show that the

bending stress at the root of the thread can be approximated by

σb = ± 6F

πdr nt p

(b) Show that the axial and maximum torsional shear stresses in the body of the shaft can be
approximated by

σa = − 4F

πd2
r

and τt = 16T

πd3
r

(c) For the stresses of parts (a) and (b) show a three-dimensional representation of the state
of stress on an element located at the intersection of the lower thread root base and the

Problem 3–90

dm

dr

Ff

d

F

y

x

F

T

p/2

p/2
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142 Mechanical Engineering Design

thread body. Using the given coordinate system label the stresses using the notation given
in Fig. 3–8a.

(d) A square-thread power screw has an outside diameter d = 1.5 in, pitch p = 0.25 in, and
transmits a load F = 1 500 lbf through the application of a torque T = 235 lbf · in. If nt = 2,
determine the key stresses and the corresponding principal stresses (normal and shear).

3–91 Develop the formulas for the maximum radial and tangential stresses in a thick-walled cylinder
due to internal pressure only.

3–92 Repeat Prob. 3–91 where the cylinder is subject to external pressure only. At what radii do the
maximum stresses occur?

3–93 Develop the equations for the principal stresses in a thin-walled spherical pressure vessel of
inside diameter di, thickness t, and with an internal pressure pi. You may wish to follow a process
similar to that used for a thin-walled cylindrical pressure vessel on p. 114.

3–94 to A pressure cylinder has an outer diameter do, wall thickness t, internal pressure pi, and maximum 
3–96 allowable shear stress τmax. In the table given, determine the appropriate value of x.

Problem
Number do t pi �max

3–94 6 in 0.25 in xmax 10 kpsi

3–95 200 mm xmin 4 MPa 25 MPa

3–96 8 in 0.25 in 500 psi x

3–97 to A pressure cylinder has an outer diameter do, wall thickness t, external pressure po, and maximum 
3–99 allowable shear stress τmax. In the table given, determine the appropriate value of x.

Problem
Number do t po �max

3–97 6 in 0.25 in xmax 10 kpsi

3–98 200 mm xmin 4 MPa 25 MPa

3–99 8 in 0.25 in 500 psi x

3–100 An AISI 1040 cold-drawn steel tube has an OD = 50 mm and wall thickness 6 mm. What max-
imum external pressure can this tube withstand if the largest principal normal stress is not to
exceed 80 percent of the minimum yield strength of the material?

3–101 Repeat Prob. 3–100 with an OD of 2 in and wall thickness of 0.25 in.

3–102 Repeat Prob. 3–100 with an internal pressure.

3–103 Repeat Prob. 3–101 with an internal pressure.

3–104 A thin-walled cylindrical steel water storage tank 30 ft in diameter and 60 ft long is oriented with
its longitudinal axis vertical. The tank is topped with a hemispherical steel dome. The wall thick-
ness of the tank and dome is 0.75 in. If the tank is unpressurized and contains water 55 ft above
its base, and considering the weight of the tank, determine the maximum state of stress in the
tank and the corresponding principal stresses (normal and shear). The weight density of water
is 62.4 lbf/ft3.
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3–105 Repeat Prob. 3–104 with the tank being pressurized to 50 psig. 

3–106 Find the maximum shear stress in a 5 1
2 -in-diameter circular saw blade if it runs idle at 5000 rev/min.

The saw is 14 gauge (0.0747 in) steel and is used on a 5
8 -in-diameter arbor. The thickness is uni-

form. What is the maximum radial component of stress?

3–107 The maximum recommended speed for a 250-mm-diameter abrasive grinding wheel is 2000 rev/min.
Assume that the material is isotropic; use a bore of 20 mm, ν = 0.24, and a mass density of 
3320 kg/m3, and find the maximum tensile stress at this speed.

3–108 An abrasive cutoff wheel has a diameter of 5 in, is 1
16 in thick, and has a 3

4 -in bore. It weighs 5 oz
and is designed to run at 12 000 rev/min. If the material is isotropic and ν = 0.20, find the
maximum shear stress at the design speed.

3–109 A rotary lawnmower blade rotates at 3500 rev/min. The steel blade has a uniform cross section 1
8 in

thick by 1 1
4 in wide, and has a 1

2 -in-diameter hole in the center as shown in the figure. Estimate
the nominal tensile stress at the central section due to rotation.

Problem 3–109

30 in

15 in

1
4

1 in

1
8

in

3–110 to The table lists the maximum and minimum hole and shaft dimensions for a variety of standard 
3–115 press and shrink fits. The materials are both hot-rolled steel. Find the maximum and minimum

values of the radial interference and the corresponding interface pressure. Use a collar diameter
of 100 mm for the metric sizes and 4 in for those in inch units.

Problem Fit Basic Hole Shaft
Number Designation† Size Dmax Dmin dmax dmin

3–110 50H7�p6 50 mm 50.025 50.000 50.042 50.026

3–111 (2 in)H7�p6 2 in 2.0010 2.0000 2.0016 2.0010

3–112 50H7�s6 50 mm 50.025 50.000 50.059 50.043

3–113 (2 in)H7�s6 2 in 2.0010 2.0000 2.0023 2.0017

3–114 50H7�u6 50 mm 50.025 50.000 50.086 50.070

3–115 (2 in)H7�u6 2 in 2.0010 2.0000 2.0034 2.0028

†Note: See Table 7–9 for description of fits.

3–116 to The table gives data concerning the shrink fit of two cylinders of differing materials and 
3–119 dimensional specification in inches. Elastic constants for different materials may be found in

Table A–5. Identify the radial interference δ, then find the interference pressure p, and the
tangential normal stress on both sides of the fit surface. If dimensional tolerances are given at
fit surfaces, repeat the problem for the highest and lowest stress levels.

Problem Inner Cylinder Outer Cylinder
Number Material di d0 Material Di D0

3–116 Steel 0 2.002 Steel 2.000 3.00

3–117 Steel 0 2.002 Cast iron 2.000 3.00

3–118 Steel 0 1.002/1.003 Steel 1.001/1.002 2.00

3–119 Aluminum 0 2.003/2.006 Steel 2.000/2.002 3.00
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4 in

No. 12 gauge (0.1094 in)

A

A

F

-in R.1
8

3
4

in

Section A–A

144 Mechanical Engineering Design

3–121 Repeat Prob. 3–120 with d = 0.75 in, F = 750 lbf, L = 10 in, and Di = 2.5 in.

3–122 The steel eyebolt shown in the figure is loaded with a force F = 300 N. The bolt is formed from
wire of diameter d = 6 mm to a radius R = 10 mm in the eye and at the shank. Estimate the
stresses at the inner and outer surfaces at section A–A.

3–120 A utility hook was formed from a round rod of diameter d = 20 mm into the geometry shown in
the figure. What are the stresses at the inner and outer surfaces at section A–A if F = 4 kN,
L = 250 mm, and Di = 75 mm?

Problem 3–120

L

d

F

FA

A

Di

Di

Problem 3–122 F F

A

A B

B

R

R

d

3–123 For Prob. 3–122 estimate the stresses at the inner and outer surfaces at section B–B.

3–124 Repeat Prob. 3–122 with d = 1
4 in, R = 1

2 in, and F = 75 lbf.

3–125 Repeat Prob. 3–123 with d = 1
4 in, R = 1

2 in, and F = 75 lbf.

3–126 Shown in the figure is a 12-gauge (0.1094-in) by 3
4 -in latching spring that supports a load of

F = 3 lbf. The inside radius of the bend is 1
8 in.

(a) Using straight-beam theory, determine the stresses at the top and bottom surfaces immediately
to the right of the bend.  

(b) Using curved-beam theory, determine the stresses at the inner and outer surfaces at the bend.
(c) By comparing the stresses at the bend with the nominal stresses before the bend, estimate

effective stress concentration factors for the inner and outer surfaces.

3–127 Repeat Prob. 3–126 with a 10-gauge (0.1406-in) material thickness.
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Dimensions in mm

200

A

A

F2

F1

150
25 R.

25

Nylon bushing

Section A–A

87

31
28

47

9

60°
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3–128 Repeat Prob. 3–126 with a bend radius of 1
4 in.

3–129 The cast-iron bell-crank lever depicted in the figure is acted upon by forces F1 of 2.4 kN and F2

of 3.2 kN. The section A–A at the central pivot has a curved inner surface with a radius of
ri = 25 mm. Estimate the stresses at the inner and outer surfaces of the curved portion of the lever.

Problem 3–132

4.5 in

1.25-in R.

0.5 in

1.25 in

0.5-in R.

2000 lbf

0.5 in

3–130 The crane hook depicted in Fig. 3–35 has a 3
4-in-diameter hole in the center of the critical section.

For a load of 6 kip, estimate the bending stresses at the inner and outer surfaces at the critical section.

3–131 An offset tensile link is shaped to clear an obstruction with a geometry as shown in the figure. The
cross section at the critical location is elliptical, with a major axis of 3 in and a minor axis of 1.5 in.
For a load of 20 kip, estimate the stresses at the inner and outer surfaces of the critical section.

Problem 3–131 9 in

12-in R.

3–132 A cast-steel C frame as shown in the figure has a rectangular cross section of 1.25 in by 2 in, with
a 0.5-in-radius semicircular notch on both sides that forms midflank fluting as shown. Estimate A,
rc , rn , and e, and for a load of 2000 lbf, estimate the inner and outer surface stresses at the throat
C. Note: Table 3–4 can be used to determine rn for this section. From the table, the integral∫

d A/r can be evaluated for a rectangle and a circle by evaluating A/rn for each shape [see
Eq. (3–64)]. Subtracting A/rn of the circle from that of the rectangle yields

∫
d A/r for the C

frame, and rn can then be evaluated.
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146 Mechanical Engineering Design

3–133 Two carbon steel balls, each 30 mm in diameter, are pressed together by a force F . In terms of
the force F , find the maximum values of the principal stress, and the maximum shear stress, in
MPa.

3–134 A carbon steel ball with 25-mm diameter is pressed together with an aluminum ball with a
40-mm diameter by a force of 10 N. Determine the maximum shear stress, and the depth at
which it will occur for the aluminum ball. Assume Fig. 3–37, which is based on a typical
Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress
occurs for these materials. 

3–135 Repeat Prob. 3–134 but determine the maximum shear stress and depth for the steel ball.

3–136 A carbon steel ball with a 30-mm diameter is pressed against a flat carbon steel plate with a force
of 20 N. Determine the maximum shear stress, and the depth in the plate at which it will occur.

3–137 An AISI 1018 steel ball with 1-in diameter is used as a roller between a flat plate made from 2024
T3 aluminum and a flat table surface made from ASTM No. 30 gray cast iron. Determine the
maximum amount of weight that can be stacked on the aluminum plate without exceeding a max-
imum shear stress of 20 kpsi in any of the three pieces. Assume Fig. 3–37, which is based on a
typical Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear
stress occurs for these materials.

3–138 An aluminum alloy cylindrical roller with diameter 1.25 in and length 2 in rolls on the inside of
a cast-iron ring having an inside radius of 6 in, which is 2 in thick. Find the maximum contact
force F that can be used if the shear stress is not to exceed 4000 psi.

3–139 A pair of mating steel spur gears with a 0.75-in face width transmits a load of 40 lbf. For
estimating the contact stresses, make the simplifying assumption that the teeth profiles can be
treated as cylindrical with instantaneous radii at the contact point of interest of 0.47 in and
0.62 in, respectively. Estimate the maximum contact pressure and the maximum shear stress
experienced by either gear. 

3–140 to A wheel of diameter d and width w carrying a load F rolls on a flat rail. 
3–142 Assume that Fig. 3–39, which is based on a Poisson’s ratio of 0.3, is applicable to estimate the

depth at which the maximum shear stress occurs for these materials. At this critical depth, calcu-
late the Hertzian stresses σx , σy , σz , and τmax for the wheel.

Problem Wheel Rail
Number d w F Material Material

3–140 5 in 2 in 600 lbf Steel Steel

3–141 150 mm 40 mm 2 kN Steel Cast iron

3–142 3 in 1.25 mm 250 lbf Cast iron Cast iron
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148 Mechanical Engineering Design

All real bodies deform under load, either elastically or plastically. A body can be suffi-
ciently insensitive to deformation that a presumption of rigidity does not affect an analy-
sis enough to warrant a nonrigid treatment. If the body deformation later proves to be not
negligible, then declaring rigidity was a poor decision, not a poor assumption. A wire
rope is flexible, but in tension it can be robustly rigid and it distorts enormously under
attempts at compressive loading. The same body can be both rigid and nonrigid.

Deflection analysis enters into design situations in many ways. A snap ring, or retain-
ing ring, must be flexible enough to be bent without permanent deformation and
assembled with other parts, and then it must be rigid enough to hold the assembled parts
together. In a transmission, the gears must be supported by a rigid shaft. If the shaft bends
too much, that is, if it is too flexible, the teeth will not mesh properly, and the result will
be excessive impact, noise, wear, and early failure. In rolling sheet or strip steel to pre-
scribed thicknesses, the rolls must be crowned, that is, curved, so that the finished product
will be of uniform thickness. Thus, to design the rolls it is necessary to know exactly how
much they will bend when a sheet of steel is rolled between them. Sometimes mechanical
elements must be designed to have a particular force-deflection characteristic. The
suspension system of an automobile, for example, must be designed within a very narrow
range to achieve an optimum vibration frequency for all conditions of vehicle loading,
because the human body is comfortable only within a limited range of frequencies.

The size of a load-bearing component is often determined on deflections, rather
than limits on stress.

This chapter considers distortion of single bodies due to geometry (shape) and
loading, then, briefly, the behavior of groups of bodies.

4–1 Spring Rates
Elasticity is that property of a material that enables it to regain its original configuration
after having been deformed. A spring is a mechanical element that exerts a force when
deformed. Figure 4–1a shows a straight beam of length l simply supported at the ends
and loaded by the transverse force F. The deflection y is linearly related to the force, as
long as the elastic limit of the material is not exceeded, as indicated by the graph. This
beam can be described as a linear spring.

In Fig. 4–1b a straight beam is supported on two cylinders such that the length
between supports decreases as the beam is deflected by the force F. A larger force is
required to deflect a short beam than a long one, and hence the more this beam is
deflected, the stiffer it becomes. Also, the force is not linearly related to the deflection,
and hence this beam can be described as a nonlinear stiffening spring.

Figure 4–1c is an edge-view of a dish-shaped round disk. The force necessary to flat-
ten the disk increases at first and then decreases as the disk approaches a flat configuration,

Figure 4–1

(a) A linear spring; 
(b) a stiffening spring; 
(c) a softening spring.
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Deflection and Stiffness 149

as shown by the graph. Any mechanical element having such a characteristic is called a
nonlinear softening spring.

If we designate the general relationship between force and deflection by the equation

F = F(y) (a)

then spring rate is defined as

k(y) = lim
�y→0

�F

�y
= d F

dy
(4–1)

where y must be measured in the direction of F and at the point of application of F. Most
of the force-deflection problems encountered in this book are linear, as in Fig. 4–1a. For
these, k is a constant, also called the spring constant; consequently Eq. (4–1) is written

k = F

y
(4–2)

We might note that Eqs. (4–1) and (4–2) are quite general and apply equally well for
torques and moments, provided angular measurements are used for y. For linear dis-
placements, the units of k are often pounds per inch or newtons per meter, and for
angular displacements, pound-inches per radian or newton-meters per radian.

4–2 Tension, Compression, and Torsion
The total extension or contraction of a uniform bar in pure tension or compression,
respectively, is given by

δ = Fl

AE
(4–3)

This equation does not apply to a long bar loaded in compression if there is a possibil-
ity of buckling (see Secs. 4–11 to 4–15). Using Eqs. (4–2) and (4–3) with δ = y , we see
that the spring constant of an axially loaded bar is

k = AE

l
(4–4)

The angular deflection of a uniform solid or hollow round bar subjected to a twist-
ing moment T was given in Eq. (3–35), and is

θ = T l

G J
(4–5)

where θ is in radians. If we multiply Eq. (4–5) by 180/π and substitute J = πd4/32 for
a solid round bar, we obtain

θ = 583.6T l

Gd4
(4–6)

where θ is in degrees.
Equation (4–5) can be rearranged to give the torsional spring rate as

k = T

θ
= G J

l
(4–7)

Equations (4–5), (4–6), and (4–7) apply only to circular cross sections. Torsional load-
ing for bars with noncircular cross sections is discussed in Sec. 3–12 (p. 101). For the
angular twist of rectangular cross sections, closed thin-walled tubes, and open thin-
walled sections, refer to Eqs. (3–41), (3–46), and (3–47), respectively.
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150 Mechanical Engineering Design

4–3 Deflection Due to Bending
The problem of bending of beams probably occurs more often than any other loading
problem in mechanical design. Shafts, axles, cranks, levers, springs, brackets, and wheels,
as well as many other elements, must often be treated as beams in the design and analy-
sis of mechanical structures and systems. The subject of bending, however, is one that
you should have studied as preparation for reading this book. It is for this reason that
we include here only a brief review to establish the nomenclature and conventions to be
used throughout this book.

The curvature of a beam subjected to a bending moment M is given by

1

ρ
= M

E I
(4–8)

where ρ is the radius of curvature. From studies in mathematics we also learn that the
curvature of a plane curve is given by the equation

1

ρ
= d2 y/dx2

[1 + (dy/dx)2]3/2
(4–9)

where the interpretation here is that y is the lateral deflection of the centroidal axis of
the beam at any point x along its length. The slope of the beam at any point x is

θ = dy

dx
(a)

For many problems in bending, the slope is very small, and for these the denominator
of Eq. (4–9) can be taken as unity. Equation (4–8) can then be written

M

E I
= d2 y

dx2
(b)

Noting Eqs. (3–3) and (3–4) and successively differentiating Eq. (b) yields

V

E I
= d3 y

dx3
(c)

q

E I
= d4 y

dx4
(d )

It is convenient to display these relations in a group as follows:

q

E I
= d4 y

dx4
(4–10)

V

E I
= d3 y

dx3
(4–11)

M

E I
= d2 y

dx2
(4–12)

θ = dy

dx
(4–13)

y = f (x) (4–14)
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The nomenclature and conventions are illustrated by the beam of Fig. 4–2. Here, a beam
of length l = 20 in is loaded by the uniform load w = 80 lbf per inch of beam length.
The x axis is positive to the right, and the y axis positive upward. All quantities—
loading, shear, moment, slope, and deflection—have the same sense as y; they are pos-
itive if upward, negative if downward.

The reactions R1 = R2 = +800 lbf and the shear forces V0 = +800 lbf and
Vl = −800 lbf are easily computed by using the methods of Chap. 3. The bending
moment is zero at each end because the beam is simply supported. For a simply-
supported beam, the deflections are also zero at each end. 

Figure 4–2

(a)

(b)

(c)

(d)

(e)

l = 20 in

R1 = wl
2

R2 = wl
2

y

Loading, w
w = 80 lbf/inx

+

+

–

V0

M0 Ml

Vl

V

M

x

–

–

+

EI�

EI�0

EI�l

x

x

Shear, V
V0 = +800 lbf
Vl = –800 lbf

EIy

x
Deflection, EIy
y0 = yl = 0

Moment, M
M0 = Ml = 0

Slope, EI�
�l /2 = 0

w

EXAMPLE 4–1 For the beam in Fig. 4–2, the bending moment equation, for 0 ≤ x ≤ l, is

M = wl

2
x − w

2
x2

Using Eq. (4–12), determine the equations for the slope and deflection of the beam, the
slopes at the ends, and the maximum deflection.

Solution Integrating Eq. (4–12) as an indefinite integral we have

E I
dy

dx
=

∫
M dx = wl

4
x2 − w

6
x3 + C1 (1)

where C1 is a constant of integration that is evaluated from geometric boundary conditions.
We could impose that the slope is zero at the midspan of the beam, since the beam and
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loading are symmetric relative to the midspan. However, we will use the given bound-
ary conditions of the problem and verify that the slope is zero at the midspan. Integrating
Eq. (1) gives

E I y =
∫∫

M dx = wl

12
x3 − w

24
x4 + C1x + C2 (2)

The boundary conditions for the simply supported beam are y = 0 at x = 0 and l.
Applying the first condition, y = 0 at x = 0, to Eq. (2) results in C2 = 0. Applying the
second condition to Eq. (2) with C2 = 0,

E I y(l) = wl

12
l3 − w

24
l4 + C1l = 0

Solving for C1 yields C1 = −wl3/24. Substituting the constants back into Eqs. (1) and
(2) and solving for the deflection and slope results in

y = wx

24E I
(2lx2 − x3 − l3) (3)

θ = dy

dx
= w

24E I
(6lx2 − 4x3 − l3) (4)

Comparing Eq. (3) with that given in TableA–9, beam 7, we see complete agreement.
For the slope at the left end, substituting x = 0 into Eq. (4) yields

θ |x=0 = − wl3

24E I

and at x = l,

θ |x= l = wl3

24E I

At the midspan, substituting x = l/2 gives dy/dx = 0, as earlier suspected.
The maximum deflection occurs where dy/dx = 0. Substituting x = l/2 into

Eq. (3) yields

ymax = − 5wl4

384E I

which again agrees with Table A–9–7.

The approach used in the example is fine for simple beams with continuous
loading. However, for beams with discontinuous loading and/or geometry such as a step
shaft with multiple gears, flywheels, pulleys, etc., the approach becomes unwieldy. The
following section discusses bending deflections in general and the techniques that are
provided in this chapter.

4–4 Beam Deflection Methods
Equations (4–10) through (4–14) are the basis for relating the intensity of loading q,
vertical shear V, bending moment M, slope of the neutral surface θ, and the trans-
verse deflection y. Beams have intensities of loading that range from q = constant
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1Warren C. Young and Richard G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed., McGraw-Hill,
New York, 2002.
2See Chap. 9, F. P. Beer, E. R. Johnston Jr., and J. T. DeWolf, Mechanics of Materials, 5th ed., McGraw-Hill,
New York, 2009.
3See Sec. 4–4, J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed., McGraw-Hill,
New York, 2001.
4Warren C. Young and Richard G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed., McGraw-Hill,
New York, 2002.

(uniform loading), variable intensity q(x), to Dirac delta functions (concentrated
loads).

The intensity of loading usually consists of piecewise contiguous zones, the
expressions for which are integrated through Eqs. (4–10) to (4–14) with varying
degrees of difficulty. Another approach is to represent the deflection y(x) as a Fourier
series, which is capable of representing single-valued functions with a finite number of
finite discontinuities, then differentiating through Eqs. (4–14) to (4–10), and stopping
at some level where the Fourier coefficients can be evaluated. A complication is the
piecewise continuous nature of some beams (shafts) that are stepped-diameter bodies.

All of the above constitute, in one form or another, formal integration methods,
which, with properly selected problems, result in solutions for q, V, M, θ, and y. These
solutions may be

1 Closed-form, or
2 Represented by infinite series, which amount to closed form if the series are rapidly

convergent, or
3 Approximations obtained by evaluating the first or the first and second terms.

The series solutions can be made equivalent to the closed-form solution by the use of a
computer. Roark’s1 formulas are committed to commercial software and can be used on
a personal computer.

There are many techniques employed to solve the integration problem for beam
deflection. Some of the popular methods include:

• Superposition (see Sec. 4–5)

• The moment-area method2

• Singularity functions (see Sec. 4–6)

• Numerical integration3

The two methods described in this chapter are easy to implement and can handle a large
array of problems. 

There are methods that do not deal with Eqs. (4–10) to (4–14) directly. An energy
method, based on Castigliano’s theorem, is quite powerful for problems not suitable for
the methods mentioned earlier and is discussed in Secs. 4–7 to 4–10. Finite element
programs are also quite useful for determining beam deflections.

4–5 Beam Deflections by Superposition
The results of many simple load cases and boundary conditions have been solved
and are available. Table A–9 provides a limited number of cases. Roark’s4 provides
a much more comprehensive listing. Superposition resolves the effect of combined
loading on a structure by determining the effects of each load separately and adding
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the results algebraically. Superposition may be applied provided: (1) each effect is
linearly related to the load that produces it, (2) a load does not create a condition that
affects the result of another load, and (3) the deformations resulting from any spe-
cific load are not large enough to appreciably alter the geometric relations of the
parts of the structural system.

The following examples are illustrations of the use of superposition.

Figure 4–3

x

y

R1

F

w
a b

l

B
A

C

R2

If the maximum deflection of a beam is desired, it will occur either where the slope
is zero or at the end of the overhang if the beam has a free end. In the previous example,
there is no overhang, so setting dy/dx = 0 will yield the equation for x that locates
where the maximum deflection occurs. In the example there are two equations for y
where only one will yield a solution. If a = l/2, the maximum deflection would obvi-
ously occur at x = l/2 because of symmetry. However, if a < l/2, where would the
maximum deflection occur? It can be shown that as F moves toward the left support,
the maximum deflection moves toward the left support also, but not as much as F (see
Prob. 4–34). Thus, we would set dyBC/dx = 0 and solve for x. If a > l/2, then we
would set dyAB�dx = 0. For more complicated problems, plotting the equations using
numerical data is the simplest approach to finding the maximum deflection.

EXAMPLE 4–2 Consider the uniformly loaded beam with a concentrated force as shown in Fig. 4–3.
Using superposition, determine the reactions and the deflection as a function of x.

Solution Considering each load state separately, we can superpose beams 6 and 7 of Table A–9.
For the reactions we find

Answer R1 = Fb

l
+ wl

2

Answer R2 = Fa

l
+ wl

2

The loading of beam 6 is discontinuous and separate deflection equations are given
for regions AB and BC. Beam 7 loading is not discontinuous so there is only one equa-
tion. Superposition yields

Answer yAB = Fbx

6E Il
(x2 + b2 − l2) + wx

24E I
(2lx2 − x3 − l3)

Answer yBC = Fa(l − x)

6E Il
(x2 + a2 − 2lx) + wx

24E I
(2lx2 − x3 − l3)
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EXAMPLE 4–3 Consider the beam in Fig. 4–4a and determine the deflection equations using
superposition.

Solution For region AB we can superpose beams 7 and 10 of Table A–9 to obtain

Answer yAB = wx

24E I
(2lx2 − x3 − l3) + Fax

6E Il
(l2 − x2)

For region BC , how do we represent the uniform load? Considering the uniform
load only, the beam deflects as shown in Fig. 4–4b. Region BC is straight since
there is no bending moment due to w. The slope of the beam at B is θB and is
obtained by taking the derivative of y given in the table with respect to x and setting
x = l . Thus,

dy

dx
= d

dx

[
wx

24E I
(2lx2 − x3 − l3)

]
= w

24E I
(6lx2 − 4x3 − l3)

Substituting x = l gives

θB = w

24E I
(6ll2 − 4l3 − l3) = wl3

24E I

The deflection in region BC due to w is θB(x − l), and adding this to the deflection due
to F, in BC, yields

Answer yBC = wl3

24E I
(x − l) + F(x − l)

6E I
[(x − l)2 − a(3x − l)]

x

y

R1

F
w

al

B
A

C

R2

(a)

x

y

w

x
l

B �B
yBC = �B(x – l )

A
C

(b)

Figure 4–4

(a) Beam with uniformly
distributed load and overhang
force; (b) deflections due to
uniform load only.

EXAMPLE 4–4 Figure 4–5a shows a cantilever beam with an end load. Normally we model this prob-
lem by considering the left support as rigid. After testing the rigidity of the wall it was
found that the translational stiffness of the wall was kt force per unit vertical deflection,
and the rotational stiffness was kr moment per unit angular (radian) deflection (see
Fig. 4–5b). Determine the deflection equation for the beam under the load F.

Sometimes it may not be obvious that we can use superposition with the tables at
hand, as demonstrated in the next example.
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Solution Here we will superpose the modes of deflection. They are: (1) translation due to the
compression of spring kt , (2) rotation of the spring kr , and (3) the elastic deformation
of beam 1 given in Table A–9. The force in spring kt is R1 = F , giving a deflection from
Eq. (4–2) of

y1 = − F

kt
(1)

The moment in spring kr is M1 = Fl . This gives a clockwise rotation of θ = Fl/kr .
Considering this mode of deflection only, the beam rotates rigidly clockwise, leading to
a deflection equation of

y2 = − Fl

kr
x (2)

Finally, the elastic deformation of beam 1 from Table A–9 is

y3 = Fx2

6E I
(x − 3l) (3)

Adding the deflections from each mode yields

Answer y = Fx2

6E I
(x − 3l) − F

kt
− Fl

kr
x

4–6 Beam Deflections by Singularity Functions
Introduced in Sec. 3–3, singularity functions are excellent for managing discontinuities, and
their application to beam deflection is a simple extension of what was presented in the ear-
lier section. They are easy to program, and as will be seen later, they can greatly simplify
the solution of statically indeterminate problems. The following examples illustrate the use
of singularity functions to evaluate deflections of statically determinate beam problems.

x

y

R1

Fl

(a)

M1

x

kr

kt

F

(b)

R1

Figure 4–5
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EXAMPLE 4–5 Consider beam 6 of Table A–9, which is a simply supported beam having a concen-
trated load F not in the center. Develop the deflection equations using singularity
functions.

Solution First, write the load intensity equation from the free-body diagram,

q = R1〈x〉−1 − F〈x − a〉−1 + R2〈x − l〉−1 (1)

Integrating Eq. (1) twice results in

V = R1〈x〉0 − F〈x − a〉0 + R2〈x − l〉0 (2)

M = R1〈x〉1 − F〈x − a〉1 + R2〈x − l〉1 (3)

Recall that as long as the q equation is complete, integration constants are unnecessary
for V and M; therefore, they are not included up to this point. From statics, setting
V = M = 0 for x slightly greater than l yields R1 = Fb/ l and R2 = Fa/ l . Thus Eq. (3)
becomes

M = Fb

l
〈x〉1 − F〈x − a〉1 + Fa

l
〈x − l〉1

Integrating Eqs. (4–12) and (4–13) as indefinite integrals gives

E I
dy

dx
= Fb

2l
〈x〉2 − F

2
〈x − a〉2 + Fa

2l
〈x − l〉2 + C1

E I y = Fb

6l
〈x〉3 − F

6
〈x − a〉3 + Fa

6l
〈x − l〉3 + C1x + C2

Note that the first singularity term in both equations always exists, so 〈x〉2 = x2

and 〈x〉3 = x3. Also, the last singularity term in both equations does not exist until
x = l, where it is zero, and since there is no beam for x > l we can drop the last term.
Thus

E I
dy

dx
= Fb

2l
x2 − F

2
〈x − a〉2 + C1 (4)

E I y = Fb

6l
x3 − F

6
〈x − a〉3 + C1x + C2 (5)

The constants of integration C1 and C2 are evaluated by using the two boundary con-
ditions y = 0 at x = 0 and y = 0 at x = l. The first condition, substituted into Eq. (5),
gives C2 = 0 (recall that 〈0 − a〉3 = 0). The second condition, substituted into Eq. (5),
yields

0 = Fb

6l
l3 − F

6
(l − a)3 + C1l = Fbl2

6
− Fb3

6
+ C1l

Solving for C1 gives

C1 = − Fb

6l
(l2 − b2)
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Figure 4–6

x

y

R1

w

l

a

B
A

C

R2

Finally, substituting C1 and C2 in Eq. (5) and simplifying produces

y = F

6E Il
[bx(x2 + b2 − l2) − l〈x − a〉3] (6)

Comparing Eq. (6) with the two deflection equations for beam 6 in Table A–9, we note
that the use of singularity functions enables us to express the deflection equation with
a single equation.

EXAMPLE 4–6 Determine the deflection equation for the simply supported beam with the load distribu-
tion shown in Fig. 4–6.

Solution This is a good beam to add to our table for later use with superposition. The load inten-
sity equation for the beam is

q = R1〈x〉−1 − w〈x〉0 + w〈x − a〉0 + R2〈x − l〉−1 (1)

where the w〈x − a〉0 is necessary to “turn off” the uniform load at x = a.
From statics, the reactions are

R1 = wa

2l
(2l − a) R2 = wa2

2l
(2)

For simplicity, we will retain the form of Eq. (1) for integration and substitute the values
of the reactions in later.

Two integrations of Eq. (1) reveal

V = R1〈x〉0 − w〈x〉1 + w〈x − a〉1 + R2〈x − l〉0 (3)

M = R1〈x〉1 − w

2
〈x〉2 + w

2
〈x − a〉2 + R2〈x − l〉1 (4)

As in the previous example, singularity functions of order zero or greater starting at
x = 0 can be replaced by normal polynomial functions. Also, once the reactions are
determined, singularity functions starting at the extreme right end of the beam can be
omitted. Thus, Eq. (4) can be rewritten as

M = R1x − w

2
x2 + w

2
〈x − a〉2 (5)
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Deflection and Stiffness 159

Integrating two more times for slope and deflection gives

E I
dy

dx
= R1

2
x2 − w

6
x3 + w

6
〈x − a〉3 + C1 (6)

E I y = R1

6
x3 − w

24
x4 + w

24
〈x − a〉4 + C1x + C2 (7)

The boundary conditions are y = 0 at x = 0 and y = 0 at x = l. Substituting the first
condition in Eq. (7) shows C2 = 0. For the second condition

0 = R1

6
l3 − w

24
l4 + w

24
(l − a)4 + C1l

Solving for C1 and substituting into Eq. (7) yields

E I y = R1

6
x(x2 − l2) − w

24
x(x3 − l3) − w

24l
x(l − a)4 + w

24
〈x − a〉4

Finally, substitution of R1 from Eq. (2) and simplifying results gives

Answer y = w

24E Il
[2ax(2l − a)(x2 − l2) − xl(x3 − l3) − x(l − a)4 + l〈x − a〉4]

As stated earlier, singularity functions are relatively simple to program, as they are
omitted when their arguments are negative, and the 〈 〉 brackets are replaced with ( )
parentheses when the arguments are positive.

EXAMPLE 4–7 The steel step shaft shown in Fig. 4–7a is mounted in bearings at A and F. A pulley
is centered at C where a total radial force of 600 lbf is applied. Using singularity
functions evaluate the shaft displacements at 1

2 -in increments. Assume the shaft is
simply supported.

Solution The reactions are found to be R1 = 360 lbf and R2 = 240 lbf. Ignoring R2, using
singularity functions, the moment equation is

M = 360x − 600〈x − 8〉1 (1)

This is plotted in Fig. 4–7b.
For simplification, we will consider only the step at D. That is, we will assume sec-

tion AB has the same diameter as BC and section EF has the same diameter as DE.
Since these sections are short and at the supports, the size reduction will not add much
to the deformation. We will examine this simplification later. The second area moments
for BC and DE are

IBC = π

64
1.54 = 0.2485 in4 IDE = π

64
1.754 = 0.4604 in4
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A plot of M/I is shown in Fig. 4–7c. The values at points b and c, and the step change are(
M

I

)
b

= 2760

0.2485
= 11 106.6 lbf/in3

(
M

I

)
c

= 2760

0.4604
= 5 994.8 lbf/in3

�

(
M

I

)
= 5 994.8 − 11 106.6 = −5 111.8 lbf/in3

The slopes for ab and cd, and the change are

mab = 2760 − 2880

0.2485(0.5)
= −965.8 lbf/in4 mcd = −5 994.8

11.5
= −521.3 lbf/in4

�m = −521.3 − (−965.8) = 444.5 lbf/in4

Dividing Eq. (1) by IBC and, at x � 8.5 in, adding a step of −5 111.8 lbf/in3 and a ramp
of slope 444.5 lbf/in4, gives

M

I
= 1 448.7x − 2 414.5〈x − 8〉1 − 5 111.8〈x − 8.5〉0 + 444.5〈x − 8.5〉1 (2)

Integration gives

E
dy

dx
= 724.35x2 − 1207.3〈x − 8〉2 − 5 111.8〈x − 8.5〉1

+ 222.3〈x − 8.5〉2 + C1 (3)

Integrating again yields

Ey = 241.5x3 − 402.4〈x − 8〉3 − 2 555.9〈x − 8.5〉2 + 74.08〈x − 8.5〉3 + C1x + C2

(4)

At x = 0, y = 0. This gives C2 = 0 (remember, singularity functions do not exist until
the argument is positive). At x = 20 in, y = 0, and

0 = 241.5(20)3 − 402.4(20 − 8)3 − 2 555.9(20 − 8.5)2 + 74.08(20 − 8.5)3 + C1(20)

M/I

M

a b

EDCBA

R2

F
x

c

d

2880 lbf-in 2760 lbf-in

1.000
1.7501.500

0.5
8

600 lbf

1.000

8.5
19.5

20
R1

y

(a)

(b)

(c)

Figure 4–7

Dimensions in inches.
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Solving, gives C1 = −50 565 lbf/in2. Thus, Eq. (4) becomes, with E = 30(10)6 psi,

y = 1

30(106)
(241.5x3 − 402.4〈x − 8〉3 − 2 555.9〈x − 8.5〉2

+ 74.08〈x − 8.5〉3 − 50 565x)

(5)

When using a spreadsheet, program the following equations:

y = 1

30(106)
(241.5x3 − 50 565x) 0 ≤ x ≤ 8 in

y = 1

30(106)
[241.5x3 − 402.4(x − 8)3 − 50 565x] 8 ≤ x ≤ 8.5 in

y = 1

30(106)
[241.5x3 − 402.4 (x − 8)3 − 2 555.9 (x − 8.5)2

+ 74.08 (x − 8.5)3 − 50 565x] 8.5 ≤ x ≤ 20 in

The following table results.

x y x y x y x y x y

0 0.000000 4.5 �0.006851 9 �0.009335 13.5 �0.007001 18 �0.002377

0.5 �0.000842 5 �0.007421 9.5 �0.009238 14 �0.006571 18.5 �0.001790

1 �0.001677 5.5 �0.007931 10 �0.009096 14.5 �0.006116 19 �0.001197

1.5 �0.002501 6 �0.008374 10.5 �0.008909 15 �0.005636 19.5 �0.000600

2 �0.003307 6.5 �0.008745 11 �0.008682 15.5 �0.005134 20 0.000000

2.5 �0.004088 7 �0.009037 11.5 �0.008415 16 �0.004613 

3 �0.004839 7.5 �0.009245 12 �0.008112 16.5 �0.004075 

3.5 �0.005554 8 �0.009362 12.5 �0.007773 17 �0.003521

4 �0.006227 8.5 �0.009385 13 �0.007403 17.5 �0.002954

where x and y are in inches. We see that the greatest deflection is at x = 8.5 in, where
y = −0.009385 in.

Substituting C1 into Eq. (3) the slopes at the supports are found to be θA = 1.686(10−3)
rad = 0.09657 deg, and θF = 1.198(10−3) rad = 0.06864 deg. You might think these to
be insignificant deflections, but as you will see in Chap. 7, on shafts, they are not.

A finite-element analysis was performed for the same model and resulted in

y|x=8.5 in = −0.009380 in θA = −0.09653◦ θF = 0.06868◦

Virtually the same answer save some round-off error in the equations.
If the steps of the bearings were incorporated into the model, more equations result,

but the process is the same. The solution to this model is

y|x=8.5 in = −0.009387 in θA = −0.09763◦ θF = 0.06973◦

The largest difference between the models is of the order of 1.5 percent. Thus the sim-
plification was justified.
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In Sec. 4–9, we will demonstrate the usefulness of singularity functions in solving
statically indeterminate problems.

4–7 Strain Energy
The external work done on an elastic member in deforming it is transformed into strain,
or potential, energy. If the member is deformed a distance y, and if the force-deflection
relationship is linear, this energy is equal to the product of the average force and the
deflection, or

U = F

2
y = F2

2k
(4–15)

This equation is general in the sense that the force F can also mean torque, or moment,
provided, of course, that consistent units are used for k. By substituting appropriate
expressions for k, strain-energy formulas for various simple loadings may be obtained.
For tension and compression, for example, we employ Eq. (4–4) and obtain

U = F2l

2AE
(4–16)

or

U =
∫

F2

2AE
dx

tension and compression

(4–17)

where the first equation applies when all the terms are constant throughout the length,
and the more general integral equation allows for any of the terms to vary through the
length.

Similarly, from Eq. (4–7), the strain energy for torsion is given by

U = T 2l

2G J
(4–18)

or

U =
∫

T 2

2G J
dx

torsion

(4–19)

To obtain an expression for the strain energy due to direct shear, consider the element
with one side fixed in Fig. 4–8a. The force F places the element in pure shear, and the
work done is U = Fδ/2. Since the shear strain is γ = δ/ l = τ/G = F/AG, we have

U = F2l

2AG
(4–20)

or

U =
∫

F2

2AG
dx

direct shear

(4–21)

dx

A

O

B
ds

d�
�

(a) Pure shear element (b) Beam bending element

F

F

F

�

�

l

Figure 4–8

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎬
⎪
⎭
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The strain energy stored in a beam or lever by bending may be obtained by refer-
ring to Fig. 4–8b. Here AB is a section of the elastic curve of length ds having a radius
of curvature ρ. The strain energy stored in this element of the beam is dU = (M/2)dθ.

Since ρ dθ = ds , we have

dU = M ds

2ρ
(a)

We can eliminate ρ by using Eq. (4–8), ρ = E I/M . Thus

dU = M2 ds

2E I
(b)

For small deflections, ds
.= dx . Then, for the entire beam

U =
∫

dU =
∫

M2

2E I
dx (c)

The integral equation is commonly needed for bending, where the moment is typically
a function of x. Summarized to include both the integral and nonintegral form, the strain
energy for bending is

U = M2l

2E I
(4–22)

or

U =
∫

M2

2E I
dx

bending

(4–23)

Equations (4–22) and (4–23) are exact only when a beam is subject to pure bend-
ing. Even when transverse shear is present, these equations continue to give quite good
results, except for very short beams. The strain energy due to shear loading of a beam
is a complicated problem. An approximate solution can be obtained by using Eq. (4–20)
with a correction factor whose value depends upon the shape of the cross section. If we
use C for the correction factor and V for the shear force, then the strain energy due to
shear in bending is

U = CV 2l

2AG
(4–24)

or

U =
∫

CV 2

2AG
dx

transverse shear

(4–25)

Values of the factor C are listed in Table 4–1.

Table 4–1

Strain-Energy Correction

Factors for Transverse

Shear

Source: Richard G. Budynas,
Advanced Strength and Applied
Stress Analysis, 2nd ed.,
McGraw-Hill, New York, 1999. 
Copyright © 1999 The
McGraw-Hill Companies.

Beam Cross-Sectional Shape Factor C

Rectangular 1.2

Circular 1.11

Thin-walled tubular, round 2.00

Box sections† 1.00

Structural sections† 1.00

†Use area of web only.

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎬
⎪
⎭
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EXAMPLE 4–8 A cantilever beam with a round cross section has a concentrated load F at the end, as
shown in Fig. 4–9a. Find the strain energy in the beam.

Solution To determine what forms of strain energy are involved with the deflection of the beam, we
break into the beam and draw a free-body diagram to see the forces and moments being
carried within the beam. Figure 4–9b shows such a diagram in which the transverse shear
is V = −F , and the bending moment is M = −Fx . The variable x is simply a variable of
integration and can be defined to be measured from any convenient point. The same results
will be obtained from a free-body diagram of the right-hand portion of the beam with x
measured from the wall. Using the free end of the beam usually results in reduced effort
since the ground reaction forces do not need to be determined.

For the transverse shear, using Eq. (4–24) with the correction factor C = 1.11 from
Table 4–2, and noting that V is constant through the length of the beam,

Ushear = CV 2l

2AG
= 1.11F2l

2AG

For the bending, since M is a function of x, Eq. (4–23) gives

Ubend =
∫

M2dx

2E I
= 1

2E I

∫ l

0
(−Fx)2dx = F2l3

6E I

The total strain energy is

Answer U = Ubend + Ushear = F2l3

6E I
+ 1.11F2l

2AG

Note, except for very short beams, the shear term (of order l) is typically small com-
pared to the bending term (of order l3). This will be demonstrated in the next example.

ymax

F

l

(a)

Figure 4–9 F

M

V

x

(b)

4–8 Castigliano’s Theorem
A most unusual, powerful, and often surprisingly simple approach to deflection analysis
is afforded by an energy method called Castigliano’s theorem. It is a unique way of ana-
lyzing deflections and is even useful for finding the reactions of indeterminate structures.
Castigliano’s theorem states that when forces act on elastic systems subject to small dis-
placements, the displacement corresponding to any force, in the direction of the force, is
equal to the partial derivative of the total strain energy with respect to that force. The
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Deflection and Stiffness 165

terms force and displacement in this statement are broadly interpreted to apply equally
to moments and angular displacements. Mathematically, the theorem of Castigliano is

δi = ∂U

∂ Fi
(4–26)

where δi is the displacement of the point of application of the force Fi in the direction
of Fi . For rotational displacement Eq. (4–26) can be written as

θi = ∂U

∂Mi
(4–27)

where θi is the rotational displacement, in radians, of the beam where the moment
Mi exists and in the direction of Mi .

As an example, apply Castigliano’s theorem using Eqs. (4–16) and (4–18) to get
the axial and torsional deflections. The results are

δ = ∂

∂ F

(
F2l

2AE

)
= Fl

AE
(a)

θ = ∂

∂T

(
T 2l

2G J

)
= T l

G J
(b)

Compare Eqs. (a) and (b) with Eqs. (4–3) and (4–5).

EXAMPLE 4–9 The cantilever of Ex. 4–8 is a carbon steel bar 10 in long with a 1-in diameter and is
loaded by a force F = 100 lbf.
(a) Find the maximum deflection using Castigliano’s theorem, including that due to shear.
(b) What error is introduced if shear is neglected?

Solution (a) From Ex. 4–8, the total energy of the beam is

U = F2l3

6E I
+ 1.11F2l

2AG
(1)

Then, according to Castigliano’s theorem, the deflection of the end is

ymax = ∂U

∂ F
= Fl3

3E I
+ 1.11Fl

AG
(2)

We also find that

I = πd4

64
= π(1)4

64
= 0.0491 in4

A = πd2

4
= π(1)2

4
= 0.7854 in2

Substituting these values, together with F = 100 lbf, l = 10 in, E = 30 Mpsi, and
G = 11.5 Mpsi, in Eq. (3) gives

Answer ymax = 0.022 63 + 0.000 12 = 0.022 75 in

Note that the result is positive because it is in the same direction as the force F.

Answer (b) The error in neglecting shear for this problem is (0.02275 − 0.02263)/0.02275 =
0.0053 = 0.53 percent.
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The relative contribution of transverse shear to beam deflection decreases as the
length-to-height ratio of the beam increases, and is generally considered negligible for
l/d > 10. Note that the deflection equations for the beams in Table A–9 do not include
the effects of transverse shear.

Castigliano’s theorem can be used to find the deflection at a point even though no
force or moment acts there. The procedure is:

1 Set up the equation for the total strain energy U by including the energy due to a
fictitious force or moment Q acting at the point whose deflection is to be found.

2 Find an expression for the desired deflection δ, in the direction of Q, by taking the
derivative of the total strain energy with respect to Q.

3 Since Q is a fictitious force, solve the expression obtained in step 2 by setting Q
equal to zero. Thus, the displacement at the point of application of the fictitious
force Q is 

δ = ∂U

∂ Q

∣∣∣∣
Q=0

(4–28)

In cases where integration is necessary to obtain the strain energy, it is more effi-
cient to obtain the deflection directly without explicitly finding the strain energy, by
moving the partial derivative inside the integral. For the example of the bending case,

δi = ∂U

∂ Fi
= ∂

∂ Fi

(∫
M2

2E I
dx

)
=

∫
∂

∂ Fi

(
M2

2E I

)
dx =

∫ 2M
∂M

∂ Fi

2E I
dx

=
∫

1

E I

(
M

∂M

∂ Fi

)
dx

This allows the derivative to be taken before integration, simplifying the mathematics.
This method is especially helpful if the force is a fictitious force Q, since it can be set
to zero as soon as the derivative is taken. The expressions for the common cases in
Eqs. (4–17), (4–19), and (4–23) are rewritten as

δi = ∂U

∂ Fi
=

∫
1

AE

(
F

∂ F

∂ Fi

)
dx tension and compression (4–29)

θi = ∂U

∂Mi
=

∫
1

G J

(
T

∂T

∂Mi

)
dx torsion (4–30)

δi = ∂U

∂ Fi
=

∫
1

E I

(
M

∂M

∂ Fi

)
dx bending (4–31)

EXAMPLE 4–10 Using Castigliano’s method, determine the deflections of points A and B due to the
force F applied at the end of the step shaft shown in Fig. 4–10. The second area
moments for sections AB and BC are I1 and 2I1, respectively.

Solution To avoid the need to determine the ground reaction forces, define the origin of x at the
left end of the beam as shown. For 0 ≤ x ≤ l , the bending moment is

M = −Fx (1)
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Since F is at A and in the direction of the desired deflection, the deflection at A from
Eq. (4–31) is

δA = ∂U

∂ F
=

∫ l

0

1

E I

(
M

∂M

∂ F

)
dx (2)

Substituting Eq. (1) into Eq. (2), noting that I = I1 for 0 ≤ x ≤ l/2, and I = 2I1 for
l/2 ≤ x ≤ l, we get

Answer

δA = 1

E

[∫ l/2

0

1

I1
(−Fx) (−x) dx +

∫ l

l/2

1

2I1
(−Fx) (−x) dx

]

= 1

E

[
Fl3

24I1
+ 7Fl3

48I1

]
= 3

16

Fl3

E I1

which is positive, as it is in the direction of F.
For B, a fictitious force Q is necessary at the point. Assuming Q acts down at B,

and x is as before, the moment equation is

M = −Fx 0 ≤ x ≤ l/2

M = −Fx − Q

(
x − l

2

)
l/2 ≤ x ≤ l

(3)

For Eq. (4–31), we need ∂M/∂ Q. From Eq. (3),

∂M

∂ Q
= 0 0 ≤ x ≤ l/2

∂M

∂ Q
= −

(
x − l

2

)
l/2 ≤ x ≤ l

(4)

Once the derivative is taken, Q can be set to zero, so Eq. (4–31) becomes

δB =
[∫ l

0

1

E I

(
M

∂M

∂ Q

)
dx

]
Q=0

= 1

E I1

∫ l/2

0
(−Fx)(0)dx + 1

E(2I1)

∫ l

l/2
(−Fx)

[
−

(
x − l

2

)]
dx

Evaluating the last integral gives

Answer δB = F

2E I1

(
x3

3
− lx2

4

) ∣∣∣∣∣
l

l/2

= 5

96

Fl3

E I1

which again is positive, in the direction of Q.

F

A B C

l/2l/2

I1 2I1

Q

x

yFigure 4–10
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EXAMPLE 4–11 For the wire form of diameter d shown in Fig. 4–11a, determine the deflection of
point B in the direction of the applied force F (neglect the effect of transverse shear).

Solution Figure 4–11b shows free body diagrams where the body has been broken in each section,
and internal balancing forces and moments are shown. The sign convention for the force
and moment variables is positive in the directions shown. With energy methods, sign
conventions are arbitrary, so use a convenient one. In each section, the variable x is
defined with its origin as shown. The variable x is used as a variable of integration for
each section independently, so it is acceptable to reuse the same variable for each sec-
tion. For completeness, the transverse shear forces are included, but the effects of trans-
verse shear on the strain energy (and deflection) will be neglected.

Element BC is in bending only so from Eq. (4–31),5

∂UBC

∂ F
= 1

E I

∫ a

0
(Fx)(x) dx = Fa3

3E I
(1)

Element C D is in bending and in torsion. The torsion is constant so Eq. (4–30) can be
written as

∂U

∂ Fi
=

(
T

∂T

∂ Fi

)
l

G J

168 Mechanical Engineering Design

5It is very tempting to mix techniques and try to use superposition also, for example. However, some subtle
things can occur that you may visually miss. It is highly recommended that if you are using Castigliano’s
theorem on a problem, you use it for all parts of the problem.

Figure 4–11

B

G

F

a
C b

c

D

(a)

MBC = Fx
VBC = F

MCD = Fx

MDG1 = Fa

MDG2 = Fb

VCD = F

TCD = Fa
B B B

C

F F F

F

x
a

x

a

x

b
C

D

(b)
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Deflection and Stiffness 169

where l is the length of the member. So for the torsion in member CD, Fi = F, T = Fa,

and l = b. Thus, (
∂UCD

∂ F

)
torsion

= (Fa)(a)
b

G J
= Fa2b

G J
(2)

For the bending in CD,(
∂UCD

∂ F

)
bending

= 1

E I

∫ b

0
(Fx)(x) dx = Fb3

3E I
(3)

Member DG is axially loaded and is bending in two planes. The axial loading is
constant, so Eq. (4–29) can be written as

∂U

∂ Fi
=

(
F

∂ F

∂ Fi

)
l

AE

where l is the length of the member. Thus, for the axial loading of DG , Fi = F, l = c,
and (

∂UDG

∂ F

)
axial

= Fc

AE
(4)

The bending moments in each plane of DG are constant along the length, with
MDG2 = Fb and MDG1 = Fa. Considering each one separately in the form of
Eq. (4–31) gives(

∂UDG

∂ F

)
bending

= 1

E I

∫ c

0
(Fb)(b) dx + 1

E I

∫ c

0
(Fa)(a) dx (5)

= Fc(a2 + b2)

E I

Adding Eqs. (1) to (5), noting that I = πd4/64, J = 2I, A = πd2/4, and G =
E/[2(1 + ν)], we find that the deflection of B in the direction of F is

Answer (δB)F = 4F

3π Ed4
[16(a3 + b3) + 48c(a2 + b2) + 48(1 + ν)a2b + 3cd2]

Now that we have completed the solution, see if you can physically account for each
term in the result using an independent method such as superposition.

4–9 Deflection of Curved Members
Machine frames, springs, clips, fasteners, and the like frequently occur as curved
shapes. The determination of stresses in curved members has already been described in
Sec. 3–18. Castigliano’s theorem is particularly useful for the analysis of deflections in
curved parts too.6 Consider, for example, the curved frame of Fig. 4–12a. We are

6For more solutions than are included here, see Joseph E. Shigley, “Curved Beams and Rings,” Chap. 38 in
Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine
Design, 3rd ed., McGraw-Hill, New York, 2004.
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170 Mechanical Engineering Design

interested in finding the deflection of the frame due to F and in the direction of F . The
total strain energy consists of four terms, and we shall consider each separately. The
first is due to the bending moment and is7

U1 =
∫

M2 dθ

2AeE
(4–32)

In this equation, the eccentricity e is

e = R − rn (4–33)

where rn is the radius of the neutral axis as defined in Sec. 3–18 and shown in Fig. 3–34.
The strain energy component due to the normal force Fθ consists of two parts, one

of which is axial and analogous to Eq. (4–17). This part is

U2 =
∫

F2
θ R dθ

2AE
(4–34)

The force Fθ also produces a moment, which opposes the moment M in Fig. 4–12b. The
resulting strain energy will be subtractive and is

U3 = −
∫

M Fθ dθ

AE
(4–35)

The negative sign of Eq. (4–35) can be appreciated by referring to both parts of
Fig. 4–12. Note that the moment M tends to decrease the angle dθ . On the other hand,
the moment due to Fθ tends to increase dθ . Thus U3 is negative. If Fθ had been acting
in the opposite direction, then both M and Fθ would tend to decrease the angle dθ .

The fourth and last term is the transverse shear energy due to Fr . Adapting
Eq. (4–25) gives

U4 =
∫

C F2
r R dθ

2AG
(4–36)

where C is the correction factor of Table 4–1.

Figure 4–12

(a) Curved bar loaded by force F. R = radius to centroidal axis of section;
h = section thickness. (b) Diagram showing forces acting on section taken at
angle θ. Fr = V = shear component of F; Fθ is component of F normal to
section; M is moment caused by force F.

� F�

Fr

F
M

d�

(a)

F

R
h

�

(b)

7See Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., Sec. 6.7, McGraw-Hill,
New York, 1999.

bud29281_ch04_147-211.qxd  11/27/09  2:55PM  Page 170 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Deflection and Stiffness 171

Combining the four terms gives the total strain energy

U =
∫

M2 dθ

2AeE
+

∫
F2

θ R dθ

2AE
−

∫
M Fθ dθ

AE
+

∫
C F2

r R dθ

2AG
(4–37)

The deflection produced by the force F can now be found. It is

δ = ∂U

∂ F
=

∫
M

AeE

(
∂M

∂ F

)
dθ +

∫
Fθ R

AE

(
∂ Fθ

∂ F

)
dθ

−
∫

1

AE

∂(M Fθ )

∂ F
dθ +

∫
C Fr R

AG

(
∂ Fr

∂ F

)
dθ (4–38)

This equation is general and may be applied to any section of a thick-walled circular
curved beam with application of appropriate limits of integration.

For the specific curved beam in Fig. 4–12b, the integrals are evaluated from 0 to π.

Also, for this case we find

M = F R sin θ
∂M

∂ F
= R sin θ

Fθ = F sin θ
∂ Fθ

∂ F
= sin θ

MFθ = F2 R sin2 θ
∂(M Fθ )

∂ F
= 2F R sin2 θ

Fr = F cos θ
∂ Fr

∂ F
= cos θ

Substituting these into Eq. (4–38) and factoring yields

δ = F R2

AeE

∫ π

0
sin2 θ dθ + F R

AE

∫ π

0
sin2 θ dθ − 2F R

AE

∫ π

0
sin2 θ dθ

+ C F R

AG

∫ π

0
cos2 θ dθ

= π F R2

2AeE
+ π F R

2AE
− π F R

AE
+ πC F R

2AG
= π F R2

2AeE
− π F R

2AE
+ πC F R

2AG
(4–39)

Because the first term contains the square of the radius, the second two terms will be
small if the frame has a large radius.

For curved sections in which the radius is significantly larger than the thickness, say
R/h > 10, the effect of the eccentricity is negligible, so that the strain energies can be
approximated directly from Eqs. (4–17), (4–23), and (4–25) with a substitution of R dθ

for dx. Further, as R increases, the contributions to deflection from the normal force
and tangential force becomes negligibly small compared to the bending component.
Therefore, an approximate result can be obtained for a thin circular curved member as

U
.=

∫
M2

2E I
R dθ R/h > 10 (4–40)

δ = ∂U

∂ F
.=

∫
1

E I

(
M

∂M

∂ F

)
R dθ R/h > 10 (4–41)
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EXAMPLE 4–12 The cantilevered hook shown in Fig. 4–13a is formed from a round steel wire with a
diameter of 2 mm. The hook dimensions are l = 40 and R = 50 mm. A force P of 1 N
is applied at point C. Use Castigliano’s theorem to estimate the deflection at point D at
the tip.

Solution Since l/d and R/d are significantly greater than 10, only the contributions due
to bending will be considered. To obtain the vertical deflection at D, a fictitious
force Q will be applied there. Free-body diagrams are shown in Figs. 4–13b, c, and
d, with breaks in sections AB, BC, and CD, respectively. The normal and shear
forces, N and V respectively, are shown but are considered negligible in the deflec-
tion analysis.

For section AB, with the variable of integration x defined as shown in Fig. 4–13b,
summing moments about the break gives an equation for the moment in section AB,

MAB = P(R + x) + Q(2R + x) (1)

∂MAB/∂ Q = 2R + x (2)

Since the derivative with respect to Q has been taken, we can set Q equal to zero. From
Eq. (4–31), inserting Eqs. (1) and (2),

(δD)AB =
∫ l

0

1

E I

(
MAB

∂MAB

∂ Q

)
dx = 1

E I

∫ l

0
P(R + x)(2R + x)dx

= P

E I

∫ l

0
(2R2 + 3Rx + x2)dx = P

E I
(2R2l + 3

2
l2 R + 1

3
l3)

(3)

Figure 4–13

�

l

x

A B
D

C

R

P P

C C

B

Q Q

D D

Q

D

MAB NBC
VBC

MBC

VCD

NCD
MCD

VAB

P

R R
�

(a)

(c) (d)(b)
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For section BC, with the variable of integration θ defined as shown in Fig. 4–13c, sum-
ming moments about the break gives the moment equation for section BC.

MBC = Q(R + R sin θ ) + PR sin θ (4)

∂MBC/∂ Q = R(1 + sin θ) (5)

From Eq. (4–41), inserting Eqs. (4) and (5) and setting Q = 0, we get 

(δD)BC =
∫ π/2

0

1

E I

(
MBC

∂MBC

∂ Q

)
R dθ = R

E I

∫ π/2

0
(PR sin θ)[R(1 + sin θ)] dx

= P R3

E I

(
1 + π

4

) (6)

Noting that the break in section CD contains nothing but Q, and after setting Q = 0, we
can conclude that there is no actual strain energy contribution in this section.
Combining terms from Eqs. (3) and (6) to get the total vertical deflection at D,

δD = (δD)AB + (δD)BC = P

E I
(2R2l + 3

2
l2 R + 1

3
l3) + P R3

E I

(
1 + π

4

)
= P

E I
(1.785R3 + 2R2l + 1.5 Rl2 + 0.333l3)

(7)

Substituting values, and noting I = πd4/64, and E = 207 GPa for steel, we get

Answer δD = 1

207(109)[π(0.0024)/64]
[1.785(0.053) + 2(0.052)0.04

+ 1.5(0.05)0.042 + 0.333(0.043)]

= 3.47(10−3) m = 3.47 mm

EXAMPLE 4–13 Deflection in a Variable-Cross-Section Punch-Press Frame

The general result expressed in Eq. (4–39),

δ = π F R2

2AeE
− π F R

2AE
+ πC F R

2AG

is useful in sections that are uniform and in which the centroidal locus is circular. The
bending moment is largest where the material is farthest from the load axis.
Strengthening requires a larger second area moment I. A variable-depth cross section is
attractive, but it makes the integration to a closed form very difficult. However, if you
are seeking results, numerical integration with computer assistance is helpful.

Consider the steel C frame depicted in Fig. 4–14a in which the centroidal radius is
32 in, the cross section at the ends is 2 in × 2 in, and the depth varies sinusoidally with

bud29281_ch04_147-211.qxd  11/27/2009  8:14 pm  Page 173 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



174 Mechanical Engineering Design

Figure 4–14

(a) A steel punch press has a 
C frame with a varying-depth
rectangular cross section
depicted. The cross section
varies sinusoidally from
2 in × 2 in at θ = 0◦ to
2 in × 6 in at θ = 90◦, and
back to 2 in × 2 in at θ = 180◦.
Of immediate interest to the
designer is the deflection in the
load axis direction under the
load. (b) Finite-element model. 

�

1000 lbf

1000 lbf32- in R

(a) (b)

1000 lbf

an amplitude of 2 in. The load is 1000 lbf. It follows that C = 1.2, G = 11.5(106) psi,
E = 30(106) psi. The outer and inner radii are

Rout = 33 + 2 sin θ Rin = 31 − 2 sin θ

The remaining geometrical terms are

h = Rout − Rin = 2(1 + 2 sin θ) -

A = bh = 4(1 + 2 sin θ)

rn = h

ln(Rout/Rin)
= 2(1 + 2 sin θ)

ln[(33 + 2 sin θ)/(31 − 2 sin θ)]
1

e = R − rn = 32 − rn

Note that
M = F R sin θ ∂M/∂F = R sin θ

Fθ = F sin θ ∂ Fθ /∂F = sin θ

M Fθ = F2 R sin2 θ ∂M Fθ /∂F = 2F R sin2 θ

Fr = F cos θ ∂ Fr/∂F = cos θ

Substitution of the terms into Eq. (4–38) yields three integrals

δ = I1 + I2 + I3 (1)
where the integrals are

I1 = 8.5333(10−3)

∫ π

0

sin2 θ dθ

(1 + 2 sin θ)

⎡⎢⎢⎣32 − 2(1 + 2 sin θ)

ln

(
33 + 2 sin θ

31 − 2 sin θ

)
⎤⎥⎥⎦

(2)

I2 = −2.6667(10−4)

∫ π

0

sin2 θ dθ

1 + 2 sin θ
(3)

I3 = 8.3478(10−4)

∫ π

0

cos2 θ dθ

1 + 2 sin θ
(4)
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The integrals may be evaluated in a number of ways: by a program using Simpson’s
rule integration,8 by a program using a spreadsheet, or by mathematics software. Using
MathCad and checking the results with Excel gives the integrals as I1 = 0.076 615,

I2 = −0.000 159, and I3 = 0.000 773. Substituting these into Eq. (1) gives

Answer δ = 0.077 23 in

Finite-element (FE) programs are also very accessible. Figure 4–14b shows a
simple half-model, using symmetry, of the press consisting of 216 plane-stress (2-D)
elements. Creating the model and analyzing it to obtain a solution took minutes.
Doubling the results from the FE analysis yielded δ = 0.07790 in, a less than 1 percent
variation from the results of the numerical integration.

4–10 Statically Indeterminate Problems
A system is overconstrained when it has more unknown support (reaction) forces and/or
moments than static equilibrium equations. Such a system is said to be statically indeter-
minate and the extra constraint supports are called redundant supports. In addition to the
static equilibrium equations, a deflection equation is required for each redundant support
reaction in order to obtain a solution. For example, consider a beam in bending with a wall
support on one end and a simple support on the other, such as beam 12 of Table A–9.
There are three support reactions and only two static equilibrium equations are available.
This beam has one redundant support. To solve for the three unknown support reactions
we use the two equilibrium equations and one additional deflection equation. For another
example, consider beam 15 of Table A–9. This beam has a wall on both ends, giving rise
to two redundant supports requiring two deflection equations in addition to the equations
from statics. The purpose of redundant supports is to provide safety and reduce deflection.

A simple example of a statically indeterminate problem is furnished by the nested
helical springs in Fig. 4–15a. When this assembly is loaded by the compressive force F,
it deforms through the distance δ. What is the compressive force in each spring?

Only one equation of static equilibrium can be written. It is∑
F = F − F1 − F2 = 0 (a)

which simply says that the total force F is resisted by a force F1 in spring 1 plus the
force F2 in spring 2. Since there are two unknowns and only one static equilibrium
equation, the system is statically indeterminate.

To write another equation, note the deformation relation in Fig. 4–15b. The two
springs have the same deformation. Thus, we obtain the second equation as

δ1 = δ2 = δ (b)

If we now substitute Eq. (4–2) in Eq. (b), we have

F1

k1
= F2

k2
(c)

8See Case Study 4, p. 203, J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed.,
McGraw-Hill, New York, 2001.
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Now we solve Eq. (c) for F1 and substitute the result in Eq. (a). This gives

F − k1

k2
F2 − F2 = 0 or F2 = k2 F

k1 + k2
(d)

Substituting F2 into Eq. (c) gives F1 = k1 F/(k1 + k2) and so δ = δ1 = δ2 =
F/(k1 + k2) . Thus, for two springs in parallel, the overall spring constant is
k = F/δ = k1 + k2 .

In the spring example, obtaining the necessary deformation equation was very
straightforward. However, for other situations, the deformation relations may not be as
easy. A more structured approach may be necessary. Here we will show two basic pro-
cedures for general statically indeterminate problems.

Procedure 1

1 Choose the redundant reaction(s). There may be alternative choices (See Ex-
ample 4–14).

2 Write the equations of static equilibrium for the remaining reactions in terms of the
applied loads and the redundant reaction(s) of step 1.

3 Write the deflection equation(s) for the point(s) at the locations of the
redundant reaction(s) of step 1 in terms of the applied loads and the redundant
reaction(s) of step 1. Normally the deflection(s) is (are) zero. If a redundant
reaction is a moment, the corresponding deflection equation is a rotational
deflection equation.

4 The equations from steps 2 and 3 can now be solved to determine the reactions.

In step 3 the deflection equations can be solved in any of the standard ways. Here
we will demonstrate the use of superposition and Castigliano’s theorem on a beam
problem.

Figure 4–15

(a)

(b)

k1 k2

F1 F2

F

k2
k1

�

�
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EXAMPLE 4–14 The indeterminate beam 11 of Appendix Table A–9 is reproduced in Fig. 4–16.
Determine the reactions using procedure 1.

Solution The reactions are shown in Fig. 4–16b. Without R2 the beam is a statically determinate
cantilever beam. Without M1 the beam is a statically determinate simply supported
beam. In either case, the beam has only one redundant support. We will first solve this
problem using superposition, choosing R2 as the redundant reaction. For the second
solution, we will use Castigliano’s theorem with M1 as the redundant reaction.

Solution 1 1 Choose R2 at B to be the redundant reaction.
2 Using static equilibrium equations solve for R1 and M1 in terms of F and R2. This

results in

R1 = F − R2 M1 = Fl

2
− R2l (1)

3 Write the deflection equation for point B in terms of F and R2. Using superposition
of beam 1 of Table A–9 with F = −R2, and beam 2 of Table A–9 with a = l/2,

the deflection of B, at x = l, is

δB = − R2l2

6E I
(l − 3l) + F(l/2)2

6E I

(
l

2
− 3l

)
= R2l3

3E I
− 5Fl3

48E I
= 0 (2)

4 Equation (2) can be solved for R2 directly. This yields

Answer R2 = 5F

16
(3)

Next, substituting R2 into Eqs. (1) completes the solution, giving

Answer R1 = 11F

16
M1 = 3Fl

16
(4)

Note that the solution agrees with what is given for beam 11 in Table A–9.

Solution 2 1 Choose M1 at O to be the redundant reaction.
2 Using static equilibrium equations solve for R1 and R2 in terms of F and M1. This

results in 

R1 = F

2
+ M1

l
R2 = F

2
− M1

l
(5)

Figure 4–16
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178 Mechanical Engineering Design

3 Since M1 is the redundant reaction at O, write the equation for the angular
deflection at point O. From Castigliano’s theorem this is

θO = ∂U

∂M1
(6)

We can apply Eq. (4–31), using the variable x as shown in Fig. 4–16b. However, sim-
pler terms can be found by using a variable x̂ that starts at B and is positive to the left.
With this and the expression for R2 from Eq. (5) the moment equations are

M =
(

F

2
− M1

l

)
x̂ 0 ≤ x̂ ≤ l

2
(7)

M =
(

F

2
− M1

l

)
x̂ − F

(
x̂ − l

2

)
l

2
≤ x̂ ≤ l (8)

For both equations

∂M

∂M1
= − x̂

l
(9)

Substituting Eqs. (7) to (9) in Eq. (6), using the form of Eq. (4–31) where Fi = M1, gives

θO = ∂U

∂M1
= 1

E I

{∫ l/2

0

(
F

2
− M1

l

)
x̂

(
− x̂

l

)
dx̂ +

∫ l

l/2

[(
F

2
− M1

l

)
x̂

− F

(
x̂ − l

2

)](
− x̂

l

)
dx̂

}
= 0

Canceling 1/E Il, and combining the first two integrals, simplifies this quite readily to(
F

2
− M1

l

)∫ l

0
x̂2 dx̂− F

∫ l

l/2

(
x̂ − l

2

)
x̂ d x̂ = 0

Integrating gives(
F

2
− M1

l

)
l3

3
− F

3

[
l3 −

(
l

2

)3]
+ Fl

4

[
l2 −

(
l

2

)2]
= 0

which reduces to

M1 = 3Fl

16
(10)

4 Substituting Eq. (10) into (5) results in

R1 = 11F

16
R2 = 5F

16
(11)

which again agrees with beam 11 of Table A–9.
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For some problems even procedure 1 can be a task. Procedure 2 eliminates some
tricky geometric problems that would complicate procedure 1. We will describe the pro-
cedure for a beam problem.

Procedure 2

1 Write the equations of static equilibrium for the beam in terms of the applied loads
and unknown restraint reactions.

2 Write the deflection equation for the beam in terms of the applied loads and unknown
restraint reactions.

3 Apply boundary conditions to the deflection equation of step 2 consistent with the
restraints.

4 Solve the equations from steps 1 and 3.

EXAMPLE 4–15 The rods AD and C E shown in Fig. 4–17a each have a diameter of 10 mm. The second-
area moment of beam ABC is I = 62.5(103) mm4. The modulus of elasticity of the
material used for the rods and beam is E = 200 GPa. The threads at the ends of the rods
are single-threaded with a pitch of 1.5 mm. The nuts are first snugly fit with bar ABC
horizontal. Next the nut at A is tightened one full turn. Determine the resulting tension
in each rod and the deflections of points A and C.

Solution There is a lot going on in this problem; a rod shortens, the rods stretch in tension, and
the beam bends. Let’s try the procedure!

1 The free-body diagram of the beam is shown in Fig. 4–17b. Summing forces, and
moments about B, gives

FB − FA − FC = 0 (1)

4FA − 3FC = 0 (2)

2 Using singularity functions, we find the moment equation for the beam is

M = −FAx + FB 〈x − 0.2〉1

where x is in meters. Integration yields

E I
dy

dx
= − FA

2
x2 + FB

2
〈x − 0.2〉2 + C1

E I y = − FA

6
x3 + FB

6
〈x − 0.2〉3 + C1x + C2 (3)

The term E I = 200(109) 62.5(10−9) = 1.25(104) N · m2 .

B CA

D

E

150200

600
800

(a)

B CA

FB

FCFA 150200

x

(b) Free-body diagram of beam ABC

Figure 4–17

Dimensions in mm.
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180 Mechanical Engineering Design

3 The upward deflection of point A is (Fl/AE)AD − N p, where the first term is the
elastic stretch of AD, N is the number of turns of the nut, and p is the pitch of the
thread. Thus, the deflection of A in meters is

yA = FA(0.6)
π

4
(0.010)2(200)(109)

− (1)(0.0015)

= 3.8197(10−8)FA − 1.5(10−3)

(4)

The upward deflection of point C is (Fl/AE)C E , or

yC = FC(0.8)
π

4
(0.010)2(200)(109)

= 5.093(10−8)FC (5)

Equations (4) and (5) will now serve as the boundary conditions for Eq. (3). At
x = 0, y = yA. Substituting Eq. (4) into (3) with x = 0 and E I = 1.25(104), noting
that the singularity function is zero for x = 0, gives

−4.7746(10−4)FA + C2 = −18.75 (6)

At x = 0.2 m, y = 0, and Eq. (3) yields

−1.3333(10−3)FA + 0.2C1 + C2 = 0 (7)

At x = 0.35 m, y = yC . Substituting Eq. (5) into (3) with x = 0.35 m and E I =
1.25(104) gives

−7.1458(10−3)FA + 5.625(10−4)FB − 6.3662(10−4)FC + 0.35C1 + C2 = 0 (8)

Equations (1), (2), (6), (7), and (8) are five equations in FA, FB, FC , C1, and C2.

Written in matrix form, they are⎡⎢⎢⎢⎣
−1 1 −1 0 0

4 0 −3 0 0
−4.7746(10−4) 0 0 0 1
−1.3333(10−3) 0 0 0.2 1
−7.1458(10−3) 5.625(10−4) −6.3662(10−4) 0.35 1

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FA

FB

FC

C1

C2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0
0

−18.75
0
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Solving these equations yields

Answer FA = 2988 N FB = 6971 N FC = 3983 N

C1 = 106.54 N · m2 C2 = −17.324 N · m3

Equation (3) can be reduced to

y = −(39.84x3 − 92.95〈x − 0.2〉3 − 8.523x + 1.386)(10−3)

Answer At x = 0, y = yA = −1.386(10−3) m = −1.386 mm.

Answer At x = 0.35 m, y = yC = −[39.84(0.35)3 − 92.95(0.35 − 0.2)3 − 8.523(0.35)

+ 1.386](10−3) = 0.203(10−3) m = 0.203 mm
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Note that we could have easily incorporated the stiffness of the support at B if we
were given a spring constant.

4–11 Compression Members—General
The analysis and design of compression members can differ significantly from that of
members loaded in tension or in torsion. If you were to take a long rod or pole, such as
a meterstick, and apply gradually increasing compressive forces at each end, nothing
would happen at first, but then the stick would bend (buckle), and finally bend so much
as to fracture. Try it. The other extreme would occur if you were to saw off, say, a 5-mm
length of the meterstick and perform the same experiment on the short piece. You would
then observe that the failure exhibits itself as a mashing of the specimen, that is, a
simple compressive failure. For these reasons it is convenient to classify compression
members according to their length and according to whether the loading is central or
eccentric. The term column is applied to all such members except those in which fail-
ure would be by simple or pure compression. Columns can be categorized then as:

1 Long columns with central loading
2 Intermediate-length columns with central loading
3 Columns with eccentric loading
4 Struts or short columns with eccentric loading

Classifying columns as above makes it possible to develop methods of analysis and
design specific to each category. Furthermore, these methods will also reveal whether
or not you have selected the category appropriate to your particular problem. The four
sections that follow correspond, respectively, to the four categories of columns listed
above.

4–12 Long Columns with Central Loading
Figure 4–18 shows long columns with differing end (boundary) conditions. If the axial
force P shown acts along the centroidal axis of the column, simple compression of the
member occurs for low values of the force. However, under certain conditions, when
P reaches a specific value, the column becomes unstable and bending as shown in 
Fig. 4–18 develops rapidly. This force is determined by writing the bending deflection
equation for the column, resulting in a differential equation where when the boundary
conditions are applied, results in the critical load for unstable bending.9 The critical
force for the pin-ended column of Fig. 4–18a is given by

Pcr = π2 E I

l2
(4–42)

which is called the Euler column formula. Equation (4–42) can be extended to apply to
other end-conditions by writing

Pcr = Cπ2 E I

l2
(4–43)

where the constant C depends on the end conditions as shown in Fig. 4–18.

Deflection and Stiffness 181

9See F. P. Beer, E. R. Johnston, Jr., and J. T. DeWolf, Mechanics of Materials, 5th ed., McGraw-Hill,
New York, 2009, pp. 610–613.
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182 Mechanical Engineering Design

Using the relation I = Ak2, where A is the area and k the radius of gyration,
enables us to rearrange Eq. (4–43) into the more convenient form

Pcr

A
= Cπ2 E

(l/k)2
(4–44)

where l/k is called the slenderness ratio. This ratio, rather than the actual column
length, will be used in classifying columns according to length categories.

The quantity Pcr/A in Eq. (4–44) is the critical unit load. It is the load per unit area
necessary to place the column in a condition of unstable equilibrium. In this state any
small crookedness of the member, or slight movement of the support or load, will cause
the column to begin to collapse. The unit load has the same units as strength, but this is
the strength of a specific column, not of the column material. Doubling the length of a
member, for example, will have a drastic effect on the value of Pcr/A but no effect at
all on, say, the yield strength Sy of the column material itself.

Equation (4–44) shows that the critical unit load depends only upon the end con-
ditions, the modulus of elasticity, and the slenderness ratio. Thus a column obeying the
Euler formula made of high-strength alloy steel is no stronger than one made of low-
carbon steel, since E is the same for both.

The factor C is called the end-condition constant, and it may have any one of the
theoretical values 1

4 , 1, 2, and 4, depending upon the manner in which the load is
applied. In practice it is difficult, if not impossible, to fix the column ends so that the
factor C = 2 or C = 4 would apply. Even if the ends are welded, some deflection will
occur. Because of this, some designers never use a value of C greater than unity.
However, if liberal factors of safety are employed, and if the column load is accurately
known, then a value of C not exceeding 1.2 for both ends fixed, or for one end rounded
and one end fixed, is not unreasonable, since it supposes only partial fixation. Of course,
the value C = 1

4 must always be used for a column having one end fixed and one end
free. These recommendations are summarized in Table 4–2.

When Eq. (4–44) is solved for various values of the unit load Pcr/A in terms of the
slenderness ratio l/k, we obtain the curve PQR shown in Fig. 4–19. Since the yield
strength of the material has the same units as the unit load, the horizontal line through
Sy and Q has been added to the figure. This would appear to make the figure Sy Q R
cover the entire range of compression problems from the shortest to the longest

Figure 4–18

(a) Both ends rounded or
pivoted; (b) both ends fixed; 
(c) one end free and one end
fixed; (d) one end rounded and
pivoted, and one end fixed.

(a) C � 1 (b) C � 4 (c) C � 
1
4
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Deflection and Stiffness 183

compression member. Thus it would appear that any compression member having an
l/k value less than (l/k)Q should be treated as a pure compression member while all
others are to be treated as Euler columns. Unfortunately, this is not true.

In the actual design of a member that functions as a column, the designer will be
aware of the end conditions shown in Fig. 4–18, and will endeavor to configure the ends,
using bolts, welds, or pins, for example, so as to achieve the required ideal end condi-
tions. In spite of these precautions, the result, following manufacture, is likely to contain
defects such as initial crookedness or load eccentricities. The existence of such defects
and the methods of accounting for them will usually involve a factor-of-safety approach
or a stochastic analysis. These methods work well for long columns and for simple
compression members. However, tests show numerous failures for columns with
slenderness ratios below and in the vicinity of point Q, as shown in the shaded area in
Fig. 4–19. These have been reported as occurring even when near-perfect geometric
specimens were used in the testing procedure.

A column failure is always sudden, total, unexpected, and hence dangerous. There
is no advance warning. A beam will bend and give visual warning that it is over-
loaded, but not so for a column. For this reason neither simple compression methods
nor the Euler column equation should be used when the slenderness ratio is near
(l/k)Q . Then what should we do? The usual approach is to choose some point T on
the Euler curve of Fig. 4–19. If the slenderness ratio is specified as (l/k)1 correspond-
ing to point T, then use the Euler equation only when the actual slenderness ratio is

Table 4–2

End-Condition Constants

for Euler Columns [to Be

Used with Eq. (4–43)]

End-Condition Constant C
Column End Theoretical Conservative Recommended
Conditions Value Value Value*

Fixed-free 1
4

1
4

1
4

Rounded-rounded 1 1 1

Fixed-rounded 2 1 1.2

Fixed-fixed 4 1 1.2

*To be used only with liberal factors of safety when the column load is accurately known.

Figure 4–19

Euler curve plotted using
Eq. (4–43) with C = 1.
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184 Mechanical Engineering Design

greater than (l/k)1.. Otherwise, use one of the methods in the sections that follow. See
Examples 4–17 and 4–18.

Most designers select point T such that Pcr/A = Sy/2. Using Eq. (4–43), we find
the corresponding value of (l/k)1 to be(

l

k

)
1

=
(

2π2C E

Sy

)1/2

(4–45)

4–13 Intermediate-Length Columns with Central Loading
Over the years there have been a number of column formulas proposed and used for the
range of l/k values for which the Euler formula is not suitable. Many of these are based
on the use of a single material; others, on a so-called safe unit load rather than the crit-
ical value. Most of these formulas are based on the use of a linear relationship between
the slenderness ratio and the unit load. The parabolic or J. B. Johnson formula now
seems to be the preferred one among designers in the machine, automotive, aircraft, and
structural-steel construction fields.

The general form of the parabolic formula is

Pcr

A
= a − b

(
l

k

)2

(a)

where a and b are constants that are evaluated by fitting a parabola to the Euler curve
of Fig. 4–19 as shown by the dashed line ending at T . If the parabola is begun at Sy ,
then a = Sy . If point T is selected as previously noted, then Eq. (4–42) gives the value
of (l/k)1 and the constant b is found to be

b =
(

Sy

2π

)2 1

C E
(b)

Upon substituting the known values of a and b into Eq. (a), we obtain, for the parabolic
equation,

Pcr

A
= Sy −

(
Sy

2π

l

k

)2 1

C E

l

k
≤

(
l

k

)
1

(4–46)

4–14 Columns with Eccentric Loading
We have noted before that deviations from an ideal column, such as load eccentrici-
ties or crookedness, are likely to occur during manufacture and assembly. Though
these deviations are often quite small, it is still convenient to have a method of
dealing with them. Frequently, too, problems occur in which load eccentricities are
unavoidable.

Figure 4–20a shows a column in which the line of action of the column forces is
separated from the centroidal axis of the column by the eccentricity e. From Fig. 4–20b,
M = −P(e + y) . Substituting this into Eq. (4–12), d2 y/dx2 = M/E I, results in the
differential equation

d2 y

dx2
+ P

E I
y = − Pe

E I
(a)
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Deflection and Stiffness 185

The solution of Eq. (a), for the boundary conditions that y � 0 at x � 0, l is

(b)

By substituting x = l/2 in Eq. (b) and using a trigonometric identity, we obtain

(4–47)

The magnitude of the maximum bending moment also occurs at midspan and is

Mmax = P(e + δ) = Pe sec

(
l

2

√
P

E I

)
(4–48)

The magnitude of the maximum compressive stress at midspan is found by superposing
the axial component and the bending component. This gives

σc = P

A
+ Mc

I
= P

A
+ Mc

Ak2
(c)

Substituting Mmax from Eq. (4–48) yields

σc = P

A

[
1 + ec

k2
sec

(
l

2k

√
P

E A

)]
(4–49)

By imposing the compressive yield strength Syc as the maximum value of σc, we can
write Eq. (4–49) in the form

P

A
= Syc

1 + (ec/k2) sec[(l/2k)
√

P/AE]
(4–50)

This is called the secant column formula. The term ec/k2 is called the eccentricity
ratio. Figure 4–21 is a plot of Eq. (4–50) for a steel having a compressive (and tensile)

   � e[sec(            ) � 1]2
l

EI
P

�

y � e[tan( l          )sin(         x ) � cos(         x ) � 1]2 EI
P

EI
P

EI
P

�

Pe

P

P

P

M

P
y y

y

e

A

O

l

x

x

(a) (b)

x

Figure 4–20

Notation for an eccentrically
loaded column.
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186 Mechanical Engineering Design

yield strength of 40 kpsi. Note how the P/A contours asymptotically approach the Euler
curve as l/k increases.

Equation (4–50) cannot be solved explicitly for the load P . Design charts, in the
fashion of Fig. 4–21, can be prepared for a single material if much column design
is to be done. Otherwise, a root-finding technique using numerical methods must
be used.

EXAMPLE 4–16 Develop specific Euler equations for the sizes of columns having
(a) Round cross sections
(b) Rectangular cross sections

Solution (a) Using A = πd2/4 and k = √
I/A = [(πd4/64)/(πd2/4)]1/2 = d/4 with Eq. (4–44)

gives

Answer d =
(

64Pcrl2

π3C E

)1/4

(4–51)

(b) For the rectangular column, we specify a cross section h × b with the
restriction that h ≤ b. If the end conditions are the same for buckling in both directions,
then buckling will occur in the direction of the least thickness. Therefore

I = bh3

12
A = bh k2 = I/A = h2

12

Substituting these in Eq. (4–44) gives

Answer b = 12Pcrl2

π2C Eh3
h ≤ b (4–52)

Note, however, that rectangular columns do not generally have the same end conditions
in both directions.

Figure 4–21

Comparison of secant and
Euler equations for steel with
Sy = 40 kpsi.
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EXAMPLE 4–17 Specify the diameter of a round column 1.5 m long that is to carry a maximum load
estimated to be 22 kN. Use a design factor nd = 4 and consider the ends as pinned
(rounded). The column material selected has a minimum yield strength of 500 MPa and
a modulus of elasticity of 207 GPa.

Solution We shall design the column for a critical load of

Pcr = nd P = 4(22) = 88 kN

Then, using Eq. (4–51) with C = 1 (see Table 4–2) gives

d =
(

64Pcrl2

π3C E

)1/4

=
[

64(88)(1.5)2

π3(1)(207)

]1/4 (
103

109

)1/4

(103) = 37.48 mm

Table A–17 shows that the preferred size is 40 mm. The slenderness ratio for this size is

l

k
= l

d/4
= 1.5(103)

40/4
= 150

To be sure that this is an Euler column, we use Eq. (5–51) and obtain(
l

k

)
1

=
(

2π2C E

Sy

)1/2

=
[

2π2(1)(207)

500

]1/2 (
109

106

)1/2

= 90.4

which indicates that it is indeed an Euler column. So select

Answer d = 40 mm

EXAMPLE 4–18 Repeat Ex. 4–16 for J. B. Johnson columns.

Solution (a) For round columns, Eq. (4–46) yields

Answer d = 2

(
Pcr

π Sy
+ Syl2

π2C E

)1/2

(4–53)

(b) For a rectangular section with dimensions h ≤ b, we find

Answer b = Pcr

hSy

(
1 − 3l2Sy

π2C Eh2

) h ≤ b (4–54)

EXAMPLE 4–19 Choose a set of dimensions for a rectangular link that is to carry a maximum compres-
sive load of 5000 lbf. The material selected has a minimum yield strength of 75 kpsi
and a modulus of elasticity E = 30 Mpsi. Use a design factor of 4 and an end condi-
tion constant C = 1 for buckling in the weakest direction, and design for (a) a length
of 15 in, and (b) a length of 8 in with a minimum thickness of 1

2 in.

Deflection and Stiffness 187
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Solution (a) Using Eq. (4–44), we find the limiting slenderness ratio to be(
l

k

)
1

=
(

2π2C E

Sy

)1/2

=
[

2π2(1)(30)(106)

75(10)3

]1/2

= 88.9

By using Pcr = nd P = 4(5000) = 20 000 lbf, Eqs. (4–52) and (4–54) are solved, using
various values of h, to form Table 4–3. The table shows that a cross section of 5

8 by 3
4 in,

which is marginally suitable, gives the least area.
(b) An approach similar to that in part (a) is used with l = 8 in. All trial computa-

tions are found to be in the J. B. Johnson region of l/k values. A minimum area occurs
when the section is a near square. Thus a cross section of 1

2 by 3
4 in is found to be suit-

able and safe.

188 Mechanical Engineering Design

Table 4–3

Table Generated to Solve

Ex. 4–19, part (a)

h b A l/k Type Eq. No.

0.375 3.46 1.298 139 Euler (4–52)

0.500 1.46 0.730 104 Euler (4–52)

0.625 0.76 0.475 83 Johnson (4–54)

0.5625 1.03 0.579 92 Euler (4–52)

4–15 Struts or Short Compression Members
A short bar loaded in pure compression by a force P acting along the centroidal axis
will shorten in accordance with Hooke’s law, until the stress reaches the elastic limit of
the material. At this point, permanent set is introduced and usefulness as a machine
member may be at an end. If the force P is increased still more, the material either
becomes “barrel-like” or fractures. When there is eccentricity in the loading, the elastic
limit is encountered at smaller loads.

A strut is a short compression member such as the one shown in Fig. 4–22. The
magnitude of the maximum compressive stress in the x direction at point B in an inter-
mediate section is the sum of a simple component P/A and a flexural component
Mc/I ; that is,

σc = P

A
+ Mc

I
= P

A
+ PecA

I A
= P

A

(
1 + ec

k2

)
(4–55)

where k = (I/A)1/2 and is the radius of gyration, c is the coordinate of point B, and e
is the eccentricity of loading. 

Note that the length of the strut does not appear in Eq. (4–55). In order to use the
equation for design or analysis, we ought, therefore, to know the range of lengths for
which the equation is valid. In other words, how long is a short member?

The difference between the secant formula Eq. (4–50) and Eq. (4–55) is that the
secant equation, unlike Eq. (4–55), accounts for an increased bending moment due to
bending deflection. Thus the secant equation shows the eccentricity to be magnified by
the bending deflection. This difference between the two formulas suggests that one way

Figure 4–22

Eccentrically loaded strut.

y

x

P

P

l

c

B

e
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of differentiating between a “secant column” and a strut, or short compression member,
is to say that in a strut, the effect of bending deflection must be limited to a certain small
percentage of the eccentricity. If we decide that the limiting percentage is to be 1 per-
cent of e, then, from Eq. (4–44), the limiting slenderness ratio turns out to be(

l

k

)
2

= 0.282

(
AE

P

)1/2

(4–56)

This equation then gives the limiting slenderness ratio for using Eq. (4–55). If the actual
slenderness ratio is greater than (l/k)2, then use the secant formula; otherwise, use
Eq. (4–55).

EXAMPLE 4–20 Figure 4–23a shows a workpiece clamped to a milling machine table by a bolt tight-
ened to a tension of 2000 lbf. The clamp contact is offset from the centroidal axis of the
strut by a distance e = 0.10 in, as shown in part b of the figure. The strut, or block, is
steel, 1 in square and 4 in long, as shown. Determine the maximum compressive stress
in the block.

Solution First we find A = bh = 1(1) = 1 in2, I = bh3/12 = 1(1)3/12 = 0.0833 in4, k2 =
I/A = 0.0833/1 = 0.0833 in2, and l/k = 4/(0.0833)1/2 = 13.9. Equation (4–56)
gives the limiting slenderness ratio as(

l

k

)
2

= 0.282

(
AE

P

)1/2

= 0.282

[
1(30)(106)

1000

]1/2

= 48.8

Thus the block could be as long as

l = 48.8k = 48.8(0.0833)1/2 = 14.1 in

before it need be treated by using the secant formula. So Eq. (4–55) applies and the
maximum compressive stress is

Answer σc = P

A

(
1 + ec

k2

)
= 1000

1

[
1 + 0.1(0.5)

0.0833

]
= 1600 psi
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P

P = 1000 lbf

(a) (b)

4 in

0.10 in

1-in square

Figure 4–23

A strut that is part of a
workpiece clamping assembly.
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4–16 Elastic Stability
Section 4–12 presented the conditions for the unstable behavior of long, slender columns.
Elastic instability can also occur in structural members other than columns. Compressive
loads/stresses within any long, thin structure can cause structural instabilities (buckling).
The compressive stress may be elastic or inelastic and the instability may be global or local.
Global instabilities can cause catastrophic failure, whereas local instabilities may cause
permanent deformation and function failure but not a catastrophic failure. The buckling
discussed in Sec. 4–12 was global instability. However, consider a wide flange beam in
bending. One flange will be in compression, and if thin enough, can develop localized
buckling in a region where the bending moment is a maximum. Localized buckling can
also occur in the web of the beam, where transverse shear stresses are present at the beam
centroid. Recall, for the case of pure shear stress τ , a stress transformation will show that
at 45◦, a compressive stress of σ = −τ exists. If the web is sufficiently thin where the shear
force V is a maximum, localized buckling of the web can occur. For this reason, additional
support in the form of bracing is typically applied at locations of high shear forces.10

Thin-walled beams in bending can buckle in a torsional mode as illustrated in 
Fig. 4–24. Here a cantilever beam is loaded with a lateral force, F. As F is increases
from zero, the end of the beam will deflect in the negative y direction normally accord-
ing to the bending equation, y = −F L3/(3E I ). However, if the beam is long enough
and the ratio of b/h is sufficiently small, there is a critical value of F for which the beam
will collapse in a twisting mode as shown. This is due to the compression in the bottom
fibers of the beam which cause the fibers to buckle sideways (z direction).

There are a great many other examples of unstable structural behavior, such as thin-
walled pressure vessels in compression or with outer pressure or inner vacuum, thin-walled
open or closed members in torsion, thin arches in compression, frames in compression, and
shear panels. Because of the vast array of applications and the complexity of their analyses,
further elaboration is beyond the scope of this book. The intent of this section is to make the
reader aware of the possibilities and potential safety issues. The key issue is that the
designer should be aware that if any unbraced part of a structural member is thin, and/or
long, and in compression (directly or indirectly), the possibility of buckling should be
investigated.11

For unique applications, the designer may need to revert to a numerical solution
such as using finite elements. Depending on the application and the finite-element code
available, an analysis can be performed to determine the critical loading (see Fig. 4–25).
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Figure 4–24

Torsional buckling of a
thin-walled beam in bending.

Figure 4–25

Finite-element representation
of flange buckling of a channel
in compression.

y

x
h

b

F

y

z

z

10See C. G. Salmon, J. E. Johnson, and F. A. Malhas, Steel Structures: Design and Behavior, 5th ed.,
Prentice Hall, Upper Saddle River, NJ, 2009.
11See S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, 1961.
See also, Z. P. Bazant and L. Cedolin, Stability of Structures, Oxford University Press, New York, 1991.
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4–17 Shock and Impact
Impact refers to the collision of two masses with initial relative velocity. In some cases
it is desirable to achieve a known impact in design; for example, this is the case in the
design of coining, stamping, and forming presses. In other cases, impact occurs because
of excessive deflections, or because of clearances between parts, and in these cases it is
desirable to minimize the effects. The rattling of mating gear teeth in their tooth spaces
is an impact problem caused by shaft deflection and the clearance between the teeth.
This impact causes gear noise and fatigue failure of the tooth surfaces. The clearance
space between a cam and follower or between a journal and its bearing may result in
crossover impact and also cause excessive noise and rapid fatigue failure.

Shock is a more general term that is used to describe any suddenly applied force or
disturbance. Thus the study of shock includes impact as a special case.

Figure 4–26 represents a highly simplified mathematical model of an automobile
in collision with a rigid obstruction. Here m1 is the lumped mass of the engine. The
displacement, velocity, and acceleration are described by the coordinate x1 and its
time derivatives. The lumped mass of the vehicle less the engine is denoted by m2, and
its motion by the coordinate x2 and its derivatives. Springs k1, k2, and k3 represent the
linear and nonlinear stiffnesses of the various structural elements that compose
the vehicle. Friction and damping can and should be included, but is not shown in this
model. The determination of the spring rates for such a complex structure will almost
certainly have to be performed experimentally. Once these values—the k’s, m’s, damping
and frictional coefficients—are obtained, a set of nonlinear differential equations can be
written and a computer solution obtained for any impact velocity. For sake of illustra-
tion, assuming the springs to be linear, isolate each mass and write their equations of
motion. This results in

mẍ1 + k1x1 + k2(x1 − x2) = 0

mẍ2 + k3x2 − k2(x1 − x2) = 0
(4–57)

The analytical solution of the Eq. (4–57) pair is harmonic and is studied in a course on
mechanical vibrations.12 If the values of the m’s and k’s are known, the solution can be
obtained easily using a program such as MATLAB.

Suddenly Applied Loading

A simple case of impact is illustrated in Fig. 4–27a. Here a weight W falls a distance h
and impacts a cantilever of stiffness EI and length l. We want to find the maximum
deflection and the maximum force exerted on the beam due to the impact.
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Figure 4–26

Two-degree-of-freedom
mathematical model of an
automobile in collision with a
rigid obstruction.

x1

k1 k2

k3

x2

m1
m2

12See William T. Thomson and Marie Dillon Dahleh, Theory of Vibrations with Applications, 5th ed.,
Prentice Hall, Upper Saddle River, NJ, 1998.
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192 Mechanical Engineering Design

Figure 4–27b shows an abstract model of the system considering the beam as a sim-
ple spring. For beam 1 of Table A–9, we find the spring rate to be k = F/y = 3E I/ l3 .
The beam mass and damping can be accounted for, but for this example will be con-
sidered negligible. If the beam is considered massless, there is no momentum transfer,
only energy. If the maximum deflection of the spring (beam) is considered to be δ, the
drop of the weight is h + δ, and the loss of potential energy is W (h + δ) . The resulting
increase in potential (strain) energy of the spring is 1

2 kδ2 . Thus, for energy conserva-
tion, 1

2 kδ2 = W (h + δ) . Rearranging this gives

δ2 − 2
W

k
δ − 2

W

k
h = 0 (a)

Solving for δ yields

δ = W

k
± W

k

(
1 + 2hk

W

)1/2

(b)

The negative solution is possible only if the weight “sticks” to the beam and vibrates
between the limits of Eq. (b). Thus, the maximum deflection is

δ = W

k
+ W

k

(
1 + 2hk

W

)1/2

(4–58)

The maximum force acting on the beam is now found to be

F = kδ = W + W

(
1 + 2hk

W

)1/2

(4–59)

Note, in this equation, that if h = 0, then F = 2W . This says that when the weight is
released while in contact with the spring but is not exerting any force on the spring, the
largest force is double the weight.

Most systems are not as ideal as those explored here, so be wary about using these
relations for nonideal systems.

PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1–1 of Sec. 1–16, p. 24.

4–1 The figure shows a torsion bar O A fixed at O , simply supported at A, and connected to a can-
tilever AB . The spring rate of the torsion bar is kT , in newton-meters per radian, and that of the
cantilever is kl, in newtons per meter. What is the overall spring rate based on the deflection y at
point B?

Figure 4–27

(a) A weight free to fall a
distance h to free end of a
beam. (b) Equivalent spring
model.

h

W

(b)

k

h

W

(a)

EI, l
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4–2 For Prob. 4–1, if the simple support at point A were eliminated and the cantilever spring rate
of OA is given by kL , determine the overall spring rate of the bar based on the deflection of
point B. 

4–3 A torsion-bar spring consists of a prismatic bar, usually of round cross section, that is twisted
at one end and held fast at the other to form a stiff spring. An engineer needs a stiffer one than
usual and so considers building in both ends and applying the torque somewhere in the cen-
tral portion of the span, as shown in the figure. This effectively creates two springs in paral-
lel. If the bar is uniform in diameter, that is, if d = d1 = d2 , (a) determine how the spring rate
and the end reactions depend on the location x at which the torque is applied, (b) determine the
spring rate, the end reactions, and the maximum shear stress, if d = 0.5 in, x = 5 in, l = 10 in,
T = 1500 lbf · in, and G = 11.5 Mpsi. 

Problem 4–1
L

O

A

R

B

F

l

y

Problem 4–3

x

l

T

d1

d2

4–4 An engineer is forced by geometric considerations to apply the torque on the spring of Prob. 4–3
at the location x = 0.4l . For a uniform-diameter spring, this would cause one leg of the span to
be underutilized when both legs have the same diameter. For optimal design the diameter of each
leg should be designed such that the maximum shear stress in each leg is the same. This problem
is to redesign the spring of part (b) of Prob. 4–3. Using x = 0.4l , l = 10 in, T = 1500 lbf · in,
and G = 11.5 Mpsi, design the spring such that the maximum shear stresses in each leg are equal
and the spring has the same spring rate (angle of twist) as part (b) of Prob. 4–3. Specify d1, d2,
the spring rate k, and the torque and the maximum shear stress in each leg.

4–5 A bar in tension has a circular cross section and includes a tapered portion of length l, as
shown.
(a) For the tapered portion, use Eq. (4–3) in the form of δ =

∫ l

0
[F/(AE)] dx to show that

δ = 4

π

Fl

d1d2 E

bud29281_ch04_147-211.qxd  11/27/09  2:55PM  Page 193 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Problem 4–11

450 lbf

6 ft 4 ft 10 ft C
x

300 lbf

O

y

A B

Problem 4–10

x
B

A
O

2 m

1 kN/m

3 m
2.5 kN

y
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4–11 A simply supported beam loaded by two forces is shown in the figure. Select a pair of struc-
tural steel channels mounted back to back to support the loads in such a way that the deflec-
tion at midspan will not exceed 1

2 in and the maximum stress will not exceed 15 kpsi. Use
superposition.

Problem 4–5

(b) Determine the elongation of each portion if d1 = 0.5 in, d2 = 0.75 in, l = l1 = l2 = 2.0 in,
E = 30 Mpsi, and F = 1000 lbf.

y

l2l1 l

dl d2x FF

4–6 Instead of a tensile force, consider the bar in Prob. 4–5 to be loaded by a torque T.

(a) Use Eq. (4–5) in the form of θ =
∫ l

0
[T/(G J )] dx to show that the angle of twist of the

tapered portion is

θ = 32

3π

T l
(
d2

1 + d1d2 + d2
2

)
Gd3

1 d3
2

(b) Using the same geometry as in Prob. 4–5b with T = 1500 lbf · in and G = 11.5 Mpsi, deter-
mine the angle of twist in degrees for each portion.

4–7 When a vertically suspended hoisting cable is long, the weight of the cable itself contributes to
the elongation. If a 500-ft steel cable has an effective diameter of 0.5 in and lifts a load of
5000 lbf, determine the total elongation and the percent of the total elongation due to the cable’s
own weight.

4–8 Derive the equations given for beam 2 in Table A–9 using statics and the double-integration
method.

4–9 Derive the equations given for beam 5 in Table A–9 using statics and the double-integration
method.

4–10 The figure shows a cantilever consisting of steel angles size 100 × 100 × 12 mm mounted back
to back. Using superposition, find the deflection at B and the maximum stress in the beam.
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4–13 A rectangular steel bar supports the two overhanging loads shown in the figure. Using superposition,
find the deflection at the ends and at the center.

4–14 An aluminum tube with outside diameter of 2 in and inside diameter of 1.5 in is cantilevered and
loaded as shown. Using the formulas in Appendix Table A–9 and superposition, find the deflec-
tion at B.

Problem 4–12
150 lbf/ft

x

340 lbf

O

y

A

B

15 in 24 in

1.5 in-dia. shaft

Problem 4–13

Dimensions in millimeters. x
O

y

C

300300

Bar, b = 6, h = 32

400 N400 N

B

500

A

4–12 Using superposition, find the deflection of the steel shaft at A in the figure. Find the deflection at
midspan. By what percentage do these two values differ?

4–15 The cantilever shown in the figure consists of two structural-steel channels size 3 in, 5.0 lbf/ft.
Using superposition, find the deflection at A. Include the weight of the channels.

Problem 4–14

y

O A
B

x
2 ft 2 ft

200 lbf300 lbf

Problem 4–15

y

O A
x

150 lbf

60 in

5 lbf/in
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Problem 4–16

Dimensions in millimeters.

550 N

x

375 N 375 N

O

y

A B C

D

250 250 250 250

Problem 4–17
x

y

F

CB

l a

MA

R1

A

R2

Problem 4–18

4–16 Using superposition for the bar shown, determine the minimum diameter of a steel shaft for
which the maximum deflection is 2 mm.

4–18 Calculating beam deflections using superposition is quite convenient provided you have a com-
prehensive table to refer to. Because of space limitations, this book provides a table that covers
a great deal of applications, but not all possibilities. Take for example, Prob. 4–19, which fol-
lows this problem. Problem 4–19 is not directly solvable from Table A–9, but with the addition
of the results of this problem, it is. For the beam shown, using statics and double integration,
show that

R1 = wa

2l
(2l − a) R2 = wa2

2l
VAB = w

2l
[2l(a − x) − a2] VBC = −wa2

2l

MAB = wx

2l
(2al − a2 − lx) MBC = wa2

2l
(l − x)

yAB = wx

24EIl
[2ax2(2l − a) − lx3 − a2(2l − a)2] yBC = yAB + w

24E I
(x − a)4

4–17 A simply supported beam has a concentrated moment MA applied at the left support and a con-
centrated force F applied at the free end of the overhang on the right. Using superposition, deter-
mine the deflection equations in regions AB and BC.

x

y

R1

w

a
l

BA C

R2

Problem 4–19

4–19 Using the results of Prob. 4–18, use superposition to determine the deflection equations for the
three regions of the beam shown.

x

y

R1

w
a

b

l

B C
A

D

R2
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Problem 4–22

3 ft Section A–A

A

F

A h

b

4–20 Like Prob. 4–18, this problem provides another beam to add to Table A–9. For the simply sup-
ported beam shown with an overhanging uniform load, use statics and double integration to
show that

R1 = wa2

2l
R2 = wa

2l
(2l + a) VAB = −wa2

2l
VBC = w(l + a − x)

MAB = −wa2

2l
x MBC = −w

2
(l + a − x)2

yAB = wa2x

12E Il
(l2 − x2) yBC = − w

24E I
[(l + a − x)4 − 4a2(l − x)(l + a) − a4]

4–21 Consider the uniformly loaded simply supported steel beam with an overhang as shown. The
second-area moment of the beam is I = 0.05 in4. Use superposition (with Table A–9 and the
results of Prob. 4–20) to determine the reactions and the deflection equations of the beam. Plot
the deflections. 

Problem 4–20

l

x

y

R1

C

R2

a

w

BA

Problem 4–21
C

B
A

y y
10 in 4 in

w = 100 lbf/in

4–22 Illustrated is a rectangular steel bar with simple supports at the ends and loaded by a force F at
the middle; the bar is to act as a spring. The ratio of the width to the thickness is to be about
b = 10h, and the desired spring scale is 1800 lbf/in.
(a) Find a set of cross-section dimensions, using preferred fractional sizes from Table A–17.
(b) What deflection would cause a permanent set in the spring if this is estimated to occur at a

normal stress of 60 kpsi?

For the steel countershaft specified in the table, find the deflection and slope of the shaft at
point A. Use superposition with the deflection equations in Table A–9. Assume the bearings con-
stitute simple supports.

4–23* to
4–28*
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For the steel countershaft specified in the table, find the slope of the shaft at each bearing. Use
superposition with the deflection equations in Table A–9. Assume the bearings constitute simple
supports.

4–29* to
4–34*

4–41* The cantilevered handle in the figure is made from mild steel that has been welded at the joints.
For Fy = 200 lbf, Fx = Fz = 0, determine the vertical deflection (along the y axis) at the tip.
Use superposition. See the discussion on p. 102 for the twist in the rectangular cross section in
section BC.

For the steel countershaft specified in the table, assume the bearings have a maximum slope spec-
ification of 0.06° for good bearing life. Determine the minimum shaft diameter.

4–35* to
4–40*

Problem, Page
Problem Number Defining
Number Shaft

4–29* 3–68, 137

4–30* 3–69, 137

4–31* 3–70, 137

4–32* 3–71, 137

4–33* 3–72, 138

4–34* 3–73, 138

Problem, Page
Problem Number Defining
Number Shaft

4–35* 3–68, 137

4–36* 3–69, 137

4–37* 3–70, 137

4–38* 3–71, 137

4–39* 3–72, 138

4–40* 3–73, 138

Problem, Page
Problem Number Defining
Number Shaft

4–23* 3–68, 137

4–24* 3–69, 137

4–25* 3–70, 137

4–26* 3–71, 137

4–27* 3–72, 138

4–28* 3–73, 138
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4–42 For the cantilevered handle in Prob. 4–41, let Fx = −150 lbf, Fy = 0 lbf, Fz = −100 lbf. Find
the deflection at the tip along the x axis.

4–43* The cantilevered handle in Prob. 3–84, p. 140, is made from mild steel. Let Fy = 250 lbf,
Fx = Fz = 0. Determine the angle of twist in bar OC, ignoring the fillets but including the
changes in diameter along the 13-in effective length. Compare the angle of twist if the bar OC is
simplified to be all of uniform 1-in diameter. Use superposition to determine the vertical deflec-
tion (along the y axis) at the tip, using the simplified bar OC.

4–44 A flat-bed trailer is to be designed with a curvature such that when loaded to capacity the trailer
bed is flat. The load capacity is to be 3000 lbf/ft between the axles, which are 25 ft apart, and the
second-area moment of the steel structure of the bed is I = 485 in4. Determine the equation for
the curvature of the unloaded bed and the maximum height of the bed relative to the axles.

4–45 The designer of a shaft usually has a slope constraint imposed by the bearings used. This limit
will be denoted as ξ . If the shaft shown in the figure is to have a uniform diameter d except in
the locality of the bearing mounting, it can be approximated as a uniform beam with simple sup-
ports. Show that the minimum diameters to meet the slope constraints at the left and right bear-
ings are, respectively,

dL =
∣∣∣∣∣32Fb(l2 − b2)

3π Elξ

∣∣∣∣∣
1/4

dR =
∣∣∣∣∣32Fa(l2 − a2)

3π Elξ

∣∣∣∣∣
1/4

Problem 4–45

4–46 A steel shaft is to be designed so that it is supported by roller bearings. The basic geometry is
shown in the figure from Prob. 4–45, with l = 300 mm, a = 100 mm, and F = 3 kN. The allow-
able slope at the bearings is 0.001 mm/mm without bearing life penalty. For a design factor

Problem 4–41

A

z

y

2 in

5 in

x

C

D
B

6 in

1-in dia.

11
2 in

1
4 in

3 
4

-in dia.

Fz

Fx

Fy

�

a b

l

F

F

y

x
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of 1.28, what uniform-diameter shaft will support the load without penalty? Determine the
maximum deflection of the shaft.

4–47 If the diameter of the steel beam shown is 1.25 in, determine the deflection of the beam at
x = 8 in.

4–48 For the beam of Prob. 4–47, plot the magnitude of the displacement of the beam in 0.1-in incre-
ments. Approximate the maximum displacement and the value of x where it occurs.

4–49 Shown in the figure is a uniform-diameter shaft with bearing shoulders at the ends; the shaft is sub-
jected to a concentrated moment M = 1000 lbf · in. The shaft is of carbon steel and has a = 4 in
and l = 10 in. The slope at the ends must be limited to 0.002 rad. Find a suitable diameter d.

Problem 4–50*

Problem 4–47

Dimensions in inches.

The figure shows a rectangular member OB, made from 1
4 -in-thick aluminum plate, pinned to the

ground at one end and supported by a 1
2 -in-diameter round steel rod with hooks formed on the

ends. A load of 100 lbf is applied as shown. Use superposition to determine the vertical deflec-
tion at point B.

4–50* and
4–51

x

y

z

B

A
15

10

5
150 lbf

250 lbf

Problem 4–49

l

a b

B

MB

2 in

6 in 12 in

-in thick

BO

12 in

C
-in dia.1

2

1
4

A

100 lbf 12 in
2 in

6 in 12 in

7 in

-in thick

B

C

O

-in dia.1
2

1
4

A D

100 lbf

Problem 4–51

4–52 The figure illustrates a stepped torsion-bar spring O A with an actuating cantilever AB . Both
parts are of carbon steel. Use superposition and find the spring rate k corresponding to a force F
acting at B.
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4–53 Consider the simply supported beam 5 with a center load in Appendix A–9. Determine the deflec-
tion equation if the stiffness of the left and right supports are k1 and k2 , respectively.

4–54 Consider the simply supported beam 10 with an overhanging load in Appendix A–9. Determine
the deflection equation if the stiffness of the left and right supports are k1 and k2 , respectively.

4–55 Prove that for a uniform-cross-section beam with simple supports at the ends loaded by a single
concentrated load, the location of the maximum deflection will never be outside the range of
0.423l ≤ x ≤ 0.577l regardless of the location of the load along the beam. The importance of this
is that you can always get a quick estimate of ymax by using x = l/2.

4–56 Solve Prob. 4–10 using singularity functions. Use statics to determine the reactions.

4–57 Solve Prob. 4–11 using singularity functions. Use statics to determine the reactions.

4–58 Solve Prob. 4–12 using singularity functions. Use statics to determine the reactions.

4–59 Solve Prob. 4–21 using singularity functions to determine the deflection equation of the beam. Use
statics to determine the reactions.

4–60 Solve Prob. 4–13 using singularity functions. Since the beam is symmetric, only write the equa-
tion for half the beam and use the slope at the beam center as a boundary condition. Use statics
to determine the reactions.

4–61 Solve Prob. 4–17 using singularity functions. Use statics to determine the reactions.

4–62 Solve Prob. 4–19 using singularity functions to determine the deflection equation of the beam.
Use statics to determine the reactions.

4–63 Using singularity functions, write the deflection equation for the steel beam shown. Since the
beam is symmetric, write the equation for only half the beam and use the slope at the beam cen-
ter as a boundary condition. Plot your results and determine the maximum deflection.

Problem 4–63

Problem 4–52

z

x

y

0.4 m

12 mm

18 mm

8 mm

0.2 m

O

A

B

F

C

0.2 m

3 in

1.375-in diameter 1.375-in diameter
w = 180 lbf/in

10 in 3 in

1.75-in diameter

4–64 Determine the deflection equation for the cantilever beam shown using singularity functions.
Evaluate the deflections at B and C and compare your results with Example 4–10.
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202 Mechanical Engineering Design

4–65 Use Castigliano’s theorem to verify the maximum deflection for the uniformly loaded beam 7 of
Appendix Table A–9. Neglect shear.

4–66 Use Castigliano’s theorem to verify the maximum deflection for the uniformly loaded cantilever
beam 3 of Appendix Table A–9. Neglect shear.

4–67 Solve Prob. 4–15 using Castigliano’s theorem.

4–68 Solve Prob. 4–52 using Castigliano’s theorem.

4–69 Determine the deflection at midspan for the beam of Prob. 4–63 using Castigliano’s theorem.

4–70 Using Castigliano’s theorem, determine the deflection of point B in the direction of the force F
for the steel bar shown.

Problem 4–64
A B C2I1 I1 x

F

y
l/2l/2

Problem 4–70

F = 15 lbf

B

O

A

3

4

15 in

7 in

1 
2

-in dia.

4–71* Solve Prob. 4–41 using Castigliano’s theorem. Since Eq. (4–18) for torsional strain energy was
derived from the angular displacement for circular cross sections, it is not applicable for section
BC. You will need to obtain a new strain energy equation for the rectangular cross section from
Eqs. (4–15) and (3–41).

4–72 Solve Prob. 4–42 using Castigliano’s theorem.

4–73* The cantilevered handle in Prob. 3–84 is made from mild steel. Let Fy = 250 lbf and
Fx = Fz = 0. Using Castigliano’s theorem, determine the vertical deflection (along the y axis) at
the tip. Repeat the problem with shaft OC simplified to a uniform diameter of 1 in for its entire
length. What is the percent error from this simplification?

4–74* Solve Prob. 4–50 using Castigliano’s theorem.

4–75 Solve Prob. 4–51 using Castigliano’s theorem.

4–76 The steel curved bar shown has a rectangular cross section with a radial height h = 6 mm, and a
thickness b = 4 mm. The radius of the centroidal axis is R = 40 mm. A force P = 10 N is
applied as shown. Find the vertical deflection at B. Use Castigliano’s method for a curved flexural
member, and since R/h < 10, do not neglect any of the terms.
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4–77 Repeat Prob. 4–76 to find the vertical deflection at A.

4–78 For the curved steel beam shown, F = 6.7 kips. Determine the relative deflection of the applied
forces.

Problem 4–76

4–79 A steel piston ring has a mean diameter of 70 mm, a radial height h = 4.5 mm, and a thickness
b = 3 mm. The ring is assembled using an expansion tool that separates the split ends a distance
δ by applying a force F as shown. Use Castigliano’s theorem and determine the force F needed
to expand the split ends a distance δ = 1 mm.

P

R

B

A
C

Problem 4–78

F
F AA

4 in

3 in

2 in

1.375 in

1.375 in

1.5 in0.75 in

Section A–A

Problem 4–79

Problem 4–80

4–80 For the steel wire form shown, use Castigliano’s method to determine the horizontal reaction
forces at A and B and the deflection at C.

F

F

h = 4.5 mm

�

+

C

A B

40 mm
30 N

2-mm dia.
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4–83 Repeat Prob. 4–81 for the vertical deflection at point A.

4–84 Repeat Prob. 4–82 for the vertical deflection at point A.

4–85 A hook is formed from a 2-mm-diameter steel wire and fixed firmly into the ceiling as shown. A
1-kg mass is hung from the hook at point D. Use Castigliano’s theorem to determine the vertical
deflection of point D.

The part shown is formed from a 1
8 -in diameter steel wire, with R = 5 in and l = 4 in. A force is

applied with P = 1 lbf. Use Castigliano’s method to estimate the horizontal deflection at point A.
Justify any components of strain energy that you choose to neglect.

4–81 and
4–82

4–86 The figure shows a rectangular member OB, made from 1
4 -in-thick aluminum plate, pinned to the

ground at one end, and supported by a 1
2 -in-diameter round steel rod that is formed into an arc

and pinned to the ground at C. A load of 100 lbf is applied at B. Use Castigliano’s theorem to
determine the vertical deflection at point B. Justify any choices to neglect any components of
strain energy.

Problem 4–85

Problem 4–86

P

C

B

A

R
l

B

A

C

P

R

l

Problem 4–81 Problem 4–82

A

B

C

D

E

8 cm

4 cm

2-mm dia.

2 in

10 in 10 in 10 in

10 in

B

C

O

-in dia.1
2

-in thick1
4

A

100 lbf

4–87 Repeat Prob. 4–86 for the vertical deflection at point A.
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Deflection and Stiffness 205

4–89 A 100-ft cable is made using a 12-gauge (0.1055-in) steel wire and three strands of 10-gauge
(0.1019-in) copper wire. Find the deflection of the cable and the stress in each wire if the cable
is subjected to a tension of 400 lbf.

4–90 The figure shows a steel pressure cylinder of diameter 5 in that uses six SAE grade 4 steel bolts
having a grip of 10 in. These bolts have a proof strength (see Chap. 8) of 65 kpsi. Suppose the
bolts are tightened to 75 percent of this strength.
(a) Find the tensile stress in the bolts and the compressive stress in the cylinder walls.
(b) Repeat part (a), but assume now that a fluid under a pressure of 500 psi is introduced into the

cylinder.

4–88 For the wire form shown, determine the deflection of point A in the y direction. Assume
R/h > 10 and consider the effects of bending and torsion only. The wire is steel with E =
200 GPa, ν = 0.29, and has a diameter of 6 mm. Before application of the 250-N force the wire
form is in the xz plane where the radius R is 80 mm.

4–91 A torsion bar of length L consists of a round core of stiffness (G J )c and a shell of stiffness (G J )s .
If a torque T is applied to this composite bar, what percentage of the total torque is carried by
the shell?

Problem 4–90

Problem 4–88

A

250 N

R

x

y

z
90°

lb  = 10 inD  = 5 inlc  = 9 in

t  =     in

Six    -in grade 4 bolts1
2

1
4
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206 Mechanical Engineering Design

4–92 A rectangular aluminum bar 10 mm thick and 60 mm wide is welded to fixed supports at the ends,
and the bar supports a load W = 4 kN, acting through a pin as shown. Find the reactions at the
supports and the deflection of point A.

4–93 Solve Prob. 4–92 using Castigliano’s method and procedure 1 from Sec. 4–10.

4–94 An aluminum step bar is loaded as shown. (a) Verify that end C deflects to the rigid wall, and
(b) determine the wall reaction forces, the stresses in each member, and the deflection of B.

4–96 Repeat Prob. 4–95 with the diameters of section OA being 0.5 in and section AB being 0.75 in.

4–97 The figure shows a 1
2 - by 1-in rectangular steel bar welded to fixed supports at each end. The bar

is axially loaded by the forces FA = 12 kip and FB = 6 kip acting on pins at A and B. Assuming
that the bar will not buckle laterally, find the reactions at the fixed supports, the stress in section AB,
and the deflection of point A. Use procedure 1 from Sec. 4–10.

4–95 The steel shaft shown in the figure is subjected to a torque of 200 lbf � in applied at point A. Find
the torque reactions at O and B; the angle of twist at A, in degrees; and the shear stress in sections
OA and AB.

Problem 4–92

Problem 4–95

Problem 4–94

(Not drawn to scale)

600 mm 

400 mm

60 mm

10 mm thick

y

B

A

W

O

x

A B C

8 in 5 in

0.005 in

3 kip

0.75-in dia. 0.5-in dia.

2 kip

x

y

BA

200 lbf�in

O

4 in

-in dia.

6 in

1
2

10 in

A B
C

x

y

O

20 in

1 in

15 in

in thick

FA FB

1 
2

Problem 4–97
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4–98 For the beam shown, determine the support reactions using superposition and procedure 1 from
Sec. 4–10.

4–102 The steel beam ABC D shown is supported at C as shown and supported at B and D by shoulder
steel bolts, each having a diameter of 8 mm. The lengths of B E and DF are 50 mm and 65 mm,
respectively. The beam has a second area moment of 21(103) mm4. Prior to loading, the members
are stress-free. A force of 2 kN is then applied at point A. Using procedure 2 of Sec. 4–10,
determine the stresses in the bolts and the deflections of points A, B, and D.

Problem 4–98

a

A B C

w

l

4–99 Solve Prob. 4–98 using Castigliano’s theorem and procedure 1 from Sec. 4–10.

4–100 Consider beam 13 in Table A–9, but with flexible supports. Let w = 500 lbf/ft, l = 2 ft, E = 30
Mpsi, and I = 0.85 in4. The support at the left end has a translational spring constant of
k1 = 1.5(106) lbf/in and a rotational spring constant of k2 = 2.5(106) lbf � in. The right support
has a translational spring constant of k3 = 2.0 (106) lbf/in. Using procedure 2 of Sec. 4–10,
determine the reactions at the supports and the deflection at the midpoint of the beam.

4–101 The steel beam ABC D shown is simply supported at A and supported at B and D by steel cables,
each having an effective diameter of 0.5 in. The second area moment of the beam is I = 1.2 in4.
A force of 5 kips is applied at point C. Using procedure 2 of Sec. 4–10 determine the stresses in
the cables and the deflections of B, C, and D.

E

B CA

F

D

38 in

16 in16 in16 in

5 kips

Problem 4–101

Problem 4–102

B C

E

DA

F

75 mm75 mm

2 kN

75 mm

4–103 A thin ring is loaded by two equal and opposite forces F in part a of the figure. A free-body dia-
gram of one quadrant is shown in part b. This is a statically indeterminate problem, because the
moment MA cannot be found by statics. (a) Find the maximum bending moment in the ring due
to the forces F, and (b) find the increase in the diameter of the ring along the y axis. Assume that
the radius of the ring is large so that Eq. (4–41) can be used.
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208 Mechanical Engineering Design

4–104 A round tubular column has outside and inside diameters of D and d, respectively, and a diame-
tral ratio of K = d/D. Show that buckling will occur when the outside diameter is

D =
[

64Pcrl2

π3C E(1 − K 4)

]1/4

4–105 For the conditions of Prob. 4–104, show that buckling according to the parabolic formula will
occur when the outside diameter is

D = 2

[
Pcr

π Sy (1 − K 2)
+ Syl2

π2C E(1 + K 2)

]1/2

4–106 Link 2, shown in the figure, is 25 mm wide, has 12-mm-diameter bearings at the ends, and is cut
from low-carbon steel bar stock having a minimum yield strength of 165 MPa. The end-condition
constants are C = 1 and C = 1.2 for buckling in and out of the plane of the drawing, respectively.
(a) Using a design factor nd = 4, find a suitable thickness for the link.
(b) Are the bearing stresses at O and B of any significance?

4–107 Link 3, shown schematically in the figure, acts as a brace to support the 270-lbf load. For buck-
ling in the plane of the figure, the link may be regarded as pinned at both ends. For out-of-plane
buckling, the ends are fixed. Select a suitable material and a method of manufacture, such as forg-
ing, casting, stamping, or machining, for casual applications of the brace in oil-field machinery.
Specify the dimensions of the cross section as well as the ends so as to obtain a strong, safe, well-
made, and economical brace.

Problem 4–106

Problem 4–103

x

CB

A
O

y

1

2
3

800 N500 mm

750 mm900 mm

C O

D

B

F

F

A
x

R

y

(a)

O MA

B

F
2

A
x

d�

�

ds

y

(b)
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4–108 The hydraulic cylinder shown in the figure has a 2-in bore and is to operate at a pressure of 1500 psi.
With the clevis mount shown, the piston rod should be sized as a column with both ends rounded for
any plane of buckling. The rod is to be made of forged AISI 1030 steel without further heat treatment.

(a) Use a design factor nd = 2.5 and select a preferred size for the rod diameter if the column
length is 50 in.

(b) Repeat part (a) but for a column length of 16 in.
(c) What factor of safety actually results for each of the cases above?

4–109 The figure shows a schematic drawing of a vehicular jack that is to be designed to support a
maximum mass of 300 kg based on the use of a design factor nd = 3.50. The opposite-handed
threads on the two ends of the screw are cut to allow the link angle θ to vary from 15 to 70◦ . The
links are to be machined from AISI 1010 hot-rolled steel bars. Each of the four links is to consist
of two bars, one on each side of the central bearings. The bars are to be 350 mm long and have a
bar width of w = 30 mm. The pinned ends are to be designed to secure an end-condition constant
of at least C = 1.4 for out-of-plane buckling. Find a suitable preferred thickness and the result-
ing factor of safety for this thickness.

Problem 4–107

Problem 4–108

3 ft

60 

2

1

B

A
x

F = 270 1bf

y

3

O

d

2 in

Problem 4–109

�

W

w
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4–110 If drawn, a figure for this problem would resemble that for Prob. 4–90. A strut that is a standard
hollow right circular cylinder has an outside diameter of 3 in and a wall thickness of 1

4 in and is
compressed between two circular end plates held by four bolts equally spaced on a bolt circle
of 4.5-in diameter. All four bolts are hand-tightened, and then bolt A is tightened to a tension
of 1500 lbf and bolt C, diagonally opposite, is tightened to a tension of 9000 lbf. The strut
axis of symmetry is coincident with the center of the bolt circles. Find the maximum compres-
sive load, the eccentricity of loading, and the largest compressive stress in the strut.

4–111 Design link C D of the hand-operated toggle press shown in the figure. Specify the cross-section
dimensions, the bearing size and rod-end dimensions, the material, and the method of processing.

210 Mechanical Engineering Design

4–112 Find the maximum values of the spring force and deflection of the impact system shown in the
figure if W = 30 lbf, k = 100 lbf/in, and h = 2 in. Ignore the mass of the spring and solve using
energy conservation.

Problem 4–113

Problem 4–111

L = 9 in, l = 3 in, θmin = 0°.

Problem 4–112

4–113 As shown in the figure, the weight W1 strikes W2 from a height h. If W1 = 40 N, W2 = 400 N,
h = 200 mm, and k = 32 kN/m, find the maximum values of the spring force and the deflection
of W2. Assume that the impact between W1 and W2 is inelastic, ignore the mass of the spring, and
solve using energy conservation.

D

�

L

A

F

B

C

l

l

W

k

h

y

W2

W1

k

y

h
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Problem 4–114

4–114 Part a of the figure shows a weight W mounted between two springs. If the free end of spring
k1 is suddenly displaced through the distance x = a, as shown in part b, determine the maximum
displacement y of the weight. Let W = 5 lbf, k1 = 10 lbf/in, k2 = 20 lbf/in, and a = 0.25 in.
Ignore the mass of each spring and solve using energy conservation.

a

y

k1 k2

x

(a) (b)

t

x

W
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214 Mechanical Engineering Design

In Chap. 1 we learned that strength is a property or characteristic of a mechanical
element. This property results from the material identity, the treatment and processing
incidental to creating its geometry, and the loading, and it is at the controlling or critical
location.

In addition to considering the strength of a single part, we must be cognizant
that the strengths of the mass-produced parts will all be somewhat different from the
others in the collection or ensemble because of variations in dimensions, machining,
forming, and composition. Descriptors of strength are necessarily statistical in
nature, involving parameters such as mean, standard deviations, and distributional
identification.

A static load is a stationary force or couple applied to a member. To be stationary,
the force or couple must be unchanging in magnitude, point or points of application,
and direction. A static load can produce axial tension or compression, a shear load, a
bending load, a torsional load, or any combination of these. To be considered static, the
load cannot change in any manner.

In this chapter we consider the relations between strength and static loading in order
to make the decisions concerning material and its treatment, fabrication, and geometry
for satisfying the requirements of functionality, safety, reliability, competitiveness,
usability, manufacturability, and marketability. How far we go down this list is related
to the scope of the examples.

“Failure” is the first word in the chapter title. Failure can mean a part has sepa-
rated into two or more pieces; has become permanently distorted, thus ruining its
geometry; has had its reliability downgraded; or has had its function compromised,
whatever the reason. A designer speaking of failure can mean any or all of these pos-
sibilities. In this chapter our attention is focused on the predictability of permanent
distortion or separation. In strength-sensitive situations the designer must separate
mean stress and mean strength at the critical location sufficiently to accomplish his
or her purposes.

Figures 5–1 to 5–5 are photographs of several failed parts. The photographs exem-
plify the need of the designer to be well-versed in failure prevention. Toward this end
we shall consider one-, two-, and three-dimensional stress states, with and without
stress concentrations, for both ductile and brittle materials.

Figure 5–1

(a) Failure of a truck drive-
shaft spline due to corrosion
fatigue. Note that it was
necessary to use clear tape
to hold the pieces in place.
(b) Direct end view of failure.
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Figure 5–2 

Impact failure of a lawn-mower
blade driver hub. The blade
impacted a surveying pipe
marker.

Figure 5–3

Failure of an overhead-pulley
retaining bolt on a weightlifting
machine. A manufacturing
error caused a gap that forced
the bolt to take the entire
moment load.

Figure 5–4

Chain test fixture that failed in one cycle. To alleviate complaints of excessive wear, the manufacturer decided to
case-harden the material. (a) Two halves showing fracture; this is an excellent example of brittle fracture initiated
by stress concentration. (b) Enlarged view of one portion to show cracks induced by stress concentration at the
support-pin holes.

Failures Resulting from Static Loading 215
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216 Mechanical Engineering Design

Figure 5–5

Valve-spring failure caused by
spring surge in an oversped
engine. The fractures exhibit
the classic 45° shear failure.

5–1 Static Strength
Ideally, in designing any machine element, the engineer should have available the results
of a great many strength tests of the particular material chosen. These tests should be
made on specimens having the same heat treatment, surface finish, and size as the element
the engineer proposes to design; and the tests should be made under exactly the same
loading conditions as the part will experience in service. This means that if the part is to
experience a bending load, it should be tested with a bending load. If it is to be subjected
to combined bending and torsion, it should be tested under combined bending and torsion.
If it is made of heat-treated AISI 1040 steel drawn at 500°C with a ground finish, the
specimens tested should be of the same material prepared in the same manner. Such tests
will provide very useful and precise information. Whenever such data are available for
design purposes, the engineer can be assured of doing the best possible job of engineering.

The cost of gathering such extensive data prior to design is justified if failure of the
part may endanger human life or if the part is manufactured in sufficiently large quan-
tities. Refrigerators and other appliances, for example, have very good reliabilities
because the parts are made in such large quantities that they can be thoroughly tested
in advance of manufacture. The cost of making these tests is very low when it is divided
by the total number of parts manufactured.

You can now appreciate the following four design categories:

1 Failure of the part would endanger human life, or the part is made in extremely
large quantities; consequently, an elaborate testing program is justified during
design.

2 The part is made in large enough quantities that a moderate series of tests is feasible.
3 The part is made in such small quantities that testing is not justified at all; or the

design must be completed so rapidly that there is not enough time for testing.
4 The part has already been designed, manufactured, and tested and found to be

unsatisfactory. Analysis is required to understand why the part is unsatisfactory
and what to do to improve it.
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More often than not it is necessary to design using only published values of yield
strength, ultimate strength, percentage reduction in area, and percentage elongation,
such as those listed in Appendix A. How can one use such meager data to design against
both static and dynamic loads, two- and three-dimensional stress states, high and low
temperatures, and very large and very small parts? These and similar questions will be
addressed in this chapter and those to follow, but think how much better it would be to
have data available that duplicate the actual design situation.

5–2 Stress Concentration
Stress concentration (see Sec. 3–13) is a highly localized effect. In some instances it
may be due to a surface scratch. If the material is ductile and the load static, the design
load may cause yielding in the critical location in the notch. This yielding can involve
strain strengthening of the material and an increase in yield strength at the small criti-
cal notch location. Since the loads are static and the material is ductile, that part can
carry the loads satisfactorily with no general yielding. In these cases the designer sets
the geometric (theoretical) stress-concentration factor Kt to unity.

The rationale can be expressed as follows. The worst-case scenario is that of an
idealized non–strain-strengthening material shown in Fig. 5–6. The stress-strain curve
rises linearly to the yield strength Sy , then proceeds at constant stress, which is equal to
Sy . Consider a filleted rectangular bar as depicted in Fig. A–15–5, where the cross-
section area of the small shank is 1 in2. If the material is ductile, with a yield point of
40 kpsi, and the theoretical stress-concentration factor (SCF) Kt is 2,

• A load of 20 kip induces a nominal tensile stress of 20 kpsi in the shank as depicted
at point A in Fig. 5–6. At the critical location in the fillet the stress is 40 kpsi, and the
SCF is K = σmax/σnom = 40/20 = 2.

• A load of 30 kip induces a nominal tensile stress of 30 kpsi in the shank at point B.
The fillet stress is still 40 kpsi (point D), and the SCF K = σmax/σnom = Sy/σ =
40/30 = 1.33.

• At a load of 40 kip the induced tensile stress (point C) is 40 kpsi in the shank.
At the critical location in the fillet, the stress (at point E) is 40 kpsi. The SCF
K = σmax/σnom = Sy/σ = 40/40 = 1.
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Figure 5–6

An idealized stress-strain
curve. The dashed line depicts
a strain-strengthening material.
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For materials that strain-strengthen, the critical location in the notch has a higher Sy .
The shank area is at a stress level a little below 40 kpsi, is carrying load, and is very
near its failure-by-general-yielding condition. This is the reason designers do not
apply Kt in static loading of a ductile material loaded elastically, instead setting
Kt = 1.

When using this rule for ductile materials with static loads, be careful to assure
yourself that the material is not susceptible to brittle fracture (see Sec. 5–12) in the
environment of use. The usual definition of geometric (theoretical) stress-concentration
factor for normal stress Kt and shear stress Kts is given by Eq. pair (3–48) as

σmax = Ktσnom (a)

τmax = Ktsτnom (b)

Since your attention is on the stress-concentration factor, and the definition of σnom or
τnom is given in the graph caption or from a computer program, be sure the value of
nominal stress is appropriate for the section carrying the load.

As shown in Fig. 2–2b, p. 33, brittle materials do not exhibit a plastic range. The
stress-concentration factor given by Eq. (a) or (b) could raise the stress to a level to
cause fracture to initiate at the stress raiser, and initiate a catastrophic failure of the
member.

An exception to this rule is a brittle material that inherently contains microdiscon-
tinuity stress concentration, worse than the macrodiscontinuity that the designer has in
mind. Sand molding introduces sand particles, air, and water vapor bubbles. The grain
structure of cast iron contains graphite flakes (with little strength), which are literally
cracks introduced during the solidification process. When a tensile test on a cast iron is
performed, the strength reported in the literature includes this stress concentration. In
such cases Kt or Kts need not be applied.

An important source of stress-concentration factors is R. E. Peterson, who com-
piled them from his own work and that of others.1 Peterson developed the style of
presentation in which the stress-concentration factor Kt is multiplied by the nominal
stress σnom to estimate the magnitude of the largest stress in the locality. His approxi-
mations were based on photoelastic studies of two-dimensional strips (Hartman and
Levan, 1951; Wilson and White, 1973), with some limited data from three-dimensional
photoelastic tests of Hartman and Levan. A contoured graph was included in the
presentation of each case. Filleted shafts in tension were based on two-dimensional
strips. Table A–15 provides many charts for the theoretical stress-concentration factors
for several fundamental load conditions and geometry. Additional charts are also avail-
able from Peterson.2

Finite element analysis (FEA) can also be applied to obtain stress-concentration
factors. Improvements on Kt and Kts for filleted shafts were reported by Tipton, Sorem,
and Rolovic.3

1R. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951;
no. 3, March 1951; no. 5, May 1951; no. 6, June 1951; no. 7, July 1951.
2Walter D. Pilkey and Deborah Pilkey, Peterson’s Stress-Concentration Factors, 3rd ed, John Wiley & Sons,
New York, 2008.
3S. M. Tipton, J. R. Sorem Jr., and R. D. Rolovic, “Updated Stress-Concentration Factors for Filleted Shafts in
Bending and Tension,” Trans. ASME, Journal of Mechanical Design, vol. 118, September 1996, pp. 321–327.
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5–3 Failure Theories
Section 5–1 illustrated some ways that loss of function is manifested. Events such as
distortion, permanent set, cracking, and rupturing are among the ways that a machine
element fails. Testing machines appeared in the 1700s, and specimens were pulled, bent,
and twisted in simple loading processes.

If the failure mechanism is simple, then simple tests can give clues. Just what is
simple? The tension test is uniaxial (that’s simple) and elongations are largest in the axial
direction, so strains can be measured and stresses inferred up to “failure.” Just what is
important: a critical stress, a critical strain, a critical energy? In the next several sections,
we shall show failure theories that have helped answer some of these questions.

Unfortunately, there is no universal theory of failure for the general case of mate-
rial properties and stress state. Instead, over the years several hypotheses have been
formulated and tested, leading to today’s accepted practices. Being accepted, we will
characterize these “practices” as theories as most designers do. 

Structural metal behavior is typically classified as being ductile or brittle, although
under special situations, a material normally considered ductile can fail in a brittle
manner (see Sec. 5–12). Ductile materials are normally classified such that ε f ≥ 0.05
and have an identifiable yield strength that is often the same in compression as in ten-
sion (Syt = Syc = Sy). Brittle materials, ε f < 0.05, do not exhibit an identifiable yield
strength, and are typically classified by ultimate tensile and compressive strengths, Sut

and Suc, respectively (where Suc is given as a positive quantity). The generally accepted
theories are:

Ductile materials (yield criteria)

• Maximum shear stress (MSS), Sec. 5–4

• Distortion energy (DE), Sec. 5–5

• Ductile Coulomb-Mohr (DCM), Sec. 5–6

Brittle materials (fracture criteria)

• Maximum normal stress (MNS), Sec. 5–8

• Brittle Coulomb-Mohr (BCM), Sec. 5–9

• Modified Mohr (MM), Sec. 5–9

It would be inviting if we had one universally accepted theory for each material
type, but for one reason or another, they are all used. Later, we will provide rationales
for selecting a particular theory. First, we will describe the bases of these theories and
apply them to some examples.

5–4 Maximum-Shear-Stress Theory 
for Ductile Materials
The maximum-shear-stress (MSS) theory predicts that yielding begins whenever the
maximum shear stress in any element equals or exceeds the maximum shear stress in a
tension-test specimen of the same material when that specimen begins to yield. The
MSS theory is also referred to as the Tresca or Guest theory.

Many theories are postulated on the basis of the consequences seen from tensile
tests. As a strip of a ductile material is subjected to tension, slip lines (called Lüder
lines) form at approximately 45° with the axis of the strip. These slip lines are the
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beginning of yield, and when loaded to fracture, fracture lines are also seen at angles
approximately 45° with the axis of tension. Since the shear stress is maximum at 45°
from the axis of tension, it makes sense to think that this is the mechanism of failure. It
will be shown in the next section, that there is a little more going on than this. However,
it turns out the MSS theory is an acceptable but conservative predictor of failure; and
since engineers are conservative by nature, it is quite often used.

Recall that for simple tensile stress, σ = P/A, and the maximum shear stress
occurs on a surface 45° from the tensile surface with a magnitude of τmax = σ/2. So the
maximum shear stress at yield is τmax = Sy/2. For a general state of stress, three prin-
cipal stresses can be determined and ordered such that σ1 ≥ σ2 ≥ σ3. The maximum
shear stress is then τmax = (σ1 − σ3)/2 (see Fig. 3–12). Thus, for a general state of
stress, the maximum-shear-stress theory predicts yielding when

τmax = σ1 − σ3

2
≥ Sy

2
or σ1 − σ3 ≥ Sy (5–1)

Note that this implies that the yield strength in shear is given by

Ssy = 0.5Sy (5–2)

which, as we will see later is about 15 percent low (conservative).
For design purposes, Eq. (5–1) can be modified to incorporate a factor of safety, n.

Thus,

τmax = Sy

2n
or σ1 − σ3 = Sy

n
(5–3)

Plane stress is a very common state of stress in design. However, it is extremely
important to realize that plane stress is a three-dimensional state of stress. Plane stress
transformations in Sec. 3–6 are restricted to the in-plane stresses only, where the in-
plane principal stresses are given by Eq. (3–13) and labeled as σ1 and σ2. It is true that
these are the principal stresses in the plane of analysis, but out of plane there is a third
principal stress and it is always zero for plane stress. This means that if we are going to
use the convention of ordering σ1 ≥ σ2 ≥ σ3 for three-dimensional analysis, upon
which Eq. (5–1) is based, we cannot arbitrarily call the in-plane principal stresses σ1

and σ2 until we relate them with the third principal stress of zero. To illustrate the MSS
theory graphically for plane stress, we will first label the principal stresses given by
Eq. (3–13) as σA and σB , and then order them with the zero principal stress according
to the convention σ1 ≥ σ2 ≥ σ3. Assuming that σA ≥ σB , there are three cases to con-
sider when using Eq. (5–1) for plane stress:

Case 1: σA ≥ σB ≥ 0. For this case, σ1 = σA and σ3 = 0. Equation (5–1)
reduces to a yield condition of

σA ≥ Sy (5–4)

Case 2: σA ≥ 0 ≥ σB . Here, σ1 = σA and σ3 = σB , and Eq. (5–1) becomes

σA − σB ≥ Sy (5–5)

Case 3: 0 ≥ σA ≥ σB . For this case, σ1 = 0 and σ3 = σB , and Eq. (5–1) gives

σB ≤ −Sy (5–6)

Equations (5–4) to (5–6) are represented in Fig. 5–7 by the three lines indicated in the
σA, σB plane. The remaining unmarked lines are cases for σB ≥ σA, which completes
the stress yield envelope but are not normally used. The maximum-shear-stress theory
predicts yield if a stress state is outside the shaded region bordered by the stress yield
envelope. In Fig. 5–7, suppose point a represents the stress state of a critical stress element
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of a member. If the load is increased, it is typical to assume that the principal stresses
will increase proportionally along the line from the origin through point a. Such a load
line is shown. If the stress situation increases along the load line until it crosses the
stress failure envelope, such as at point b, the MSS theory predicts that the stress ele-
ment will yield. The factor of safety guarding against yield at point a is given by the
ratio of strength (distance to failure at point b) to stress (distance to stress at point a),
that is n = Ob/Oa.

Note that the first part of Eq. (5–3), τmax = Sy/2n, is sufficient for design purposes
provided the designer is careful in determining τmax. For plane stress, Eq. (3–14) does
not always predict τmax. However, consider the special case when one normal stress is
zero in the plane, say σx and τxy have values and σy = 0. It can be easily shown that this
is a Case 2 problem, and the shear stress determined by Eq. (3–14) is τmax. Shaft design
problems typically fall into this category where a normal stress exists from bending
and/or axial loading, and a shear stress arises from torsion.

5–5 Distortion-Energy Theory for Ductile Materials
The distortion-energy theory predicts that yielding occurs when the distortion strain
energy per unit volume reaches or exceeds the distortion strain energy per unit volume
for yield in simple tension or compression of the same material.

The distortion-energy (DE) theory originated from the observation that ductile
materials stressed hydrostatically (equal principal stresses) exhibited yield strengths
greatly in excess of the values given by the simple tension test. Therefore it was postu-
lated that yielding was not a simple tensile or compressive phenomenon at all, but,
rather, that it was related somehow to the angular distortion of the stressed element.
To develop the theory, note, in Fig. 5–8a, the unit volume subjected to any three-
dimensional stress state designated by the stresses σ1, σ2, and σ3. The stress state shown
in Fig. 5–8b is one of hydrostatic normal stresses due to the stresses σav acting in each
of the same principal directions as in Fig. 5–8a. The formula for σav is simply

σav = σ1 + σ2 + σ3

3
(a)

Thus the element in Fig. 5–8b undergoes pure volume change, that is, no angular dis-
tortion. If we regard σav as a component of σ1, σ2, and σ3, then this component can be
subtracted from them, resulting in the stress state shown in Fig. 5–8c. This element is
subjected to pure angular distortion, that is, no volume change.
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Figure 5–7

The maximum-shear-stress
(MSS) theory yield envelope
for plane stress, where σA and
σB are the two nonzero
principal stresses.
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The strain energy per unit volume for simple tension is u = 1
2εσ . For the element

of Fig. 5–8a the strain energy per unit volume is u = 1
2 [ε1σ1 + ε2σ2 + ε3σ3].

Substituting Eq. (3–19) for the principal strains gives

u = 1

2E

[
σ2

1 + σ2
2 + σ2

3 − 2ν(σ1σ2 + σ2σ3 + σ3σ1)
]

(b)

The strain energy for producing only volume change uv can be obtained by substitut-
ing σav for σ1, σ2, and σ3 in Eq. (b). The result is

uv = 3σ 2
av

2E
(1 − 2ν) (c)

If we now substitute the square of Eq. (a) in Eq. (c) and simplify the expression, we get

uv = 1 − 2ν

6E

(
σ 2

1 + σ 2
2 + σ 2

3 + 2σ1σ2 + 2σ2σ3 + 2σ3σ1
)

(5–7)

Then the distortion energy is obtained by subtracting Eq. (5–7) from Eq. (b). This
gives

ud = u − uv = 1 + ν

3E

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]
(5–8)

Note that the distortion energy is zero if σ1 = σ2 = σ3.
For the simple tensile test, at yield, σ1 = Sy and σ2 = σ3 = 0, and from Eq. (5–8)

the distortion energy is

ud = 1 + ν

3E
S2

y (5–9)

So for the general state of stress given by Eq. (5–8), yield is predicted if Eq. (5–8)
equals or exceeds Eq. (5–9). This gives[

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

2

]1/2

≥ Sy (5–10)

If we had a simple case of tension σ , then yield would occur when σ ≥ Sy . Thus, the
left of Eq. (5–10) can be thought of as a single, equivalent, or effective stress for the
entire general state of stress given by σ1, σ2, and σ3. This effective stress is usually

Figure 5–8

(a) Element with triaxial stresses; this element undergoes both volume
change and angular distortion. (b) Element under hydrostatic normal
stresses undergoes only volume change. (c) Element has angular
distortion without volume change.
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called the von Mises stress, σ ′, named after Dr. R. von Mises, who contributed to the
theory. Thus Eq. (5–10), for yield, can be written as 

σ ′ ≥ Sy (5–11) 

where the von Mises stress is

σ ′ =
[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]1/2

(5–12)

For plane stress, the von Mises stress can be represented by the principal stresses
σA, σB , and zero. Then from Eq. (5–12), we get

σ ′ = (
σ 2

A − σAσB + σ 2
B

)1/2
(5–13)

Equation (5–13) is a rotated ellipse in the σA, σB plane, as shown in Fig. 5–9 with
σ ′ = Sy . The dotted lines in the figure represent the MSS theory, which can be seen to
be more restrictive, hence, more conservative.4

Using xyz components of three-dimensional stress, the von Mises stress can be
written as

σ ′ = 1√
2

[
(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2 + 6
(
τ 2

xy + τ 2
yz + τ 2

zx

)]1/2
(5–14)

and for plane stress,

σ ′ = (
σ 2

x − σxσy + σ 2
y + 3τ 2

xy

)1/2
(5–15)

The distortion-energy theory is also called:

• The von Mises or von Mises–Hencky theory

• The shear-energy theory

• The octahedral-shear-stress theory

Understanding octahedral shear stress will shed some light on why the MSS is conser-
vative. Consider an isolated element in which the normal stresses on each surface are

4The three-dimensional equations for DE and MSS can be plotted relative to three-dimensional σ1, σ2, σ3,
coordinate axes. The failure surface for DE is a circular cylinder with an axis inclined at 45° from each
principal stress axis, whereas the surface for MSS is a hexagon inscribed within the cylinder. See Arthur P.
Boresi and Richard J. Schmidt, Advanced Mechanics of Materials, 6th ed., John Wiley & Sons, New York,
2003, Sec. 4.4.

Figure 5–9

The distortion-energy (DE)
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Eq. (5–13) with σ ′ = Sy .

–Sy

–Sy Sy

Sy

�B

�A

DE
MSS

Pure shear load line (�A � ��B � �)

Non
yie

ld 
reg

ion

bud29281_ch05_212-264.qxd  11/27/2009  6:46 pm  Page 223 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



224 Mechanical Engineering Design

equal to the hydrostatic stress σav. There are eight surfaces symmetric to the principal
directions that contain this stress. This forms an octahedron as shown in Fig. 5–10. The
shear stresses on these surfaces are equal and are called the octahedral shear stresses
(Fig. 5–10 has only one of the octahedral surfaces labeled). Through coordinate trans-
formations the octahedral shear stress is given by5

τoct = 1

3

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]1/2
(5–16)

Under the name of the octahedral-shear-stress theory, failure is assumed to occur when-
ever the octahedral shear stress for any stress state equals or exceeds the octahedral
shear stress for the simple tension-test specimen at failure.

As before, on the basis of the tensile test results, yield occurs when σ1 = Sy and
σ2 = σ3 = 0. From Eq. (5–16) the octahedral shear stress under this condition is

τoct =
√

2

3
Sy (5–17)

When, for the general stress case, Eq. (5–16) is equal or greater than Eq. (5–17), yield
is predicted. This reduces to[

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

2

]1/2

≥ Sy (5–18)

which is identical to Eq. (5–10), verifying that the maximum-octahedral-shear-stress
theory is equivalent to the distortion-energy theory.

The model for the MSS theory ignores the contribution of the normal stresses on
the 45° surfaces of the tensile specimen. However, these stresses are P/2A, and not the
hydrostatic stresses which are P/3A. Herein lies the difference between the MSS and
DE theories.

The mathematical manipulation involved in describing the DE theory might tend
to obscure the real value and usefulness of the result. The equations given allow the
most complicated stress situation to be represented by a single quantity, the von Mises
stress, which then can be compared against the yield strength of the material through
Eq. (5–11). This equation can be expressed as a design equation by

σ ′ = Sy

n
(5–19)

Figure 5–10

Octahedral surfaces.
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5For a derivation, see Arthur P. Boresi, op. cit., pp. 36–37.
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The distortion-energy theory predicts no failure under hydrostatic stress and agrees
well with all data for ductile behavior. Hence, it is the most widely used theory for duc-
tile materials and is recommended for design problems unless otherwise specified.

One final note concerns the shear yield strength. Consider a case of pure shear τxy ,
where for plane stress σx = σy = 0. For yield, Eq. (5–11) with Eq. (5–15) gives(

3τ 2
xy

)1/2 = Sy or τxy = Sy√
3

= 0.577Sy (5–20)

Thus, the shear yield strength predicted by the distortion-energy theory is

Ssy = 0.577Sy (5–21)

which as stated earlier, is about 15 percent greater than the 0.5 Sy predicted by the MSS
theory. For pure shear, τxy the principal stresses from Eq. (3–13) are σA = −σB = τxy .
The load line for this case is in the third quadrant at an angle of 45o from the σA, σB

axes shown in Fig. 5–9.

EXAMPLE 5–1 A hot-rolled steel has a yield strength of Syt = Syc = 100 kpsi and a true strain at fracture
of ε f = 0.55. Estimate the factor of safety for the following principal stress states:
(a) σx = 70 kpsi, σy = 70 kpsi, τxy = 0 kpsi
(b) σx = 60 kpsi, σy = 40 kpsi, τxy = −15 kpsi
(c) σx = 0 kpsi, σy = 40 kpsi, τxy = 45 kpsi
(d) σx = −40 kpsi, σy = −60 kpsi, τxy = 15 kpsi
(e) σ1 = 30 kpsi, σ2 = 30 kpsi, σ3 = 30 kpsi

Solution Since ε f > 0.05 and Syt and Syc are equal, the material is ductile and both the
distortion-energy (DE) theory and maximum-shear-stress (MSS) theory apply. Both
will be used for comparison. Note that cases a to d are plane stress states.

(a) Since there is no shear stress on this stress element, the normal stresses are
equal to the principal stresses. The ordered principal stresses are σA = σ1 = 70,

σB = σ2 = 70, σ3 = 0 kpsi.

DE From Eq. (5–13),

σ ′ = [702 − 70(70) + 702]1/2 = 70 kpsi

From Eq. (5–19),

Answer n = Sy

σ ′ = 100

70
= 1.43

MSS Noting that the two nonzero principal stresses are equal, τmax will be from the
largest Mohr’s circle, which will incorporate the third principal stress at zero. From
Eq. (3–16),

τmax = σ1 − σ3

2
= 70 − 0

2
= 35 kpsi

From Eq. (5–3),

Answer n = Sy/2

τmax
= 100/2

35
= 1.43
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(b) From Eq. (3–13), the nonzero principal stresses are 

σA, σB = 60 + 40

2
±

√(
60 − 40

2

)2

+ (−15)2 = 68.0, 32.0 kpsi

The ordered principal stresses are σA = σ1 = 68.0, σB = σ2 = 32.0, σ3 = 0 kpsi.

DE σ ′ = [
682 − 68(32) + 682]1/2 = 59.0 kpsi

Answer n = Sy

σ ′ = 100

59.0
= 1.70

MSS Noting that the two nonzero principal stresses are both positive, τmax will be
from the largest Mohr’s circle which will incorporate the third principle stress at zero.
From Eq. (3–16),

τmax = σ1 − σ3

2
= 68.0 − 0

2
= 34.0 kpsi

Answer n = Sy/2

τmax
= 100/2

34.0
= 1.47

(c) This time, we shall obtain the factors of safety directly from the xy components
of stress.

DE From Eq. (5–15),

σ ′ = (σ 2
x − σxσy + σ 2

y + 3τ 2
xy)

1/2= [
(402 + 3(45)2]1/2 = 87.6 kpsi

Answer n = Sy

σ ′ = 100

87.6
= 1.14

MSS Taking care to note from a quick sketch of Mohr’s circle that one nonzero princi-
pal stress will be positive while the other one will be negative, τmax can be obtained from
the extreme-value shear stress given by Eq. (3–14) without finding the principal stresses.

τmax =
√(

σx − σy

2

)2

+ τ 2
xy =

√(
0 − 40

2

)2

+ 452 = 49.2 kpsi

Answer n = Sy/2

τmax
= 100/2

49.2
= 1.02

For comparison purposes later in this problem, the nonzero principal stresses can be
obtained from Eq. (3–13) to be 70.0 kpsi and −30 kpsi.
(d ) From Eq. (3–13), the nonzero principal stresses are

σA, σB = −40 + (−60)

2
±

√(−40 − (−60)

2

)2

+ (15)2 = −32.0,−68.0 kpsi

The ordered principal stresses are σ1 = 0, σA = σ2 = −32.0, σB = σ3 = −68.0 kpsi.

DE σ ′ = [
(−32)2 − (−32)(−68) + (−68)2]1/2 = 59.0 kpsi

Answer n = Sy

σ ′ = 100

59.0
= 1.70
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MSS From Eq. (3–16),

τmax = σ1 − σ3

2
= 0 − (−68.0)

2
= 34.0 kpsi

Answer n = Sy/2

τmax
= 100/2

34.0
= 1.47

(e) The ordered principal stresses are σ1 = 30, σ2 = 30, σ3 = 30 kpsi

DE From Eq. (5–12),

σ ′ =
[
(30 − 30)2 + (30 − 30)2 + (30 − 30)2

2

]1/2

= 0 kpsi

Answer n = Sy

σ ′ = 100

0
→ ∞

MSS From Eq. (5–3),

Answer n = Sy

σ1 − σ3
= 100

30 − 30
→ ∞

A tabular summary of the factors of safety is included for comparisons.

(a) (b) (c) (d) (e)

DE 1.43 1.70 1.14 1.70 ∞
MSS 1.43 1.47 1.02 1.47 ∞

Since the MSS theory is on or within the boundary of the DE theory, it will always pre-
dict a factor of safety equal to or less than the DE theory, as can be seen in the table.
For each case, except case (e), the coordinates and load lines in the σA, σB plane are
shown in Fig. 5–11. Case (e) is not plane stress. Note that the load line for case (a) is
the only plane stress case given in which the two theories agree, thus giving the same
factor of safety.

Figure 5–11

Load lines for Example 5–1.

–Sy

–Sy

Sy

Sy

�B

�A

(a)

(b)

(c)

(d )

DE
MSS
Load lines

�A

�B
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228 Mechanical Engineering Design

5–6 Coulomb-Mohr Theory for Ductile Materials
Not all materials have compressive strengths equal to their corresponding tensile
values. For example, the yield strength of magnesium alloys in compression may be
as little as 50 percent of their yield strength in tension. The ultimate strength of gray
cast irons in compression varies from 3 to 4 times greater than the ultimate tensile
strength. So, in this section, we are primarily interested in those theories that can
be used to predict failure for materials whose strengths in tension and compression
are not equal.

Historically, the Mohr theory of failure dates to 1900, a date that is relevant to its
presentation. There were no computers, just slide rules, compasses, and French curves.
Graphical procedures, common then, are still useful today for visualization. The idea of
Mohr is based on three “simple” tests: tension, compression, and shear, to yielding if the
material can yield, or to rupture. It is easier to define shear yield strength as Ssy than it is
to test for it.

The practical difficulties aside, Mohr’s hypothesis was to use the results of
tensile, compressive, and torsional shear tests to construct the three circles of Fig. 5–12
defining a failure envelope tangent to the three circles, depicted as curve ABCDE in
the figure. The argument amounted to the three Mohr circles describing the stress
state in a body (see Fig. 3–12) growing during loading until one of them became tan-
gent to the failure envelope, thereby defining failure. Was the form of the failure enve-
lope straight, circular, or quadratic? A compass or a French curve defined the failure
envelope.

A variation of Mohr’s theory, called the Coulomb-Mohr theory or the internal-friction
theory, assumes that the boundary BCD in Fig. 5–12 is straight. With this assumption only
the tensile and compressive strengths are necessary. Consider the conventional ordering of
the principal stresses such that σ1 ≥ σ2 ≥ σ3. The largest circle connects σ1 and σ3, as
shown in Fig. 5–13. The centers of the circles in Fig. 5–13 are C1, C2, and C3. Triangles
OBiCi are similar, therefore

B2C2 − B1C1

OC2 − OC1
= B3C3 − B1C1

OC3 − OC1

or,
B2C2 − B1C1

C1C2
= B3C3 − B1C1

C1C3

Figure 5–12

Three Mohr circles, one for the
uniaxial compression test, one
for the test in pure shear, and
one for the uniaxial tension test,
are used to define failure by the
Mohr hypothesis. The strengths
Sc and St are the compressive
and tensile strengths,
respectively; they can be used
for yield or ultimate strength.

�

�

A

Mohr failure curve
B

C
D

E

–Sc St
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Failures Resulting from Static Loading 229

where B1C1 = St/2, B2C2 = (σ1 − σ3)/2, and B3C3 = Sc/2, are the radii of the right,
center, and left circles, respectively. The distance from the origin to C1 is St/2, to C3 is
Sc/2, and to C2 (in the positive σ direction) is (σ1 + σ3)/2. Thus

σ1 − σ3

2
− St

2
St

2
− σ1 + σ3

2

=
Sc

2
− St

2
St

2
+ Sc

2

Canceling the 2 in each term, cross-multiplying, and simplifying reduces this equa-
tion to

σ1

St
− σ3

Sc
= 1 (5–22)

where either yield strength or ultimate strength can be used.
For plane stress, when the two nonzero principal stresses are σA ≥ σB , we have

a situation similar to the three cases given for the MSS theory, Eqs. (5–4) to (5–6).
That is, the failure conditions are

Case 1: σA ≥ σB ≥ 0. For this case, σ1 = σA and σ3 = 0. Equation (5–22)
reduces to

σA ≥ St (5–23)

Case 2: σA ≥ 0 ≥ σB . Here, σ1 = σA and σ3 = σB , and Eq. (5–22) becomes

σA

St
− σB

Sc
≥ 1 (5–24)

Case 3: 0 ≥ σA ≥ σB . For this case, σ1 = 0 and σ3 = σB , and Eq. (5–22) gives

σB ≤ −Sc (5–25)

A plot of these cases, together with the normally unused cases corresponding to
σB ≥ σA , is shown in Fig. 5–14.

For design equations, incorporating the factor of safety n, divide all strengths by n.
For example, Eq. (5–22) as a design equation can be written as

σ1

St
− σ3

Sc
= 1

n
(5–26)

Figure 5–13

Mohr’s largest circle for a
general state of stress.

�

�
�1 St�3–Sc

O

Coulomb-Mohr
failure line

B3 B2

B1

C1C2C3
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230 Mechanical Engineering Design

Figure 5–14

Plot of the Coulomb-Mohr
theory failure envelope for
plane stress states.

�B

�ASt–Sc

–Sc

St

Non
fai

lur
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ion

EXAMPLE 5–2 A 25-mm-diameter shaft is statically torqued to 230 N · m. It is made of cast 195-T6
aluminum, with a yield strength in tension of 160 MPa and a yield strength in com-
pression of 170 MPa. It is machined to final diameter. Estimate the factor of safety of
the shaft.

Solution The maximum shear stress is given by

τ = 16T

πd3
= 16(230)

π
[
25

(
10−3

)]3 = 75
(
106) N/m2 = 75 MPa

The two nonzero principal stresses are 75 and −75 MPa, making the ordered principal
stresses σ1 = 75, σ2 = 0, and σ3 = −75 MPa. From Eq. (5–26), for yield,

Answer n = 1

σ1/Syt − σ3/Syc
= 1

75/160 − (−75)/170
= 1.10

Alternatively, from Eq. (5–27),

Ssy = Syt Syc

Syt + Syc
= 160(170)

160 + 170
= 82.4 MPa

and τmax = 75 MPa. Thus,

Answer n = Ssy

τmax
= 82.4

75
= 1.10

Since for the Coulomb-Mohr theory we do not need the torsional shear strength
circle we can deduce it from Eq. (5–22). For pure shear τ, σ1 = −σ3 = τ . The torsional
yield strength occurs when τmax = Ssy . Substituting σ1 = −σ3 = Ssy into Eq. (5–22)
and simplifying gives

Ssy = Syt Syc

Syt + Syc
(5–27)

bud29281_ch05_212-264.qxd  11/27/2009  6:46 pm  Page 230 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



Failures Resulting from Static Loading 231

5–7 Failure of Ductile Materials Summary
Having studied some of the various theories of failure, we shall now evaluate them and
show how they are applied in design and analysis. In this section we limit our studies to
materials and parts that are known to fail in a ductile manner. Materials that fail in a brit-
tle manner will be considered separately because these require different failure theories.

To help decide on appropriate and workable theories of failure, Marin6 collected
data from many sources. Some of the data points used to select failure theories for duc-
tile materials are shown in Fig. 5–15.7 Mann also collected many data for copper and
nickel alloys; if shown, the data points for these would be mingled with those already
diagrammed. Figure 5–15 shows that either the maximum-shear-stress theory or the
distortion-energy theory is acceptable for design and analysis of materials that would
fail in a ductile manner.

The selection of one or the other of these two theories is something that you, the
engineer, must decide. For design purposes the maximum-shear-stress theory is easy,
quick to use, and conservative. If the problem is to learn why a part failed, then the
distortion-energy theory may be the best to use; Fig. 5–15 shows that the plot of the
distortion-energy theory passes closer to the central area of the data points, and thus is
generally a better predictor of failure. However, keep in mind that though a failure curve
passing through the center of the experimental data is typical of the data, its reliability
from a statistical standpoint is about 50 percent. For design purposes, a larger factor of
safety may be warranted when using such a failure theory.

Figure 5–15

Experimental data superposed
on failure theories. (From 
Fig. 7.11, p. 257, Mechanical
Behavior of Materials, 2nd ed.,
N. E. Dowling, Prentice Hall,
Englewood Cliffs, N.J., 1999.
Modified to show only ductile
failures.)

�2/Sc

�1/Sc

Max. shear

Oct. shear

0 1.0

1.0

–1.0

–1.0

Yielding (Sc = Sy)

Ni-Cr-Mo steel

AISI 1023 steel

2024-T4 Al

3S-H Al

6Joseph Marin was one of the pioneers in the collection, development, and dissemination of material on the
failure of engineering elements. He has published many books and papers on the subject. Here the
reference used is Joseph Marin, Engineering Materials, Prentice-Hall, Englewood Cliffs, N.J., 1952.
(See pp. 156 and 157 for some data points used here.)
7Note that some data in Fig. 5–15 are displayed along the top horizontal boundary where σB ≥ σA . This is often
done with failure data to thin out congested data points by plotting on the mirror image of the line σB = σA .
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232 Mechanical Engineering Design

EXAMPLE 5–3 This example illustrates the use of a failure theory to determine the strength of a mechan-
ical element or component. The example may also clear up any confusion existing
between the phrases strength of a machine part, strength of a material, and strength of
a part at a point.

A certain force F applied at D near the end of the 15-in lever shown in Fig. 5–16,
which is quite similar to a socket wrench, results in certain stresses in the cantilevered
bar OABC. This bar (OABC) is of AISI 1035 steel, forged and heat-treated so that it has
a minimum (ASTM) yield strength of 81 kpsi. We presume that this component would
be of no value after yielding. Thus the force F required to initiate yielding can be
regarded as the strength of the component part. Find this force.

Solution We will assume that lever DC is strong enough and hence not a part of the problem. A 1035
steel, heat-treated, will have a reduction in area of 50 percent or more and hence is a duc-
tile material at normal temperatures. This also means that stress concentration at shoulder
A need not be considered. A stress element at A on the top surface will be subjected to a
tensile bending stress and a torsional stress. This point, on the 1-in-diameter section, is the
weakest section, and governs the strength of the assembly. The two stresses are

σx = M

I/c
= 32M

πd3
= 32(14F)

π(13)
= 142.6F

τzx = T r

J
= 16T

πd3
= 16(15F)

π(13)
= 76.4F

A

1
8

-in R.

1 1
2

-in D.

1 1
2

-in D.

z

1-in D.

2 in

2 in

15 in

F

B

C

x

O

y

D

12 in

Figure 5–16

For ductile materials with unequal yield strengths, Syt in tension and Syc in com-
pression, the Mohr theory is the best available. However, the theory requires the results
from three separate modes of tests, graphical construction of the failure locus, and fit-
ting the largest Mohr’s circle to the failure locus. The alternative to this is to use the
Coulomb-Mohr theory, which requires only the tensile and compressive yield strengths
and is easily dealt with in equation form.
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Employing the distortion-energy theory, we find, from Eq. (5–15), that

σ ′ = (
σ 2

x + 3τ 2
zx

)1/2 = [(142.6F)2 + 3(76.4F)2]
1/2 = 194.5F

Equating the von Mises stress to Sy , we solve for F and get

Answer F = Sy

194.5
= 81 000

194.5
= 416 lbf

In this example the strength of the material at point A is Sy = 81 kpsi. The strength of
the assembly or component is F = 416 lbf.

Let us apply the MSS theory for comparison. For a point undergoing plane stress
with only one nonzero normal stress and one shear stress, the two nonzero principal
stresses will have opposite signs, and hence the maximum shear stress is obtained from
the Mohr’s circle between them. From Eq. (3–14)

τmax =
√(σx

2

)2
+ τ 2

zx =
√(

142.6F

2

)2

+ (76.4F)2 = 104.5F

Setting this equal to Sy/2, from Eq. (5–3) with n = 1, and solving for F, we get

F = 81 000/2

104.5
= 388 lbf

which is about 7 percent less than found for the DE theory. As stated earlier, the MSS
theory is more conservative than the DE theory.

EXAMPLE 5–4 The cantilevered tube shown in Fig. 5–17 is to be made of 2014 aluminum alloy treated
to obtain a specified minimum yield strength of 276 MPa. We wish to select a stock-size
tube from Table A–8 using a design factor nd = 4. The bending load is F = 1.75 kN,
the axial tension is P = 9.0 kN, and the torsion is T = 72 N · m. What is the realized
factor of safety?

Solution The critical stress element is at point A on the top surface at the wall, where the bend-
ing moment is the largest, and the bending and torsional stresses are at their maximum
values. The critical stress element is shown in Fig. 5–17b. Since the axial stress and
bending stress are both in tension along the x axis, they are additive for the normal
stress, giving

σx = P

A
+ Mc

I
= 9

A
+ 120(1.75)(do/2)

I
= 9

A
+ 105do

I
(1)

where, if millimeters are used for the area properties, the stress is in gigapascals.
The torsional stress at the same point is

τzx = T r

J
= 72(do/2)

J
= 36do

J
(2)
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234 Mechanical Engineering Design

For accuracy, we choose the distortion-energy theory as the design basis. The von Mises
stress from Eq. (5–15), is

σ ′ = (
σ 2

x + 3τ 2
zx

)1/2
(3)

On the basis of the given design factor, the goal for σ ′ is

σ ′ ≤ Sy

nd
= 0.276

4
= 0.0690 GPa (4)

where we have used gigapascals in this relation to agree with Eqs. (1) and (2).
Programming Eqs. (1) to (3) on a spreadsheet and entering metric sizes from

Table A–8 reveals that a 42 × 5-mm tube is satisfactory. The von Mises stress is found
to be σ ′ = 0.06043 GPa for this size. Thus the realized factor of safety is

Answer n = Sy

σ ′ = 0.276

0.06043
= 4.57

For the next size smaller, a 42 × 4-mm tube, σ ′ = 0.07105 GPa giving a factor of
safety of

n = Sy

σ ′ = 0.276

0.07105
= 3.88

Figure 5–17

120 mm

y

z

F

T
x

P

A

(a)

(b)

�zx

�x 

z

x
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5–8 Maximum-Normal-Stress Theory
for Brittle Materials
The maximum-normal-stress (MNS) theory states that failure occurs whenever one of
the three principal stresses equals or exceeds the strength. Again we arrange the prin-
cipal stresses for a general stress state in the ordered form σ1 ≥ σ2 ≥ σ3. This theory
then predicts that failure occurs whenever

σ1 ≥ Sut or σ3 ≤ −Suc (5–28)

where Sut and Suc are the ultimate tensile and compressive strengths, respectively, given
as positive quantities. 

For plane stress, with the principal stresses given by Eq. (3–13), with σA ≥ σB,

Eq. (5–28) can be written as

σA ≥ Sut or σB ≤ −Suc (5–29)

which is plotted in Fig. 5–18.
As before, the failure criteria equations can be converted to design equations. We

can consider two sets of equations where σA ≥ σB as

σA = Sut

n
or σB = − Suc

n
(5–30)

As will be seen later, the maximum-normal-stress theory is not very good at pre-
dicting failure in the fourth quadrant of the σA, σB plane. Thus, we will not recommend
the theory for use. It has been included here mainly for historical reasons.

5–9 Modifications of the Mohr Theory
for Brittle Materials
We will discuss two modifications of the Mohr theory for brittle materials: the Brittle-
Coulomb-Mohr (BCM) theory and the modified Mohr (MM) theory. The equations
provided for the theories will be restricted to plane stress and be of the design type
incorporating the factor of safety.

Figure 5–18

Graph of maximum-normal-
stress (MNS) theory failure
envelope for plane stress states.
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236 Mechanical Engineering Design

The Coulomb-Mohr theory was discussed earlier in Sec. 5–6 with Eqs. (5–23) to
(5–25). Written as design equations for a brittle material, they are:

Brittle-Coulomb-Mohr

σA = Sut

n
σA ≥ σB ≥ 0 (5–31a)

σA

Sut
− σB

Suc
= 1

n
σA ≥ 0 ≥ σB (5–31b)

σB = − Suc

n
0 ≥ σA ≥ σB (5–31c)

On the basis of observed data for the fourth quadrant, the modified Mohr theory
expands the fourth quadrant with the solid lines shown in the second and fourth quad-
rants of Fig. 5–19.

Modified Mohr

σA = Sut

n
σA ≥ σB ≥ 0

σA ≥ 0 ≥ σB and

∣∣∣∣σB

σA

∣∣∣∣ ≤ 1
(5–32a)

(Suc − Sut) σA

Suc Sut
− σB

Suc
= 1

n
σA ≥ 0 ≥ σB and

∣∣∣∣σB

σA

∣∣∣∣ > 1 (5–32b)

σB = − Suc

n
0 ≥ σA ≥ σB (5–32c)

Data are still outside this extended region. The straight line introduced by the modified
Mohr theory, for σA ≥ 0 ≥ σB and |σB/σA| > 1, can be replaced by a parabolic relation

Figure 5–19

Biaxial fracture data of gray
cast iron compared with
various failure criteria.
(Dowling, N. E., Mechanical
Behavior of Materials, 2nd ed.,
1999, p. 261. Reprinted by
permission of Pearson
Education, Inc., Upper Saddle
River, New Jersey.)
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EXAMPLE 5–5 Consider the wrench in Ex. 5–3, Fig. 5–16, as made of cast iron, machined to dimen-
sion. The force F required to fracture this part can be regarded as the strength of the
component part. If the material is ASTM grade 30 cast iron, find the force F with
(a) Coulomb-Mohr failure model.
(b) Modified Mohr failure model.

Solution We assume that the lever DC is strong enough, and not part of the problem. Since grade
30 cast iron is a brittle material and cast iron, the stress-concentration factors Kt and Kts

are set to unity. From Table A–24, the tensile ultimate strength is 31 kpsi and the com-
pressive ultimate strength is 109 kpsi. The stress element at A on the top surface will be
subjected to a tensile bending stress and a torsional stress. This location, on the 1-in-
diameter section fillet, is the weakest location, and it governs the strength of the assem-
bly. The normal stress σx and the shear stress at A are given by

σx = Kt
M

I/c
= Kt

32M

πd3
= (1)

32(14F)

π(1)3
= 142.6F

τxy = Kts
T r

J
= Kts

16T

πd3
= (1)

16(15F)

π(1)3
= 76.4F

From Eq. (3–13) the nonzero principal stresses σA and σB are

σA, σB = 142.6F + 0

2
±

√(
142.6F − 0

2

)2

+ (76.4F)2 = 175.8F,−33.2F

This puts us in the fourth-quadrant of the σA, σB plane.
(a) For BCM, Eq. (5–31b) applies with n = 1 for failure.

σA

Sut
− σB

Suc
= 175.8F

31(103)
− (−33.2F)

109(103)
= 1

Solving for F yields

Answer F = 167 lbf

(b) For MM, the slope of the load line is |σB/σA| = 33.2/175.8 = 0.189 < 1.

Obviously, Eq. (5–32a) applies.

σA

Sut
= 175.8F

31(103)
= 1

Answer F = 176 lbf

As one would expect from inspection of Fig. 5–19, Coulomb-Mohr is more conservative.

which can more closely represent some of the data.8 However, this introduces a nonlin-
ear equation for the sake of a minor correction, and will not be presented here.

8See J. E. Shigley, C. R. Mischke, R. G. Budynas, Mechanical Engineering Design, 7th ed., McGraw-Hill,
New York, 2004, p. 275.
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5–10 Failure of Brittle Materials Summary
We have identified failure or strength of brittle materials that conform to the usual
meaning of the word brittle, relating to those materials whose true strain at fracture
is 0.05 or less. We also have to be aware of normally ductile materials that for some
reason may develop a brittle fracture or crack if used below the transition tempera-
ture. Figure 5–20 shows data for a nominal grade 30 cast iron taken under biaxial
stress conditions, with several brittle failure hypotheses shown, superposed. We note
the following:

• In the first quadrant the data appear on both sides and along the failure curves of
maximum-normal-stress, Coulomb-Mohr, and modified Mohr. All failure curves are
the same, and data fit well.

• In the fourth quadrant the modified Mohr theory represents the data best, whereas the
maximum-normal-stress theory does not. 

• In the third quadrant the points A, B, C, and D are too few to make any suggestion
concerning a fracture locus.

5–11 Selection of Failure Criteria
For ductile behavior the preferred criterion is the distortion-energy theory, although
some designers also apply the maximum-shear-stress theory because of its simplicity
and conservative nature. In the rare case when Syt �= Syc , the ductile Coulomb-Mohr
method is employed.

For brittle behavior, the original Mohr hypothesis, constructed with tensile, compres-
sion, and torsion tests, with a curved failure locus is the best hypothesis we have. However,
the difficulty of applying it without a computer leads engineers to choose modifications,

Figure 5–20

A plot of experimental data
points obtained from tests on
cast iron. Shown also are the
graphs of three failure theories
of possible usefulness for
brittle materials. Note points A,
B, C, and D. To avoid
congestion in the first quadrant,
points have been plotted for
σA > σB as well as for the
opposite sense. (Source of
data: Charles F. Walton (ed.),
Iron Castings Handbook, 
Iron Founders’ Society, 1971, 
pp. 215, 216, Cleveland, Ohio.)
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namely, Coulomb Mohr, or modified Mohr. Figure 5–21 provides a summary flowchart for
the selection of an effective procedure for analyzing or predicting failures from static
loading for brittle or ductile behavior. Note that the maximum-normal-stress theory is
excluded from Fig. 5–21 as the other theories better represent the experimental data.

5–12 Introduction to Fracture Mechanics
The idea that cracks exist in parts even before service begins, and that cracks can grow
during service, has led to the descriptive phrase “damage-tolerant design.” The focus of
this philosophy is on crack growth until it becomes critical, and the part is removed
from service. The analysis tool is linear elastic fracture mechanics (LEFM). Inspection
and maintenance are essential in the decision to retire parts before cracks reach cata-
strophic size. Where human safety is concerned, periodic inspections for cracks are
mandated by codes and government ordinance.

We shall now briefly examine some of the basic ideas and vocabulary needed for
the potential of the approach to be appreciated. The intent here is to make the reader
aware of the dangers associated with the sudden brittle fracture of so-called ductile
materials. The topic is much too extensive to include in detail here and the reader is
urged to read further on this complex subject.9

Figure 5–21

Failure theory selection
flowchart.

9References on brittle fracture include:
H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed., ASME Press,

New York, 2000.
D. Broek, Elementary Engineering Fracture Mechanics, 4th ed., Martinus Nijhoff, London, 1985.
D. Broek, The Practical Use of Fracture Mechanics, Kluwar Academic Pub., London, 1988.
David K. Felbeck and Anthony G. Atkins, Strength and Fracture of Engineering Solids, 2nd ed.,

Prentice-Hall, Englewood Cliffs, N.J., 1995.
Kåre Hellan, Introduction to Fracture Mechanics, McGraw-Hill, New York, 1984.

Syt = Syc?·Conservative?

�f

Mod. Mohr
(MM)

Eq. (5–32)

Brittle Coulomb-Mohr
(BCM)

Eq. (5–31)

Ductile Coulomb-Mohr
(DCM)

Eq. (5–26)

Distortion-energy
(DE)

Eqs. (5–15)
and (5–19)

Brittle behavior Ductile behavior

< 0.05 ≥ 0.05

No NoYes

Conservative?

Maximum shear stress
(MSS)

Eq. (5–3)

No Yes

Yes
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240 Mechanical Engineering Design

The use of elastic stress-concentration factors provides an indication of the average
load required on a part for the onset of plastic deformation, or yielding; these factors
are also useful for analysis of the loads on a part that will cause fatigue fracture.
However, stress-concentration factors are limited to structures for which all dimensions
are precisely known, particularly the radius of curvature in regions of high stress con-
centration. When there exists a crack, flaw, inclusion, or defect of unknown small radius
in a part, the elastic stress-concentration factor approaches infinity as the root radius
approaches zero, thus rendering the stress-concentration factor approach useless.
Furthermore, even if the radius of curvature of the flaw tip is known, the high local
stresses there will lead to local plastic deformation surrounded by a region of elastic
deformation. Elastic stress-concentration factors are no longer valid for this situation,
so analysis from the point of view of stress-concentration factors does not lead to cri-
teria useful for design when very sharp cracks are present.

By combining analysis of the gross elastic changes in a structure or part that occur
as a sharp brittle crack grows with measurements of the energy required to produce new
fracture surfaces, it is possible to calculate the average stress (if no crack were present)
that will cause crack growth in a part. Such calculation is possible only for parts with
cracks for which the elastic analysis has been completed, and for materials that crack in a
relatively brittle manner and for which the fracture energy has been carefully measured.
The term relatively brittle is rigorously defined in the test procedures,10 but it means,
roughly, fracture without yielding occurring throughout the fractured cross section.

Thus glass, hard steels, strong aluminum alloys, and even low-carbon steel below
the ductile-to-brittle transition temperature can be analyzed in this way. Fortunately,
ductile materials blunt sharp cracks, as we have previously discovered, so that fracture
occurs at average stresses of the order of the yield strength, and the designer is prepared
for this condition. The middle ground of materials that lie between “relatively brittle”
and “ductile” is now being actively analyzed, but exact design criteria for these materi-
als are not yet available.

Quasi-Static Fracture

Many of us have had the experience of observing brittle fracture, whether it is the break-
ing of a cast-iron specimen in a tensile test or the twist fracture of a piece of blackboard
chalk. It happens so rapidly that we think of it as instantaneous, that is, the cross section
simply parting. Fewer of us have skated on a frozen pond in the spring, with no one near
us, heard a cracking noise, and stopped to observe. The noise is due to cracking. The
cracks move slowly enough for us to see them run. The phenomenon is not instantaneous,
since some time is necessary to feed the crack energy from the stress field to the crack for
propagation. Quantifying these things is important to understanding the phenomenon “in
the small.” In the large, a static crack may be stable and will not propagate. Some level of
loading can render the crack unstable, and the crack propagates to fracture.

The foundation of fracture mechanics was first established by Griffith in 1921
using the stress field calculations for an elliptical flaw in a plate developed by Inglis in
1913. For the infinite plate loaded by an applied uniaxial stress σ in Fig. 5–22, the max-
imum stress occurs at (±a, 0) and is given by

(σy)max =
(

1 + 2
a

b

)
σ (5–33)

10BS 5447:1977 and ASTM E399-78.
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Note that when a = b, the ellipse becomes a circle and Eq. (5–33) gives a stress-
concentration factor of 3. This agrees with the well-known result for an infinite plate with
a circular hole (see Table A–15–1). For a fine crack, b/a → 0, and Eq. (5–34) predicts
that (σy)max → ∞. However, on a microscopic level, an infinitely sharp crack is a
hypothetical abstraction that is physically impossible, and when plastic deformation
occurs, the stress will be finite at the crack tip.

Griffith showed that the crack growth occurs when the energy release rate from
applied loading is greater than the rate of energy for crack growth. Crack growth can be
stable or unstable. Unstable crack growth occurs when the rate of change of the energy
release rate relative to the crack length is equal to or greater than the rate of change of
the crack growth rate of energy. Griffith’s experimental work was restricted to brittle
materials, namely glass, which pretty much confirmed his surface energy hypothesis.
However, for ductile materials, the energy needed to perform plastic work at the crack
tip is found to be much more crucial than surface energy.

Crack Modes and the Stress Intensity Factor

Three distinct modes of crack propagation exist, as shown in Fig. 5–23. A tensile stress
field gives rise to mode I, the opening crack propagation mode, as shown in Fig. 5–23a.
This mode is the most common in practice. Mode II is the sliding mode, is due to 
in-plane shear, and can be seen in Fig. 5–23b. Mode III is the tearing mode, which
arises from out-of-plane shear, as shown in Fig. 5–23c. Combinations of these modes
can also occur. Since mode I is the most common and important mode, the remainder
of this section will consider only this mode.

Figure 5–22 y

x

a

b

�

�

Figure 5–23

Crack propagation modes.

(b) Mode II(a) Mode I (c) Mode III
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242 Mechanical Engineering Design

Consider a mode I crack of length 2a in the infinite plate of Fig. 5–24. By using
complex stress functions, it has been shown that the stress field on a dx dy element in
the vicinity of the crack tip is given by

σx = σ

√
a

2r
cos

θ

2

(
1 − sin

θ

2
sin

3θ

2

)
(5–34a)

σy = σ

√
a

2r
cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(5–34b)

τxy = σ

√
a

2r
sin

θ

2
cos

θ

2
cos

3θ

2
(5–34c)

σz =
{

0 (for plane stress)
ν(σx + σy) (for plane strain)

(5–34d)

The stress σy near the tip, with θ = 0, is 

σy|θ=0 = σ

√
a

2r
(a)

As with the elliptical crack, we see that σy|θ=0 → ∞ as r → 0, and again the concept
of an infinite stress concentration at the crack tip is inappropriate. The quantity
σy|θ=0

√
2r = σ

√
a, however, does remain constant as r → 0. It is common practice to

define a factor K called the stress intensity factor given by

K = σ
√

πa (b)

where the units are MPa
√

m or kpsi
√

in. Since we are dealing with a mode I crack,
Eq. (b) is written as

KI = σ
√

πa (5–35)

The stress intensity factor is not to be confused with the static stress-concentration
factors Kt and Kts defined in Secs. 3–13 and 5–2.

Thus Eqs. (5–34) can be rewritten as 

σx = KI√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)
(5–36a)

σy = KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(5–36b)

Figure 5–24

Mode I crack model.

y

x
r

dx
dy

a

�

�

�
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11See, for example:
H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed., ASME Press,

New York, 2000.
G. C. Sib, Handbook of Stress Intensity Factors for Researchers and Engineers, Institute of Fracture and

Solid Mechanics, Lehigh University, Bethlehem, Pa., 1973.
Y. Murakami, ed., Stress Intensity Factors Handbook, Pergamon Press, Oxford, U.K., 1987.
W. D. Pilkey, Formulas for Stress, Strain, and Structural Matrices, 2nd ed. John Wiley & Sons, 

New York, 2005.

τxy = KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(5–36c)

σz =
{

0 (for plane stress)
ν(σx + σy) (for plane strain)

(5–36d)

The stress intensity factor is a function of geometry, size and shape of the crack,
and the type of loading. For various load and geometric configurations, Eq. (5–35) can
be written as

KI = βσ
√

πa (5–37)

where β is the stress intensity modification factor. Tables for β are available in the lit-
erature for basic configurations.11 Figures 5–25 to 5–30 present a few examples of β for
mode I crack propagation.

Figure 5–25

Off-center crack in a plate in
longitudinal tension; solid
curves are for the crack tip 
at A; dashed curves are for 
the tip at B.
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Figure 5–27

Beams of rectangular cross
section having an edge crack.
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Figure 5–26

Plate loaded in longitudinal
tension with a crack at the
edge; for the solid curve there
are no constraints to bending;
the dashed curve was obtained
with bending constraints
added.
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Figure 5–28

Plate in tension containing a
circular hole with two cracks.
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Figure 5–29

A cylinder loading in axial
tension having a radial crack of
depth a extending completely
around the circumference of
the cylinder.
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Fracture Toughness

When the magnitude of the mode I stress intensity factor reaches a critical value,
KI c , crack propagation initiates. The critical stress intensity factor KI c is a material
property that depends on the material, crack mode, processing of the material, temper-
ature, loading rate, and the state of stress at the crack site (such as plane stress versus
plane strain). The critical stress intensity factor KI c is also called the fracture toughness
of the material. The fracture toughness for plane strain is normally lower than that for
plane stress. For this reason, the term KI c is typically defined as the mode I, plane strain
fracture toughness. Fracture toughness KI c for engineering metals lies in the range
20 ≤ KI c ≤ 200 MPa · √m; for engineering polymers and ceramics, 1 ≤ KI c ≤
5 MPa · √m. For a 4340 steel, where the yield strength due to heat treatment ranges
from 800 to 1600 MPa, KI c decreases from 190 to 40 MPa · √m.

Table 5–1 gives some approximate typical room-temperature values of KI c for
several materials. As previously noted, the fracture toughness depends on many factors
and the table is meant only to convey some typical magnitudes of KI c. For an actual
application, it is recommended that the material specified for the application be certi-
fied using standard test procedures [see the American Society for Testing and Materials
(ASTM) standard E399].
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246 Mechanical Engineering Design

Table 5–1

Values of KIc for Some

Engineering Materials

at Room Temperature

Material KIc, MPa
√

Aluminum
2024 26 455
7075 24 495
7178 33 490

Titanium
Ti-6AL-4V 115 910
Ti-6AL-4V 55 1035

Steel
4340 99 860
4340 60 1515
52100 14 2070

One of the first problems facing the designer is that of deciding whether the condi-
tions exist, or not, for a brittle fracture. Low-temperature operation, that is, operation
below room temperature, is a key indicator that brittle fracture is a possible failure
mode. Tables of transition temperatures for various materials have not been published,
possibly because of the wide variation in values, even for a single material. Thus, in
many situations, laboratory testing may give the only clue to the possibility of a brittle
fracture. Another key indicator of the possibility of fracture is the ratio of the yield
strength to the ultimate strength. A high ratio of Sy/Su indicates there is only a small

Figure 5–30

Cylinder subjected to internal
pressure p, having a radial
crack in the longitudinal
direction of depth a. Use
Eq. (4–51) for the tangential
stress at r = r0.
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Failures Resulting from Static Loading 247

ability to absorb energy in the plastic region and hence there is a likelihood of brittle
fracture.

The strength-to-stress ratio KI c/KI can be used as a factor of safety as

n = KI c

KI
(5–38)

EXAMPLE 5–6 A steel ship deck plate is 30 mm thick and 12 m wide. It is loaded with a nominal uni-
axial tensile stress of 50 MPa. It is operated below its ductile-to-brittle transition tem-
perature with KI c equal to 28.3 MPa. If a 65-mm-long central transverse crack is
present, estimate the tensile stress at which catastrophic failure will occur. Compare this
stress with the yield strength of 240 MPa for this steel.

Solution For Fig. 5–25, with d = b, 2a = 65 mm and 2b = 12 m, so that d/b = 1 and a/d =
65/12(103) = 0.00542. Since a/d is so small, β = 1, so that

KI = σ
√

πa = 50
√

π(32.5 × 10−3) = 16.0 MPa
√

m

From Eq. (5–38),

n = KI c

KI
= 28.3

16.0
= 1.77

The stress at which catastrophic failure occurs is 

Answer σc = KI c

KI
σ = 28.3

16.0
(50) = 88.4 MPa

The yield strength is 240 MPa, and catastrophic failure occurs at 88.4/240 = 0.37, or
at 37 percent of yield. The factor of safety in this circumstance is KI c/KI =
28.3/16 = 1.77 and not 240/50 = 4.8.

EXAMPLE 5–7 A plate of width 1.4 m and length 2.8 m is required to support a tensile force in the
2.8-m direction of 4.0 MN. Inspection procedures will detect only through-thickness
edge cracks larger than 2.7 mm. The two Ti-6AL-4V alloys in Table 5–1 are being con-
sidered for this application, for which the safety factor must be 1.3 and minimum
weight is important. Which alloy should be used?

Solution (a) We elect first to estimate the thickness required to resist yielding. Since σ = P/wt,
we have t = P/wσ. For the weaker alloy, we have, from Table 5–1, Sy = 910 MPa.
Thus,

σall = Sy

n
= 910

1.3
= 700 MPa

Thus

t = P

wσall
= 4.0(10)3

1.4(700)
= 4.08 mm or greater
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For the stronger alloy, we have, from Table 5–1,

σall = 1035

1.3
= 796 MPa

and so the thickness is

Answer t = P

wσall
= 4.0(10)3

1.4(796)
= 3.59 mm or greater

(b) Now let us find the thickness required to prevent crack growth. Using Fig. 5–26, we
have

h

b
= 2.8/2

1.4
= 1

a

b
= 2.7

1.4(103)
= 0.001 93

Corresponding to these ratios we find from Fig. 5–26 that β
.= 1.1, and KI = 1.1σ

√
πa.

n = KI c

KI
= 115

√
103

1.1σ
√

πa
, σ = KI c

1.1n
√

πa

From Table 5–1, KI c = 115 MPa
√

m for the weaker of the two alloys. Solving for σ with
n = 1 gives the fracture stress

σ = 115

1.1
√

π(2.7 × 10−3)
= 1135 MPa

which is greater than the yield strength of 910 MPa, and so yield strength is the basis
for the geometry decision. For the stronger alloy Sy = 1035 MPa, with n = 1 the frac-
ture stress is

σ = KI c

nKI
= 55

1(1.1)
√

π(2.7 × 10−3)
= 542.9 MPa

which is less than the yield strength of 1035 MPa. The thickness t is

t = P

wσall
= 4.0(103)

1.4(542.9/1.3)
= 6.84 mm or greater

This example shows that the fracture toughness KI c limits the geometry when the
stronger alloy is used, and so a thickness of 6.84 mm or larger is required. When the
weaker alloy is used the geometry is limited by the yield strength, giving a thickness of
only 4.08 mm or greater. Thus the weaker alloy leads to a thinner and lighter weight
choice since the failure modes differ.

248 Mechanical Engineering Design

12Review Chap. 20 before reading this section.

5–13 Stochastic Analysis12

Reliability is the probability that machine systems and components will perform their
intended function satisfactorily without failure. Up to this point, discussion in this chap-
ter has been restricted to deterministic relations between static stress, strength, and the
design factor. Stress and strength, however, are statistical in nature and very much tied
to the reliability of the stressed component. Consider the probability density functions
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m

)

�m

Stress margin
0

(1 – R)

–	 +�

for stress and strength, � and S, shown in Fig. 5–31a. The mean values of stress and
strength are μσ and μS , respectively. Here, the “average” factor of safety is

n̄ = μS

μσ

(a)

The margin of safety for any value of stress σ and strength S is defined as

m = S − σ (b)

The average part will have a margin of safety of m̄ = μS − μσ . However, for the over-
lap of the distributions shown by the shaded area in Fig. 5–31a, the stress exceeds the
strength, the margin of safety is negative, and these parts are expected to fail. This
shaded area is called the interference of � and S.

Figure 5–31b shows the distribution of m, which obviously depends on the distri-
butions of stress and strength. The reliability that a part will perform without failure, R,
is the area of the margin of safety distribution for m > 0. The interference is the area
1 − R where parts are expected to fail. We next consider some typical cases involving
stress-strength interference.

Normal-Normal Case

Consider the normal distributions, S = N(μS, σ̂S) and � = N(μσ , σ̂σ ). The stress
margin is m = S − �, and will be normally distributed because the addition or sub-
traction of normals is normal. Thus m = N(μm, σ̂m). Reliability is the probability p that
m > 0. That is,

R = p(S > σ) = p(S − σ > 0) = p(m > 0) (5–39)

To find the chance that m > 0 we form the z variable of m and substitute m = 0 [See
Eq. (20–16)]. Noting that μm = μS − μσ and σ̂m = (σ̂ 2

S + σ̂ 2
σ )1/2, we write

z = m − μm

σ̂m
= 0 − μm

σ̂m
= −μm

σ̂m
= − μS − μσ(

σ̂ 2
S + σ̂ 2

σ

)1/2 (5–40)

Figure 5–31

Plot of density functions
showing how the interference
of S and � is used to obtain 
the stress margin m. (a) Stress
and strength distributions.
(b) Distribution of interference;
the reliability R is the area 
of the density function for 
m greater than zero; the
interference is the area (1 − R).
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Equation (5–40) is called the normal coupling equation. The reliability associated with
z is given by

R =
∫ ∞

x

1√
2π

exp

(
− u2

2

)
du = 1 − F = 1 − 
(z) (5–41)

The body of Table A–10 gives R when z > 0 and (1 − R = F) when z ≤ 0. Noting that
n̄ = μS/μσ , square both sides of Eq. (5–40), and introduce CS and Cσ where
CS = σ̂S/μS and Cσ = σ̂σ /μσ . Solve the resulting quadratic for n̄ to obtain

n̄ =
1 ±

√
1 − (

1 − z2C2
S

) (
1 − z2C2

σ

)
1 − z2C2

S

(5–42)

The plus sign is associated with R > 0.5, and the minus sign with R < 0.5.

Lognormal–Lognormal Case

Consider the lognormal distributions S = LN(μS, σ̂S) and � = LN(μσ , σ̂σ ). If we
interfere their companion normals using Eqs. (20–18) and (20–19), we obtain

μln S = ln μS − ln
√

1 + C2
S

σ̂ln S =
√

ln
(
1 + C2

S

) (strength)

and

μln σ = ln μσ − ln
√

1 + C2
σ

σ̂ln σ =
√

ln
(
1 + C2

σ

) (stress)

Using Eq. (5–40) for interfering normal distributions gives

z = − μln S − μln σ(
σ̂ 2

ln S + σ̂ 2
ln σ

)1/2 = −
ln

(
μS

μσ

√
1 + C2

σ

1 + C2
S

)
√

ln
[(

1 + C2
S

) (
1 + C2

σ

)] (5–43)

The reliability R is expressed by Eq. (5–41). The design factor n is the random variable
that is the quotient of S/�. The quotient of lognormals is lognormal, so pursuing the
z variable of the lognormal n, we note

μn = μS

μσ

Cn =
√

C2
S + C2

σ

1 + C2
σ

σ̂n = Cnμn

The companion normal to n = LN(μn, σ̂n), from Eqs. (20–18) and (20–19), has a mean
and standard deviation of

μy = ln μn − ln
√

1 + C2
n σ̂y =

√
ln

(
1 + C2

n

)
The z variable for the companion normal y distribution is

z = y − μy

σ̂y
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Failure will occur when the stress is greater than the strength, when n̄ < 1, or when
y < 0.

z = 0 − μy

σ̂y
= −μy

σy
= − ln μn − ln

√
1 + C2

n√
ln

(
1 + C2

n

) =̇ − ln
(
μn/

√
1 + C2

n

)√
ln

(
1 + C2

n

) (5–44)

Solving for μn gives

μn = n̄ = exp

[
−z

√
ln

(
1 + C2

n

) + ln
√

1 + C2
n

]
.= exp

[
Cn

(
− z + Cn

2

)]
(5–45)

Equations (5–42) and (5–45) are remarkable for several reasons:

• They relate design factor n̄ to the reliability goal (through z) and the coefficients of
variation of strength and stress.

• They are not functions of the means of stress and strength.

• They estimate the design factor necessary to achieve the reliability goal before
decisions involving means are made. The CS depends slightly on the particular
material. The Cσ has the coefficient of variation (COV) of the load, and that is gen-
erally given. 

EXAMPLE 5–8 A round cold-drawn 1018 steel rod has an 0.2 percent yield strength Sy = N(78.4, 5.90)
kpsi and is to be subjected to a static axial load of P = N(50, 4.1) kip. What value of
the design factor n̄ corresponds to a reliability of 0.999 against yielding (z = −3.09)?
Determine the corresponding diameter of the rod.

Solution CS = 5.90/78.4 = 0.0753, and

� = P
A

= 4P
πd2

Since the COV of the diameter is an order of magnitude less than the COV of the load
or strength, the diameter is treated deterministically:

Cσ = CP = 4.1

50
= 0.082

From Eq. (5–42),

n �       � 1.416
1 �   1 � [1 �(�3.09)2(0.07532)][1 �(�3.09)2(0.0822)]

1 �(�3.09)2(0.07532)

The diameter is found deterministically:

Answer
d =

√
4P̄

π S̄y/n̄
=

√
4(50 000)

π(78 400)/1.416
= 1.072 in
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Check Sy = N(78.4, 5.90) kpsi, P = N(50, 4.1) kip, and d = 1.072 in. Then

A = πd2

4
= π(1.0722)

4
= 0.9026 in2

σ̄ = P̄

A
= (50 000)

0.9026
= 55 400 psi

CP = Cσ = 4.1

50
= 0.082

σ̂σ = Cσ σ̄ = 0.082(55 400) = 4540 psi

σ̂S = 5.90 kpsi

From Eq. (5–40)
z = − 78.4 − 55.4

(5.902 + 4.542)1/2
= −3.09

From Appendix Table A–10, R = 
(−3.09) = 0.999.

EXAMPLE 5–9 Rework Ex. 5–8 with lognormally distributed stress and strength.

Solution CS = 5.90/78.4 = 0.0753, and Cσ = CP = 4.1/50 = 0.082. Then

� = P
A

= 4P
πd2

Cn =
√

C2
S + C2

σ

1 + C2
σ

=
√

0.07532 + 0.0822

1 + 0.0822
= 0.1110

From Table A–10, z = −3.09. From Eq. (5–45),

n̄ = exp
[
−(−3.09)

√
ln(1 + 0.1112) + ln

√
1 + 0.1112

]
= 1.416

d =
√

4P̄

π S̄y/n̄
=

√
4(50 000)

π(78 400)/1.416
= 1.0723 in

Check Sy = LN(78.4, 5.90), P = LN(50, 4.1) kip. Then

A = πd2

4
= π(1.07232)

4
= 0.9031

σ̄ = P̄

A
= 50 000

0.9031
= 55 365 psi

Cσ = CP = 4.1

50
= 0.082

σ̂σ = Cσμσ = 0.082(55 367) = 4540 psi

From Eq. (5–43),

z = −
ln

⎛⎝ 78.4

55.365

√
1 + 0.0822

1 + 0.07532

⎞⎠
√

ln[(1 + 0.07532)(1 + 0.0822)]
= −3.1343

Appendix Table A–10 gives R = 0.99950.
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Interference—General

In the previous segments, we employed interference theory to estimate reliability when the
distributions are both normal and when they are both lognormal. Sometimes, however, it
turns out that the strength has, say, a Weibull distribution while the stress is distributed
lognormally. In fact, stresses are quite likely to have a lognormal distribution, because the
multiplication of variates that are normally distributed produces a result that approaches
lognormal. What all this means is that we must expect to encounter interference problems
involving mixed distributions and we need a general method to handle the problem.

It is quite likely that we will use interference theory for problems involving distri-
butions other than strength and stress. For this reason we employ the subscript 1 to
designate the strength distribution and the subscript 2 to designate the stress distribu-
tion. Figure 5–32 shows these two distributions aligned so that a single cursor x can be
used to identify points on both distributions. We can now write( Probability that

stress is less
than strength

)
= dp(σ < x) = d R = F2(x) d F1(x)

By substituting 1 − R2 for F2 and −d R1 for d F1, we have

d R = −[1 − R2(x)] d R1(x)

The reliability for all possible locations of the cursor is obtained by integrating x
from −∞ to ∞; but this corresponds to an integration from 1 to 0 on the reliability R1.
Therefore

R = −
∫ 0

1
[1 − R2(x)] d R1(x)

which can be written

R = 1 −
∫ 1

0
R2 d R1 (5–46)

Figure 5–32

(a) PDF of the strength
distribution; (b) PDF of the
load-induced stress
distribution.

f1(S)

dF1(x) =  f1(x) dx

f2(�)

dx
S

�

Cursor

R2(x)
F2(x)

(a)

(b)

x
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where

R1(x) =
∫ ∞

x
f1(S) dS (5–47)

R2(x) =
∫ ∞

x
f2(σ ) dσ (5–48)

For the usual distributions encountered, plots of R1 versus R2 appear as shown in
Fig. 5–33. Both of the cases shown are amenable to numerical integration and com-
puter solution. When the reliability is high, the bulk of the integration area is under the
right-hand spike of Fig. 5–33a.

5–14 Important Design Equations
The following equations and their locations are provided as a summary. Note for plane
stress: The principal stresses in the following equations that are labeled σA and σB rep-
resent the principal stresses determined from the two-dimensional Eq. (3–13).

Maximum Shear Theory

p. 220 τmax = σ1 − σ3

2
= Sy

2n
(5–3)

Distortion-Energy Theory

Von Mises stress, p. 223

σ ′ =
[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]1/2

(5–12)

p. 223 σ ′ = 1√
2

[
(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2 + 6(τ 2
xy + τ 2

yz + τ 2
zx)

]1/2

(5–14)

Plane stress, p. 223

σ ′ = (σ 2
A − σAσB + σ 2

B)1/2 (5–13)

p. 223 σ ′ = (σ 2
x − σxσy + σ 2

y + 3τ 2
xy)

1/2 (5–15)

254 Mechanical Engineering Design

Figure 5–33

Curve shapes of the R1 R2 plot. In each case the shaded area 
is equal to 1 − R and is obtained by numerical integration. 
(a) Typical curve for asymptotic distributions; (b) curve shape
obtained from lower truncated distributions such as the Weibull.

R1 1

R2

1

(a)

R1 1

R2

1

(b)
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Yield design equation, p. 224

σ ′ = Sy

n
(5–19)

Shear yield strength, p. 225

Ssy = 0.577 Sy (5–21)

Coulomb-Mohr Theory

p. 225
σ1

St
− σ3

Sc
= 1

n
(5–26)

where St is tensile yield (ductile) or ultimate tensile (brittle), and St is compressive
yield (ductile) or ultimate compressive (brittle) strengths.

Modified Mohr (Plane Stress)

σA = Sut

n
σA ≥ σB ≥ 0

σA ≥ 0 ≥ σB and

∣∣∣∣σB

σA

∣∣∣∣ ≤ 1

(5–32a)

p. 236
(Suc − Sut)σA

Suc Sut
− σB

Suc
= 1

n
σA ≥ 0 ≥ σB and

∣∣∣σB

σA

∣∣∣ > 1 (5–32b)

σB = − Suc

n
0 ≥ σA ≥ σB (5–32c)

Failure Theory Flowchart

Fig. 5–21, p. 239

Failures Resulting from Static Loading 255

Syt = Syc?·Conservative?

�f

Mod. Mohr
(MM)

Eq. (5–32)

Brittle Coulomb-Mohr
(BCM)

Eq. (5–31)

Ductile Coulomb-Mohr
(DCM)

Eq. (5–26)

Distortion-energy
(DE)

Eqs. (5–15)
and (5–19)

Brittle behavior Ductile behavior

< 0.05 ≥ 0.05

No NoYes

Conservative?

Maximum shear stress
(MSS)

Eq. (5–3)

No Yes

Yes
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Fracture Mechanics

p. 243 KI = βσ
√

πa (5–37)

where β is found in Figs. 5–25 to 5–30 (pp. 243 to 246)

p. 247 n = KI c

KI
(5–38)

where KI c is found in Table 5–1 (p. 246)

Stochastic Analysis

Mean factor of safety defined as n̄ = μS/μσ (μS and μσ are mean strength and stress,
respectively)

Normal-Normal Case

p. 250 n̄ =
1 ±

√
1 − (1 − z2C2

S)(1 − z2C2
σ )

1 − z2C2
S

(5–42)

where z can be found in Table A–10, CS = σ̂S/μS , and Cσ = σ̂σ /μσ .

Lognormal-Lognormal Case

p. 251 n̄ = exp

[
−z

√
ln(1 + C2

n) + ln
√

1 + C2
n

]
.= exp

[
Cn

(
−z + Cn

2

)]
(5–45)

where

Cn =
√

C2
S + C2

σ

1 + C2
σ

(See other definitions in normal-normal case.)

PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1–1 of Sec. 1–16, p. 24.

5–1 A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 350 MPa.
Using the distortion-energy and maximum-shear-stress theories determine the factors of safety
for the following plane stress states:
(a) σx = 100 MPa, σy = 100 MPa
(b) σx = 100 MPa, σy = 50 MPa
(c) σx = 100 MPa, τxy = −75 MPa
(d) σx = −50 MPa, σy = −75 MPa, τxy = −50 MPa
(e) σx = 100 MPa, σy = 20 MPa, τxy = −20 MPa

5–2 Repeat Prob. 5–1 with the following principal stresses obtained from Eq. (3–13):
(a) σA = 100 MPa, σB = 100 MPa
(b) σA = 100 MPa, σB = −100 MPa
(c) σA = 100 MPa, σB = 50 MPa
(d) σA = 100 MPa, σB = −50 MPa
(e) σA = −50 MPa, σB = −100 MPa
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5–3 Repeat Prob. 5–1 for a bar of AISI 1030 hot-rolled steel and:
(a) σx = 25 kpsi, σy = 15 kpsi
(b) σx = 15 kpsi, σy = −15 kpsi
(c) σx = 20 kpsi, τxy = −10 kpsi
(d) σx = −12 kpsi, σy = 15 kpsi, τxy = −9 kpsi
(e) σx = −24 kpsi, σy = −24 kpsi, τxy = −15 kpsi

5–4 Repeat Prob. 5–1 for a bar of AISI 1015 cold-drawn steel with the following principal stresses
obtained from Eq. (3–13):
(a) σA = 30 kpsi, σB = 30 kpsi
(b) σA = 30 kpsi, σB = −30 kpsi
(c) σA = 30 kpsi, σB = 15 kpsi
(d) σA = −30 kpsi, σB = −15 kpsi
(e) σA = −50 kpsi, σB = 10 kpsi

5–5 Repeat Prob. 5–1 by first plotting the failure loci in the σA , σB plane to scale; then, for each stress
state, plot the load line and by graphical measurement estimate the factors of safety.

5–6 Repeat Prob. 5–3 by first plotting the failure loci in the σA , σB plane to scale; then, for each stress
state, plot the load line and by graphical measurement estimate the factors of safety.

An AISI 1018 steel has a yield strength, Sy = 295 MPa. Using the distortion-energy theory for
the given state of plane stress, (a) determine the factor of safety, (b) plot the failure locus, the load
line, and estimate the factor of safety by graphical measurement.

5–12 A ductile material has the properties Syt = 60 kpsi and Syc = 75 kpsi. Using the ductile Coulomb-
Mohr theory, determine the factor of safety for the states of plane stress given in Prob. 5–3.

5–13 Repeat Prob. 5–12 by first plotting the failure loci in the σA, σB plane to scale; then for each stress
state, plot the load line and by graphical measurement estimate the factor of safety.

An AISI 4142 steel Q&T at 800°F exhibits Syt = 235 kpsi, Syc = 285 kpsi, and ε f = 0.07. For
the given state of plane stress, (a) determine the factor of safety, (b) plot the failure locus and the
load line, and estimate the factor of safety by graphical measurement.

Problem Number Sx (kpsi) Sy (kpsi) Txy (kpsi)

5–14 150 −50 0

5–15 −150 50 0

5–16 125 0 −75

5–17 −80 −125 50

5–18 125 80 −75

5–14 to
5–18

Problem Number Sx (MPa) Sy (MPa) Txy (MPa)

5–7 75 −35 0

5–8 −100 30 0

5–9 100 0 −25

5–10 −30 −65 40

5–11 −80 30 −10

5–7 to
5–11
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5–19 A brittle material has the properties Sut = 30 kpsi and Suc = 90 kpsi. Using the brittle Coulomb-
Mohr and modified-Mohr theories, determine the factor of safety for the following states of
plane stress.
(a) σx = 25 kpsi, σy = 15 kpsi
(b) σx = 15 kpsi, σy = −15 kpsi
(c) σx = 20 kpsi, τxy = −10 kpsi
(d ) σx = −15 kpsi, σy = 10 kpsi, τxy = −15 kpsi
(e) σx = −20 kpsi, σy = −20 kpsi, τxy = −15 kpsi

5–20 Repeat Prob. 5–19 by first plotting the failure loci in the σA, σB plane to scale; then for each stress
state, plot the load line and by graphical measurement estimate the factor of safety.

For an ASTM 30 cast iron, (a) find the factors of safety using the BCM and MM theories,
(b) plot the failure diagrams in the σA, σB plane to scale and locate the coordinates of the stress
state, and (c) estimate the factors of safety from the two theories by graphical measurements
along the load line.

A cast aluminum 195-T6 exhibits Sut = 36 kpsi, Suc = 35 kpsi, and ε f = 0.045. For the given
state of plane stress, (a) using the Coulomb-Mohr theory, determine the factor of safety, (b) plot
the failure locus and the load line, and estimate the factor of safety by graphical measurement.

Repeat Probs. 5–26 to 5–30 using the modified-Mohr theory.

Problem number 5–31 5–32 5–33 5–34 5–35

Repeat problem 5–26 5–27 5–28 5–29 5–30

5–36 This problem illustrates that the factor of safety for a machine element depends on the particular
point selected for analysis. Here you are to compute factors of safety, based upon the distortion-
energy theory, for stress elements at A and B of the member shown in the figure. This bar is
made of AISI 1006 cold-drawn steel and is loaded by the forces F = 0.55 kN, P = 4.0 kN,
and T = 25 N · m.

5–31 to
5–35

Problem Number Sx (kpsi) Sy (kpsi) Txy (kpsi)

5–26 15 −10 0

5–27 −15 10 0

5–28 12 0 −8

5–29 −10 −15 10

5–30 15 8 −8

5–26 to
5–30

Problem Number Sx (kpsi) Sy (kpsi) Txy (kpsi)

5–21 15 10 0

5–22 15 −50 0

5–23 15 0 −10

5–24 −10 −25 −10

5–25 −35 13 −10

5–21 to
5–25
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5–37 For the beam in Prob. 3–44, p. 133, determine the minimum yield strength that should be con-
sidered to obtain a minimum factor of safety of 2 based on the distortion-energy theory.

5–38 A 1020 CD steel shaft is to transmit 20 hp while rotating at 1750 rpm. Determine the minimum
diameter for the shaft to provide a minimum factor of safety of 3 based on the maximum-shear-
stress theory.

For the problem specified in the table, build upon the results of the original problem to determine
the minimum factor of safety for yielding. Use both the maximum-shear-stress theory and the
distortion-energy theory, and compare the results. The material is 1018 CD steel.

5–39* to
5–55*

Problem Number Original Problem, Page Number

5–39* 3–68, 137

5–40* 3–69, 137

5–41* 3–70, 137

5–42* 3–71, 137

5–43* 3–72, 138

5–44* 3–73, 138

5–45* 3–74, 138

5–46* 3–76, 139

5–47* 3–77, 139

5–48* 3–79, 139

5–49* 3–80, 139

5–50* 3–81, 140

5–51* 3–82, 140

5–52* 3–83, 140

5–53* 3–84, 140

5–54* 3–85, 141

5–55* 3–86, 141
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Problem 5–36

15-mm D.

100 mm

y

z

B

A

T P

F

x
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5–64 By modern standards, the shaft design of Prob. 5–63 is poor because it is so long. Suppose it is
redesigned by halving the length dimensions. Using the same material and design factor as in
Prob. 5–63, find the new shaft diameter.

5–65* Build upon the results of Prob. 3–40, p. 132, to determine the factor of safety for yielding based
on the distortion-energy theory for each of the simplified models in parts c, d, and e of the figure

260 Mechanical Engineering Design

5–56* Build upon the results of Probs. 3–84 and 3–87 to compare the use of a low-strength, ductile mate-
rial (1018 CD) in which the stress-concentration factor can be ignored to a high-strength but more
brittle material (4140 Q&T @ 400°F) in which the stress-concentration factor should be included.
For each case, determine the factor of safety for yielding using the distortion-energy theory.

5–57 Design the lever arm CD of Fig. 5–16 by specifying a suitable size and material.

5–58 A spherical pressure vessel is formed of 16-gauge (0.0625-in) cold-drawn AISI 1020 sheet steel.
If the vessel has a diameter of 15 in, use the distortion-energy theory to estimate the pressure
necessary to initiate yielding. What is the estimated bursting pressure?

5–59 This problem illustrates that the strength of a machine part can sometimes be measured in units
other than those of force or moment. For example, the maximum speed that a flywheel can reach
without yielding or fracturing is a measure of its strength. In this problem you have a rotating ring
made of hot-forged AISI 1020 steel; the ring has a 6-in inside diameter and a 10-in outside diameter
and is 1.5 in thick. Using the distortion-energy theory, determine the speed in revolutions per
minute that would cause the ring to yield. At what radius would yielding begin? [Note: The maxi-
mum radial stress occurs at r = (rori )

1/2; see Eq. (3–55).]

5–60 A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures.
This cylinder has a 3 1

2 -in OD, a 0.065-in wall thickness, and ν = 0.334. The purchase order spec-
ifies a minimum yield strength of 46 kpsi. Using the distortion-energy theory, determine the factor
of safety if the pressure-release valve is set at 500 psi.

5–61 A cold-drawn AISI 1015 steel tube is 300 mm OD by 200 mm ID and is to be subjected to an
external pressure caused by a shrink fit. Using the distortion-energy theory, determine the maxi-
mum pressure that would cause the material of the tube to yield.

5–62 What speed would cause fracture of the ring of Prob. 5–59 if it were made of grade 30 cast iron?

5–63 The figure shows a shaft mounted in bearings at A and D and having pulleys at B and C. The
forces shown acting on the pulley surfaces represent the belt tensions. The shaft is to be made of
AISI 1035 CD steel. Using a conservative failure theory with a design factor of 2, determine the
minimum shaft diameter to avoid yielding.

Problem 5–63

59 lbf

x

A

392 lbf

300 lbf

50 lbf

z

8 in

8 in

8-in D.

6-in D.

6 in

y

C

D

B
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Problem 5–67

A

for Prob. 3–40. The pin is machined from AISI 1018 hot-rolled steel. Compare the three models
from a designer’s perspective in terms of accuracy, safety, and modeling time.

5–66* For the clevis pin of Prob. 3–40, p. 132, redesign the pin diameter to provide a factor of safety of
2.5 based on a conservative yielding failure theory, and the most conservative loading model from
parts c, d, and e of the figure for Prob. 3–40. The pin is machined from AISI 1018 hot-rolled steel.

5–67 A split-ring clamp-type shaft collar is shown in the figure. The collar is 50 mm OD by 25 mm
ID by 12 mm wide. The screw is designated as M 6 � 1. The relation between the screw tight-
ening torque T, the nominal screw diameter d, and the tension in the screw Fi is approximately
T = 0.2 Fi d . The shaft is sized to obtain a close running fit. Find the axial holding force Fx of
the collar as a function of the coefficient of friction and the screw torque.

5–68 Suppose the collar of Prob. 5–67 is tightened by using a screw torque of 20 N · m. The collar
material is AISI 1035 steel heat-treated to a minimum tensile yield strength of 450 MPa.
(a) Estimate the tension in the screw.
(b) By relating the tangential stress to the hoop tension, find the internal pressure of the shaft on

the ring.
(c) Find the tangential and radial stresses in the ring at the inner surface.
(d) Determine the maximum shear stress and the von Mises stress.
(e) What are the factors of safety based on the maximum-shear-stress and the distortion-energy

theories?

5–69 In Prob. 5–67, the role of the screw was to induce the hoop tension that produces the clamping.
The screw should be placed so that no moment is induced in the ring. Just where should the screw
be located?

5–70 A tube has another tube shrunk over it. The specifications are:

Inner Member Outer Member

ID 1.250 ± 0.003 in 2.001 ± 0.0004 in

OD 2.002 ± 0.0004 in 3.000 ± 0.004 in

Both tubes are made of a plain carbon steel.
(a) Find the nominal shrink-fit pressure and the von Mises stresses at the fit surface.
(b) If the inner tube is changed to solid shafting with the same outside dimensions, find the

nominal shrink-fit pressure and the von Mises stresses at the fit surface.

5–71 Two steel tubes have the specifications:

Inner Tube Outer Tube

ID 20 ± 0.050 mm 39.98 ± 0.008 mm

OD 40 ± 0.008 mm 65 ± 0.10 mm
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These are shrink-fitted together. Find the nominal shrink-fit pressure and the von Mises stress in
each body at the fit surface.

5–72 Repeat Prob. 5–71 for maximum shrink-fit conditions.

5–73 A solid steel shaft has a gear with ASTM grade 20 cast-iron hub (E = 14.5 Mpsi) shrink-fitted
to it. The shaft diameter is 2.001 ± 0.0004 in. The specifications for the gear hub are

2.000
+ 0.0004

− 0.0000
in

ID with an OD of 4.00 ± 1
32 in. Using the midrange values and the modified Mohr theory,

estimate the factor of safety guarding against fracture in the gear hub due to the shrink fit.

5–74 Two steel tubes are shrink-fitted together where the nominal diameters are 40, 45, and 50 mm.
Careful measurement before fitting determined the diametral interference between the tubes to be
0.062 mm. After the fit, the assembly is subjected to a torque of 900 N · m and a bending-moment
of 675 N · m. Assuming no slipping between the cylinders, analyze the outer cylinder at the inner
and outer radius. Determine the factor of safety using distortion energy with Sy = 415 MPa.

5–75 Repeat Prob. 5–74 for the inner tube.

For the problem given in the table, the specifications for the press fit of two cylinders are given
in the original problem from Chap. 3. If both cylinders are hot-rolled AISI 1040 steel, determine
the minimum factor of safety for the outer cylinder based on the distortion-energy theory.

5–76 to
5–81
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Problem Number Original Problem, Page Number

5–76 3–110, 143

5–77 3–111, 143

5–78 3–112, 143

5–79 3–113, 143

5–80 3–114, 143

5–81 3–115, 143

5–82 For Eqs. (5–36) show that the principal stresses are given by 

σ1 = K I√
2πr

cos
θ

2

(
1 + sin

θ

2

)

σ2 = K I√
2πr

cos
θ

2

(
1 − sin

θ

2

)

σ3 =
⎧⎨⎩

0 (plane stress)√
2

πr
νK I cos

θ

2
(plane strain)

5–83 Use the results of Prob. 5–82 for plane strain near the tip with θ = 0 and ν = 1
3 . If the yield

strength of the plate is Sy , what is σ1 when yield occurs?
(a) Use the distortion-energy theory.
(b) Use the maximum-shear-stress theory. Using Mohr’s circles, explain your answer.
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5–84 A plate 100 mm wide, 200 mm long, and 12 mm thick is loaded in tension in the direction of the
length. The plate contains a crack as shown in Fig. 5–26 with the crack length of 16 mm. The
material is steel with KI c = 80 MPa · √m, and Sy = 950 MPa. Determine the maximum possi-
ble load that can be applied before the plate (a) yields, and (b) has uncontrollable crack growth.

5–85 A cylinder subjected to internal pressure pi has an outer diameter of 14 in and a 1-in wall thick-
ness. For the cylinder material, KI c = 72 kpsi · √in, Sy = 170 kpsi, and Sut = 192 kpsi. If the
cylinder contains a radial crack in the longitudinal direction of depth 0.5 in determine the pres-
sure that will cause uncontrollable crack growth.

5–86 A carbon steel collar of length 1 in is to be machined to inside and outside diameters, respec-
tively, of

Di = 0.750 ± 0.0004 in Do = 1.125 ± 0.002 in

This collar is to be shrink-fitted to a hollow steel shaft having inside and outside diameters,
respectively, of

di = 0.375 ± 0.002 in do = 0.752 ± 0.0004 in

These tolerances are assumed to have a normal distribution, to be centered in the spread interval,
and to have a total spread of ±4 standard deviations. Determine the means and the standard devi-
ations of the tangential stress components for both cylinders at the interface.

5–87 Suppose the collar of Prob. 5–44 has a yield strength of Sy = N(95.5, 6.59) kpsi. What is the
probability that the material will not yield?

5–88 A carbon steel tube has an outside diameter of 75 mm and a wall thickness of 3 mm. The tube is
to carry an internal hydraulic pressure given as p = N(40, 2) MPa. The material of the tube has
a yield strength of Sy = N(350, 29) MPa. Find the reliability using thin-wall theory.

Failures Resulting from Static Loading 263
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266 Mechanical Engineering Design

In Chap. 5 we considered the analysis and design of parts subjected to static loading.
The behavior of machine parts is entirely different when they are subjected to time-
varying loading. In this chapter we shall examine how parts fail under variable loading
and how to proportion them to successfully resist such conditions.

6–1 Introduction to Fatigue in Metals
In most testing of those properties of materials that relate to the stress-strain diagram,
the load is applied gradually, to give sufficient time for the strain to fully develop.
Furthermore, the specimen is tested to destruction, and so the stresses are applied only
once. Testing of this kind is applicable, to what are known as static conditions; such
conditions closely approximate the actual conditions to which many structural and
machine members are subjected.

The condition frequently arises, however, in which the stresses vary with time or
they fluctuate between different levels. For example, a particular fiber on the surface of
a rotating shaft subjected to the action of bending loads undergoes both tension and com-
pression for each revolution of the shaft. If the shaft is part of an electric motor rotating
at 1725 rev/min, the fiber is stressed in tension and compression 1725 times each minute.
If, in addition, the shaft is also axially loaded (as it would be, for example, by a helical
or worm gear), an axial component of stress is superposed upon the bending component.
In this case, some stress is always present in any one fiber, but now the level of stress is
fluctuating. These and other kinds of loading occurring in machine members produce
stresses that are called variable, repeated, alternating, or fluctuating stresses.

Often, machine members are found to have failed under the action of repeated or
fluctuating stresses; yet the most careful analysis reveals that the actual maximum
stresses were well below the ultimate strength of the material, and quite frequently even
below the yield strength. The most distinguishing characteristic of these failures is that
the stresses have been repeated a very large number of times. Hence the failure is called
a fatigue failure.

When machine parts fail statically, they usually develop a very large deflection,
because the stress has exceeded the yield strength, and the part is replaced before fracture
actually occurs. Thus many static failures give visible warning in advance. But a fatigue
failure gives no warning! It is sudden and total, and hence dangerous. It is relatively sim-
ple to design against a static failure, because our knowledge is comprehensive. Fatigue is
a much more complicated phenomenon, only partially understood, and the engineer seek-
ing competence must acquire as much knowledge of the subject as possible.

A fatigue failure has an appearance similar to a brittle fracture, as the fracture sur-
faces are flat and perpendicular to the stress axis with the absence of necking. The frac-
ture features of a fatigue failure, however, are quite different from a static brittle fracture
arising from three stages of development. Stage I is the initiation of one or more micro-
cracks due to cyclic plastic deformation followed by crystallographic propagation
extending from two to five grains about the origin. Stage I cracks are not normally dis-
cernible to the naked eye. Stage II progresses from microcracks to macrocracks forming
parallel plateau-like fracture surfaces separated by longitudinal ridges. The plateaus are
generally smooth and normal to the direction of maximum tensile stress. These surfaces
can be wavy dark and light bands referred to as beach marks or clamshell marks, as seen
in Fig. 6–1. During cyclic loading, these cracked surfaces open and close, rubbing
together, and the beach mark appearance depends on the changes in the level or fre-
quency of loading and the corrosive nature of the environment. Stage III occurs during
the final stress cycle when the remaining material cannot support the loads, resulting in

bud29281_ch06_265-357.qxd  11/30/2009  4:23 pm  Page 266 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



Fatigue Failure Resulting from Variable Loading 267

Figure 6–1

Fatigue failure of a bolt due to
repeated unidirectional bending.
The failure started at the thread
root at A, propagated across
most of the cross section shown
by the beach marks at B, 
before final fast fracture at C.
(From ASM Handbook, 
Vol. 12: Fractography,
2nd printing, 1992, ASM 
International, Materials Park, 
OH 44073-0002, fig 50, p. 120. 
Reprinted by permission of
ASM International®, 
www.asminternational.org.)

1See the ASM Handbook, Fractography, ASM International, Metals Park, Ohio, vol. 12, 9th ed., 1987.

a sudden, fast fracture. A stage III fracture can be brittle, ductile, or a combination of
both. Quite often the beach marks, if they exist, and possible patterns in the stage III frac-
ture called chevron lines, point toward the origins of the initial cracks.

There is a good deal to be learned from the fracture patterns of a fatigue failure.1

Figure 6–2 shows representations of failure surfaces of various part geometries under
differing load conditions and levels of stress concentration. Note that, in the case of
rotational bending, even the direction of rotation influences the failure pattern.

Fatigue failure is due to crack formation and propagation. A fatigue crack will typ-
ically initiate at a discontinuity in the material where the cyclic stress is a maximum.
Discontinuities can arise because of:

• Design of rapid changes in cross section, keyways, holes, etc. where stress concen-
trations occur as discussed in Secs. 3–13 and 5–2.

• Elements that roll and/or slide against each other (bearings, gears, cams, etc.) under
high contact pressure, developing concentrated subsurface contact stresses (Sec. 3–19)
that can cause surface pitting or spalling after many cycles of the load.

• Carelessness in locations of stamp marks, tool marks, scratches, and burrs; poor joint
design; improper assembly; and other fabrication faults.

• Composition of the material itself as processed by rolling, forging, casting, extrusion,
drawing, heat treatment, etc. Microscopic and submicroscopic surface and subsurface
discontinuities arise, such as inclusions of foreign material, alloy segregation, voids,
hard precipitated particles, and crystal discontinuities.

Various conditions that can accelerate crack initiation include residual tensile stresses,
elevated temperatures, temperature cycling, a corrosive environment, and high-frequency
cycling.

The rate and direction of fatigue crack propagation is primarily controlled by local-
ized stresses and by the structure of the material at the crack. However, as with crack
formation, other factors may exert a significant influence, such as environment, tem-
perature, and frequency. As stated earlier, cracks will grow along planes normal to the
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268 Mechanical Engineering Design

Figure 6–2

Schematics of fatigue fracture
surfaces produced in smooth
and notched components with
round and rectangular cross
sections under various loading
conditions and nominal stress
levels. (From ASM Metals
Handbook, Vol. 11: Failure
Analysis and Prevention, 1986,
ASM International, Materials
Park, OH 44073-0002, fig 18, 
p. 111. Reprinted by permission
of ASM International®, 
www.asminternational.org.)
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Fatigue Failure Resulting from Variable Loading 269

Figure 6–3

Fatigue fracture of an AISI
4320 drive shaft. The fatigue
failure initiated at the end of
the keyway at points B and
progressed to final rupture at C.
The final rupture zone is small,
indicating that loads were low.
(From ASM Handbook, 
Vol. 12: Fractography, 
2nd printing, 1992, ASM
International, Materials Park,
OH 44073-0002, fig 51, p. 120.
Reprinted by permission of
ASM International®, 
www.asminternational.org.)

Figure 6–4

Fatigue fracture surface of an
AISI 8640 pin. Sharp corners
of the mismatched grease
holes provided stress
concentrations that 
initiated two fatigue cracks
indicated by the arrows. 
(From ASM Handbook, 
Vol. 12: Fractography, 
2nd printing, 1992, ASM
International, Materials Park,
OH 44073-0002, fig 520, 
p. 331. Reprinted by permission
of ASM International®,
www.asminternational.org.)

maximum tensile stresses. The crack growth process can be explained by fracture
mechanics (see Sec. 6–6).

A major reference source in the study of fatigue failure is the 21-volume 
ASM Metals Handbook. Figures 6–1 to 6–8, reproduced with permission from ASM
International, are but a minuscule sample of examples of fatigue failures for a great
variety of conditions included in the handbook. Comparing Fig. 6–3 with Fig. 6–2, we
see that failure occurred by rotating bending stresses, with the direction of rotation
being clockwise with respect to the view and with a mild stress concentration and low
nominal stress.
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270 Mechanical Engineering Design

Figure 6–5

Fatigue fracture surface of a
forged connecting rod of 
AISI 8640 steel. The fatigue
crack origin is at the left edge, at
the flash line of the forging, but
no unusual roughness of the
flash trim was indicated. The
fatigue crack progressed
halfway around the oil hole
at the left, indicated by the 
beach marks, before final fast
fracture occurred. Note the
pronounced shear lip in the 
final fracture at the right edge.
(From ASM Handbook,
Vol. 12: Fractography, 
2nd printing, 1992, ASM
International, Materials Park,
OH 44073-0002, fig 523, p. 332.
Reprinted by permission of 
ASM International®, 
www.asminternational.org.)

Figure 6–6

Fatigue fracture surface of a 200-mm (8-in) diameter piston rod of an alloy
steel steam hammer used for forging. This is an example of a fatigue fracture
caused by pure tension where surface stress concentrations are absent and a
crack may initiate anywhere in the cross section. In this instance, the initial
crack formed at a forging flake slightly below center, grew outward
symmetrically, and ultimately produced a brittle fracture without warning.
(From ASM Handbook, Vol. 12: Fractography, 2nd printing, 1992, ASM
International, Materials Park, OH 44073-0002, fig 570, p. 342. Reprinted by
permission of ASM International®, www.asminternational.org.)
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Figure 6–7

Fatigue failure of an ASTM A186 steel double-flange trailer wheel caused by stamp marks. (a) Coke-oven car wheel showing position of 
stamp marks and fractures in the rib and web. (b) Stamp mark showing heavy impression and fracture extending along the base of the lower 
row of numbers. (c) Notches, indicated by arrows, created from the heavily indented stamp marks from which cracks initiated along the top 
at the fracture surface. (From ASM Metals Handbook, Vol. 11: Failure Analysis and Prevention, 1986, ASM International, Materials Park, 
OH 44073-0002, fig 51, p. 130. Reprinted by permission of ASM International®, www.asminternational.org.)
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Figure 6–8

Aluminum alloy 7075-T73
landing-gear torque-arm
assembly redesign to eliminate
fatigue fracture at a lubrication
hole. (a) Arm configuration,
original and improved design
(dimensions given in inches).
(b) Fracture surface where
arrows indicate multiple crack
origins. (From ASM Metals
Handbook, Vol. 11: Failure
Analysis and Prevention, 1986,
ASM International, Materials
Park, OH 44073-0002, fig 23, 
p. 114. Reprinted
by permission of ASM
International®,
www.asminternational.org.)
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272 Mechanical Engineering Design

6–2 Approach to Fatigue Failure in Analysis and Design
As noted in the previous section, there are a great many factors to be considered, even
for very simple load cases. The methods of fatigue failure analysis represent a combi-
nation of engineering and science. Often science fails to provide the complete answers
that are needed. But the airplane must still be made to fly—safely. And the automobile
must be manufactured with a reliability that will ensure a long and troublefree life and
at the same time produce profits for the stockholders of the industry. Thus, while sci-
ence has not yet completely explained the complete mechanism of fatigue, the engineer
must still design things that will not fail. In a sense this is a classic example of the true
meaning of engineering as contrasted with science. Engineers use science to solve their
problems if the science is available. But available or not, the problem must be solved,
and whatever form the solution takes under these conditions is called engineering.

In this chapter, we will take a structured approach in the design against fatigue
failure. As with static failure, we will attempt to relate to test results performed on sim-
ply loaded specimens. However, because of the complex nature of fatigue, there is
much more to account for. From this point, we will proceed methodically, and in stages.
In an attempt to provide some insight as to what follows in this chapter, a brief descrip-
tion of the remaining sections will be given here.

Fatigue-Life Methods (Secs. 6–3 to 6–6)

Three major approaches used in design and analysis to predict when, if ever, a cyclically
loaded machine component will fail in fatigue over a period of time are presented. The
premises of each approach are quite different but each adds to our understanding of the
mechanisms associated with fatigue. The application, advantages, and disadvantages of
each method are indicated. Beyond Sec. 6–6, only one of the methods, the stress-life
method, will be pursued for further design applications.

Fatigue Strength and the Endurance Limit (Secs. 6–7 and 6–8)

The strength-life (S-N) diagram provides the fatigue strength Sf versus cycle life N of a
material. The results are generated from tests using a simple loading of standard laboratory-
controlled specimens. The loading often is that of sinusoidally reversing pure bending.
The laboratory-controlled specimens are polished without geometric stress concentra-
tion at the region of minimum area.

For steel and iron, the S-N diagram becomes horizontal at some point. The strength
at this point is called the endurance limit S′

e and occurs somewhere between 106 and 107

cycles. The prime mark on S′
e refers to the endurance limit of the controlled laboratory

specimen. For nonferrous materials that do not exhibit an endurance limit, a fatigue
strength at a specific number of cycles, S′

f , may be given, where again, the prime denotes
the fatigue strength of the laboratory-controlled specimen.

The strength data are based on many controlled conditions that will not be the same
as that for an actual machine part. What follows are practices used to account for the
differences between the loading and physical conditions of the specimen and the actual
machine part.

Endurance Limit Modifying Factors (Sec. 6–9)

Modifying factors are defined and used to account for differences between the speci-
men and the actual machine part with regard to surface conditions, size, loading, tem-
perature, reliability, and miscellaneous factors. Loading is still considered to be simple
and reversing.
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Stress Concentration and Notch Sensitivity (Sec. 6–10)

The actual part may have a geometric stress concentration by which the fatigue behav-
ior depends on the static stress-concentration factor and the component material’s
sensitivity to fatigue damage.

Fluctuating Stresses (Secs. 6–11 to 6–13)

These sections account for simple stress states from fluctuating load conditions that are
not purely sinusoidally reversing axial, bending, or torsional stresses.

Combinations of Loading Modes (Sec. 6–14)

Here a procedure based on the distortion-energy theory is presented for analyzing
combined fluctuating stress states, such as combined bending and torsion. Here it is
assumed that the levels of the fluctuating stresses are in phase and not time varying.

Varying, Fluctuating Stresses; Cumulative
Fatigue Damage (Sec. 6–15)

The fluctuating stress levels on a machine part may be time varying. Methods are pro-
vided to assess the fatigue damage on a cumulative basis.

Remaining Sections

The remaining three sections of the chapter pertain to the special topics of surface
fatigue strength, stochastic analysis, and road maps with important equations.

6–3 Fatigue-Life Methods
The three major fatigue life methods used in design and analysis are the stress-life
method, the strain-life method, and the linear-elastic fracture mechanics method. These
methods attempt to predict the life in number of cycles to failure, N, for a specific level
of loading. Life of 1 ≤ N ≤ 103 cycles is generally classified as low-cycle fatigue,
whereas high-cycle fatigue is considered to be N > 103 cycles. 

The stress-life method, based on stress levels only, is the least accurate approach,
especially for low-cycle applications. However, it is the most traditional method, since
it is the easiest to implement for a wide range of design applications, has ample sup-
porting data, and represents high-cycle applications adequately.

The strain-life method involves more detailed analysis of the plastic deformation at
localized regions where the stresses and strains are considered for life estimates. This
method is especially good for low-cycle fatigue applications. In applying this method,
several idealizations must be compounded, and so some uncertainties will exist in the
results. For this reason, it will be discussed only because of its value in adding to the
understanding of the nature of fatigue.

The fracture mechanics method assumes a crack is already present and detected. It
is then employed to predict crack growth with respect to stress intensity. It is most prac-
tical when applied to large structures in conjunction with computer codes and a peri-
odic inspection program.

6–4 The Stress-Life Method
To determine the strength of materials under the action of fatigue loads, specimens are
subjected to repeated or varying forces of specified magnitudes while the cycles or
stress reversals are counted to destruction. The most widely used fatigue-testing device
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Figure 6–9

Test-specimen geometry for the
R. R. Moore rotating-beam
machine. The bending moment
is uniform, M = Fa, over 
the curved length and at the
highest-stressed section at the
mid-point of the beam.
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Figure 6–10

An S-N diagram plotted from
the results of completely
reversed axial fatigue tests.
Material: UNS G41300 steel,
normalized; Sut = 116 kpsi;
maximum Sut = 125 kpsi.
(Data from NACA Tech. Note

3866, December 1966.)

is the R. R. Moore high-speed rotating-beam machine. This machine subjects the specimen
to pure bending (no transverse shear) by means of weights. The specimen, shown in
Fig. 6–9, is very carefully machined and polished, with a final polishing in an axial
direction to avoid circumferential scratches. Other fatigue-testing machines are avail-
able for applying fluctuating or reversed axial stresses, torsional stresses, or combined
stresses to the test specimens.

To establish the fatigue strength of a material, quite a number of tests are necessary
because of the statistical nature of fatigue. For the rotating-beam test, a constant bend-
ing load is applied, and the number of revolutions (stress reversals) of the beam required
for failure is recorded. The first test is made at a stress that is somewhat under the ulti-
mate strength of the material. The second test is made at a stress that is less than that
used in the first. This process is continued, and the results are plotted as an S-N diagram
(Fig. 6–10). This chart may be plotted on semilog paper or on log-log paper. In the case
of ferrous metals and alloys, the graph becomes horizontal after the material has been
stressed for a certain number of cycles. Plotting on log paper emphasizes the bend in
the curve, which might not be apparent if the results were plotted by using Cartesian
coordinates.

The ordinate of the S-N diagram is called the fatigue strength Sf ; a statement of
this strength value must always be accompanied by a statement of the number of cycles
N to which it corresponds.
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S-N bands for representative
aluminum alloys, excluding
wrought alloys with
Sut < 38 kpsi. (From R. C.
Juvinall, Engineering
Considerations of Stress, 
Strain and Strength. Copyright
© 1967 by The McGraw-Hill
Companies, Inc. Reprinted by
permission.)

Soon we shall learn that S-N diagrams can be determined either for a test specimen
or for an actual mechanical element. Even when the material of the test specimen and
that of the mechanical element are identical, there will be significant differences
between the diagrams for the two.

In the case of the steels, a knee occurs in the graph, and beyond this knee failure
will not occur, no matter how great the number of cycles. The strength corresponding
to the knee is called the endurance limit Se, or the fatigue limit. The graph of Fig. 6–10
never does become horizontal for nonferrous metals and alloys, and hence these mate-
rials do not have an endurance limit. Figure 6–11 shows scatter bands indicating the S-N
curves for most common aluminum alloys excluding wrought alloys having a tensile
strength below 38 kpsi. Since aluminum does not have an endurance limit, normally the
fatigue strength Sf is reported at a specific number of cycles, normally N = 5(108)

cycles of reversed stress (see Table A–24).
The S-N diagram is usually obtained by completely reversed stress cycles, in which

the stress level alternates between equal magnitudes of tension and compression. We
note that a stress cycle (N = 1) constitutes a single application and removal of a load
and then another application and removal of the load in the opposite direction. Thus
N = 1

2 means the load is applied once and then removed, which is the case with the
simple tension test.

The body of knowledge available on fatigue failure from N = 1 to N = 1000
cycles is generally classified as low-cycle fatigue, as indicated in Fig. 6–10. High-cycle
fatigue, then, is concerned with failure corresponding to stress cycles greater than 103

cycles.
We also distinguish a finite-life region and an infinite-life region in Fig. 6–10. The

boundary between these regions cannot be clearly defined except for a specific material;
but it lies somewhere between 106 and 107 cycles for steels, as shown in Fig. 6–10.

As noted previously, it is always good engineering practice to conduct a testing
program on the materials to be employed in design and manufacture. This, in fact, is a
requirement, not an option, in guarding against the possibility of a fatigue failure.
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Because of this necessity for testing, it would really be unnecessary for us to proceed
any further in the study of fatigue failure except for one important reason: the desire to
know why fatigue failures occur so that the most effective method or methods can be
used to improve fatigue strength. Thus our primary purpose in studying fatigue is to
understand why failures occur so that we can guard against them in an optimum man-
ner. For this reason, the analytical design approaches presented in this book, or in any
other book, for that matter, do not yield absolutely precise results. The results should be
taken as a guide, as something that indicates what is important and what is not impor-
tant in designing against fatigue failure.

As stated earlier, the stress-life method is the least accurate approach especially
for low-cycle applications. However, it is the most traditional method, with much
published data available. It is the easiest to implement for a wide range of design
applications and represents high-cycle applications adequately. For these reasons the
stress-life method will be emphasized in subsequent sections of this chapter.
However, care should be exercised when applying the method for low-cycle applications,
as the method does not account for the true stress-strain behavior when localized
yielding occurs.

6–5 The Strain-Life Method
The best approach yet advanced to explain the nature of fatigue failure is called by some
the strain-life method. The approach can be used to estimate fatigue strengths, but when
it is so used it is necessary to compound several idealizations, and so some uncertain-
ties will exist in the results. For this reason, the method is presented here only because
of its value in explaining the nature of fatigue.

A fatigue failure almost always begins at a local discontinuity such as a notch,
crack, or other area of stress concentration. When the stress at the discontinuity exceeds
the elastic limit, plastic strain occurs. If a fatigue fracture is to occur, there must exist
cyclic plastic strains. Thus we shall need to investigate the behavior of materials sub-
ject to cyclic deformation.

In 1910, Bairstow verified by experiment Bauschinger’s theory that the elastic lim-
its of iron and steel can be changed, either up or down, by the cyclic variations of stress.2

In general, the elastic limits of annealed steels are likely to increase when subjected to
cycles of stress reversals, while cold-drawn steels exhibit a decreasing elastic limit.

R. W. Landgraf has investigated the low-cycle fatigue behavior of a large number
of very high-strength steels, and during his research he made many cyclic stress-strain
plots.3 Figure 6–12 has been constructed to show the general appearance of these plots
for the first few cycles of controlled cyclic strain. In this case the strength decreases
with stress repetitions, as evidenced by the fact that the reversals occur at ever-smaller
stress levels. As previously noted, other materials may be strengthened, instead, by
cyclic stress reversals.

The SAE Fatigue Design and Evaluation Steering Committee released a report in
1975 in which the life in reversals to failure is related to the strain amplitude �ε/2.4

2L. Bairstow, “The Elastic Limits of Iron and Steel under Cyclic Variations of Stress,” Philosophical
Transactions, Series A, vol. 210, Royal Society of London, 1910, pp. 35–55.
3R. W. Landgraf, Cyclic Deformation and Fatigue Behavior of Hardened Steels, Report no. 320, Department
of Theoretical and Applied Mechanics, University of Illinois, Urbana, 1968, pp. 84–90.
4Technical Report on Fatigue Properties, SAE J1099, 1975.

bud29281_ch06_265-357.qxd  11/30/2009  4:23 pm  Page 276 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



Fatigue Failure Resulting from Variable Loading 277

4th

2d

1st reversal

3d
5th

A

B

Δ�

Δ�p Δ�e

Δ�

�

�
Figure 6–12

True stress–true strain
hysteresis loops showing the
first five stress reversals of a
cyclic-softening material. The
graph is slightly exaggerated
for clarity. Note that the slope
of the line AB is the modulus 
of elasticity E. The stress 
range is �σ , �εp is the 
plastic-strain range, and 
�εe is the elastic strain range.
The total-strain range is
�ε = �εp + �εe .

The report contains a plot of this relationship for SAE 1020 hot-rolled steel; the graph
has been reproduced as Fig. 6–13. To explain the graph, we first define the following
terms:

• Fatigue ductility coefficient ε′
F is the true strain corresponding to fracture in one re-

versal (point A in Fig. 6–12). The plastic-strain line begins at this point in Fig. 6–13.

• Fatigue strength coefficient σ ′
F is the true stress corresponding to fracture in one

reversal (point A in Fig. 6–12). Note in Fig. 6–13 that the elastic-strain line begins at
σ ′

F/E .

• Fatigue ductility exponent c is the slope of the plastic-strain line in Fig. 6–13 and is
the power to which the life 2N must be raised to be proportional to the true plastic-
strain amplitude. If the number of stress reversals is 2N, then N is the number of
cycles.
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Figure 6–13

A log-log plot showing how 
the fatigue life is related to
the true-strain amplitude for
hot-rolled SAE 1020 steel.
(Reprinted with permission
from SAE J1099_200208 
© 2002 SAE International.)
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• Fatigue strength exponent b is the slope of the elastic-strain line, and is the power to
which the life 2N must be raised to be proportional to the true-stress amplitude.

Now, from Fig. 6–12, we see that the total strain is the sum of the elastic and plastic
components. Therefore the total strain amplitude is half the total strain range

�ε

2
= �εe

2
+ �εp

2
(a)

The equation of the plastic-strain line in Fig. 6–13 is

�εp

2
= ε′

F(2N )c (6–1)

The equation of the elastic strain line is

�εe

2
= σ ′

F

E
(2N )b (6–2)

Therefore, from Eq. (a), we have for the total-strain amplitude

�ε

2
= σ ′

F

E
(2N )b + ε′

F(2N )c (6–3)

which is the Manson-Coffin relationship between fatigue life and total strain.5 Some
values of the coefficients and exponents are listed in Table A–23. Many more are
included in the SAE J1099 report.6

Though Eq. (6–3) is a perfectly legitimate equation for obtaining the fatigue life of
a part when the strain and other cyclic characteristics are given, it appears to be of lit-
tle use to the designer. The question of how to determine the total strain at the bottom
of a notch or discontinuity has not been answered. There are no tables or charts of strain-
concentration factors in the literature. It is possible that strain-concentration factors will
become available in research literature very soon because of the increase in the use of
finite-element analysis. Moreover, finite element analysis can of itself approximate the
strains that will occur at all points in the subject structure.7

6–6 The Linear-Elastic Fracture Mechanics Method
The first phase of fatigue cracking is designated as stage I fatigue. Crystal slip that
extends through several contiguous grains, inclusions, and surface imperfections is pre-
sumed to play a role. Since most of this is invisible to the observer, we just say that stage
I involves several grains. The second phase, that of crack extension, is called stage II
fatigue. The advance of the crack (that is, new crack area is created) does produce evi-
dence that can be observed on micrographs from an electron microscope. The growth of

5J. F. Tavernelli and L. F. Coffin, Jr., “Experimental Support for Generalized Equation Predicting Low Cycle
Fatigue,’’ and S. S. Manson, discussion, Trans. ASME, J. Basic Eng., vol. 84, no. 4, pp. 533–537.
6See also, Landgraf, Ibid.
7For further discussion of the strain-life method see N. E. Dowling, Mechanical Behavior of Materials,
2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1999, Chap. 14.

bud29281_ch06_265-357.qxd  12/9/09  7:17PM  Page 278 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Fatigue Failure Resulting from Variable Loading 279

the crack is orderly. Final fracture occurs during stage III fatigue, although fatigue is not
involved. When the crack is sufficiently long that KI = KIc for the stress amplitude
involved, where KIc is the critical stress intensity for the undamaged metal, then there is
sudden, catastrophic failure of the remaining cross section in tensile overload (see
Sec. 5–12). Stage III fatigue is associated with rapid acceleration of crack growth then
fracture.

Crack Growth

Fatigue cracks nucleate and grow when stresses vary and there is some tension in
each stress cycle. Consider the stress to be fluctuating between the limits of σmin and
σmax, where the stress range is defined as �σ = σmax − σmin. From Eq. (5–37) the
stress intensity is given by KI = βσ

√
πa. Thus, for �σ, the stress intensity range per

cycle is

�KI = β(σmax − σmin)
√

πa = β�σ
√

πa (6–4)

To develop fatigue strength data, a number of specimens of the same material are tested
at various levels of �σ. Cracks nucleate at or very near a free surface or large discon-
tinuity. Assuming an initial crack length of ai , crack growth as a function of the num-
ber of stress cycles N will depend on �σ, that is, �KI. For �KI below some threshold
value (�KI)th a crack will not grow. Figure 6–14 represents the crack length a as a
function of N for three stress levels (�σ)3 > (�σ)2 > (�σ)1, where (�KI)3 >

(�KI)2 > (�KI)1 for a given crack size. Notice the effect of the higher stress range in
Fig. 6–14 in the production of longer cracks at a particular cycle count.

When the rate of crack growth per cycle, da/d N in Fig. 6–14, is plotted as shown
in Fig. 6–15, the data from all three stress range levels superpose to give a sigmoidal
curve. The three stages of crack development are observable, and the stage II data are
linear on log-log coordinates, within the domain of linear elastic fracture mechanics
(LEFM) validity. A group of similar curves can be generated by changing the stress
ratio R = σmin/σmax of the experiment.

Here we present a simplified procedure for estimating the remaining life of a cycli-
cally stressed part after discovery of a crack. This requires the assumption that plane strain

Log N

Stress cycles N

C
ra

ck
 le

ng
th

 a

a

ai

(Δ�)3 (Δ�)2 (Δ�)1

da

dN

Figure 6–14

The increase in crack length a
from an initial length of ai as a
function of cycle count for
three stress ranges, (�σ)3 >

(�σ)2 > (�σ)1.
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conditions prevail.8 Assuming a crack is discovered early in stage II, the crack growth in
region II of Fig. 6–15 can be approximated by the Paris equation, which is of the form

da

d N
= C(�KI)

m (6–5)

where C and m are empirical material constants and �KI is given by Eq. (6–4).
Representative, but conservative, values of C and m for various classes of steels are
listed in Table 6–1. Substituting Eq. (6–4) and integrating gives∫ Nf

0
d N = Nf = 1

C

∫ af

ai

da

(β�σ
√

πa)m
(6–6)

Here ai is the initial crack length, af is the final crack length corresponding to failure,
and Nf is the estimated number of cycles to produce a failure after the initial crack is
formed. Note that β may vary in the integration variable (e.g., see Figs. 5–25 to 5–30).

Log ΔK

Log da
dN

Increasing
stress ratio

R

Crack
propagation

Region II

Crack
initiation

Region I

Crack
unstable

Region III

(ΔK)th

Kc

Figure 6–15

When da/d N is measured 
in Fig. 6–14 and plotted on
log-log coordinates, the data 
for different stress ranges
superpose, giving rise to a
sigmoid curve as shown.
(�KI)th is the threshold value
of �KI, below which a crack
does not grow. From threshold
to rupture an aluminum alloy
will spend 85–90 percent of 
life in region I, 5–8 percent in
region II, and 1–2 percent 
in region III.

Table 6–1

Conservative Values of

Factor C and Exponent

m in Eq. (6–5) for

Various Forms of Steel

(R = σmax/σmin
.= 0)

Material C,
m/cycle(

MPa
√

m
)m

C,
in/cycle(
kpsi

√
in

)m

Ferritic-pearlitic steels 6.89(10−12) 3.60(10−10) 3.00

Martensitic steels 1.36(10−10) 6.60(10−9) 2.25

Austenitic stainless steels 5.61(10−12) 3.00(10−10) 3.25

From J. M. Barsom and S. T. Rolfe, Fatigue and Fracture Control in Structures, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 1987, pp. 288–291, Copyright ASTM International. Reprinted with permission.

8Recommended references are: Dowling, op. cit.; J. A. Collins, Failure of Materials in Mechanical Design,
John Wiley & Sons, New York, 1981; H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, John
Wiley & Sons, New York, 1980; and Harold S. Reemsnyder, “Constant Amplitude Fatigue Life Assessment
Models,” SAE Trans. 820688, vol. 91, Nov. 1983.

m
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If this should happen, then Reemsnyder9 suggests the use of numerical integration
employing the algorithm

δaj = C(�KI )
m
j (δN )j

aj+1 = aj + δaj

Nj+1 = Nj + δNj (6–7)

Nf =
∑

δNj

Here δaj and δNj are increments of the crack length and the number of cycles. The pro-
cedure is to select a value of δNj , using ai determine β and compute �KI, determine
δaj , and then find the next value of a. Repeat the procedure until a = af .

The following example is highly simplified with β constant in order to give some
understanding of the procedure. Normally, one uses fatigue crack growth computer pro-
grams such as NASA/FLAGRO 2.0 with more comprehensive theoretical models to
solve these problems.

EXAMPLE 6–1 The bar shown in Fig. 6–16 is subjected to a repeated moment 0 ≤ M ≤ 1200 lbf · in.
The bar is AISI 4430 steel with Sut = 185 kpsi, Sy = 170 kpsi, and KIc = 73 kpsi

√
in.

Material tests on various specimens of this material with identical heat treatment
indicate worst-case constants of C = 3.8(10−11)(in/cycle)/(kpsi

√
in)m and m = 3.0.

As shown, a nick of size 0.004 in has been discovered on the bottom of the bar. Estimate
the number of cycles of life remaining.

Solution The stress range �σ is always computed by using the nominal (uncracked) area. Thus

I

c
= bh2

6
= 0.25(0.5)2

6
= 0.010 42 in3

Therefore, before the crack initiates, the stress range is

�σ = �M

I/c
= 1200

0.010 42
= 115.2(103) psi = 115.2 kpsi

which is below the yield strength. As the crack grows, it will eventually become long
enough such that the bar will completely yield or undergo a brittle fracture. For the ratio
of Sy/Sut it is highly unlikely that the bar will reach complete yield. For brittle fracture,
designate the crack length as af . If β = 1, then from Eq. (5–37) with KI = KIc , we
approximate af as

af = 1

π

(
KIc

βσmax

)2
.= 1

π

(
73

115.2

)2

= 0.1278 in

Figure 6–16

M M

Nick

in1
2

in1
4

9Op. cit.
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From Fig. 5–27, we compute the ratio af/h as

af

h
= 0.1278

0.5
= 0.256

Thus af/h varies from near zero to approximately 0.256. From Fig. 5–27, for this range
β is nearly constant at approximately 1.07. We will assume it to be so, and re-evaluate
af as

af = 1

π

(
73

1.07(115.2)

)2

= 0.112 in

Thus, from Eq. (6–6), the estimated remaining life is

Nf = 1

C

∫ af

ai

da

(β�σ
√

πa)m
= 1

3.8(10−11)

∫ 0.112

0.004

da

[1.07(115.2)
√

πa]3

= −5.047(103)√
a

∣∣∣∣0.112

0.004

= 64.7 (103) cycles

6–7 The Endurance Limit
The determination of endurance limits by fatigue testing is now routine, though a lengthy
procedure. Generally, stress testing is preferred to strain testing for endurance limits.

For preliminary and prototype design and for some failure analysis as well, a quick
method of estimating endurance limits is needed. There are great quantities of data in
the literature on the results of rotating-beam tests and simple tension tests of specimens
taken from the same bar or ingot. By plotting these as in Fig. 6–17, it is possible to see
whether there is any correlation between the two sets of results. The graph appears to
suggest that the endurance limit ranges from about 40 to 60 percent of the tensile
strength for steels up to about 210 kpsi (1450 MPa). Beginning at about Sut = 210 kpsi
(1450 MPa), the scatter appears to increase, but the trend seems to level off, as sug-
gested by the dashed horizontal line at S′

e = 105 kpsi.
We wish now to present a method for estimating endurance limits. Note that esti-

mates obtained from quantities of data obtained from many sources probably have a
large spread and might deviate significantly from the results of actual laboratory tests of
the mechanical properties of specimens obtained through strict purchase-order specifi-
cations. Since the area of uncertainty is greater, compensation must be made by employ-
ing larger design factors than would be used for static design.

For steels, simplifying our observation of Fig. 6–17, we will estimate the endurance
limit as

S′
e =

⎧⎨⎩
0.5Sut Sut ≤ 200 kpsi (1400 MPa)

100 kpsi Sut > 200 kpsi

700 MPa Sut > 1400 MPa

(6–8)

where Sut is the minimum tensile strength. The prime mark on S′
e in this equation refers

to the rotating-beam specimen itself. We wish to reserve the unprimed symbol Se for the
endurance limit of an actual machine element subjected to any kind of loading. Soon
we shall learn that the two strengths may be quite different.

Answer
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Steels treated to give different microstructures have different S′
e/Sut ratios. It

appears that the more ductile microstructures have a higher ratio. Martensite has a very
brittle nature and is highly susceptible to fatigue-induced cracking; thus the ratio is low.
When designs include detailed heat-treating specifications to obtain specific micro-
structures, it is possible to use an estimate of the endurance limit based on test data for
the particular microstructure; such estimates are much more reliable and indeed should
be used.

The endurance limits for various classes of cast irons, polished or machined, are
given in Table A–24. Aluminum alloys do not have an endurance limit. The fatigue
strengths of some aluminum alloys at 5(108) cycles of reversed stress are given in
Table A–24.

6–8 Fatigue Strength
As shown in Fig. 6–10, a region of low-cycle fatigue extends from N = 1 to about 
103 cycles. In this region the fatigue strength Sf is only slightly smaller than the tensile
strength Sut . An analytical approach has been given by Shigley, Mischke, and Brown10
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Figure 6–17

Graph of endurance limits versus tensile strengths from actual test results for a large number of wrought
irons and steels. Ratios of S′

e/Sut of 0.60, 0.50, and 0.40 are shown by the solid and dashed lines. Note
also the horizontal dashed line for S′

e = 105 kpsi. Points shown having a tensile strength greater than 
210 kpsi have a mean endurance limit of S′

e = 105 kpsi and a standard deviation of 13.5 kpsi. (Collated
from data compiled by H. J. Grover, S. A. Gordon, and L. R. Jackson in Fatigue of Metals and Structures,
Bureau of Naval Weapons Document NAVWEPS 00-25-534, 1960; and from Fatigue Design Handbook,
SAE, 1968, p. 42.)

10J. E. Shigley, C. R. Mischke, and T. H. Brown, Jr., Standard Handbook of Machine Design, 3rd ed.,
McGraw-Hill, New York, 2004, pp. 29.25–29.27.
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for both high-cycle and low-cycle regions, requiring the parameters of the Manson-
Coffin equation plus the strain-strengthening exponent m. Engineers often have to work
with less information.

Figure 6–10 indicates that the high-cycle fatigue domain extends from 103 cycles
for steels to the endurance limit life Ne, which is about 106 to 107 cycles. The purpose
of this section is to develop methods of approximation of the S-N diagram in the high-
cycle region, when information may be as sparse as the results of a simple tension test.
Experience has shown high-cycle fatigue data are rectified by a logarithmic transform
to both stress and cycles-to-failure. Equation (6–2) can be used to determine the fatigue
strength at 103 cycles. Defining the specimen fatigue strength at a specific number of
cycles as (S′

f )N = E�εe/2, write Eq. (6–2) as

(S′
f )N = σ ′

F(2N )b (6–9)

At 103 cycles,

(S′
f )103 = σ ′

F(2 · 103)b = f Sut

where f is the fraction of Sut represented by (S′
f )103 cycles. Solving for f gives

f = σ ′
F

Sut
(2 · 103)b (6–10)

Now, from Eq. (2–15), σ ′
F = σ0ε

m , with ε = ε′
F . If this true-stress–true-strain equation

is not known, the SAE approximation11 for steels with HB ≤ 500 may be used:

σ ′
F = Sut + 50 kpsi or σ ′

F = Sut + 345 MPa (6–11)

To find b, substitute the endurance strength and corresponding cycles, S′
e and Ne,

respectively into Eq. (6–9) and solving for b

b = − log
(
σ ′

F/S′
e

)
log (2N e)

(6–12)

Thus, the equation S′
f = σ ′

F (2N )b is known. For example, if Sut = 105 kpsi and
S′

e = 52.5 kpsi with Ne = 106 cycles,

Eq. (6–11) σ ′
F = 105 + 50 = 155 kpsi

Eq. (6–12) b = − log(155/52.5)

log
(
2 · 106

) = −0.0746

Eq. (6–10) f = 155

105

(
2 · 103)−0.0746 = 0.837

and for Eq. (6–9), with S′
f = (S′

f )N ,

S′
f = 155(2N )−0.0746 = 147 N−0.0746 (a)

11Fatigue Design Handbook, vol. 4, Society of Automotive Engineers, New York, 1958, p. 27.
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The process given for finding f can be repeated for various ultimate strengths.
Figure 6–18 is a plot of f for 70 ≤ Sut ≤ 200 kpsi. To be conservative, for Sut < 70 kpsi,
let f = 0.9.

For an actual mechanical component, S′
e is reduced to Se (see Sec. 6–9) which is

less than 0.5 Sut . However, unless actual data is available, we recommend using the
value of f found from Fig. 6–18. Equation (a), for the actual mechanical component, can
be written in the form

Sf = a N b (6–13)

where N is cycles to failure and the constants a and b are defined by the points 103,(
Sf

)
103 and 106, Se with 

(
Sf

)
103 = f Sut . Substituting these two points in Eq. (6–13) gives

a = ( f Sut)
2

Se
(6–14)

b = −1

3
log

(
f Sut

Se

)
(6–15)

If a completely reversed stress σrev is given, setting Sf = σrev in Eq. (6–13), the number
of cycles-to-failure can be expressed as

N =
(σrev

a

)1/b
(6–16)

Note that the typical S-N diagram, and thus Eq. (6–16), is only applicable for com-
pletely reversed loading. For general fluctuating loading situations, it is necessary to
obtain a completely reversed stress that may be considered to be equivalent in fatigue
damage as the actual fluctuating stress (see Ex. 6–12, p. 313).

Low-cycle fatigue is often defined (see Fig. 6–10) as failure that occurs in a range
of 1 ≤ N ≤ 103 cycles. On a log-log plot such as Fig. 6–10 the failure locus in this
range is nearly linear below 103 cycles. A straight line between 103, f Sut and 1, Sut

(transformed) is conservative, and it is given by

Sf ≥ Sut N (log f )/3 1 ≤ N ≤ 103 (6–17)
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0.9Figure 6–18

Fatigue strength fraction, f,
of Sut at 103 cycles for
Se = S′

e = 0.5Sut at 106 cycles.
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EXAMPLE 6–2 Given a 1050 HR steel, estimate
(a) the rotating-beam endurance limit at 106 cycles.
(b) the endurance strength of a polished rotating-beam specimen corresponding to 104

cycles to failure
(c) the expected life of a polished rotating-beam specimen under a completely reversed

stress of 55 kpsi.

Solution (a) From Table A–20, Sut = 90 kpsi. From Eq. (6–8),

Answer S′
e = 0.5(90) = 45 kpsi

(b) From Fig. 6–18, for Sut = 90 kpsi, f .= 0.86. From Eq. (6–14),

a = [0.86(90)]2

45
= 133.1 kpsi

From Eq. (6–15),

b = −1

3
log

[
0.86(90)

45

]
= −0.0785

Thus, Eq. (6–13) is

S′
f = 133.1 N−0.0785

Answer For 104 cycles to failure, S′
f = 133.1(104)−0.0785 = 64.6 kpsi

(c) From Eq. (6–16), with σrev = 55 kpsi,

Answer N =
(

55

133.1

)1/−0.0785

= 77 500 = 7.75(104) cycles

Keep in mind that these are only estimates. So expressing the answers using three-place
accuracy is a little misleading.

6–9 Endurance Limit Modifying Factors
We have seen that the rotating-beam specimen used in the laboratory to determine
endurance limits is prepared very carefully and tested under closely controlled condi-
tions. It is unrealistic to expect the endurance limit of a mechanical or structural mem-
ber to match the values obtained in the laboratory. Some differences include

• Material: composition, basis of failure, variability

• Manufacturing: method, heat treatment, fretting corrosion, surface condition, stress
concentration

• Environment: corrosion, temperature, stress state, relaxation times

• Design: size, shape, life, stress state, speed, fretting, galling
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Marin12 identified factors that quantified the effects of surface condition, size, loading,
temperature, and miscellaneous items. The question of whether to adjust the endurance
limit by subtractive corrections or multiplicative corrections was resolved by an exten-
sive statistical analysis of a 4340 (electric furnace, aircraft quality) steel, in which a
correlation coefficient of 0.85 was found for the multiplicative form and 0.40 for the
additive form. A Marin equation is therefore written as

Se = kakbkckdkek f S′
e (6–18)

where ka = surface condition modification factor

kb = size modification factor

kc = load modification factor

kd = temperature modification factor

ke = reliability factor13

kf = miscellaneous-effects modification factor

S′
e = rotary-beam test specimen endurance limit

Se = endurance limit at the critical location of a machine part in the 
geometry and condition of use

When endurance tests of parts are not available, estimations are made by applying
Marin factors to the endurance limit.

Surface Factor ka

The surface of a rotating-beam specimen is highly polished, with a final polishing in the
axial direction to smooth out any circumferential scratches. The surface modification
factor depends on the quality of the finish of the actual part surface and on the tensile
strength of the part material. To find quantitative expressions for common finishes of
machine parts (ground, machined, or cold-drawn, hot-rolled, and as-forged), the coordi-
nates of data points were recaptured from a plot of endurance limit versus ultimate
tensile strength of data gathered by Lipson and Noll and reproduced by Horger.14 The
data can be represented by

ka = aSb
ut (6–19)

where Sut is the minimum tensile strength and a and b are to be found in Table 6–2.

12Joseph Marin, Mechanical Behavior of Engineering Materials, Prentice-Hall, Englewood Cliffs, N.J.,
1962, p. 224.
13Complete stochastic analysis is presented in Sec. 6–17. Until that point the presentation here is one of a
deterministic nature. However, we must take care of the known scatter in the fatigue data. This means that
we will not carry out a true reliability analysis at this time but will attempt to answer the question: What is
the probability that a known (assumed) stress will exceed the strength of a randomly selected component
made from this material population?
14C. J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental Stress Analysis, vol. 3,
no. 2, 1946, p. 29. Reproduced by O. J. Horger (ed.), Metals Engineering Design ASME Handbook,
McGraw-Hill, New York, 1953, p. 102.
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288 Mechanical Engineering Design

EXAMPLE 6–3 A steel has a minimum ultimate strength of 520 MPa and a machined surface.
Estimate ka.

Solution From Table 6–2, a = 4.51 and b =−0.265. Then, from Eq. (6–19)

Answer ka = 4.51(520)−0.265 = 0.860

Factor a Exponent
Surface Finish Sut, kpsi Sut, MPa b

Ground 1.34 1.58 −0.085

Machined or cold-drawn 2.70 4.51 −0.265

Hot-rolled 14.4 57.7 −0.718

As-forged 39.9 272. −0.995

Table 6–2

Parameters for Marin

Surface Modification

Factor, Eq. (6–19)

From C.J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental
Stress Analysis, vol. 3, no. 2, 1946 p. 29. Reproduced by O.J. Horger (ed.) Metals
Engineering Design ASME Handbook, McGraw-Hill, New York. Copyright © 1953 by 
The McGraw-Hill Companies, Inc. Reprinted by permission.

Again, it is important to note that this is an approximation as the data is typically
quite scattered. Furthermore, this is not a correction to take lightly. For example, if in
the previous example the steel was forged, the correction factor would be 0.540, a sig-
nificant reduction of strength.

Size Factor kb

The size factor has been evaluated using 133 sets of data points.15 The results for bend-
ing and torsion may be expressed as

kb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(d/0.3)−0.107 = 0.879d−0.107 0.11 ≤ d ≤ 2 in

0.91d−0.157 2 < d ≤ 10 in

(d/7.62)−0.107 = 1.24d−0.107 2.79 ≤ d ≤ 51 mm

1.51d−0.157 51 < d ≤ 254 mm

( 6–20)

For axial loading there is no size effect, so

kb = 1 (6–21)

but see kc.
One of the problems that arises in using Eq. (6–20) is what to do when a round bar

in bending is not rotating, or when a noncircular cross section is used. For example,
what is the size factor for a bar 6 mm thick and 40 mm wide? The approach to be used

15Charles R. Mischke, “Prediction of Stochastic Endurance Strength,” Trans. of ASME, Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 109, no. 1, January 1987, Table 3.

bud29281_ch06_265-357.qxd  12/02/2009  6:49 pm  Page 288 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



Fatigue Failure Resulting from Variable Loading 289

here employs an equivalent diameter de obtained by equating the volume of material
stressed at and above 95 percent of the maximum stress to the same volume in the
rotating-beam specimen.16 It turns out that when these two volumes are equated,
the lengths cancel, and so we need only consider the areas. For a rotating round section,
the 95 percent stress area is the area in a ring having an outside diameter d and an inside
diameter of 0.95d. So, designating the 95 percent stress area A0.95σ , we have

A0.95σ = π

4
[d2 − (0.95d)2] = 0.0766d2 (6–22)

This equation is also valid for a rotating hollow round. For nonrotating solid or hollow
rounds, the 95 percent stress area is twice the area outside of two parallel chords hav-
ing a spacing of 0.95d, where d is the diameter. Using an exact computation, this is

A0.95σ = 0.01046d2 (6–23)

With de in Eq. (6–22), setting Eqs. (6–22) and (6–23) equal to each other enables us to
solve for the effective diameter. This gives

de = 0.370d (6–24)

as the effective size of a round corresponding to a nonrotating solid or hollow round.
A rectangular section of dimensions h × b has A0.95σ = 0.05hb. Using the same

approach as before,

de = 0.808(hb)1/2 (6–25)

Table 6–3 provides A0.95σ areas of common structural shapes undergoing non-
rotating bending.

EXAMPLE 6–4 A steel shaft loaded in bending is 32 mm in diameter, abutting a filleted shoulder 38 mm
in diameter. The shaft material has a mean ultimate tensile strength of 690 MPa.
Estimate the Marin size factor kb if the shaft is used in
(a) A rotating mode.
(b) A nonrotating mode.

Solution (a) From Eq. (6–20)

Answer kb =
(

d

7.62

)−0.107

=
(

32

7.62

)−0.107

= 0.858

(b) From Table 6–3,

de = 0.37d = 0.37(32) = 11.84 mm

From Eq. (6–20),

Answer kb =
(

11.84

7.62

)−0.107

= 0.954

16See R. Kuguel, “A Relation between Theoretical Stress-Concentration Factor and Fatigue Notch Factor
Deduced from the Concept of Highly Stressed Volume,” Proc. ASTM, vol. 61, 1961, pp. 732–748.
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290 Mechanical Engineering Design

Loading Factor kc

When fatigue tests are carried out with rotating bending, axial (push-pull), and torsional
loading, the endurance limits differ with Sut. This is discussed further in Sec. 6–17.
Here, we will specify average values of the load factor as

kc =
{ 1 bending

0.85 axial
0.59 torsion17

(6–26)

Temperature Factor kd

When operating temperatures are below room temperature, brittle fracture is a strong
possibility and should be investigated first. When the operating temperatures are higher
than room temperature, yielding should be investigated first because the yield
strength drops off so rapidly with temperature; see Fig. 2–9. Any stress will induce
creep in a material operating at high temperatures; so this factor must be considered too.

A 0.95σ =
{

0.05ab axis 1-1

0.052xa + 0.1t f (b − x) axis 2-2

1
22

1

a

b tf

x

A 0.95σ =
{

0.10atf axis 1-1

0.05ba tf > 0.025a axis 2-2

1

2 2

1

a

b
tf

A 0.95σ = 0.05hb

de = 0.808
√

hb

b

h

2

2

11

A 0.95σ = 0.01046d 2

de = 0.370d

d

Table 6–3

A0.95σ Areas of Common

Nonrotating Structural

Shapes

17Use this only for pure torsional fatigue loading. When torsion is combined with other stresses, such as
bending, kc = 1 and the combined loading is managed by using the effective von Mises stress as in Sec. 5–5.
Note: For pure torsion, the distortion energy predicts that (kc)torsion = 0.577.
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Finally, it may be true that there is no fatigue limit for materials operating at high tem-
peratures. Because of the reduced fatigue resistance, the failure process is, to some
extent, dependent on time.

The limited amount of data available show that the endurance limit for steels
increases slightly as the temperature rises and then begins to fall off in the 400 to 700°F
range, not unlike the behavior of the tensile strength shown in Fig. 2–9. For this reason
it is probably true that the endurance limit is related to tensile strength at elevated tem-
peratures in the same manner as at room temperature.18 It seems quite logical, therefore,
to employ the same relations to predict endurance limit at elevated temperatures as are
used at room temperature, at least until more comprehensive data become available. At
the very least, this practice will provide a useful standard against which the perfor-
mance of various materials can be compared.

Table 6–4 has been obtained from Fig. 2–9 by using only the tensile-strength data.
Note that the table represents 145 tests of 21 different carbon and alloy steels. A fourth-
order polynomial curve fit to the data underlying Fig. 2–9 gives

kd = 0.975 + 0.432(10−3)TF − 0.115(10−5)T 2
F

+ 0.104(10−8)T 3
F − 0.595(10−12)T 4

F

( 6–27)

where 70 ≤ TF ≤ 1000◦F.
Two types of problems arise when temperature is a consideration. If the rotating-

beam endurance limit is known at room temperature, then use

kd = ST

SRT
(6–28)

Temperature, °C ST/SRT Temperature, °F ST/SRT

20 1.000 70 1.000

50 1.010 100 1.008

100 1.020 200 1.020

150 1.025 300 1.024

200 1.020 400 1.018

250 1.000 500 0.995

300 0.975 600 0.963

350 0.943 700 0.927

400 0.900 800 0.872

450 0.843 900 0.797

500 0.768 1000 0.698

550 0.672 1100 0.567

600 0.549

*Data source: Fig. 2–9.

Table 6–4

Effect of Operating

Temperature on the

Tensile Strength of

Steel.* (ST = tensile

strength at operating

temperature;

SRT = tensile strength

at room temperature; 

0.099 ≤ σ̂ ≤ 0.110)

18For more, see Table 2 of ANSI/ASME B106. 1M-1985 shaft standard, and E. A. Brandes (ed.), Smithell’s
Metals Reference Book, 6th ed., Butterworth, London, 1983, pp. 22–134 to 22–136, where endurance limits
from 100 to 650°C are tabulated.
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from Table 6–4 or Eq. (6–27) and proceed as usual. If the rotating-beam endurance limit
is not given, then compute it using Eq. (6–8) and the temperature-corrected tensile
strength obtained by using the factor from Table 6–4. Then use kd = 1.

EXAMPLE 6–5 A 1035 steel has a tensile strength of 70 kpsi and is to be used for a part that sees 450°F
in service. Estimate the Marin temperature modification factor and (Se)450◦ if
(a) The room-temperature endurance limit by test is (S′

e)70◦ = 39.0 kpsi.
(b) Only the tensile strength at room temperature is known.

Solution (a) First, from Eq. (6–27),

kd = 0.975 + 0.432(10−3)(450) − 0.115(10−5)(4502)

+ 0.104(10−8)(4503) − 0.595(10−12)(4504) = 1.007

Thus,

Answer (Se)450◦ = kd(S′
e)70◦ = 1.007(39.0) = 39.3 kpsi

(b) Interpolating from Table 6–4 gives

(ST /SRT )450◦ = 1.018 + (0.995 − 1.018)
450 − 400

500 − 400
= 1.007

Thus, the tensile strength at 450°F is estimated as

(Sut)450◦ = (ST /SRT )450◦ (Sut)70◦ = 1.007(70) = 70.5 kpsi

From Eq. (6–8) then,

Answer (Se)450◦ = 0.5(Sut)450◦ = 0.5(70.5) = 35.2 kpsi

Part a gives the better estimate due to actual testing of the particular material.

Reliability Factor ke

The discussion presented here accounts for the scatter of data such as shown in
Fig. 6–17 where the mean endurance limit is shown to be S′

e/Sut
.= 0.5, or as given by

Eq. (6–8). Most endurance strength data are reported as mean values. Data presented
by Haugen and Wirching19 show standard deviations of endurance strengths of less than
8 percent. Thus the reliability modification factor to account for this can be written as

ke = 1 − 0.08 za (6–29)

where za is defined by Eq. (20–16) and values for any desired reliability can be deter-
mined from Table A–10. Table 6–5 gives reliability factors for some standard specified
reliabilities.

For a more comprehensive approach to reliability, see Sec. 6–17.

19E. B. Haugen and P. H. Wirsching, “Probabilistic Design,” Machine Design, vol. 47, no. 12, 1975,
pp. 10–14.
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Miscellaneous-Effects Factor kf

Though the factor kf is intended to account for the reduction in endurance limit due to
all other effects, it is really intended as a reminder that these must be accounted for,
because actual values of kf are not always available.

Residual stresses may either improve the endurance limit or affect it adversely.
Generally, if the residual stress in the surface of the part is compression, the endurance
limit is improved. Fatigue failures appear to be tensile failures, or at least to be caused
by tensile stress, and so anything that reduces tensile stress will also reduce the possi-
bility of a fatigue failure. Operations such as shot peening, hammering, and cold rolling
build compressive stresses into the surface of the part and improve the endurance limit
significantly. Of course, the material must not be worked to exhaustion.

The endurance limits of parts that are made from rolled or drawn sheets or bars,
as well as parts that are forged, may be affected by the so-called directional character-
istics of the operation. Rolled or drawn parts, for example, have an endurance limit
in the transverse direction that may be 10 to 20 percent less than the endurance limit in
the longitudinal direction.

Parts that are case-hardened may fail at the surface or at the maximum core radius,
depending upon the stress gradient. Figure 6–19 shows the typical triangular stress dis-
tribution of a bar under bending or torsion. Also plotted as a heavy line in this figure are
the endurance limits Se for the case and core. For this example the endurance limit of the
core rules the design because the figure shows that the stress σ or τ, whichever applies,
at the outer core radius, is appreciably larger than the core endurance limit.

Se (case)

� or �

Se (core)

Case

Core

Figure 6–19

The failure of a case-hardened
part in bending or torsion. In
this example, failure occurs in
the core.

Reliability, % Transformation Variate za Reliability Factor ke

50 0 1.000

90 1.288 0.897

95 1.645 0.868

99 2.326 0.814

99.9 3.091 0.753

99.99 3.719 0.702

99.999 4.265 0.659

99.9999 4.753 0.620

Table 6–5

Reliability Factors ke

Corresponding to

8 Percent Standard

Deviation of the

Endurance Limit

bud29281_ch06_265-357.qxd  11/30/2009  4:23 pm  Page 293 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



294 Mechanical Engineering Design

Corrosion
It is to be expected that parts that operate in a corrosive atmosphere will have a lowered
fatigue resistance. This is, of course, true, and it is due to the roughening or pitting of
the surface by the corrosive material. But the problem is not so simple as the one of
finding the endurance limit of a specimen that has been corroded. The reason for this is
that the corrosion and the stressing occur at the same time. Basically, this means that in
time any part will fail when subjected to repeated stressing in a corrosive atmosphere.
There is no fatigue limit. Thus the designer’s problem is to attempt to minimize the fac-
tors that affect the fatigue life; these are:

• Mean or static stress

• Alternating stress

• Electrolyte concentration

• Dissolved oxygen in electrolyte

• Material properties and composition

• Temperature

• Cyclic frequency

• Fluid flow rate around specimen

• Local crevices

Electrolytic Plating
Metallic coatings, such as chromium plating, nickel plating, or cadmium plating, reduce
the endurance limit by as much as 50 percent. In some cases the reduction by coatings
has been so severe that it has been necessary to eliminate the plating process. Zinc
plating does not affect the fatigue strength. Anodic oxidation of light alloys reduces
bending endurance limits by as much as 39 percent but has no effect on the torsional
endurance limit.

Metal Spraying
Metal spraying results in surface imperfections that can initiate cracks. Limited tests
show reductions of 14 percent in the fatigue strength.

Cyclic Frequency
If, for any reason, the fatigue process becomes time-dependent, then it also becomes
frequency-dependent. Under normal conditions, fatigue failure is independent of fre-
quency. But when corrosion or high temperatures, or both, are encountered, the cyclic
rate becomes important. The slower the frequency and the higher the temperature, the
higher the crack propagation rate and the shorter the life at a given stress level.

Frettage Corrosion
The phenomenon of frettage corrosion is the result of microscopic motions of tightly
fitting parts or structures. Bolted joints, bearing-race fits, wheel hubs, and any set of
tightly fitted parts are examples. The process involves surface discoloration, pitting, and
eventual fatigue. The frettage factor kf depends upon the material of the mating pairs
and ranges from 0.24 to 0.90.
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6–10 Stress Concentration and Notch Sensitivity
In Sec. 3–13 it was pointed out that the existence of irregularities or discontinuities,
such as holes, grooves, or notches, in a part increases the theoretical stresses signifi-
cantly in the immediate vicinity of the discontinuity. Equation (3–48) defined a stress-
concentration factor Kt (or Kts), which is used with the nominal stress to obtain the
maximum resulting stress due to the irregularity or defect. It turns out that some mate-
rials are not fully sensitive to the presence of notches and hence, for these, a reduced
value of Kt can be used. For these materials, the effective maximum stress in fatigue is,

σmax = K f σ0 or τmax = K f sτ0 (6–30)

where K f is a reduced value of Kt and σ0 is the nominal stress. The factor K f is com-
monly called a fatigue stress-concentration factor, and hence the subscript f. So it is
convenient to think of Kf as a stress-concentration factor reduced from Kt because of
lessened sensitivity to notches. The resulting factor is defined by the equation

K f = maximum stress in notched specimen

stress in notch-free specimen
(a)

Notch sensitivity q is defined by the equation

q = K f − 1

Kt − 1
or qshear = K f s − 1

Kts − 1
(6–31)

where q is usually between zero and unity. Equation (6–31) shows that if q = 0, then
K f = 1, and the material has no sensitivity to notches at all. On the other hand, if
q = 1, then K f = Kt , and the material has full notch sensitivity. In analysis or design
work, find Kt first, from the geometry of the part. Then specify the material, find q, and
solve for Kf from the equation

K f = 1 + q(Kt − 1) or K f s = 1 + qshear(Kts − 1) (6–32)

Notch sensitivities for specific materials are obtained experimentally. Published
experimental values are limited, but some values are available for steels and aluminum.
Trends for notch sensitivity as a function of notch radius and ultimate strength are
shown in Fig. 6–20 for reversed bending or axial loading, and Fig. 6–21 for reversed
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= 200 kpsi

(0.4)
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100

150 (0.7)
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(1.4 GPa)
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Alum. alloy

Figure 6–20

Notch-sensitivity charts for
steels and UNS A92024-T
wrought aluminum alloys
subjected to reversed bending
or reversed axial loads. For
larger notch radii, use the
values of q corresponding
to the r = 0.16-in (4-mm)
ordinate. (From George Sines
and J. L. Waisman (eds.), Metal
Fatigue, McGraw-Hill, New
York. Copyright © 1969 by The
McGraw-Hill Companies, Inc.
Reprinted by permission.)
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296 Mechanical Engineering Design

torsion. In using these charts it is well to know that the actual test results from which
the curves were derived exhibit a large amount of scatter. Because of this scatter it is
always safe to use K f = Kt if there is any doubt about the true value of q. Also, note
that q is not far from unity for large notch radii.

Figure 6–20 has as its basis the Neuber equation, which is given by

K f = 1 + Kt − 1

1 + √
a/r

(6–33)

where 
√

a is defined as the Neuber constant and is a material constant. Equating
Eqs. (6–31) and (6–33) yields the notch sensitivity equation

q = 1

1 +
√

a√
r

(6–34)

correlating with Figs. 6–20 and 6–21 as

Bending or axial:
√

a = 0.246 − 3.08(10−3)Sut + 1.51(10−5)S2
ut − 2.67(10−8)S3

ut

(6–35a)

Torsion:
√

a = 0.190 − 2.51(10−3)Sut + 1.35(10−5)S2
ut − 2.67(10−8)S3

ut (6–35b)

where the equations apply to steel and Sut is in kpsi. Equation (6–34) used in conjunction
with Eq. pair (6–35) is equivalent to Figs. (6–20) and (6–21). As with the graphs, the
results from the curve fit equations provide only approximations to the experimental data.

The notch sensitivity of cast irons is very low, varying from 0 to about 0.20,
depending upon the tensile strength. To be on the conservative side, it is recommended
that the value q = 0.20 be used for all grades of cast iron.

EXAMPLE 6–6 A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet
radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate Kf using:
(a) Figure 6–20.
(b) Equations (6–33) and (6–35).
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Figure 6–21

Notch-sensitivity curves for
materials in reversed torsion.
For larger notch radii, 
use the values of qshear

corresponding to r = 0.16 in 
(4 mm).
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Solution From Fig. A–15–9, using D/d = 38/32 = 1.1875, r/d = 3/32 = 0.093 75, we read
the graph to find Kt

.= 1.65.
(a) From Fig. 6–20, for Sut = 690 MPa and r = 3 mm, q

.= 0.84. Thus, from Eq. (6–32)

Answer K f = 1 + q(Kt − 1)
.= 1 + 0.84(1.65 − 1) = 1.55

(b) From Eq. (6–35a) with Sut = 690 MPa = 100 kpsi, 
√

a = 0.0622
√

in = 0.313
√

mm.
Substituting this into Eq. (6–33) with r = 3 mm gives

Answer K f = 1 + Kt − 1

1 + √
a/r

.= 1 + 1.65 − 1

1 + 0.313√
3

= 1.55

Some designers use 1/Kf as a Marin factor to reduce Se. For simple loading, infi-
nite life problems, it makes no difference whether Se is reduced by dividing it by Kf or
the nominal stress is multiplied by Kf. However, for finite life, since the S-N diagram
is nonlinear, the two approaches yield differing results. There is no clear evidence
pointing to which method is better. Furthermore, in Sec. 6–14, when we consider com-
bining loads, there generally are multiple fatigue stress-concentration factors occurring
at a point (e.g. Kf for bending and Kfs for torsion). Here, it is only practical to modify
the nominal stresses. To be consistent in this text, we will exclusively use the fatigue
stress-concentration factor as a multiplier of the nominal stress.

EXAMPLE 6–7 For the step-shaft of Ex. 6–6, it is determined that the fully corrected endurance limit is
Se = 280 MPa. Consider the shaft undergoes a fully reversing nominal stress in the fil-
let of (σrev)nom = 260 MPa. Estimate the number of cycles to failure.

Solution From Ex. 6–6, Kf = 1.55, and the ultimate strength is Sut = 690 MPa = 100 kpsi. The
maximum reversing stress is

(σrev)max = K f (σrev)nom = 1.55(260) = 403 MPa

From Fig. 6–18, f = 0.845. From Eqs. (6–14), (6–15), and (6–16)

a = ( f Sut)
2

Se
= [0.845(690)]2

280
= 1214 MPa

b = −1

3
log

f Sut

Se
= −1

3
log

[
0.845(690)

280

]
= −0.1062

Answer N =
(σrev

a

)1/b
=

(
403

1214

)1/−0.1062

= 32.3
(
103) cycles

Up to this point, examples illustrated each factor in Marin’s equation and stress
concentrations alone. Let us consider a number of factors occurring simultaneously.
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bud29281_ch06_265-357.qxd  12/7/09  7:25PM  Page 297 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



298 Mechanical Engineering Design

EXAMPLE 6–8 A 1015 hot-rolled steel bar has been machined to a diameter of 1 in. It is to be placed
in reversed axial loading for 70 000 cycles to failure in an operating environment of
550°F. Using ASTM minimum properties, and a reliability of 99 percent, estimate the
endurance limit and fatigue strength at 70 000 cycles.

Solution From Table A–20, Sut = 50 kpsi at 70°F. Since the rotating-beam specimen endurance
limit is not known at room temperature, we determine the ultimate strength at the ele-
vated temperature first, using Table 6–4. From Table 6–4,(

ST

SRT

)
550◦

= 0.995 + 0.963

2
= 0.979

The ultimate strength at 550°F is then

(Sut)550◦ = (ST /SRT )550◦ (Sut)70◦ = 0.979(50) = 49.0 kpsi

The rotating-beam specimen endurance limit at 550°F is then estimated from Eq. (6–8)
as

S′
e = 0.5(49) = 24.5 kpsi

Next, we determine the Marin factors. For the machined surface, Eq. (6–19) with
Table 6–2 gives

ka = aSb
ut = 2.70(49−0.265) = 0.963

For axial loading, from Eq. (6–21), the size factor kb = 1, and from Eq. (6–26) the load-
ing factor is kc = 0.85. The temperature factor kd = 1, since we accounted for the tem-
perature in modifying the ultimate strength and consequently the endurance limit. For
99 percent reliability, from Table 6–5, ke = 0.814. Finally, since no other conditions
were given, the miscellaneous factor is kf = 1. The endurance limit for the part is esti-
mated by Eq. (6–18) as

Answer
Se = kakbkckdkek f S′

e

= 0.963(1)(0.85)(1)(0.814)(1)24.5 = 16.3 kpsi

For the fatigue strength at 70 000 cycles we need to construct the S-N equation. From
p. 285, since Sut = 49 < 70 kpsi, then f � 0.9. From Eq. (6–14)

a = ( f Sut)
2

Se
= [0.9(49)]2

16.3
= 119.3 kpsi

and Eq. (6–15)

b = −1

3
log

(
f Sut

Se

)
= −1

3
log

[
0.9(49)

16.3

]
= −0.1441

Finally, for the fatigue strength at 70 000 cycles, Eq. (6–13) gives

Answer Sf = a N b = 119.3(70 000)−0.1441 = 23.9 kpsi
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EXAMPLE 6–9 Figure 6–22a shows a rotating shaft simply supported in ball bearings at A and D and
loaded by a nonrotating force F of 6.8 kN. Using ASTM “minimum” strengths, estimate
the life of the part.

Solution From Fig. 6–22b we learn that failure will probably occur at B rather than at C or at the
point of maximum moment. Point B has a smaller cross section, a higher bending
moment, and a higher stress-concentration factor than C, and the location of maximum
moment has a larger size and no stress-concentration factor.

We shall solve the problem by first estimating the strength at point B, since the strength
will be different elsewhere, and comparing this strength with the stress at the same point.

From Table A–20 we find Sut = 690 MPa and Sy = 580 MPa. The endurance limit
S′

e is estimated as

S′
e = 0.5(690) = 345 MPa

From Eq. (6–19) and Table 6–2,

ka = 4.51(690)−0.265 = 0.798

From Eq. (6–20),

kb = (32/7.62)−0.107 = 0.858

Since kc = kd = ke = kf = 1,

Se = 0.798(0.858)345 = 236 MPa

To find the geometric stress-concentration factor Kt we enter Fig. A–15–9 with D/d =
38/32 = 1.1875 and r/d = 3/32 = 0.093 75 and read Kt

.= 1.65. Substituting
Sut = 690/6.89 = 100 kpsi into Eq. (6–35a) yields 

√
a = 0.0622

√
in = 0.313

√
mm.

Substituting this into Eq. (6–33) gives

K f = 1 + Kt − 1

1 + √
a/r

= 1 + 1.65 − 1

1 + 0.313/
√

3
= 1.55

(a)

(b)

A B

MB

MC

Mmax

C D

30 30
32 3538

10 10

A B C D6.8 kN

250 12510075

R2R1

Figure 6–22

(a) Shaft drawing showing all
dimensions in millimeters; 
all fillets 3-mm radius. 
The shaft rotates and the load 
is stationary; material is
machined from AISI 1050
cold-drawn steel. (b) Bending-
moment diagram.
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The next step is to estimate the bending stress at point B. The bending moment
is

MB = R1x = 225F

550
250 = 225(6.8)

550
250 = 695.5 N · m

Just to the left of B the section modulus is I/c = πd3/32 = π323/32 = 3.217 (103) mm3.
The reversing bending stress is, assuming infinite life,

σrev = K f
MB

I/c
= 1.55

695.5

3.217
(10)−6 = 335.1(106) Pa = 335.1 MPa

This stress is greater than Se and less than Sy. This means we have both finite life and
no yielding on the first cycle. 

For finite life, we will need to use Eq. (6–16). The ultimate strength, Sut = 690
MPa = 100 kpsi. From Fig. 6–18, f = 0.844. From Eq. (6–14)

a = ( f Sut)
2

Se
= [0.844(690)]2

236
= 1437 MPa

and from Eq. (6–15)

b = −1

3
log

(
f Sut

Se

)
= −1

3
log

[
0.844(690)

236

]
= −0.1308

From Eq. (6–16),

Answer N =
(σrev

a

)1/b
=

(
335.1

1437

)−1/0.1308

= 68(103) cycles

6–11 Characterizing Fluctuating Stresses
Fluctuating stresses in machinery often take the form of a sinusoidal pattern because
of the nature of some rotating machinery. However, other patterns, some quite irreg-
ular, do occur. It has been found that in periodic patterns exhibiting a single maxi-
mum and a single minimum of force, the shape of the wave is not important, but the
peaks on both the high side (maximum) and the low side (minimum) are important.
Thus Fmax and Fmin in a cycle of force can be used to characterize the force pattern.
It is also true that ranging above and below some baseline can be equally effective
in characterizing the force pattern. If the largest force is Fmax and the smallest force
is Fmin, then a steady component and an alternating component can be constructed
as follows:

Fm = Fmax + Fmin

2
Fa =

∣∣∣∣ Fmax − Fmin

2

∣∣∣∣
where Fm is the midrange steady component of force, and Fa is the amplitude of the
alternating component of force.
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Figure 6–23 illustrates some of the various stress-time traces that occur. The com-
ponents of stress, some of which are shown in Fig. 6–23d, are

σmin = minimum stress σm = midrange component

σmax = maximum stress σr = range of stress

σa = amplitude component σs = static or steady stress

The steady, or static, stress is not the same as the midrange stress; in fact, it may have
any value between σmin and σmax. The steady stress exists because of a fixed load or pre-
load applied to the part, and it is usually independent of the varying portion of the load.
A helical compression spring, for example, is always loaded into a space shorter than
the free length of the spring. The stress created by this initial compression is called the
steady, or static, component of the stress. It is not the same as the midrange stress.

We shall have occasion to apply the subscripts of these components to shear stresses
as well as normal stresses.

The following relations are evident from Fig. 6–23:

σm = σmax + σmin

2

σa =
∣∣∣∣σmax − σmin

2

∣∣∣∣ (6–36)
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�min =  0

�m =  0

+

Figure 6–23

Some stress-time relations:
(a) fluctuating stress with high-
frequency ripple; (b and c)
nonsinusoidal fluctuating
stress; (d) sinusoidal fluctuating
stress; (e) repeated stress;
( f ) completely reversed
sinusoidal stress.
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In addition to Eq. (6–36), the stress ratio

R = σmin

σmax
(6–37)

and the amplitude ratio

A = σa

σm
(6–38)

are also defined and used in connection with fluctuating stresses.
Equations (6–36) utilize symbols σa and σm as the stress components at the loca-

tion under scrutiny. This means, in the absence of a notch, σa and σm are equal to the
nominal stresses σao and σmo induced by loads Fa and Fm , respectively; in the presence
of a notch they are K f σao and K f σmo, respectively, as long as the material remains
without plastic strain. In other words, the fatigue stress-concentration factor K f is
applied to both components.

When the steady stress component is high enough to induce localized notch yield-
ing, the designer has a problem. The first-cycle local yielding produces plastic strain
and strain-strengthening. This is occurring at the location where fatigue crack nucle-
ation and growth are most likely. The material properties (Sy and Sut ) are new and
difficult to quantify. The prudent engineer controls the concept, material and condition
of use, and geometry so that no plastic strain occurs. There are discussions concerning
possible ways of quantifying what is occurring under localized and general yielding
in the presence of a notch, referred to as the nominal mean stress method, residual
stress method, and the like.20 The nominal mean stress method (set σa = K f σao and
σm = σmo) gives roughly comparable results to the residual stress method, but both are
approximations.

There is the method of Dowling21 for ductile materials, which, for materials with a
pronounced yield point and approximated by an elastic–perfectly plastic behavior
model, quantitatively expresses the steady stress component stress-concentration factor
K f m as

K f m = K f K f |σmax,o| < Sy

K f m = Sy − K f σao

|σmo| K f |σmax,o| > Sy

K f m = 0 K f |σmax,o − σmin,o| > 2Sy

(6–39)

For the purposes of this book, for ductile materials in fatigue,

• Avoid localized plastic strain at a notch. Set σa = K f σa,o and σm = K f σmo .

• When plastic strain at a notch cannot be avoided, use Eqs. (6–39); or conservatively,
set σa = K f σao and use K f m = 1, that is, σm = σmo .

20R. C. Juvinall, Stress, Strain, and Strength, McGraw-Hill, New York, 1967, articles 14.9–14.12; R. C.
Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, 4th ed., Wiley, New York, 2006,
Sec. 8.11; M. E. Dowling, Mechanical Behavior of Materials, 2nd ed., Prentice Hall, Englewood Cliffs,
N.J., 1999, Secs. 10.3–10.5.
21Dowling, op. cit., pp. 437–438.
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6–12 Fatigue Failure Criteria for Fluctuating Stress
Now that we have defined the various components of stress associated with a part sub-
jected to fluctuating stress, we want to vary both the midrange stress and the stress
amplitude, or alternating component, to learn something about the fatigue resistance of
parts when subjected to such situations. Three methods of plotting the results of such
tests are in general use and are shown in Figs. 6–24, 6–25, and 6–26.

The modified Goodman diagram of Fig. 6–24 has the midrange stress plotted along
the abscissa and all other components of stress plotted on the ordinate, with tension in
the positive direction. The endurance limit, fatigue strength, or finite-life strength,
whichever applies, is plotted on the ordinate above and below the origin. The midrange-
stress line is a 45◦ line from the origin to the tensile strength of the part. The modified
Goodman diagram consists of the lines constructed to Se (or Sf ) above and below the
origin. Note that the yield strength is also plotted on both axes, because yielding would
be the criterion of failure if σmax exceeded Sy .

Another way to display test results is shown in Fig. 6–25. Here the abscissa repre-
sents the ratio of the midrange strength Sm to the ultimate strength, with tension plot-
ted to the right and compression to the left. The ordinate is the ratio of the alternating
strength to the endurance limit. The line BC then represents the modified Goodman
criterion of failure. Note that the existence of midrange stress in the compressive region
has little effect on the endurance limit.

The very clever diagram of Fig. 6–26 is unique in that it displays four of the stress
components as well as the two stress ratios. A curve representing the endurance limit
for values of R beginning at R = −1 and ending with R = 1 begins at Se on the σa axis
and ends at Sut on the σm axis. Constant-life curves for N = 105 and N = 104 cycles

Figure 6–24

Modified Goodman diagram
showing all the strengths and
the limiting values of all the
stress components for a
particular midrange stress.
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304 Mechanical Engineering Design

have been drawn too. Any stress state, such as the one at A, can be described by the min-
imum and maximum components, or by the midrange and alternating components. And
safety is indicated whenever the point described by the stress components lies below the
constant-life line.

Figure 6–26

Master fatigue diagram created
for AISI 4340 steel having
Sut = 158 and Sy = 147 kpsi.
The stress components at A are
σmin = 20, σmax = 120,
σm = 70, and σa = 50, all in
kpsi. (Source: H. J. Grover,
Fatigue of Aircraft Structures,
U.S. Government Printing
Office, Washington, D.C., 1966,
pp. 317, 322. See also J. A.
Collins, Failure of Materials in
Mechanical Design, Wiley,
New York, 1981, p. 216.)
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Figure 6–25

Plot of fatigue failures for midrange stresses in both tensile and compressive regions. Normalizing
the data by using the ratio of steady strength component to tensile strength Sm/Sut , steady strength
component to compressive strength Sm/Suc and strength amplitude component to endurance limit 
Sa/S′

e enables a plot of experimental results for a variety of steels. [Data source: Thomas J. Dolan,
“Stress Range,” Sec. 6.2 in O. J. Horger (ed.), ASME Handbook—Metals Engineering Design,
McGraw-Hill, New York, 1953.]
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When the midrange stress is compression, failure occurs whenever σa = Se or
whenever σmax = Syc , as indicated by the left-hand side of Fig. 6–25. Neither a fatigue
diagram nor any other failure criteria need be developed.

In Fig. 6–27, the tensile side of Fig. 6–25 has been redrawn in terms of strengths,
instead of strength ratios, with the same modified Goodman criterion together with four
additional criteria of failure. Such diagrams are often constructed for analysis and
design purposes; they are easy to use and the results can be scaled off directly.

The early viewpoint expressed on a σm , σa diagram was that there existed a locus
which divided safe from unsafe combinations of σm and σa . Ensuing proposals included
the parabola of Gerber (1874), the Goodman (1890)22 (straight) line, and the Soderberg
(1930) (straight) line. As more data were generated it became clear that a fatigue criterion,
rather than being a “fence,” was more like a zone or band wherein the probability of fail-
ure could be estimated. We include the failure criterion of Goodman because

• It is a straight line and the algebra is linear and easy.

• It is easily graphed, every time for every problem.

• It reveals subtleties of insight into fatigue problems.

• Answers can be scaled from the diagrams as a check on the algebra.

We also caution that it is deterministic and the phenomenon is not. It is biased and we
cannot quantify the bias. It is not conservative. It is a stepping-stone to understanding; it
is history; and to read the work of other engineers and to have meaningful oral exchanges
with them, it is necessary that you understand the Goodman approach should it arise.

Either the fatigue limit Se or the finite-life strength Sf is plotted on the ordinate of
Fig. 6–27. These values will have already been corrected using the Marin factors of
Eq. (6–18). Note that the yield strength Sy is plotted on the ordinate too. This serves as
a reminder that first-cycle yielding rather than fatigue might be the criterion of failure.

The midrange-stress axis of Fig. 6–27 has the yield strength Sy and the tensile
strength Sut plotted along it. 

Figure 6–27

Fatigue diagram showing
various criteria of failure. For
each criterion, points on or
“above” the respective line
indicate failure. Some point A
on the Goodman line, for
example, gives the strength Sm

as the limiting value of σm

corresponding to the strength
Sa , which, paired with σm , is
the limiting value of σa .
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ASME-elliptic line

Load line, slope r = Sa/Sm

Gerber line

Yield (Langer) line

22It is difficult to date Goodman’s work because it went through several modifications and was never
published.
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Five criteria of failure are diagrammed in Fig. 6–27: the Soderberg, the modified
Goodman, the Gerber, the ASME-elliptic, and yielding. The diagram shows that only
the Soderberg criterion guards against any yielding, but is biased low.

Considering the modified Goodman line as a criterion, point A represents a limit-
ing point with an alternating strength Sa and midrange strength Sm. The slope of the load
line shown is defined as r = Sa/Sm .

The criterion equation for the Soderberg line is

Sa

Se
+ Sm

Sy
= 1 (6–40)

Similarly, we find the modified Goodman relation to be

Sa

Se
+ Sm

Sut
= 1 (6–41)

Examination of Fig. 6–25 shows that both a parabola and an ellipse have a better
opportunity to pass among the midrange tension data and to permit quantification of the
probability of failure. The Gerber failure criterion is written as

Sa

Se
+

(
Sm

Sut

)2

= 1 (6–42)

and the ASME-elliptic is written as(
Sa

Se

)2

+
(

Sm

Sy

)2

= 1 (6–43)

The Langer first-cycle-yielding criterion is used in connection with the fatigue
curve:

Sa + Sm = Sy (6–44)

The stresses nσa and nσm can replace Sa and Sm , where n is the design factor or factor
of safety. Then, Eq. (6–40), the Soderberg line, becomes

Soderberg
σa

Se
+ σm

Sy
= 1

n
(6–45)

Equation (6–41), the modified Goodman line, becomes

mod-Goodman
σa

Se
+ σm

Sut
= 1

n
(6–46)

Equation (6–42), the Gerber line, becomes

Gerber
nσa

Se
+

(
nσm

Sut

)2

= 1 (6–47)

Equation (6–43), the ASME-elliptic line, becomes

ASME-elliptic
(

nσa

Se

)2

+
(

nσm

Sy

)2

= 1 (6–48)

We will emphasize the Gerber and ASME-elliptic for fatigue failure criterion and the
Langer for first-cycle yielding. However, conservative designers often use the modified
Goodman criterion, so we will continue to include it in our discussions. The design
equation for the Langer first-cycle-yielding is

Langer static yield σa + σm = Sy

n
(6–49)

bud29281_ch06_265-357.qxd  11/30/2009  4:23 pm  Page 306 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



Fatigue Failure Resulting from Variable Loading 307

Intersecting Equations Intersection Coordinates

Sa

Se
+

(
Sm

Sut

)2

= 1 Sa = r2S2
ut

2Se

⎡⎣−1 +
√

1 +
(

2Se

r Sut

)2
⎤⎦

Load line r = Sa

Sm
Sm = Sa

r

Sa

Sy
+ Sm

Sy
= 1 Sa = r Sy

1 + r

Load line r = Sa

Sm
Sm = Sy

1 + r

Sa

Se
+

(
Sm

Sut

)2

= 1 Sm = S2
ut

2Se

⎡⎣1 −
√

1 +
(

2Se

Sut

)2 (
1 − Sy

Se

) ⎤⎦
Sa

Sy
+ Sm

Sy
= 1 Sa = Sy − Sm, rcrit = Sa/Sm

Fatigue factor of safety

n f = 1

2

(
Sut

σm

)2
σa

Se

⎡⎣−1 +
√

1 +
(

2σm Se

Sutσa

)2
⎤⎦ σm > 0

Table 6–7

Amplitude and Steady

Coordinates of Strength

and Important

Intersections in First

Quadrant for Gerber and

Langer Failure Criteria

Intersecting Equations Intersection Coordinates

Sa

Se
+ Sm

Sut
= 1 Sa = r Se Sut

r Sut + Se

Load line r = Sa

Sm
Sm = Sa

r

Sa

Sy
+ Sm

Sy
= 1 Sa = r Sy

1 + r

Load line r = Sa

Sm
Sm = Sy

1 + r

Sa

Se
+ Sm

Sut
= 1 Sm =

(
Sy − Se

)
Sut

Sut − Se

Sa

Sy
+ Sm

Sy
= 1 Sa = Sy − Sm, rcrit = Sa/Sm

Fatigue factor of safety

n f = 1
σa

Se
+ σm

Sut

Table 6–6

Amplitude and Steady

Coordinates of Strength

and Important

Intersections in First

Quadrant for Modified

Goodman and Langer

Failure Criteria

The failure criteria are used in conjunction with a load line, r = Sa/Sm = σa/σm .
Principal intersections are tabulated in Tables 6–6 to 6–8. Formal expressions for
fatigue factor of safety are given in the lower panel of Tables 6–6 to 6–8. The first row
of each table corresponds to the fatigue criterion, the second row is the static Langer
criterion, and the third row corresponds to the intersection of the static and fatigue
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criteria. The first column gives the intersecting equations and the second column the
intersection coordinates.

There are two ways to proceed with a typical analysis. One method is to assume
that fatigue occurs first and use one of Eqs. (6–45) to (6–48) to determine n or size,
depending on the task. Most often fatigue is the governing failure mode. Then
follow with a static check. If static failure governs then the analysis is repeated using
Eq. (6–49).

Alternatively, one could use the tables. Determine the load line and establish which
criterion the load line intersects first and use the corresponding equations in the tables.

Some examples will help solidify the ideas just discussed.

EXAMPLE 6–10 A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part
is to withstand a fluctuating tensile load varying from 0 to 16 kip. Because of the ends,
and the fillet radius, a fatigue stress-concentration factor K f is 1.85 for 106 or larger
life. Find Sa and Sm and the factor of safety guarding against fatigue and first-cycle
yielding, using (a) the Gerber fatigue line and (b) the ASME-elliptic fatigue line.

Solution We begin with some preliminaries. From Table A–20, Sut = 100 kpsi and Sy = 84 kpsi.
Note that Fa = Fm = 8 kip. The Marin factors are, deterministically,

ka = 2.70(100)−0.265 = 0.797: Eq. (6–19), Table 6–2, p. 288

kb = 1 (axial loading, see kc)

Intersecting Equations Intersection Coordinates(
Sa

Se

)2

+
(

Sm

Sy

)2

= 1 Sa =
√√√√ r2S2

e S2
y

S2
e + r2S2

y

Load line r = Sa/Sm Sm = Sa

r

Sa

Sy
+ Sm

Sy
= 1 Sa = r Sy

1 + r

Load line r = Sa/Sm Sm = Sy

1 + r(
Sa

Se

)2

+
(

Sm

Sy

)2

= 1 Sa = 0,
2Sy S2

e

S2
e + S2

y

Sa

Sy
+ Sm

Sy
= 1 Sm = Sy − Sa, rcrit = Sa/Sm

Fatigue factor of safety

n f =
√

1

(σa/Se)
2 + (

σm/Sy
)2

Table 6–8

Amplitude and Steady

Coordinates of Strength

and Important

Intersections in First

Quadrant for ASME-

Elliptic and Langer

Failure Criteria
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kc = 0.85: Eq. (6–26), p. 290

kd = ke = kf = 1

Se = 0.797(1)0.850(1)(1)(1)0.5(100) = 33.9 kpsi: Eqs. (6–8), (6–18), p. 282, p. 287

The nominal axial stress components σao and σmo are

σao = 4Fa

πd2
= 4(8)

π1.52
= 4.53 kpsi σmo = 4Fm

πd2
= 4(8)

π1.52
= 4.53 kpsi

Applying K f to both components σao and σmo constitutes a prescription of no notch
yielding:

σa = K f σao = 1.85(4.53) = 8.38 kpsi = σm

(a) Let us calculate the factors of safety first. From the bottom panel from Table 6–7 the
factor of safety for fatigue is

Answer n f = 1

2

(
100

8.38

)2 (
8.38

33.9

)⎧⎨⎩−1 +
√

1 +
[

2(8.38)33.9

100(8.38)

]2
⎫⎬⎭ = 3.66

From Eq. (6–49) the factor of safety guarding against first-cycle yield is

Answer ny = Sy

σa + σm
= 84

8.38 + 8.38
= 5.01

Thus, we see that fatigue will occur first and the factor of safety is 3.68. This can be
seen in Fig. 6–28 where the load line intersects the Gerber fatigue curve first at point B.
If the plots are created to true scale it would be seen that n f = O B/O A.

From the first panel of Table 6–7, r = σa/σm = 1,

Answer Sa = (1)21002

2(33.9)

⎧⎨⎩−1 +
√

1 +
[

2(33.9)

(1)100

]2
⎫⎬⎭ = 30.7 kpsi

St
re

ss
 a

m
pl

itu
de

 �
a
, k

ps
i

Midrange stress �m, kpsi

0 30.78.38

8.38

42 50 64 84 100
0

20

33.9
30.7

42

50 Load line

Langer line

rcrit

84

100

Gerber
fatigue curve

A

B

C

D

Figure 6–28

Principal points A, B, C, and D
on the designer’s diagram
drawn for Gerber, Langer, and
load line.
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310 Mechanical Engineering Design

Answer Sm = Sa

r
= 30.7

1
= 30.7 kpsi

As a check on the previous result, n f = O B/O A = Sa/σa = Sm/σm = 30.7/8.38 =
3.66 and we see total agreement.

We could have detected that fatigue failure would occur first without drawing
Fig. 6–28 by calculating rcrit . From the third row third column panel of Table 6–7, the
intersection point between fatigue and first-cycle yield is

Sm = 1002

2(33.9)

⎡⎣1 −
√

1 +
(

2(33.9)

100

)2 (
1 − 84

33.9

)⎤⎦ = 64.0 kpsi

Sa = Sy − Sm = 84 − 64 = 20 kpsi

The critical slope is thus

rcrit = Sa

Sm
= 20

64
= 0.312

which is less than the actual load line of r = 1. This indicates that fatigue occurs before
first-cycle-yield.
(b) Repeating the same procedure for the ASME-elliptic line, for fatigue

Answer n f =
√

1

(8.38/33.9)2 + (8.38/84)2
= 3.75

Again, this is less than ny = 5.01 and fatigue is predicted to occur first. From the first
row second column panel of Table 6–8, with r = 1, we obtain the coordinates Sa and
Sm of point B in Fig. 6–29 as

St
re

ss
 a

m
pl

itu
de

 �
a
, k

ps
i

Midrange stress �m, kpsi

0 8.38 31.4 42 50 60.5 84 100
0

8.38

31.4

23.5

42

50 Load line

Langer line

84

100

ASME-elliptic line

A

B

C

D

Figure 6–29

Principal points A, B, C, and D
on the designer’s diagram
drawn for ASME-elliptic,
Langer, and load lines.
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EXAMPLE 6–11 A flat-leaf spring is used to retain an oscillating flat-faced follower in contact with a
plate cam. The follower range of motion is 2 in and fixed, so the alternating component
of force, bending moment, and stress is fixed, too. The spring is preloaded to adjust to
various cam speeds. The preload must be increased to prevent follower float or jump.
For lower speeds the preload should be decreased to obtain longer life of cam and
follower surfaces. The spring is a steel cantilever 32 in long, 2 in wide, and 1

4 in thick,
as seen in Fig. 6–30a. The spring strengths are Sut = 150 kpsi, Sy = 127 kpsi, and Se =
28 kpsi fully corrected. The total cam motion is 2 in. The designer wishes to preload
the spring by deflecting it 2 in for low speed and 5 in for high speed.
(a) Plot the Gerber-Langer failure lines with the load line.
(b) What are the strength factors of safety corresponding to 2 in and 5 in preload?

Solution We begin with preliminaries. The second area moment of the cantilever cross section is

I = bh3

12
= 2(0.25)3

12
= 0.00260 in4

Since, from Table A–9, beam 1, force F and deflection y in a cantilever are related by
F = 3E I y/ l3, then stress σ and deflection y are related by

σ = Mc

I
= 32Fc

I
= 32(3E I y)

l3

c

I
= 96Ecy

l3
= K y

where K = 96Ec

l3
= 96(30 · 106)0.125

323
= 10.99(103) psi/in = 10.99 kpsi/in

Now the minimums and maximums of y and σ can be defined by

ymin = δ ymax = 2 + δ

σmin = K δ σmax = K (2 + δ)

Answer Sa =
√

(1)233.92(84)2

33.92 + (1)2842
= 31.4 kpsi, Sm = Sa

r
= 31.4

1
= 31.4 kpsi

To verify the fatigue factor of safety, n f = Sa/σa = 31.4/8.38 = 3.75.
As before, let us calculate rcrit. From the third row second column panel of

Table 6–8,

Sa = 2(84)33.92

33.92 + 842
= 23.5 kpsi, Sm = Sy − Sa = 84 − 23.5 = 60.5 kpsi

rcrit = Sa

Sm
= 23.5

60.5
= 0.388

which again is less than r = 1, verifying that fatigue occurs first with n f = 3.75.
The Gerber and the ASME-elliptic fatigue failure criteria are very close to each

other and are used interchangeably. The ANSI/ASME Standard B106.1M–1985 uses
ASME-elliptic for shafting.
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312 Mechanical Engineering Design

The stress components are thus

σa = K (2 + δ) − K δ

2
= K = 10.99 kpsi

σm = K (2 + δ) + K δ

2
= K (1 + δ) = 10.99(1 + δ)

For δ = 0, σa = σm = 10.99 = 11 kpsi

2 in

32 in

(a)

� = 2 in

� = 5 in

� = 2 in preload

� = 5 in preload

1
4

in
+

+

+

Figure 6–30

Cam follower retaining spring.
(a) Geometry; (b) designer’s
fatigue diagram for Ex. 6–11.
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Gerber line

Langer line
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For δ = 2 in, σa = 11 kpsi, σm = 10.99(1 + 2) = 33 kpsi

For δ = 5 in, σa = 11 kpsi, σm = 10.99(1 + 5) = 65.9 kpsi

(a) A plot of the Gerber and Langer criteria is shown in Fig. 6–30b. The three preload
deflections of 0, 2, and 5 in are shown as points A, A′, and A′′. Note that since σa is
constant at 11 kpsi, the load line is horizontal and does not contain the origin. The
intersection between the Gerber line and the load line is found from solving Eq. (6–42)
for Sm and substituting 11 kpsi for Sa :

Sm = Sut

√
1 − Sa

Se
= 150

√
1 − 11

28
= 116.9 kpsi

The intersection of the Langer line and the load line is found from solving Eq. (6–44)
for Sm and substituting 11 kpsi for Sa :

Sm = Sy − Sa = 127 − 11 = 116 kpsi

The threats from fatigue and first-cycle yielding are approximately equal.
(b) For δ = 2 in,

Answer n f = Sm

σm
= 116.9

33
= 3.54 ny = 116

33
= 3.52

and for δ = 5 in,

Answer n f = 116.9

65.9
= 1.77 ny = 116

65.9
= 1.76

EXAMPLE 6–12 A steel bar undergoes cyclic loading such that σmax = 60 kpsi and σmin = −20 kpsi. For
the material, Sut = 80 kpsi, Sy = 65 kpsi, a fully corrected endurance limit of Se =
40 kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using:
(a) Modified Goodman criterion.
(b) Gerber criterion.

Solution From the given stresses,

σa = 60 − (−20)

2
= 40 kpsi σm = 60 + (−20)

2
= 20 kpsi

(a) For the modified Goodman criterion, Eq. (6–46), the fatigue factor of safety based
on infinite life is

n f = 1
σa

Se
+ σm

Sut

= 1
40

40
+ 20

80

= 0.8

This indicates a finite life is predicted. The S-N diagram is only applicable for completely
reversed stresses. To estimate the finite life for a fluctuating stress, we will obtain an
equivalent completely reversed stress that is expected to be as damaging as the fluctuat-
ing stress. A commonly used approach is to assume that since the modified Goodman
line represents all stress situations with a constant life of 106 cycles, other constant-life
lines can be generated by passing a line through (Sut, 0) and a fluctuating stress point 
(σm , σa). The point where this line intersects the σa axis represents a completely reversed
stress (since at this point σm = 0), which predicts the same life as the fluctuating stress.
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This completely reversed stress can be obtained by replacing Se with σrev in Eq. (6–46)
for the modified Goodman line resulting in

σrev = σa

1 − σm

Sut

= 40

1 − 20

80

= 53.3 kpsi

From the material properties, Eqs. (6–14) to (6–16), p. 285, give

a = ( f Sut)
2

Se
= [0.9(80)]2

40
= 129.6 kpsi

b = −1

3
log

(
f Sut

Se

)
= −1

3
log

[
0.9(80)

40

]
= −0.0851

N =
(σrev

a

)1/b
=

( σrev

129.6

)−1/0.0851
(1)

Substituting σrev into Eq. (1) yields

Answer N =
(

53.3

129.6

)−1/0.0851
.= 3.4(104) cycles

(b) For Gerber, similar to part (a), from Eq. (6–47),

σrev = σa

1 −
(

σm

Sut

)2 = 40

1 −
(

20

80

)2 = 42.7 kpsi

Again, from Eq. (1),

Answer N =
(

42.7

129.6

)−1/0.0851
.= 4.6(105) cycles

Comparing the answers, we see a large difference in the results. Again, the modified
Goodman criterion is conservative as compared to Gerber for which the moderate dif-
ference in Sf is then magnified by a logarithmic S, N relationship.

For many brittle materials, the first quadrant fatigue failure criteria follows a con-
cave upward Smith-Dolan locus represented by

Sa

Se
= 1 − Sm/Sut

1 + Sm/Sut
(6–50)

or as a design equation,
nσa

Se
= 1 − nσm/Sut

1 + nσm/Sut
(6–51)

For a radial load line of slope r, we substitute Sa/r for Sm in Eq. (6–50) and solve for
Sa , obtaining the intersect

Sa = r Sut + Se

2

[
−1 +

√
1 + 4r Sut Se

(r Sut + Se)2

]
(6–52)

The fatigue diagram for a brittle material differs markedly from that of a ductile material
because:

• Yielding is not involved since the material may not have a yield strength.

• Characteristically, the compressive ultimate strength exceeds the ultimate tensile
strength severalfold.
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• First-quadrant fatigue failure locus is concave-upward (Smith-Dolan), for example,
and as flat as Goodman. Brittle materials are more sensitive to midrange stress, being
lowered, but compressive midrange stresses are beneficial.

• Not enough work has been done on brittle fatigue to discover insightful generalities,
so we stay in the first and a bit of the second quadrant.

The most likely domain of designer use is in the range from −Sut ≤ σm ≤ Sut . The
locus in the first quadrant is Goodman, Smith-Dolan, or something in between. The por-
tion of the second quadrant that is used is represented by a straight line between the
points −Sut , Sut and 0, Se, which has the equation

Sa = Se +
(

Se

Sut
− 1

)
Sm −Sut ≤ Sm ≤ 0 (for cast iron) (6–53)

Table A–24 gives properties of gray cast iron. The endurance limit stated is really
kakb S′

e and only corrections kc, kd , ke, and kf need be made. The average kc for axial
and torsional loading is 0.9.

EXAMPLE 6–13 A grade 30 gray cast iron is subjected to a load F applied to a 1 by 3
8 -in cross-section

link with a 1
4 -in-diameter hole drilled in the center as depicted in Fig. 6–31a. The sur-

faces are machined. In the neighborhood of the hole, what is the factor of safety guard-
ing against failure under the following conditions:
(a) The load F = 1000 lbf tensile, steady.
(b) The load is 1000 lbf repeatedly applied.
(c) The load fluctuates between −1000 lbf and 300 lbf without column action.
Use the Smith-Dolan fatigue locus.

Sa = 18.5 kpsi

Sa = 7.63

Se

Sut

–Sut –9.95 7.630 10 20 30 Sut

Midrange stress �m, kpsi

Alternating stress, �a

1
4 in D. drill

F

F

1 in

Sm

r = 1

r = –1.86

(b)(a)

3
8 in

Figure 6–31

The grade 30 cast-iron part in axial fatigue with (a) its geometry displayed and (b) its designer’s fatigue diagram for the
circumstances of Ex. 6–13.
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Solution Some preparatory work is needed. From Table A–24, Sut = 31 kpsi, Suc = 109 kpsi,
kakb S′

e = 14 kpsi. Since kc for axial loading is 0.9, then Se = (kakb S′
e)kc = 14(0.9) =

12.6 kpsi. From Table A–15–1, A = t (w − d) = 0.375(1 − 0.25) = 0.281 in2 , d/w =
0.25/1 = 0.25, and Kt = 2.45. The notch sensitivity for cast iron is 0.20 (see p. 296),
so

K f = 1 + q(Kt − 1) = 1 + 0.20(2.45 − 1) = 1.29

(a) σa = K f Fa

A
= 1.29(0)

0.281
= 0 σm = K f Fm

A
= 1.29(1000)

0.281
(10−3) = 4.59 kpsi

and

Answer n = Sut

σm
= 31.0

4.59
= 6.75

(b) Fa = Fm = F

2
= 1000

2
= 500 lbf

σa = σm = K f Fa

A
= 1.29(500)

0.281
(10−3) = 2.30 kpsi

r = σa

σm
= 1

From Eq. (6–52),

Sa = (1)31 + 12.6

2

[
−1 +

√
1 + 4(1)31(12.6)

[(1)31 + 12.6]2

]
= 7.63 kpsi

Answer n = Sa

σa
= 7.63

2.30
= 3.32

(c) Fa = 1

2
|300 − (−1000)| = 650 lbf σa = 1.29(650)

0.281
(10−3) = 2.98 kpsi

Fm = 1

2
[300 + (−1000)] = −350 lbf σm = 1.29(−350)

0.281
(10−3) = −1.61 kpsi

r = σa

σm
= 3.0

−1.61
= −1.86

From Eq. (6–53), Sa = Se + (Se/Sut − 1)Sm and Sm = Sa/r . It follows that

Sa = Se

1 − 1

r

(
Se

Sut
− 1

) = 12.6

1 − 1

−1.86

(
12.6

31
− 1

) = 18.5 kpsi

Answer n = Sa

σa
= 18.5

2.98
= 6.20

Figure 6–31b shows the portion of the designer’s fatigue diagram that was constructed.
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6–13 Torsional Fatigue Strength
under Fluctuating Stresses
Extensive tests by Smith23 provide some very interesting results on pulsating torsional
fatigue. Smith’s first result, based on 72 tests, shows that the existence of a torsional
steady-stress component not more than the torsional yield strength has no effect on
the torsional endurance limit, provided the material is ductile, polished, notch-free, and
cylindrical.

Smith’s second result applies to materials with stress concentration, notches, or
surface imperfections. In this case, he finds that the torsional fatigue limit decreases
monotonically with torsional steady stress. Since the great majority of parts will have
surfaces that are less than perfect, this result indicates Gerber, ASME-elliptic, and other
approximations are useful. Joerres of Associated Spring-Barnes Group, confirms
Smith’s results and recommends the use of the modified Goodman relation for pulsat-
ing torsion. In constructing the Goodman diagram, Joerres uses

Ssu = 0.67Sut (6–54)

Also, from Chap. 5, Ssy = 0.577Syt from distortion-energy theory, and the mean load
factor kc is given by Eq. (6–26), or 0.577. This is discussed further in Chap. 10.

6–14 Combinations of Loading Modes
It may be helpful to think of fatigue problems as being in three categories:

• Completely reversing simple loads

• Fluctuating simple loads

• Combinations of loading modes

The simplest category is that of a completely reversed single stress which is han-
dled with the S-N diagram, relating the alternating stress to a life. Only one type of
loading is allowed here, and the midrange stress must be zero. The next category incor-
porates general fluctuating loads, using a criterion to relate midrange and alternating
stresses (modified Goodman, Gerber, ASME-elliptic, or Soderberg). Again, only one
type of loading is allowed at a time. The third category, which we will develop in this
section, involves cases where there are combinations of different types of loading, such
as combined bending, torsion, and axial.

In Sec. 6–9 we learned that a load factor kc is used to obtain the endurance limit,
and hence the result is dependent on whether the loading is axial, bending, or torsion.
In this section we want to answer the question, “How do we proceed when the loading
is a mixture of, say, axial, bending, and torsional loads?” This type of loading introduces
a few complications in that there may now exist combined normal and shear stresses,
each with alternating and midrange values, and several of the factors used in determin-
ing the endurance limit depend on the type of loading. There may also be multiple
stress-concentration factors, one for each mode of loading. The problem of how to deal
with combined stresses was encountered when developing static failure theories. The
distortion energy failure theory proved to be a satisfactory method of combining the

23James O. Smith, “The Effect of Range of Stress on the Fatigue Strength of Metals,” Univ. of Ill. Eng. Exp.
Sta. Bull. 334, 1942.
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multiple stresses on a stress element of a ductile material into a single equivalent von
Mises stress. The same approach will be used here.

The first step is to generate two stress elements—one for the alternating stresses and
one for the midrange stresses. Apply the appropriate fatigue stress-concentration factors
to each of the stresses; i.e., apply (K f )bending for the bending stresses, (K f s)torsion for the
torsional stresses, and (K f )axial for the axial stresses. Next, calculate an equivalent von
Mises stress for each of these two stress elements, σ ′

a and σ ′
m . Finally, select a fatigue

failure criterion (modified Goodman, Gerber, ASME-elliptic, or Soderberg) to complete
the fatigue analysis. For the endurance limit, Se, use the endurance limit modifiers,
ka , kb, and kc, for bending. The torsional load factor, kc = 0.59 should not be applied as it
is already accounted for in the von Mises stress calculation (see footnote 17 on p. 290). The
load factor for the axial load can be accounted for by dividing the alternating axial stress
by the axial load factor of 0.85. For example, consider the common case of a shaft with
bending stresses, torsional shear stresses, and axial stresses. For this case, the von Mises
stress is of the form σ ′ = (

σx
2 + 3τxy

2
)1/2

. Considering that the bending, torsional, and
axial stresses have alternating and midrange components, the von Mises stresses for the
two stress elements can be written as

σ ′
a =

{[
(K f )bending(σa)bending + (K f )axial

(σa)axial

0.85

]2

+ 3
[
(K f s)torsion(τa)torsion

]2

}1/2

(6–55)

σ ′
m =

{[
(K f )bending(σm)bending + (K f )axial(σm)axial

]2 + 3
[
(K f s)torsion(τm)torsion

]2
}1/2

(6–56)

For first-cycle localized yielding, the maximum von Mises stress is calculated. This
would be done by first adding the axial and bending alternating and midrange stresses to
obtain σmax and adding the alternating and midrange shear stresses to obtain τmax. Then
substitute σmax and τmax into the equation for the von Mises stress. A simpler and more con-
servative method is to add Eq. (6–55) and Eq. (6–56). That is, let σ ′

max
.= σ ′

a + σ ′
m .

If the stress components are not in phase but have the same frequency, the maxima
can be found by expressing each component in trigonometric terms, using phase angles,
and then finding the sum. If two or more stress components have differing frequencies,
the problem is difficult; one solution is to assume that the two (or more) components
often reach an in-phase condition, so that their magnitudes are additive.

EXAMPLE 6–14 A rotating shaft is made of 42- × 4-mm AISI 1018 cold-drawn steel tubing and has a
6-mm-diameter hole drilled transversely through it. Estimate the factor of safety guard-
ing against fatigue and static failures using the Gerber and Langer failure criteria for the
following loading conditions:
(a) The shaft is subjected to a completely reversed torque of 120 N · m in phase with a
completely reversed bending moment of 150 N · m.
(b) The shaft is subjected to a pulsating torque fluctuating from 20 to 160 N · m and a
steady bending moment of 150 N · m.

Solution Here we follow the procedure of estimating the strengths and then the stresses, followed
by relating the two.
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From Table A–20 we find the minimum strengths to be Sut = 440 MPa and Sy =
370 MPa. The endurance limit of the rotating-beam specimen is 0.5(440) = 220 MPa.
The surface factor, obtained from Eq. (6–19) and Table 6–2, p. 287, is

ka = 4.51S−0.265
ut = 4.51(440)−0.265 = 0.899

From Eq. (6–20) the size factor is

kb =
(

d

7.62

)−0.107

=
(

42

7.62

)−0.107

= 0.833

The remaining Marin factors are all unity, so the modified endurance strength Se is

Se = 0.899(0.833)220 = 165 MPa

(a) Theoretical stress-concentration factors are found from Table A–16. Using a/D =
6/42 = 0.143 and d/D = 34/42 = 0.810, and using linear interpolation, we obtain
A = 0.798 and Kt = 2.366 for bending; and A = 0.89 and Kts = 1.75 for torsion.
Thus, for bending,

Znet = π A

32D
(D4 − d4) = π(0.798)

32(42)
[(42)4 − (34)4] = 3.31 (103)mm3

and for torsion

Jnet = π A

32
(D4 − d4) = π(0.89)

32
[(42)4 − (34)4] = 155 (103)mm4

Next, using Figs. 6–20 and 6–21, pp. 295–296, with a notch radius of 3 mm we find the
notch sensitivities to be 0.78 for bending and 0.81 for torsion. The two corresponding
fatigue stress-concentration factors are obtained from Eq. (6–32) as

K f = 1 + q(Kt − 1) = 1 + 0.78(2.366 − 1) = 2.07

K f s = 1 + 0.81(1.75 − 1) = 1.61

The alternating bending stress is now found to be

σxa = K f
M

Znet
= 2.07

150

3.31(10−6)
= 93.8(106)Pa = 93.8 MPa

and the alternating torsional stress is

τxya = K f s
TD

2Jnet
= 1.61

120(42)(10−3)

2(155)(10−9)
= 26.2(106)Pa = 26.2 MPa

The midrange von Mises component σ ′
m is zero. The alternating component σ ′

a is given
by

σ ′
a = (

σ 2
xa + 3τ 2

xya

)1/2 = [93.82 + 3(26.22)]1/2 = 104.2 MPa

Since Se = Sa , the fatigue factor of safety n f is

Answer n f = Sa

σ ′
a

= 165

104.2
= 1.58
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The first-cycle yield factor of safety is

Answer ny = Sy

σ ′
a

= 370

105.6
= 3.50

There is no localized yielding; the threat is from fatigue. See Fig. 6–32.
(b) This part asks us to find the factors of safety when the alternating component is due
to pulsating torsion, and a steady component is due to both torsion and bending. We
have Ta = (160 − 20)/2 = 70 N · m and Tm = (160 + 20)/2 = 90 N · m. The corre-
sponding amplitude and steady-stress components are

τxya = K f s
Ta D

2Jnet
= 1.61

70(42)(10−3)

2(155)(10−9)
= 15.3(106)Pa = 15.3 MPa

τxym = K f s
Tm D

2Jnet
= 1.61

90(42)(10−3)

2(155)(10−9)
= 19.7(106)Pa = 19.7 MPa

The steady bending stress component σxm is

σxm = K f
Mm

Znet
= 2.07

150

3.31(10−6)
= 93.8(106)Pa = 93.8 MPa

The von Mises components σ ′
a and σ ′

m are

σ ′
a = [3(15.3)2]1/2 = 26.5 MPa

σ ′
m = [93.82 + 3(19.7)2]1/2 = 99.8 MPa

From Table 6–7, p. 307, the fatigue factor of safety is

Answer n f = 1

2

(
440

99.8

)2 26.5

165

⎧⎨⎩−1 +
√

1 +
[

2(99.8)165

440(26.5)

]2
⎫⎬⎭ = 3.12
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Figure 6–32

Designer’s fatigue diagram for
Ex. 6–14.
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From the same table, with r = σ ′
a/σ

′
m = 26.5/99.8 = 0.28, the strengths can be shown

to be Sa = 85.5 MPa and Sm = 305 MPa. See the plot in Fig. 6–32.
The first-cycle yield factor of safety ny is

Answer ny = Sy

σ ′
a + σ ′

m

= 370

26.5 + 99.8
= 2.93

There is no notch yielding. The likelihood of failure may first come from first-cycle
yielding at the notch. See the plot in Fig. 6–32.

6–15 Varying, Fluctuating Stresses;
Cumulative Fatigue Damage
Instead of a single fully reversed stress history block composed of n cycles, suppose a
machine part, at a critical location, is subjected to

• A fully reversed stress σ1 for n1 cycles, σ2 for n2 cycles, . . . , or

• A “wiggly” time line of stress exhibiting many and different peaks and valleys.

What stresses are significant, what counts as a cycle, and what is the measure of
damage incurred? Consider a fully reversed cycle with stresses varying 60, 80, 40, and
60 kpsi and a second fully reversed cycle −40, −60, −20, and −40 kpsi as depicted in
Fig. 6–33a. First, it is clear that to impose the pattern of stress in Fig. 6–33a on a part
it is necessary that the time trace look like the solid lines plus the dashed lines in Fig.
6–33a. Figure 6–33b moves the snapshot to exist beginning with 80 kpsi and ending
with 80 kpsi. Acknowledging the existence of a single stress-time trace is to discover a
“hidden” cycle shown as the dashed line in Fig. 6–33b. If there are 100 applications of
the all-positive stress cycle, then 100 applications of the all-negative stress cycle, the

100

50

0

–50

100

50

0

–50

(a) (b)

Figure 6–33

Variable stress diagram
prepared for assessing
cumulative damage.
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322 Mechanical Engineering Design

hidden cycle is applied but once. If the all-positive stress cycle is applied alternately
with the all-negative stress cycle, the hidden cycle is applied 100 times.

To ensure that the hidden cycle is not lost, begin on the snapshot with the largest
(or smallest) stress and add previous history to the right side, as was done in Fig. 6–33b.
Characterization of a cycle takes on a max–min–same max (or min–max–same min)
form. We identify the hidden cycle first by moving along the dashed-line trace in
Fig. 6–33b identifying a cycle with an 80-kpsi max, a 60-kpsi min, and returning to
80 kpsi. Mentally deleting the used part of the trace (the dashed line) leaves a 40, 60,
40 cycle and a −40, −20, −40 cycle. Since failure loci are expressed in terms of stress
amplitude component σa and steady component σm , we use Eq. (6–36) to construct the
table below:

The most damaging cycle is number 1. It could have been lost.
Methods for counting cycles include:

• Number of tensile peaks to failure.

• All maxima above the waveform mean, all minima below.

• The global maxima between crossings above the mean and the global minima
between crossings below the mean.

• All positive slope crossings of levels above the mean, and all negative slope cross-
ings of levels below the mean.

• A modification of the preceding method with only one count made between succes-
sive crossings of a level associated with each counting level.

• Each local max–min excursion is counted as a half-cycle, and the associated ampli-
tude is half-range.

• The preceding method plus consideration of the local mean.

• Rain-flow counting technique.

The method used here amounts to a variation of the rain-flow counting technique.
The Palmgren-Miner24 cycle-ratio summation rule, also called Miner’s rule, is

written ∑ ni

Ni
= c (6–57)

where ni is the number of cycles at stress level σi and Ni is the number of cycles to fail-
ure at stress level σi . The parameter c has been determined by experiment; it is usually
found in the range 0.7 < c < 2.2 with an average value near unity.

Cycle Number �max �min �a �m

1 80 �60 70 10

2 60 40 10 50

3 �20 �40 10 �30

24A. Palmgren, “Die Lebensdauer von Kugellagern,” ZVDI, vol. 68, pp. 339–341, 1924; M. A. Miner,
“Cumulative Damage in Fatigue,” J. Appl. Mech., vol. 12, Trans. ASME, vol. 67, pp. A159–A164, 1945.
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Using the deterministic formulation as a linear damage rule we write

D =
∑ ni

Ni
(6–58)

where D is the accumulated damage. When D = c = 1, failure ensues.

EXAMPLE 6–15 Given a part with Sut = 151 kpsi and at the critical location of the part, Se = 67.5 kpsi.
For the loading of Fig. 6–33, estimate the number of repetitions of the stress-time block
in Fig. 6–33 that can be made before failure.

Solution From Fig. 6–18, p. 285, for Sut = 151 kpsi, f = 0.795. From Eq. (6–14), 

a = ( f Sut)
2

Se
= [0.795(151)]2

67.5
= 213.5 kpsi

From Eq. (6–15), 

b = −1

3
log

(
f Sut

Se

)
= −1

3
log

[
0.795(151)

67.5

]
= −0.0833

So,

Sf = 213.5N−0.0833 N =
(

Sf

213.5

)−1/0.0833

(1), (2)

We prepare to add two columns to the previous table. Using the Gerber fatigue criterion,
Eq. (6–47), p. 306, with Se = Sf , and n = 1, we can write

Sf =
{ σa

1 − (σm/Sut)2
σm > 0

Se σm ≤ 0
(3)

where Sf is the fatigue strength associated with a completely reversed stress, σrev,
equivalent to the fluctuating stresses [see Ex. 6–12, part (b)].

Cycle 1: r = σa/σm = 70/10 = 7, and the strength amplitude from Table 6–7, p. 307, is

Sa = 721512

2(67.5)

⎧⎨⎩−1 +
√

1 +
[

2(67.5)

7(151)

]2
⎫⎬⎭ = 67.2 kpsi

Since σa > Sa , that is, 70 > 67.2, life is reduced. From Eq. (3),

Sf = 70

1 − (10/151)2
= 70.3 kpsi

and from Eq. (2)

N =
(

70.3

213.5

)−1/0.0833

= 619(103) cycles

Cycle 2: r = 10/50 = 0.2, and the strength amplitude is

Sa = 0.221512

2(67.5)

⎧⎨⎩−1 +
√

1 +
[

2(67.5)

0.2(151)

]2
⎫⎬⎭ = 24.2 kpsi

Since σa < Sa , that is 10 < 24.2, then Sf = Se and indefinite life follows. Thus, 
N ∞�.←

bud29281_ch06_265-357.qxd  12/02/2009  6:49 pm  Page 323 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



324 Mechanical Engineering Design

Cycle 3: r = 10/−30 = −0.333, and since σm < 0, Sf = Se , indefinite life follows and
N ∞

From Eq. (6–58) the damage per block is

D =
∑ ni

Ni
= N

[
1

619(103)
+ 1

∞ + 1

∞
]

= N

619(103)

Answer Setting D = 1 yields N = 619(103) cycles.

Cycle Number Sf, kpsi N, cycles

1 70.3 619(103)

2 67.5 ∞
3 67.5 ∞

←

To further illustrate the use of the Miner rule, let us consider a steel having the
properties Sut = 80 kpsi, S′

e,0 = 40 kpsi, and f = 0.9, where we have used the desig-
nation S′

e,0 instead of the more usual S′
e to indicate the endurance limit of the virgin, or

undamaged, material. The log S–log N diagram for this material is shown in Fig. 6–34
by the heavy solid line. From Eqs. (6–14) and (6–15), p. 285, we find that a = 129.6 kpsi
and b = −0.085 091. Now apply, say, a reversed stress σ1 = 60 kpsi for n1 = 3000
cycles. Since σ1 > S′

e,0, the endurance limit will be damaged, and we wish to find the
new endurance limit S′

e,1 of the damaged material using the Miner rule. The equation of
the virgin material failure line in Fig. 6–34 in the 103 to 106 cycle range is

Sf = aN b = 129.6N−0.085 091

The cycles to failure at stress level σ1 = 60 kpsi are

N1 =
(

σ1

129.6

)−1/0.085 091

=
(

60

129.6

)−1/0.085 091

= 8520 cycles
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S'e,1

Sf, 1

N1 = 8.52(103)

N1 – n1 = 5.52(103)

Figure 6–34

Use of the Miner rule to 
predict the endurance limit 
of a material that has been
overstressed for a finite number
of cycles.
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Fatigue Failure Resulting from Variable Loading 325

Figure 6–34 shows that the material has a life N1 = 8520 cycles at 60 kpsi, and conse-
quently, after the application of σ1 for 3000 cycles, there are N1 − n1 = 5520 cycles of
life remaining at σ1. This locates the finite-life strength Sf,1 of the damaged material, as
shown in Fig. 6–34. To get a second point, we ask the question: With n1 and N1 given,
how many cycles of stress σ2 = S′

e,0 can be applied before the damaged material fails?
This corresponds to n2 cycles of stress reversal, and hence, from Eq. (6–58), we have 

n1

N1
+ n2

N2
= 1 (a)

Solving for n2 gives

n2 = (N1 − n1)
N2

N1
(b)

Then

n2 = [
8.52

(
103) − 3

(
103)] 106

8.52
(
103

) = 0.648
(
106) cycles

This corresponds to the finite-life strength Sf,2 in Fig. 6–34. A line through Sf,1 and Sf,2

is the log S–log N diagram of the damaged material according to the Miner rule. Two
points, (N1 − n1, σ1) and (n2, σ2), determine the new equation for the line, Sf = a′N b ′

.
Thus, σ1 = a′(N1 − n1)

b ′
, and σ2 = a′nb

2
′
. Dividing the two equations, taking the loga-

rithm of the results, and solving for b′ gives

b′ = log (σ1/σ2)

log

(
N1 − n1

n2

)
Substituting n2 from Eq. (b) and simplifying gives

b′ = log (σ1/σ2)

log (N1/N2)

For the undamaged material, N1 = (σ1/a)1/b and N2 = (σ2/a)1/b , then

b′ = log (σ1/σ2)

log
[
(σ1/a)1/b/(σ2/a)1/b

] = log (σ1/σ2)

(1/b) log (σ1/σ2)
= b

This means that the damaged material line has the same slope as the virgin material line,
and the two lines are parallel. The value of a′ is then found from a′ = Sf /N b .

For the case we are illustrating, a′ = 60/[5.52(10)3]−0.085 091 = 124.898 kpsi, and
thus the new endurance limit is S′

e,1 = a′N b
e = 124.898[(10)6]−0.085 091 = 38.6 kpsi.

Though the Miner rule is quite generally used, it fails in two ways to agree with
experiment. First, note that this theory states that the static strength Sut is damaged, that
is, decreased, because of the application of σ1; see Fig. 6–34 at N = 103 cycles.
Experiments fail to verify this prediction.

The Miner rule, as given by Eq. (6–58), does not account for the order in which the
stresses are applied, and hence ignores any stresses less than S′

e,0. But it can be seen in
Fig. 6–34 that a stress σ3 in the range S′

e,1 < σ3 < S′
e,0 would cause damage if applied

after the endurance limit had been damaged by the application of σ1.
Manson’s25 approach overcomes both of the deficiencies noted for the Palmgren-

Miner method; historically it is a much more recent approach, and it is just as easy to

25S. S. Manson, A. J. Nachtigall, C. R. Ensign, and J. C. Fresche, “Further Investigation of a Relation for
Cumulative Fatigue Damage in Bending,” Trans. ASME, J. Eng. Ind., ser. B, vol. 87, No. 1, pp. 25–35,
February 1965.
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use. Except for a slight change, we shall use and recommend the Manson method in
this book. Manson plotted the S–log N diagram instead of a log S–log N plot as is
recommended here. Manson also resorted to experiment to find the point of conver-
gence of the S–log N lines corresponding to the static strength, instead of arbitrarily
selecting the intersection of N = 103 cycles with S = 0.9Sut as is done here. Of
course, it is always better to use experiment, but our purpose in this book has been
to use the simple test data to learn as much as possible about fatigue failure.

The method of Manson, as presented here, consists in having all log S–log N lines,
that is, lines for both the damaged and the virgin material, converge to the same point,
0.9Sut at 103 cycles. In addition, the log S–log N lines must be constructed in the same
historical order in which the stresses occur.

The data from the preceding example are used for illustrative purposes. The
results are shown in Fig. 6–35. Note that the strength Sf,1 corresponding to
N1 − n1 = 5.52(103) cycles is found in the same manner as before. Through this
point and through 0.9Sut at 103 cycles, draw the heavy dashed line to meet N = 106

cycles and define the endurance limit S′
e,1 of the damaged material. Again, with two

points on the line, b′ = [log (72/60)]/log [(103)/5.52 (103)] = −0.106 722, and
a′ = 60/[5.52 (103)]−0.106 722 = 150.487 kpsi. In this case, the new endurance limit is
S′

e,1 = a′N b
e

′ = 150.487 (106)−0.106 722 = 34.4 kpsi, which is somewhat less than that
found by the Miner method.

It is now easy to see from Fig. 6–35 that a reversed stress σ = 36 kpsi, say, would
not harm the endurance limit of the virgin material, no matter how many cycles it might
be applied. However, if σ = 36 kpsi should be applied after the material was damaged
by σ1 = 60 kpsi, then additional damage would be done.

Both these rules involve a number of computations, which are repeated every time
damage is estimated. For complicated stress-time traces, this might be every cycle.
Clearly a computer program is useful to perform the tasks, including scanning the trace
and identifying the cycles.
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Figure 6–35

Use of the Manson method to
predict the endurance limit 
of a material that has been
overstressed for a finite number
of cycles.
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Collins said it well: “In spite of all the problems cited, the Palmgren linear damage
rule is frequently used because of its simplicity and the experimental fact that other
more complex damage theories do not always yield a significant improvement in fail-
ure prediction reliability.”26

6–16 Surface Fatigue Strength
The surface fatigue mechanism is not definitively understood. The contact-affected
zone, in the absence of surface shearing tractions, entertains compressive principal
stresses. Rotary fatigue has its cracks grown at or near the surface in the presence of
tensile stresses that are associated with crack propagation, to catastrophic failure. There
are shear stresses in the zone, which are largest just below the surface. Cracks seem to
grow from this stratum until small pieces of material are expelled, leaving pits on the sur-
face. Because engineers had to design durable machinery before the surface fatigue phe-
nomenon was understood in detail, they had taken the posture of conducting tests,
observing pits on the surface, and declaring failure at an arbitrary projected area of hole,
and they related this to the Hertzian contact pressure. This compressive stress did
not produce the failure directly, but whatever the failure mechanism, whatever the
stress type that was instrumental in the failure, the contact stress was an index to its
magnitude.

Buckingham27 conducted a number of tests relating the fatigue at 108 cycles to
endurance strength (Hertzian contact pressure). While there is evidence of an endurance
limit at about 3(107) cycles for cast materials, hardened steel rollers showed no endurance
limit up to 4(108) cycles. Subsequent testing on hard steel shows no endurance limit.
Hardened steel exhibits such high fatigue strengths that its use in resisting surface fatigue
is widespread.

Our studies thus far have dealt with the failure of a machine element by yielding,
by fracture, and by fatigue. The endurance limit obtained by the rotating-beam test is
frequently called the flexural endurance limit, because it is a test of a rotating beam. In
this section we shall study a property of mating materials called the surface endurance
shear. The design engineer must frequently solve problems in which two machine ele-
ments mate with one another by rolling, sliding, or a combination of rolling and sliding 
contact. Obvious examples of such combinations are the mating teeth of a pair of gears,
a cam and follower, a wheel and rail, and a chain and sprocket. A knowledge of the sur-
face strength of materials is necessary if the designer is to create machines having a
long and satisfactory life.

When two surfaces roll or roll and slide against one another with sufficient force,
a pitting failure will occur after a certain number of cycles of operation. Authorities are
not in complete agreement on the exact mechanism of the pitting; although the subject
is quite complicated, they do agree that the Hertz stresses, the number of cycles, the sur-
face finish, the hardness, the degree of lubrication, and the temperature all influence the
strength. In Sec. 3–19 it was learned that, when two surfaces are pressed together, a
maximum shear stress is developed slightly below the contacting surface. It is postulated
by some authorities that a surface fatigue failure is initiated by this maximum shear
stress and then is propagated rapidly to the surface. The lubricant then enters the crack
that is formed and, under pressure, eventually wedges the chip loose.

26J. A. Collins, Failure of Materials in Mechanical Design, John Wiley & Sons, New York, 1981, p. 243.
27Earle Buckingham, Analytical Mechanics of Gears, McGraw-Hill, New York, 1949.
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To determine the surface fatigue strength of mating materials, Buckingham designed
a simple machine for testing a pair of contacting rolling surfaces in connection with his
investigation of the wear of gear teeth. Buckingham and, later, Talbourdet gathered large
numbers of data from many tests so that considerable design information is now
available. To make the results useful for designers, Buckingham defined a load-stress
factor, also called a wear factor, which is derived from the Hertz equations. Equations
(3–73) and (3–74), p. 124, for contacting cylinders are found to be

b =
√

2F

πl

(
1 − ν2

1

)
/E1 + (

1 − ν2
2

)
/E2

(1/d1) + (1/d2)
(6–59)

pmax = 2F

πbl
(6–60)

where b = half width of rectangular contact area

F = contact force

l = length of cylinders

ν = Poisson’s ratio

E = modulus of elasticity

d = cylinder diameter

It is more convenient to use the cylinder radius, so let 2r = d . If we then designate
the length of the cylinders as w (for width of gear, bearing, cam, etc.) instead of l and
remove the square root sign, Eq. (6–59) becomes

b2 = 4F

πw

(
1 − ν2

1

)
/E1 + (

1 − ν2
2

)
/E2

1/r1 + 1/r2
(6–61)

We can define a surface endurance strength SC using

pmax = 2F

πbw
(6–62)

as

SC = 2F

πbw
(6–63)

which may also be called contact strength, the contact fatigue strength, or the Hertzian
endurance strength. The strength is the contacting pressure which, after a specified
number of cycles, will cause failure of the surface. Such failures are often called wear
because they occur over a very long time. They should not be confused with abrasive
wear, however. By squaring Eq. (6–63), substituting b2 from Eq. (6–61), and rearrang-
ing, we obtain

F

w

(
1

r1
+ 1

r2

)
= π S2

C

[
1 − ν2

1

E1
+ 1 − ν2

2

E2

]
= K1 (6–64)

The left expression consists of parameters a designer may seek to control independently.
The central expression consists of material properties that come with the material and
condition specification. The third expression is the parameter K1, Buckingham’s load-
stress factor, determined by a test fixture with values F, w, r1, r2 and the number of
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cycles associated with the first tangible evidence of fatigue. In gear studies a similar
K factor is used:

Kg = K1

4
sin φ (6–65)

where φ is the tooth pressure angle, and the term [(1 − ν2
1)/E1 + (1 − ν2

2)/E2] is
defined as 1/(πC2

P), so that

SC = CP

√
F

w

(
1

r1
+ 1

r2

)
(6–66)

Buckingham and others reported K1 for 108 cycles and nothing else. This gives only one
point on the SC N curve. For cast metals this may be sufficient, but for wrought steels, heat-
treated, some idea of the slope is useful in meeting design goals of other than 108 cycles.

Experiments show that K1 versus N, Kg versus N, and SC versus N data are recti-
fied by log-log transformation. This suggests that

K1 = α1 Nβ1 Kg = aN b SC = αNβ

The three exponents are given by

β1 = log(K1/K2)

log(N1/N2)
b = log(Kg1/Kg2)

log(N1/N2)
β = log(SC1/SC2)

log(N1/N2)
(6–67)

Data on induction-hardened steel on steel give (SC)107 = 271 kpsi and (SC)108 =
239 kpsi, so β , from Eq. (6–67), is

β = log(271/239)

log(107/108)
= −0.055

It may be of interest that the American Gear Manufacturers Association (AGMA) uses
β � �0.056 between 104 < N < 1010 if the designer has no data to the contrary
beyond 107 cycles.

A longstanding correlation in steels between SC and HB at 108 cycles is

(SC)108 =
{

0.4HB − 10 kpsi
2.76HB − 70 MPa

(6–68)

AGMA uses
0.99(SC)107 = 0.327HB + 26 kpsi (6–69)

Equation (6–66) can be used in design to find an allowable surface stress by using
a design factor. Since this equation is nonlinear in its stress-load transformation, the
designer must decide if loss of function denotes inability to carry the load. If so, then
to find the allowable stress, one divides the load F by the design factor nd :

σC = CP

√
F

wnd

(
1

r1
+ 1

r2

)
= CP√

nd

√
F

w

(
1

r1
+ 1

r2

)
= SC√

nd

and nd = (SC/σC)2. If the loss of function is focused on stress, then nd = SC/σC . It is
recommended that an engineer

• Decide whether loss of function is failure to carry load or stress.

• Define the design factor and factor of safety accordingly.

• Announce what he or she is using and why.

• Be prepared to defend his or her position.
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In this way everyone who is party to the communication knows what a design factor
(or factor of safety) of 2 means and adjusts, if necessary, the judgmental perspective.

6–17 Stochastic Analysis28

As already demonstrated in this chapter, there are a great many factors to consider in
a fatigue analysis, much more so than in a static analysis. So far, each factor has been
treated in a deterministic manner, and if not obvious, these factors are subject to vari-
ability and control the overall reliability of the results. When reliability is important,
then fatigue testing must certainly be undertaken. There is no other way. Consequently,
the methods of stochastic analysis presented here and in other sections of this book
constitute guidelines that enable the designer to obtain a good understanding of the
various issues involved and help in the development of a safe and reliable design.

In this section, key stochastic modifications to the deterministic features and equa-
tions described in earlier sections are provided in the same order of presentation. 

Endurance Limit

To begin, a method for estimating endurance limits, the tensile strength correlation
method, is presented. The ratio � = S′

e/S̄ut is called the fatigue ratio.29 For ferrous
metals, most of which exhibit an endurance limit, the endurance limit is used as a
numerator. For materials that do not show an endurance limit, an endurance strength at
a specified number of cycles to failure is used and noted. Gough30 reported the sto-
chastic nature of the fatigue ratio � for several classes of metals, and this is shown in
Fig. 6–36. The first item to note is that the coefficient of variation is of the order 0.10
to 0.15, and the distribution varies for classes of metals. The second item to note is that
Gough’s data include materials of no interest to engineers. In the absence of testing,
engineers use the correlation that � represents to estimate the endurance limit S′

e from
the mean ultimate strength S̄ut .

Gough’s data are for ensembles of metals, some chosen for metallurgical interest,
and include materials that are not commonly selected for machine parts. Mischke31

analyzed data for 133 common steels and treatments in varying diameters in rotating
bending,32 and the result was

� = 0.445d−0.107LN(1, 0.138)

where d is the specimen diameter in inches and LN(1, 0.138) is a unit lognormal vari-
ate with a mean of 1 and a standard deviation (and coefficient of variation) of 0.138. For
the standard R. R. Moore specimen,

�0.30 = 0.445(0.30)−0.107LN(1, 0.138) = 0.506LN(1, 0.138)

330 Mechanical Engineering Design

28Review Chap. 20 before reading this section.
29From this point, since we will be dealing with statistical distributions in terms of means, standard
deviations, etc. A key quantity, the ultimate strength, will here be presented by its mean value, S̄ut . This
means that certain terms that were defined earlier in terms of the minimum value of Sut will change slightly.
30In J. A. Pope, Metal Fatigue, Chapman and Hall, London, 1959.
31Charles R. Mischke, “Prediction of Stochastic Endurance Strength,” Trans. ASME, Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 109, no. 1, January 1987, pp. 113–122.
32Data from H. J. Grover, S. A. Gordon, and L. R. Jackson, Fatigue of Metals and Structures, Bureau of
Naval Weapons, Document NAVWEPS 00-2500435, 1960.
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Also, 25 plain carbon and low-alloy steels with Sut > 212 kpsi are described by

S′
e = 107LN(1, 0.139) kpsi

In summary, for the rotating-beam specimen,

S′
e =

⎧⎪⎨⎪⎩
0.506S̄ut LN(1, 0.138) kpsi or MPa S̄ut ≤ 212 kpsi (1460 MPa)

107LN(1, 0.139) kpsi S̄ut > 212 kpsi

740LN(1, 0.139) MPa S̄ut > 1460 MPa

(6–70)

where S̄ut is the mean ultimate tensile strength.
Equations (6–70) represent the state of information before an engineer has chosen

a material. In choosing, the designer has made a random choice from the ensemble of
possibilities, and the statistics can give the odds of disappointment. If the testing is lim-
ited to finding an estimate of the ultimate tensile strength mean S̄ut with the chosen
material, Eqs. (6–70) are directly helpful. If there is to be rotary-beam fatigue testing,
then statistical information on the endurance limit is gathered and there is no need for
the correlation above.

Table 6–9 compares approximate mean values of the fatigue ratio φ̄0.30 for several
classes of ferrous materials.

Endurance Limit Modifying Factors

A Marin equation can be written as

Se = kakbkckdkf S′
e (6–71)

where the size factor kb is deterministic and remains unchanged from that given in
Sec. 6–9. Also, since we are performing a stochastic analysis, the “reliability factor” ke

is unnecessary here.
The surface factor ka cited earlier in deterministic form as Eq. (6–20), p. 288, is

now given in stochastic form by

ka = aS̄b
ut LN(1, C) (S̄ut in kpsi or MPa) (6–72)

where Table 6–10 gives values of a, b, and C for various surface conditions.
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332 Mechanical Engineering Design

Table 6–9

Comparison of

Approximate Values of

Mean Fatigue Ratio for

Some Classes of Metals

Material Class φ0.30

Wrought steels 0.50 

Cast steels 0.40

Powdered steels 0.38

Gray cast iron 0.35

Malleable cast iron 0.40

Normalized nodular cast iron 0.33

Table 6–10

Parameters in Marin

Surface Condition Factor

ka � aSb
ut LN(1, C)

a Coefficient of
Surface Finish kpsi MPa b Variation, C

Ground* 1.34 1.58 −0.086 0.120

Machined or Cold-rolled 2.67 4.45 −0.265 0.058

Hot-rolled 14.5 58.1 −0.719 0.110

As-forged 39.8 271 −0.995 0.145

*Due to the wide scatter in ground surface data, an alternate function is ka = 0.878LN(1, 0.120). 
Note: Sut in kpsi or MPa.

EXAMPLE 6–16 A steel has a mean ultimate strength of 520 MPa and a machined surface. Estimate ka .

Solution From Table 6–10,

ka = 4.45(520)−0.265LN(1, 0.058)

k̄a = 4.45(520)−0.265(1) = 0.848

σ̂ka = Ck̄a = (0.058)4.45(520)−0.265 = 0.049

Answer so ka = LN(0.848, 0.049).

The load factor kc for axial and torsional loading is given by

(kc)axial = 1.23S̄−0.0778
ut LN(1, 0.125) (6–73)

(kc)torsion = 0.328S̄0.125
ut LN(1, 0.125) (6–74)

where S̄ut is in kpsi. There are fewer data to study for axial fatigue. Equation (6–73) was
deduced from the data of Landgraf and of Grover, Gordon, and Jackson (as cited earlier).

Torsional data are sparser, and Eq. (6–74) is deduced from data in Grover et al.
Notice the mild sensitivity to strength in the axial and torsional load factor, so kc in
these cases is not constant. Average values are shown in the last column of Table 6–11,
and as footnotes to Tables 6–12 and 6–13. Table 6–14 shows the influence of material
classes on the load factor kc. Distortion energy theory predicts (kc)torsion = 0.577 for
materials to which the distortion-energy theory applies. For bending, kc = LN(1, 0).

bud29281_ch06_265-357.qxd  12/02/2009  6:49 pm  Page 332 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



Table 6–13

Average Marin Loading

Factor for Torsional

Load

Table 6–14

Average Marin Torsional

Loading Factor kc for

Several Materials

Material Range n k̄c σ̂kc

Wrought steels 0.52–0.69 31 0.60 0.03

Wrought Al 0.43–0.74 13 0.55 0.09

Wrought Cu and alloy 0.41–0.67 7 0.56 0.10

Wrought Mg and alloy 0.49–0.60 2 0.54 0.08

Titanium 0.37–0.57 3 0.48 0.12

Cast iron 0.79–1.01 9 0.90 0.07

Cast Al, Mg, and alloy 0.71–0.91 5 0.85 0.09

Source: The table is an extension of P. G. Forrest, Fatigue of Metals, Pergamon Press, London, 1962,
Table 17, p. 110, with standard deviations estimated from range and sample size using Table A–1 in 
J. B. Kennedy and A. M. Neville, Basic Statistical Methods for Engineers and Scientists, 3rd ed.,
Harper & Row, New York, 1986, pp. 54–55.

Table 6–11

Parameters in Marin

Loading Factor

Table 6–12

Average Marin Loading

Factor for Axial Load

Fatigue Failure Resulting from Variable Loading 333

kc � αSut
−β LN(1, C)

Mode of α Average
Loading kpsi MPa β C kc

Bending 1 1 0 0 1

Axial 1.23 1.43 −0.0778 0.125 0.85

Torsion 0.328 0.258 0.125 0.125 0.59

Sut, kpsi k*c

50 0.907

100 0.860

150 0.832

200 0.814

*Average entry 0.85.

Sut, kpsi k*c

50 0.535

100 0.583

150 0.614

200 0.636

*Average entry 0.59.
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334 Mechanical Engineering Design

EXAMPLE 6–17 Estimate the Marin loading factor kc for a 1–in-diameter bar that is used as follows.
(a) In bending. It is made of steel with Sut = 100LN(1, 0.035) kpsi, and the designer
intends to use the correlation S′

e = �0.30 S̄ut to predict S′
e.

(b) In bending, but endurance testing gave S′
e = 55LN(1, 0.081) kpsi.

(c) In push-pull (axial) fatigue, Sut = LN(86.2, 3.92) kpsi, and the designer intended to
use the correlation S′

e = �0.30 S̄ut .
(d) In torsional fatigue. The material is cast iron, and S′

e is known by test.

Solution (a) Since the bar is in bending,

Answer kc = (1, 0)

(b) Since the test is in bending and use is in bending,

Answer kc = (1, 0)

(c) From Eq. (6–73),

Answer (kc)ax = 1.23(86.2)−0.0778LN(1, 0.125)

k̄c = 1.23(86.2)−0.0778(1) = 0.870

σ̂kc = Ck̄c = 0.125(0.870) = 0.109

(d ) From Table 6–15, k̄c = 0.90, σ̂kc = 0.07, and

Answer Ckc = 0.07

0.90
= 0.08

The temperature factor kd is

kd = k̄dLN(1, 0.11) (6–75)

where k̄d = kd , given by Eq. (6–27), p. 291.
Finally, kf is, as before, the miscellaneous factor that can come about from a great

many considerations, as discussed in Sec. 6–9, where now statistical distributions, pos-
sibly from testing, are considered.

Stress Concentration and Notch Sensitivity

Notch sensitivity q was defined by Eq. (6–31), p. 295. The stochastic equivalent is

q = K f − 1

Kt − 1
(6–76)

where Kt is the theoretical (or geometric) stress-concentration factor, a deterministic
quantity. A study of lines 3 and 4 of Table 20–6, will reveal that adding a scalar to (or
subtracting one from) a variate x will affect only the mean. Also, multiplying (or divid-
ing) by a scalar affects both the mean and standard deviation. With this in mind, we can
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relate the statistical parameters of the fatigue stress-concentration factor K f to those of
notch sensitivity q. It follows that

q = LN
(

K̄ f − 1

Kt − 1
,

C K̄ f

Kt − 1

)
where C = CK f and

q̄ = K̄ f − 1

Kt − 1

σ̂q = C K̄ f

Kt − 1
(6–77)

Cq = C K̄ f

K̄ f − 1

The fatigue stress-concentration factor K f has been investigated more in England than in
the United States. For K̄ f , consider a modified Neuber equation (after Heywood33),
where the fatigue stress-concentration factor is given by

K̄ f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

(6–78)

where Table 6–15 gives values of 
√

a and CK f for steels with transverse holes,
shoulders, or grooves. Once K f is described, q can also be quantified using the set
Eqs. (6–77).

The modified Neuber equation gives the fatigue stress-concentration factor as

K f = K̄ f LN
(
1, CK f

)
(6–79)

Table 6–15

Heywood’s Parameter√
a and coefficients of

variation CKf for steels

EXAMPLE 6–18 Estimate K f and q for the steel shaft given in Ex. 6–6, p. 296.

Solution From Ex. 6–6, a steel shaft with Sut = 690 MPa and a shoulder with a fillet of 3 mm
was found to have a theoretical stress-concentration factor of Kt

.= 1.65. From 
Table 6–15,

√
a = 139

Sut
= 139

690
= 0.2014

√
mm

33R. B. Heywood, Designing Against Fatigue, Chapman & Hall, London, 1962.

, , Coefficient of
Notch Type Sut in kpsi Sut in MPa Variation CKf

Transverse hole 5/Sut 174/Sut 0.10

Shoulder 4/Sut 139/Sut 0.11

Groove 3/Sut 104/Sut 0.15

√
a(

√
mm)

√
a(

√
in)
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From Eq. (6–78),

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

= 1.65

1 + 2(1.65 − 1)

1.65

0.2014√
3

= 1.51

which is 2.5 percent lower than what was found in Ex. 6–6.
From Table 6–15, CK f = 0.11. Thus from Eq. (6–79),

Answer K f = 1.51 LN(1, 0.11)

From Eq. (6–77), with Kt = 1.65

q̄ = 1.51 − 1

1.65 − 1
= 0.785

Cq = CK f K̄ f

K̄ f − 1
= 0.11(1.51)

1.51 − 1
= 0.326

σ̂q = Cqq̄ = 0.326(0.785) = 0.256

So,

Answer q = LN(0.785, 0.256)

EXAMPLE 6–19 The bar shown in Fig. 6–37 is machined from a cold-rolled flat having an ultimate
strength of Sut = LN(87.6, 5.74) kpsi. The axial load shown is completely reversed.
The load amplitude is Fa = LN(1000, 120) lbf.
(a) Estimate the reliability.
(b) Reestimate the reliability when a rotating bending endurance test shows that S′

e =
LN(40, 2) kpsi.

Solution (a) From Eq. (6–70), S′
e = 0.506S̄ut LN(1, 0.138) = 0.506(87.6)LN(1, 0.138)

= 44.3LN(1, 0.138) kpsi

From Eq. (6–72) and Table 6–10,

ka = 2.67S̄−0.265
ut LN(1, 0.058) = 2.67(87.6)−0.265LN(1, 0.058)

= 0.816LN(1, 0.058)

kb = 1 (axial loading)

3
4
 -in D.

3
16

-in R.

in

1
4

2 in 1
2

1 in

1
4

1000 lbf 1000 lbf

Figure 6–37
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From Eq. (6–73),

kc = 1.23S̄−0.0778
ut LN(1, 0.125) = 1.23(87.6)−0.0778LN(1, 0.125)

= 0.869LN(1, 0.125)

kd = k f = (1, 0)

The endurance strength, from Eq. (6–71), is

Se = kakbkckdk f S′
e

Se = 0.816LN(1, 0.058)(1)0.869LN(1, 0.125)(1)(1)44.3LN(1, 0.138)

The parameters of Se are

S̄e = 0.816(0.869)44.3 = 31.4 kpsi

CSe = (0.0582 + 0.1252 + 0.1382)1/2 = 0.195

so Se = 31.4LN(1, 0.195) kpsi.
In computing the stress, the section at the hole governs. Using the terminology

of Table A–15–1 we find d/w = 0.50, therefore Kt
.= 2.18. From Table 6–15,√

a = 5/Sut = 5/87.6 = 0.0571 and Ck f = 0.10. From Eqs. (6–78) and (6–79) with
r = 0.375 in,

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

LN
(
1, CK f

) = 2.18

1 + 2(2.18 − 1)

2.18

0.0571√
0.375

LN(1, 0.10)

= 1.98LN(1, 0.10)

The stress at the hole is

� = K f
F
A

= 1.98LN(1, 0.10)
1000LN(1, 0.12)

0.25(0.75)

σ̄ = 1.98
1000

0.25(0.75)
10−3 = 10.56 kpsi

Cσ = (0.102 + 0.122)1/2 = 0.156

so stress can be expressed as � = 10.56LN(1, 0.156) kpsi.34

The endurance limit is considerably greater than the load-induced stress, indicat-
ing that finite life is not a problem. For interfering lognormal-lognormal distributions,
Eq. (5–43), p. 250, gives

z = −
ln

(
S̄e

σ̄

√
1 + C2

σ

1 + C2
Se

)
√

ln
[(

1 + C2
Se

) (
1 + C2

σ

)] = −
ln

⎛⎝ 31.4

10.56

√
1 + 0.1562

1 + 0.1952

⎞⎠
√

ln[(1 + 0.1952)(1 + 0.1562)]
= −4.37

From Table A–10 the probability of failure pf = �(−4.37) = .000 006 35, and the
reliability is

Answer R = 1 − 0.000 006 35 = 0.999 993 65

34Note that there is a simplification here. The area is not a deterministic quantity. It will have a statistical
distribution also. However no information was given here, and so it was treated as being deterministic.
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(b) The rotary endurance tests are described by S′
e = 40LN(1, 0.05) kpsi whose mean

is less than the predicted mean in part a. The mean endurance strength S̄e is

S̄e = 0.816(0.869)40 = 28.4 kpsi

CSe = (0.0582 + 0.1252 + 0.052)1/2 = 0.147

so the endurance strength can be expressed as Se = 28.3LN(1, 0.147) kpsi. From
Eq. (5–43),

z = −
ln

⎛⎝ 28.4

10.56

√
1 + 0.1562

1 + 0.1472

⎞⎠
√

ln[(1 + 0.1472)(1 + 0.1562)]
= −4.65

Using Table A–10, we see the probability of failure pf = �(−4.65) = 0.000 001 71,
and

R = 1 − 0.000 001 71 = 0.999 998 29

an increase! The reduction in the probability of failure is (0.000 001 71 − 0.000
006 35)/0.000 006 35 = −0.73, a reduction of 73 percent. We are analyzing an existing
design, so in part (a) the factor of safety was n̄ = S̄/σ̄ = 31.4/10.56 = 2.97. In part (b)
n̄ = 28.4/10.56 = 2.69, a decrease. This example gives you the opportunity to see the role
of the design factor. Given knowledge of S̄, CS, σ̄, Cσ , and reliability (through z), the mean
factor of safety (as a design factor) separates S̄ and σ̄ so that the reliability goal is achieved.
Knowing n̄ alone says nothing about the probability of failure. Looking at n̄ = 2.97 and
n̄ = 2.69 says nothing about the respective probabilities of failure. The tests did not reduce
S̄e significantly, but reduced the variation CS such that the reliability was increased.

When a mean design factor (or mean factor of safety) defined as S̄e/σ̄ is said to
be silent on matters of frequency of failures, it means that a scalar factor of safety
by itself does not offer any information about probability of failure. Nevertheless,
some engineers let the factor of safety speak up, and they can be wrong in their
conclusions.

338 Mechanical Engineering Design

As revealing as Ex. 6–19 is concerning the meaning (and lack of meaning) of a
design factor or factor of safety, let us remember that the rotary testing associated with
part (b) changed nothing about the part, but only our knowledge about the part. The
mean endurance limit was 40 kpsi all the time, and our adequacy assessment had to
move with what was known.

Fluctuating Stresses

Deterministic failure curves that lie among the data are candidates for regression mod-
els. Included among these are the Gerber and ASME-elliptic for ductile materials, and,
for brittle materials, Smith-Dolan models, which use mean values in their presentation.
Just as the deterministic failure curves are located by endurance strength and ultimate
tensile (or yield) strength, so too are stochastic failure curves located by Se and by Sut

or Sy . Figure 6–32, p. 320, shows a parabolic Gerber mean curve. We also need to
establish a contour located one standard deviation from the mean. Since stochastic
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curves are most likely to be used with a radial load line we will use the equation given
in Table 6–7, p. 307, expressed in terms of the strength means as 

S̄a = r2 S̄2
ut

2S̄e

⎡⎣−1 +
√

1 +
(

2S̄e

r S̄ut

)2
⎤⎦ (6–80)

Because of the positive correlation between Se and Sut , we increment S̄e by CSe S̄e , S̄ut

by CSut S̄ut , and S̄a by CSa S̄a , substitute into Eq. (6–80), and solve for CSa to obtain

CSa = (1 + CSut)
2

1 + CSe

⎧⎨⎩−1 +
√

1 +
[

2S̄e(1 + CSe)

r S̄ut(1 + CSut)

]2
⎫⎬⎭⎡⎣−1 +

√
1 +

(
2S̄e

r S̄ut

)2
⎤⎦ − 1 (6–81)

Equation (6–81) can be viewed as an interpolation formula for CSa , which falls between
CSe and CSut depending on load line slope r. Note that Sa = S̄aLN(1, CSa).

Similarly, the ASME-elliptic criterion of Table 6–8, p. 308, expressed in terms of
its means is

S̄a = r S̄y S̄e√
r2 S̄2

y + S̄2
e

(6–82)

Similarly, we increment S̄e by CSe S̄e , S̄y by CSy S̄y , and S̄a by CSa S̄a , substitute into
Eq. (6–82), and solve for CSa :

CSa = (1 + CSy)(1 + CSe)

√√√√ r2 S̄2
y + S̄2

e

r2 S̄2
y(1 + CSy)2 + S̄2

e (1 + CSe)2
− 1 (6–83)

Many brittle materials follow a Smith-Dolan failure criterion, written deterministi-
cally as

nσa

Se
= 1 − nσm/Sut

1 + nσm/Sut
(6–84)

Expressed in terms of its means,

S̄a

S̄e
= 1 − S̄m/S̄ut

1 + S̄m/S̄ut
(6–85)

For a radial load line slope of r, we substitute S̄a/r for S̄m and solve for S̄a , obtaining

S̄a = r S̄ut + S̄e

2

⎡⎣−1 +
√

1 + 4r S̄ut S̄e

(r S̄ut + S̄e)2

⎤⎦ (6–86)

and the expression for CSa is

CSa = r S̄ut(1 + CSut) + S̄e(1 + CSe)

2S̄a

·
{

−1 +
√

1 + 4r S̄ut S̄e(1 + CSe)(1 + CSut)

[r S̄ut(1 + CSut) + S̄e(1 + CSe)]2

}
− 1

(6–87)
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340 Mechanical Engineering Design

EXAMPLE 6–20 A rotating shaft experiences a steady torque T = 1360LN(1, 0.05) lbf · in, and at a
shoulder with a 1.1-in small diameter, a fatigue stress-concentration factor K f =
1.50LN(1, 0.11), K f s = 1.28LN(1, 0.11), and at that location a bending moment of
M = 1260LN(1, 0.05) lbf · in. The material of which the shaft is machined is hot-rolled
1035 with Sut = 86.2LN(1, 0.045) kpsi and Sy = 56.0LN(1, 0.077) kpsi. Estimate the
reliability using a stochastic Gerber failure zone.

Solution Establish the endurance strength. From Eqs. (6–70) to (6–72) and Eq. (6–20), p. 288,

S′
e = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138) kpsi

ka = 2.67(86.2)−0.265LN(1, 0.058) = 0.820LN(1, 0.058)

kb = (1.1/0.30)−0.107 = 0.870

kc = kd = k f = LN(1, 0)

Se = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)

S̄e = 0.820(0.870)43.6 = 31.1 kpsi

CSe = (0.0582 + 0.1382)1/2 = 0.150

and so Se = 31.1LN(1, 0.150) kpsi.

Stress (in kpsi):

σa = 32K f Ma

πd3
= 32(1.50)LN(1, 0.11)1.26LN(1, 0.05)

π(1.1)3

σ̄a = 32(1.50)1.26

π(1.1)3
= 14.5 kpsi

Cσa = (0.112 + 0.052)1/2 = 0.121

�m = 16K f sTm

πd3
= 16(1.28)LN(1, 0.11)1.36LN(1, 0.05)

π(1.1)3

τ̄m = 16(1.28)1.36

π(1.1)3
= 6.66 kpsi

Cτm = (0.112 + 0.052)1/2 = 0.121

σ̄ ′
a = (

σ̄ 2
a + 3τ̄ 2

a

)1/2 = [14.52 + 3(0)2]1/2 = 14.5 kpsi

σ̄ ′
m = (

σ̄ 2
m + 3τ̄ 2

m

)1/2 = [0 + 3(6.66)2]1/2 = 11.54 kpsi

r = σ̄ ′
a

σ̄ ′
m

= 14.5

11.54
= 1.26

Strength: From Eqs. (6–80) and (6–81),

S̄a = 1.26286.22

2(31.1)

⎧⎨⎩−1 +
√

1 +
[

2(31.1)

1.26(86.2)

]2
⎫⎬⎭ = 28.9 kpsi
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CSa = (1 + 0.045)2

1 + 0.150

−1 +
√

1 +
[

2(31.1)(1 + 0.15)

1.26(86.2)(1 + 0.045)

]2

−1 +
√

1 +
[

2(31.1)

1.26(86.2)

]2
− 1 = 0.134

Reliability: Since Sa = 28.9LN(1, 0.134) kpsi and �′
a = 14.5LN(1, 0.121) kpsi,

Eq. (5–43), p. 250, gives

z = −
ln

(
S̄a

σ̄a

√
1 + C2

σa

1 + C2
Sa

)
√

ln
[(

1 + C2
Sa

) (
1 + C2

σa

)] = −
ln

⎛⎝28.9

14.5

√
1 + 0.1212

1 + 0.1342

⎞⎠
√

ln[(1 + 0.1342)(1 + 0.1212)]
= −3.83

From Table A–10 the probability of failure is pf = 0.000 065, and the reliability is,
against fatigue,

Answer R = 1 − pf = 1 − 0.000 065 = 0.999 935

The chance of first-cycle yielding is estimated by interfering Sy with �′
max. The

quantity �′
max is formed from �′

a + �′
m . The mean of �′

max is σ̄ ′
a + σ̄ ′

m = 14.5 +
11.54 = 26.04 kpsi. The coefficient of variation of the sum is 0.121, since both
COVs are 0.121, thus Cσ max = 0.121. We interfere Sy = 56LN(1, 0.077) kpsi with
�′

max = 26.04LN (1, 0.121) kpsi. The corresponding z variable is

z = −
ln

⎛⎝ 56

26.04

√
1 + 0.1212

1 + 0.0772

⎞⎠
√

ln[(1 + 0.0772)(1 + 0.1212)]
= −5.39

which represents, from Table A–10, a probability of failure of approximately 0.07358
[which represents 3.58(10−8)] of first-cycle yield in the fillet.

The probability of observing a fatigue failure exceeds the probability of a yield
failure, something a deterministic analysis does not foresee and in fact could lead one
to expect a yield failure should a failure occur. Look at the �′

aSa interference and the
�′

maxSy interference and examine the z expressions. These control the relative proba-
bilities. A deterministic analysis is oblivious to this and can mislead. Check your sta-
tistics text for events that are not mutually exclusive, but are independent, to quantify
the probability of failure:

pf = p(yield) + p(fatigue) − p(yield and fatigue)

= p(yield) + p(fatigue) − p(yield)p(fatigue)

= 0.358(10−7) + 0.65(10−4) − 0.358(10−7)0.65(10−4) = 0.650(10−4)

R = 1 − 0.650(10−4) = 0.999 935

against either or both modes of failure.

Fatigue Failure Resulting from Variable Loading 341

bud29281_ch06_265-357.qxd  11/30/2009  4:24 pm  Page 341 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



342 Mechanical Engineering Design

Examine Fig. 6–38, which depicts the results of Ex. 6–20. The problem distribution
of Se was compounded of historical experience with S′

e and the uncertainty manifestations
due to features requiring Marin considerations. The Gerber “failure zone” displays this.
The interference with load-induced stress predicts the risk of failure. If additional infor-
mation is known (R. R. Moore testing, with or without Marin features), the stochastic
Gerber can accommodate to the information. Usually, the accommodation to additional
test information is movement and contraction of the failure zone. In its own way the sto-
chastic failure model accomplishes more precisely what the deterministic models and
conservative postures intend. Additionally, stochastic models can estimate the probability
of failure, something a deterministic approach cannot address.

The Design Factor in Fatigue

The designer, in envisioning how to execute the geometry of a part subject to the imposed
constraints, can begin making a priori decisions without realizing the impact on the
design task. Now is the time to note how these things are related to the reliability goal.

The mean value of the design factor is given by Eq. (5–45), repeated here as

n̄ = exp

[
−z

√
ln

(
1 + C2

n

) + ln
√

1 + C2
n

]
.= exp[Cn(−z + Cn/2)] (6–88)

in which, from Table 20–6 for the quotient n = S/�,

Cn =
√

C2
S + C2

σ

1 + C2
σ

where CS is the COV of the significant strength and Cσ is the COV of the significant
stress at the critical location. Note that n̄ is a function of the reliability goal (through z)
and the COVs of the strength and stress. There are no means present, just measures
of variability. The nature of CS in a fatigue situation may be CSe for fully reversed
loading, or CSa otherwise. Also, experience shows CSe > CSa > CSut , so CSe can be
used as a conservative estimate of CSa . If the loading is bending or axial, the form of
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Figure 6–38

Designer’s fatigue diagram
for Ex. 6–20.
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Fatigue Failure Resulting from Variable Loading 343

�′
a might be

�′
a = K f

Mac

I
or �′

a = K f
F
A

respectively. This makes the COV of �′
a , namely Cσ ′

a
, expressible as

Cσ ′
a
= (

C2
K f + C2

F

)1/2

again a function of variabilities. The COV of Se, namely CSe , is

CSe = (
C2

ka + C2
kc + C2

kd + C2
k f + C2

Se′
)1/2

again, a function of variabilities. An example will be useful.

EXAMPLE 6–21 A strap to be made from a cold-drawn steel strip workpiece is to carry a fully reversed
axial load F = LN(1000, 120) lbf as shown in Fig. 6–39. Consideration of adjacent
parts established the geometry as shown in the figure, except for the thickness t. Make a
decision as to the magnitude of the design factor if the reliability goal is to be 0.999 95,
then make a decision as to the workpiece thickness t.

Solution Let us take each a priori decision and note the consequence:

These eight a priori decisions have quantified the mean design factor as n̄ = 2.65.
Proceeding deterministically hereafter we write

σ ′
a = S̄e

n̄
= K̄ f

F̄

(w − d)t

from which

t = K̄ f n̄ F̄

(w − d)S̄e
(1)

A Priori Decision Consequence

Use 1018 CD steel S̄ut = 87.6 kpsi, CSut = 0.0655

Function: 

Carry axial load CF = 0.12, Ckc = 0.125

R ≥ 0.999 95 z = �3.891 

Machined surfaces Cka = 0.058

Hole critical CKf = 0.10, C��a� (0.102 � 0.122)1/2 = 0.156

Ambient temperature Ckd = 0

Correlation method CS�e = 0.138

Hole drilled CSe = (0.0582 + 0.1252 + 0.1382)1/2 = 0.195

Cn =
√√√√C2

Se + C2
σ ′

a

1 + C2
σ ′

a

=
√

0.1952 + 0.1562

1 + 0.1562 = 0.2467

n̄ = exp
[
− (−3.891)

√
ln(1 + 0.24672) + ln

√
1 + 0.24672

]
= 2.65

3
8 -in D. drill

Fa = 1000 lbf

Fa = 1000 lbf

3
4 in

Figure 6–39

A strap with a thickness t is
subjected to a fully reversed
axial load of 1000 lbf. 
Example 6–21 considers the
thickness necessary to attain a
reliability of 0.999 95 against
a fatigue failure.
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To evaluate the preceding equation we need S̄e and K̄ f . The Marin factors are

ka = 2.67S̄−0.265
ut LN(1, 0.058) = 2.67(87.6)−0.265LN(1, 0.058)

k̄a = 0.816

kb = 1

kc = 1.23S̄−0.078
ut LN(1, 0.125) = 0.868LN(1, 0.125)

k̄c = 0.868

k̄d = k̄ f = 1

and the endurance strength is

S̄e = 0.816(1)(0.868)(1)(1)0.506(87.6) = 31.4 kpsi

The hole governs. From Table A–15–1 we find d/w = 0.50, therefore Kt = 2.18. From
Table 6–15 

√
a = 5/S̄ut = 5/87.6 = 0.0571, r = 0.1875 in. From Eq. (6–78) the

fatigue stress-concentration factor is

K̄ f = 2.18

1 + 2(2.18 − 1)

2.18

0.0571√
0.1875

= 1.91

The thickness t can now be determined from Eq. (1)

t ≥ K̄ f n̄ F̄

(w − d)Se
= 1.91(2.65)1000

(0.75 − 0.375)31 400
= 0.430 in

Use 1
2 -in-thick strap for the workpiece. The 1

2 -in thickness attains and, in the rounding
to available nominal size, exceeds the reliability goal.

The example demonstrates that, for a given reliability goal, the fatigue design factor
that facilitates its attainment is decided by the variabilities of the situation. Furthermore,
the necessary design factor is not a constant independent of the way the concept unfolds.
Rather, it is a function of a number of seemingly unrelated a priori decisions that are made
in giving definition to the concept. The involvement of stochastic methodology can be
limited to defining the necessary design factor. In particular, in the example, the design
factor is not a function of the design variable t; rather, t follows from the design factor.

6–18 Road Maps and Important Design Equations 
for the Stress-Life Method
As stated in Sec. 6–15, there are three categories of fatigue problems. The important
procedures and equations for deterministic stress-life problems are presented here.

Completely Reversing Simple Loading

1 Determine S′
e either from test data or

p. 282 S′
e =

⎧⎪⎨⎪⎩
0.5Sut Sut ≤ 200 kpsi (1400 MPa)

100 kpsi Sut > 200 kpsi

700 MPa Sut > 1400 MPa

(6–8)

344 Mechanical Engineering Design
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Fatigue Failure Resulting from Variable Loading 345

2 Modify S′
e to determine Se.

p. 287 Se = kakbkckdkek f S′
e (6–18)

ka = aSb
ut (6–19)

Reliability, % Transformation Variate za Reliability Factor ke

50 0 1.000

90 1.288 0.897

95 1.645 0.868

99 2.326 0.814

99.9 3.091 0.753

99.99 3.719 0.702

99.999 4.265 0.659

99.9999 4.753 0.620

Table 6–5

Reliability Factor ke

Corresponding to

8 Percent Standard

Deviation of the

Endurance Limit

Factor a Exponent
Surface Finish Sut, kpsi Sut, MPa b

Ground 1.34 1.58 −0.085

Machined or cold-drawn 2.70 4.51 −0.265

Hot-rolled 14.4 57.7 −0.718

As-forged 39.9 272. −0.995

Table 6–2

Parameters for Marin

Surface Modification

Factor, Eq. (6–19)

Rotating shaft. For bending or torsion,

p. 288 kb =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(d/0.3)−0.107 = 0.879d−0.107 0.11 ≤ d ≤ 2 in

0.91d−0.157 2 < d ≤ 10 in

(d/7.62)−0.107 = 1.24d−0.107 2.79 ≤ d ≤ 51 mm

1.51d−0.157 51 < 254 mm

(6–20)

For axial,

kb = 1 (6–21)

Nonrotating member. Use Table 6–3, p. 290, for de and substitute into Eq. (6–20) 
for d.

p. 290 kc =

⎧⎪⎨⎪⎩
1 bending

0.85 axial

0.59 torsion

(6–26)

p. 291 Use Table 6–4 for kd, or

kd = 0.975 + 0.432(10−3)TF − 0.115(10−5)T 2
F

+ 0.104(10−8)T 3
F − 0.595(10−12)T 4

F (6–27)

pp. 292–293, ke

bud29281_ch06_265-357.qxd  12/02/2009  9:30 pm  Page 345 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



346 Mechanical Engineering Design

pp. 293–294, kf

3 Determine fatigue stress-concentration factor, K f or K f s . First, find Kt or Kts from
Table A–15.

p. 295 K f = 1 + q(Kt − 1) or K f s = 1 + q(Kts − 1) (6–32)

Obtain q from either Fig. 6–20 or 6–21, pp. 295–296.

Alternatively,

p. 296 K f = 1 + Kt − 1

1 + √
a/r

(6–33)

For 
√

a in units of 
√

in, and Sut in kpsi

Bending or axial: 
√

a = 0.246 − 3.08(10−3)Sut + 1.51(10−5)S2
ut − 2.67(10−8)S3

ut
(6–35a)

Torsion: 
√

a = 0.190 − 2.51(10−3)Sut + 1.35(10−5)S2
ut − 2.67(10−8)S3

ut (6–35b)

4 Apply K f or K f s by either dividing Se by it or multiplying it with the purely
reversing stress, not both.

5 Determine fatigue life constants a and b. If Sut ≥ 70 kpsi, determine f from 
Fig. 6–18, p. 285. If Sut < 70 kpsi, let f = 0.9.

p. 285 a = ( f Sut )
2/Se (6–14)

b = −[log( f Sut/Se)]/3 (6–15)

6 Determine fatigue strength Sf at N cycles, or, N cycles to failure at a reversing
stress σrev

(Note: this only applies to purely reversing stresses where σm = 0).

p. 285 Sf = aN b (6–13)

N = (σrev/a)1/b (6–16)

Fluctuating Simple Loading

For Se, K f or K f s , see previous subsection.

1 Calculate σm and σa . Apply K f to both stresses.

p. 301 σm = (σmax + σmin)/2 σa = |σmax − σmin|/2 (6–36)

2 Apply to a fatigue failure criterion, p. 306

σm ≥ 0

Soderburg σa/Se + σm/Sy = 1/n (6–45)

mod-Goodman σa/Se + σm/Sut = 1/n (6–46)

Gerber nσa/Se + (nσm/Sut )
2 = 1 (6–47)

ASME-elliptic (σa/Se)2 + (σm/Sy)2 = 1/n2 (6–48)

σm < 0

p. 305 σa = Se/n
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Fatigue Failure Resulting from Variable Loading 347

Torsion. Use the same equations as apply for σm ≥ 0, except replace σm and σa with
τm and τa , use kc = 0.59 for Se, replace Sut with Ssu = 0.67Sut [Eq. (6–54), p. 317],
and replace Sy with Ssy = 0.577Sy [Eq. (5–21), p. 297]

3 Check for localized yielding.

p. 306 σa + σm = Sy/n (6–49)

or, for torsion, τa + τm = 0.577Sy/n

4 For finite-life fatigue strength, equivalent completely reversed stress (see Ex. 6–12,
pp. 313–314), 

mod-Goodman σrev = σa

1 − (σm/Sut)

Gerber σrev = σa

1 − (σm/Sut)2

If determining the finite life N with a factor of safety n, substitute σrev/n for σrev in
Eq. (6–16). That is,

N =
(

σrev/n

a

)1/b

Combination of Loading Modes

See previous subsections for earlier definitions.

1 Calculate von Mises stresses for alternating and midrange stress states, σ ′
a and σ ′

m .
When determining Se , do not use kc nor divide by K f or K f s . Apply K f and/or
K f s directly to each specific alternating and midrange stress. If axial stress is
present divide the alternating axial stress by kc = 0.85. For the special case of
combined bending, torsional shear, and axial stresses 

p. 318

σ ′
a =

{[
(K f )bending(σa)bending + (K f )axial

(σa)axial

0.85

]2

+ 3
[
(K f s)torsion(τa)torsion

]2

}1/2

(6–55)

σ ′
m =

{[
(K f )bending(σm)bending + (K f )axial(σm)axial

]2 + 3
[
(K f s)torsion(τm)torsion

]2
}1/2

(6–56)

2 Apply stresses to fatigue criterion [see Eqs. (6–45) to (6–48), p. 346 in previous
subsection].

3 Conservative check for localized yielding using von Mises stresses.

p. 306 σ ′
a + σ ′

m = Sy/n (6–49)
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PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1–1 of Sec. 1–16, p. 24.

Problems 6–1 to 6–63 are to be solved by deterministic methods. Problems 6–64 to 6–78 are
to be solved by stochastic methods. Problems 6–71 to 6–78 are computer problems.

Deterministic Problems

6–1 A 10-mm drill rod was heat-treated and ground. The measured hardness was found to be 300 Brinell.
Estimate the endurance strength in MPa if the rod is used in rotating bending.

6–2 Estimate S′
e in kpsi for the following materials:

(a) AISI 1035 CD steel.
(b) AISI 1050 HR steel.
(c) 2024 T4 aluminum.
(d) AISI 4130 steel heat-treated to a tensile strength of 235 kpsi.

6–3 A steel rotating-beam test specimen has an ultimate strength of 120 kpsi. Estimate the life of the
specimen if it is tested at a completely reversed stress amplitude of 70 kpsi.

6–4 A steel rotating-beam test specimen has an ultimate strength of 1600 MPa. Estimate the life of
the specimen if it is tested at a completely reversed stress amplitude of 900 MPa.

6–5 A steel rotating-beam test specimen has an ultimate strength of 230 kpsi. Estimate the fatigue
strength corresponding to a life of 150 kcycles of stress reversal.

6–6 Repeat Prob. 6–5 with the specimen having an ultimate strength of 1100 MPa.

6–7 A steel rotating-beam test specimen has an ultimate strength of 150 kpsi and a yield strength of
135 kpsi. It is desired to test low-cycle fatigue at approximately 500 cycles. Check if this is pos-
sible without yielding by determining the necessary reversed stress amplitude.

6–8 Derive Eq. (6–17). Rearrange the equation to solve for N.

6–9 For the interval 103 ≤ N ≤ 106 cycles, develop an expression for the axial fatigue strength
(S′

f )ax for the polished specimens of 4130 used to obtain Fig. 6–10. The ultimate strength is
Sut = 125 kpsi and the endurance limit is (S′

e)ax = 50 kpsi.

6–10 Estimate the endurance strength of a 1.5-in-diameter rod of AISI 1040 steel having a machined
finish and heat-treated to a tensile strength of 110 kpsi.

6–11 Two steels are being considered for manufacture of as-forged connecting rods. One is AISI 4340
Cr-Mo-Ni steel capable of being heat-treated to a tensile strength of 260 kpsi. The other is a plain car-
bon steel AISI 1040 with an attainable Sut of 113 kpsi. If each rod is to have a size giving an equiva-
lent diameter de of 0.75 in, is there any advantage to using the alloy steel for this fatigue application?

6–12 A 1-in-diameter solid round bar has a groove 0.1-in deep with a 0.1-in radius machined into it.
The bar is made of AISI 1020 CD steel and is subjected to a purely reversing torque of 1800 lbf · in.
For the S-N curve of this material, let f = 0.9.
(a) Estimate the number of cycles to failure.
(b) If the bar is also placed in an environment with a temperature of 750◦F, estimate the number

of cycles to failure.

6–13 A solid square rod is cantilevered at one end. The rod is 0.6 m long and supports a completely
reversing transverse load at the other end of ±2 kN. The material is AISI 1080 hot-rolled steel.
If the rod must support this load for 104 cycles with a factor of safety of 1.5, what dimension
should the square cross section have? Neglect any stress concentrations at the support end.

348 Mechanical Engineering Design
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6–14 A rectangular bar is cut from an AISI 1020 cold-drawn steel flat. The bar is 2.5 in wide by 3
8 in

thick and has a 0.5-in-dia. hole drilled through the center as depicted in Table A–15–1. The bar
is concentrically loaded in push-pull fatigue by axial forces Fa , uniformly distributed across
the width. Using a design factor of nd = 2, estimate the largest force Fa that can be applied
ignoring column action.

6–15 A solid round bar with diameter of 2 in has a groove cut to a diameter of 1.8 in, with a radius of
0.1 in. The bar is not rotating. The bar is loaded with a repeated bending load that causes the
bending moment at the groove to fluctuate between 0 and 25 000 lbf · in. The bar is hot-rolled
AISI 1095, but the groove has been machined. Determine the factor of safety for fatigue based
on infinite life and the factor of safety for yielding.

6–16 The rotating shaft shown in the figure is machined from AISI 1020 CD steel. It is subjected to a
force of F = 6 kN. Find the minimum factor of safety for fatigue based on infinite life. If the life
is not infinite, estimate the number of cycles. Be sure to check for yielding.

Problem 6–17

10 in 10 in
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A B

F2

8 in8 in

1 1
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16

8 in
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8

in 1 7
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in 1 3
4

in 1 1
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Problem 6–19

d dd/10 R.

d/5 R.

1.4 d

1 in

R1 R2

F = 8 kip

10 in 5 in 5 in

6–18 Solve Prob. 6–17 except with forces F1 = 1200 lbf and F2 = 2400 lbf. 

6–19 Bearing reactions R1 and R2 are exerted on the shaft shown in the figure, which rotates at
950 rev/min and supports an 8-kip bending force. Use a 1095 HR steel. Specify a diameter 
d using a design factor of nd = 1.6 for a life of 10 hr. The surfaces are machined.

500

20

20280

20

18020

F

25 D.3 R.25 D.

175

50 D.35 D.
Problem 6–16

Dimensions in millimeters

6–17 The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates at 1600 rpm
and is supported in rolling bearings at A and B. The applied forces are F1 = 2500 lbf and 
F2 = 1000 lbf. Determine the minimum fatigue factor of safety based on achieving infinite life.
If infinite life is not predicted, estimate the number of cycles to failure. Also check for yielding.
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6–20 A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 kpsi. The
bar is subjected to a steady torsional stress of 15 kpsi and an alternating bending stress of 25 kpsi.
Find the factor of safety guarding against a static failure, and either the factor of safety guarding
against a fatigue failure or the expected life of the part. For the fatigue analysis use:
(a) Modified Goodman criterion.
(b) Gerber criterion.
(c) ASME-elliptic criterion.

6–21 Repeat Prob. 6–20 but with a steady torsional stress of 20 kpsi and an alternating bending stress
of 10 kpsi.

6–22 Repeat Prob. 6–20 but with a steady torsional stress of 15 kpsi, an alternating torsional stress of
10 kpsi, and an alternating bending stress of 12 kpsi. 

6–23 Repeat Prob. 6–20 but with an alternating torsional stress of 30 kpsi.

6–24 Repeat Prob. 6–20 but with an alternating torsional stress of 15 kpsi and a steady bending stress
of 15 kpsi.

6–25 The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed
axial load fluctuating between 28 kN in compression to 28 kN in tension. Estimate the fatigue
factor of safety based on achieving infinite life, and the yielding factor of safety. If infinite life is
not predicted, estimate the number of cycles to failure. 

350 Mechanical Engineering Design

6–26 Repeat Prob. 6–25 for a load that fluctuates from 12 kN to 28 kN. Use the Modified Goodman,
Gerber, and ASME-elliptic criteria and compare their predictions.

6–27 Repeat Prob. 6–25 for each of the following loading conditions:
(a) 0 kN to 28 kN
(b) 12 kN to 28 kN
(c) –28 kN to 12 kN

6–28 The figure shows a formed round-wire cantilever spring subjected to a varying force. The hard-
ness tests made on 50 springs gave a minimum hardness of 400 Brinell. It is apparent from the
mounting details that there is no stress concentration. A visual inspection of the springs indicates
that the surface finish corresponds closely to a hot-rolled finish. What number of applications is
likely to cause failure? Solve using:
(a) Modified Goodman criterion.
(b) Gerber criterion.

Problem 6–28

12 in

3
8

in D.

Fmax = 40 lbf
Fmin = 20 lbf

Problem 6–25

6-mm D.

25 mm

10 mm
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Problem 6–30
F F

h

w1 w2

rA

A
d

Section A–A

6–29 The figure is a drawing of a 4- by 20-mm latching spring. A preload is obtained during assem-
bly by shimming under the bolts to obtain an estimated initial deflection of 2 mm. The latch-
ing operation itself requires an additional deflection of exactly 4 mm. The material is ground
high-carbon steel, bent then hardened and tempered to a minimum hardness of 490 Bhn. The
radius of the bend is 4 mm. Estimate the yield strength to be 90 percent of the ultimate
strength.
(a) Find the maximum and minimum latching forces.
(b) Is it likely the spring will achieve infinite life?

6–30 The figure shows the free-body diagram of a connecting-link portion having stress concentration
at three sections. The dimensions are r = 0.25 in, d = 0.40 in, h = 0.50 in, w1 = 3.50 in, and
w2 = 3.0 in. The forces F fluctuate between a tension of 5 kip and a compression of 16 kip.
Neglect column action and find the least factor of safety if the material is cold-drawn AISI 1018
steel.

140

4

20

Section
A–A

A

A

F

Problem 6–29

Dimensions in millimeters

6–31 Solve Prob. 6–30 except let w1 = 2.5 in, w2 = 1.5 in, and the force fluctuates between a tension
of 16 kips and a compression of 4 kips.

6–32 For the part in Prob. 6–30, recommend a fillet radius r that will cause the fatigue factor of safety
to be the same at the hole and at the fillet.

6–33 The torsional coupling in the figure is composed of a curved beam of square cross section that is
welded to an input shaft and output plate. A torque is applied to the shaft and cycles from zero 
to T. The cross section of the beam has dimensions of 3

16 × 3
16 in, and the centroidal axis of the

beam describes a curve of the form r = 0.75 + 0.4375 θ/π , where r and θ are in inches and
radians, respectively (0 ≤ θ ≤ 4π ). The curved beam has a machined surface with yield and ulti-
mate strength values of 60 and 110 kpsi, respectively.
(a) Determine the maximum allowable value of T such that the coupling will have an infinite life

with a factor of safety, n = 3, using the modified Goodman criterion.
(b) Repeat part (a) using the Gerber criterion.
(c) Using T found in part (b), determine the factor of safety guarding against yield.

bud29281_ch06_265-357.qxd  12/02/2009  6:49 pm  Page 351 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



6–34 Repeat Prob. 6–33 ignoring curvature effects on the bending stress.

6–35 A part is loaded with a combination of bending, axial, and torsion such that the following stresses
are created at a particular location:

Bending: Completely reversed, with a maximum stress of 60 MPa
Axial: Constant stress of 20 MPa
Torsion: Repeated load, varying from 0 MPa to 50 MPa

Assume the varying stresses are in phase with each other. The part contains a notch such that
Kf,bending = 1.4, Kf,axial = 1.1, and Kf,torsion = 2.0. The material properties are Sy = 300 MPa and
Su = 400 MPa. The completely adjusted endurance limit is found to be Se = 200 MPa. Find the
factor of safety for fatigue based on infinite life. If the life is not infinite, estimate the number of
cycles. Be sure to check for yielding.

6–36 Repeat the requirements of Prob. 6–35 with the following loading conditions:

Bending: Fluctuating stress from –40 MPa to 150 MPa
Axial: None
Torsion: Mean stress of 90 MPa, with an alternating stress of 10 percent of the mean

stress

6–37* to For the problem specified in the table, build upon the results of the original problem to determine 
6–46* the minimum factor of safety for fatigue based on infinite life. The shaft rotates at a constant

speed, has a constant diameter, and is made from cold-drawn AISI 1018 steel. 

Problem Number Original Problem, Page Number
6–37* 3–68, 137

6–38* 3–69, 137

6–39* 3–70, 137

6–40* 3–71, 137

6–41* 3–72, 138

6–42* 3–73, 138

6–43* 3–74, 138

6–44* 3–76, 139

6–45* 3–77, 139

6–46* 3–79, 139
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Problem 6–33

T
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(Dimensions in inches)

3
16

3
4
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6–47* to For the problem specified in the table, build upon the results of the original problem to determine 
6–50* the minimum factor of safety for fatigue based on infinite life. If the life is not infinite, estimate

the number of cycles. The force F is applied as a repeated load. The material is AISI 1018 CD
steel. The fillet radius at the wall is 0.1 in, with theoretical stress concentrations of 1.5 for bend-
ing, 1.2 for axial, and 2.1 for torsion.

Problem Number Original Problem, Page Number
6–47* 3–80, 139

6–48* 3–81, 140

6–49* 3–82, 140

6–50* 3–83, 140

6–51* to For the problem specified in the table, build upon the results of the original problem to determine 
6–53* the minimum factor of safety for fatigue at point A, based on infinite life. If the life is not infi-

nite, estimate the number of cycles. The force F is applied as a repeated load. The material is AISI
1018 CD steel. 

Problem Number Original Problem, Page Number
6–51* 3–84, 140

6–52* 3–85, 141

6–53* 3–86, 141

6–54 Solve Prob. 6–17 except include a steady torque of 2500 lbf · in being transmitted through the
shaft between the points of application of the forces.

6–55 Solve Prob. 6–18 except include a steady torque of 2200 lbf · in being transmitted through the
shaft between the points of application of the forces.

6–56 In the figure shown, shaft A, made of AISI 1020 hot-rolled steel, is welded to a fixed support and is
subjected to loading by equal and opposite forces F via shaft B. A theoretical stress-concentration
factor Kts of 1.6 is induced by the 1

8-in fillet. The length of shaft A from the fixed support to the
connection at shaft B is 2 ft. The load F cycles from 150 to 500 lbf.
(a) For shaft A, find the factor of safety for infinite life using the modified Goodman fatigue fail-

ure criterion.
(b) Repeat part (a) using the Gerber fatigue failure criterion.

Fatigue Failure Resulting from Variable Loading 353
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Problem 6–56
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6–57 A schematic of a clutch-testing machine is shown. The steel shaft rotates at a constant speed ω.
An axial load is applied to the shaft and is cycled from zero to P. The torque T induced by the
clutch face onto the shaft is given by

T = f P(D + d)

4

where D and d are defined in the figure and f is the coefficient of friction of the clutch face. The
shaft is machined with Sy = 120 kpsi and Sut = 145 kpsi. The theoretical stress-concentration
factors for the fillet are 3.0 and 1.8 for the axial and torsional loading, respectively.

Assume the load variation P is synchronous with shaft rotation. With f = 0.3, find the max-
imum allowable load P such that the shaft will survive a minimum of 106 cycles with a factor of
safety of 3. Use the modified Goodman criterion. Determine the corresponding factor of safety
guarding against yielding.

354 Mechanical Engineering Design

6–58 For the clutch of Prob. 6–57, the external load P is cycled between 4.5 kips and 18 kips.
Assuming that the shaft is rotating synchronous with the external load cycle, estimate the num-
ber of cycles to failure. Use the modified Goodman fatigue failure criteria.

6–59 A flat leaf spring has fluctuating stress of σmax = 360 MPa and σmin = 160 MPa applied for
8 (104) cycles. If the load changes to σmax = 320 MPa and σmin = −200 MPa, how many cycles
should the spring survive? The material is AISI 1020 CD and has a fully corrected endurance
strength of Se = 175 MPa. Assume that f = 0.9.
(a) Use Miner’s method.
(b) Use Manson’s method.

6–60 A rotating-beam specimen with an endurance limit of 50 kpsi and an ultimate strength of 140 kpsi
is cycled 20 percent of the time at 95 kpsi, 50 percent at 80 kpsi, and 30 percent at 65 kpsi. Let
f = 0.8 and estimate the number of cycles to failure.

6–61 A machine part will be cycled at ±350 MPa for 5 (103) cycles. Then the loading will be changed
to ±260 MPa for 5 (104) cycles. Finally, the load will be changed to ±225 MPa. How many
cycles of operation can be expected at this stress level? For the part, Sut = 530 MPa, f = 0.9,
and has a fully corrected endurance strength of Se = 210 MPa.
(a) Use Miner’s method.
(b) Use Manson’s method.

6–62 The material properties of a machine part are Sut = 85 kpsi, f = 0.86, and a fully corrected
endurance limit of Se = 45 kpsi. The part is to be cycled at σa = 35 kpsi and σm = 30 kpsi

P

Friction pad D = 6 in

d = 1.2 inR = 0.1 in
�

Problem 6–57
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for 12 (103) cycles. Using the Gerber criterion, estimate the new endurance limit after
cycling.
(a) Use Miner’s method.
(b) Use Manson’s method.

6–63 Repeat Prob. 6–62 using the Goodman criterion.

Stochastic Problems

6–64 Solve Prob. 6–1 if the ultimate strength of production pieces is found to be Sut = 1030LN
(1, 0.0508) MPa.

6–65 The situation is similar to that of Prob. 6–14 wherein the imposed completely reversed axial
load Fa = 3.8LN (1, 0.20) kip is to be carried by the link with a thickness to be specified by you,
the designer. Use the 1020 cold-drawn steel of Prob. 6–14 with Sut = 68LN (1, 0.28) and
Syt = 57LN(1, 0.058) kpsi. The reliability goal must exceed 0.99. Using the correlation method,
specify the thickness t.

6–66 A solid round steel bar is machined to a diameter of 32 mm. A groove 3 mm deep with a radius
of 3 mm is cut into the bar. The material has a mean tensile strength of 780 MPa. A completely
reversed bending moment M = 160 N · m is applied. Estimate the reliability. The size factor
should be based on the gross diameter. The bar rotates.

6–67 Repeat Prob. 6–66, with a completely reversed torsional moment of T = 160 N · m applied.

6–68 A 1 1
2 -in-diameter hot-rolled steel bar has a 3

16 -in diameter hole drilled transversely through it. The
bar is nonrotating and is subject to a completely reversed bending moment of M = 1500 lbf · in
in the same plane as the axis of the transverse hole. The material has a mean tensile strength of
76 kpsi. Estimate the reliability. The size factor should be based on the gross size. Use Table A–16
for Kt .

6–69 Repeat Prob. 6–68, with the bar subject to a completely reversed torsional moment of 2000 lbf · in.

6–70 The plan view of a link is the same as in Prob. 6–30; however, the forces F are completely
reversed, the reliability goal is 0.998, and the material properties are Sut = 64LN(1, 0.045) kpsi
and Sy = 54LN(1, 0.077) kpsi. Treat Fa as deterministic, and specify the thickness h.

Computer Problems

6–71 A 1
4 by 1 1

2 -in steel bar has a 3
4 -in drilled hole located in the center, much as is shown in

Table A–15–1. The bar is subjected to a completely reversed axial load with a deterministic load
of 1200 lbf. The material has a mean ultimate tensile strength of S̄ut = 80 kpsi.
(a) Estimate the reliability.
(b) Conduct a computer simulation to confirm your answer to part a.

6–72 From your experience with Prob. 6–71 and Ex. 6–19, you observed that for completely reversed
axial and bending fatigue, it is possible to

• Observe the COVs associated with a priori design considerations.

• Note the reliability goal.

• Find the mean design factor n̄d that will permit making a geometric design decision that will
attain the goal using deterministic methods in conjunction with n̄d .

Formulate an interactive computer program that will enable the user to find n̄d . While the mater-
ial properties Sut , Sy , and the load COV must be input by the user, all of the COVs associated with
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�0.30 , ka , kc , kd , and K f can be internal, and answers to questions will allow Cσ and CS , as well
as Cn and n̄d , to be calculated. Later you can add improvements. Test your program with prob-
lems you have already solved.

6–73 When using the Gerber fatigue failure criterion in a stochastic problem, Eqs. (6–80) and (6–81)
are useful. They are also computationally complicated. It is helpful to have a computer subrou-
tine or procedure that performs these calculations. When writing an executive program, and it
is appropriate to find Sa and CSa , a simple call to the subroutine does this with a minimum of
effort. Also, once the subroutine is tested, it is always ready to perform. Write and test such a
program.

6–74 Repeat Problem. 6–73 for the ASME-elliptic fatigue failure locus, implementing Eqs. (6–82)
and (6–83).

6–75 Repeat Prob. 6–73 for the Smith-Dolan fatigue failure locus, implementing Eqs. (6–86) and (6–87).

6–76 Write and test computer subroutines or procedures that will implement
(a) Table 6–2, returning a, b, C, and k̄a .
(b) Equation (6–20) using Table 6–4, returning kb .
(c) Table 6–11, returning α, β , C, and k̄c .
(d) Equations (6–27) and (6–75), returning k̄d and Ckd .

6–77 Write and test a computer subroutine or procedure that implements Eqs. (6–76) and (6–77),
returning q̄ , σ̂q , and Cq .

6–78 Write and test a computer subroutine or procedure that implements Eq. (6–78) and Table 6–15,
returning 

√
a, CK f , and K̄ f .
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360 Mechanical Engineering Design

7–1 Introduction
A shaft is a rotating member, usually of circular cross section, used to transmit power
or motion. It provides the axis of rotation, or oscillation, of elements such as gears,
pulleys, flywheels, cranks, sprockets, and the like and controls the geometry of their
motion. An axle is a nonrotating member that carries no torque and is used to support
rotating wheels, pulleys, and the like. The automotive axle is not a true axle; the term
is a carryover from the horse-and-buggy era, when the wheels rotated on nonrotating
members. A nonrotating axle can readily be designed and analyzed as a static beam, and
will not warrant the special attention given in this chapter to the rotating shafts which are
subject to fatigue loading.

There is really nothing unique about a shaft that requires any special treatment
beyond the basic methods already developed in previous chapters. However, because of
the ubiquity of the shaft in so many machine design applications, there is some advantage
in giving the shaft and its design a closer inspection. A complete shaft design has much
interdependence on the design of the components. The design of the machine itself will
dictate that certain gears, pulleys, bearings, and other elements will have at least been
partially analyzed and their size and spacing tentatively determined. Chapter 18 provides
a complete case study of a power transmission, focusing on the overall design process. In
this chapter, details of the shaft itself will be examined, including the following:

• Material selection

• Geometric layout

• Stress and strength
Static strength
Fatigue strength

• Deflection and rigidity
Bending deflection
Torsional deflection
Slope at bearings and shaft-supported elements
Shear deflection due to transverse loading of short shafts

• Vibration due to natural frequency

In deciding on an approach to shaft sizing, it is necessary to realize that a stress analy-
sis at a specific point on a shaft can be made using only the shaft geometry in the vicinity
of that point. Thus the geometry of the entire shaft is not needed. In design it is usually
possible to locate the critical areas, size these to meet the strength requirements, and then
size the rest of the shaft to meet the requirements of the shaft-supported elements.

The deflection and slope analyses cannot be made until the geometry of the entire
shaft has been defined. Thus deflection is a function of the geometry everywhere,
whereas the stress at a section of interest is a function of local geometry. For this rea-
son, shaft design allows a consideration of stress first. Then, after tentative values for
the shaft dimensions have been established, the determination of the deflections and
slopes can be made.

7–2 Shaft Materials
Deflection is not affected by strength, but rather by stiffness as represented by the mod-
ulus of elasticity, which is essentially constant for all steels. For that reason, rigidity
cannot be controlled by material decisions, but only by geometric decisions.
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Necessary strength to resist loading stresses affects the choice of materials and
their treatments. Many shafts are made from low carbon, cold-drawn or hot-rolled steel,
such as ANSI 1020-1050 steels.

Significant strengthening from heat treatment and high alloy content are often not
warranted. Fatigue failure is reduced moderately by increase in strength, and then only
to a certain level before adverse effects in endurance limit and notch sensitivity begin
to counteract the benefits of higher strength. A good practice is to start with an inex-
pensive, low or medium carbon steel for the first time through the design calculations.
If strength considerations turn out to dominate over deflection, then a higher strength
material should be tried, allowing the shaft sizes to be reduced until excess deflection
becomes an issue. The cost of the material and its processing must be weighed against
the need for smaller shaft diameters. When warranted, typical alloy steels for heat treat-
ment include ANSI 1340-50, 3140-50, 4140, 4340, 5140, and 8650.

Shafts usually don’t need to be surface hardened unless they serve as the actual
journal of a bearing surface. Typical material choices for surface hardening include
carburizing grades of ANSI 1020, 4320, 4820, and 8620.

Cold drawn steel is usually used for diameters under about 3 inches. The nom-
inal diameter of the bar can be left unmachined in areas that do not require fitting of
components. Hot rolled steel should be machined all over. For large shafts requiring
much material removal, the residual stresses may tend to cause warping. If con-
centricity is important, it may be necessary to rough machine, then heat treat to
remove residual stresses and increase the strength, then finish machine to the final
dimensions.

In approaching material selection, the amount to be produced is a salient factor. For
low production, turning is the usual primary shaping process. An economic viewpoint
may require removing the least material. High production may permit a volume-
conservative shaping method (hot or cold forming, casting), and minimum material in
the shaft can become a design goal. Cast iron may be specified if the production quan-
tity is high, and the gears are to be integrally cast with the shaft.

Properties of the shaft locally depend on its history—cold work, cold forming,
rolling of fillet features, heat treatment, including quenching medium, agitation, and
tempering regimen.1

Stainless steel may be appropriate for some environments.

7–3 Shaft Layout
The general layout of a shaft to accommodate shaft elements, e.g., gears, bearings, and
pulleys, must be specified early in the design process in order to perform a free body
force analysis and to obtain shear-moment diagrams. The geometry of a shaft is gener-
ally that of a stepped cylinder. The use of shaft shoulders is an excellent means of
axially locating the shaft elements and to carry any thrust loads. Figure 7–1 shows an
example of a stepped shaft supporting the gear of a worm-gear speed reducer. Each
shoulder in the shaft serves a specific purpose, which you should attempt to determine
by observation.

1See Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds-in-chief), Standard Handbook
of Machine Design, 3rd ed., McGraw-Hill, New York, 2004. For cold-worked property prediction see 
Chap. 29, and for heat-treated property prediction see Chaps. 29 and 33.
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The geometric configuration of a shaft to be designed is often simply a revision of
existing models in which a limited number of changes must be made. If there is no
existing design to use as a starter, then the determination of the shaft layout may have
many solutions. This problem is illustrated by the two examples of Fig. 7–2. In
Fig. 7–2a a geared countershaft is to be supported by two bearings. In Fig. 7–2c a
fanshaft is to be configured. The solutions shown in Fig. 7–2b and 7–2d are not neces-
sarily the best ones, but they do illustrate how the shaft-mounted devices are fixed and
located in the axial direction, and how provision is made for torque transfer from one
element to another. There are no absolute rules for specifying the general layout, but the
following guidelines may be helpful.

Figure 7–1

A vertical worm-gear speed
reducer. (Courtesy of the
Cleveland Gear Company.)

Figure 7–2

(a) Choose a shaft
configuration to support and
locate the two gears and two
bearings. (b) Solution uses an
integral pinion, three shaft
shoulders, key and keyway, and
sleeve. The housing locates the
bearings on their outer rings
and receives the thrust loads.
(c) Choose fan-shaft
configuration. (d) Solution uses
sleeve bearings, a straight-
through shaft, locating collars,
and setscrews for collars, fan
pulley, and fan itself. The fan
housing supports the sleeve
bearings.

(a) (b)

(c)

Fan

(d)
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Axial Layout of Components

The axial positioning of components is often dictated by the layout of the housing and
other meshing components. In general, it is best to support load-carrying components
between bearings, such as in Fig. 7–2a, rather than cantilevered outboard of the bear-
ings, such as in Fig. 7–2c. Pulleys and sprockets often need to be mounted outboard for
ease of installation of the belt or chain. The length of the cantilever should be kept short
to minimize the deflection.

Only two bearings should be used in most cases. For extremely long shafts carrying
several load-bearing components, it may be necessary to provide more than two bearing
supports. In this case, particular care must be given to the alignment of the bearings.

Shafts should be kept short to minimize bending moments and deflections. Some
axial space between components is desirable to allow for lubricant flow and to provide
access space for disassembly of components with a puller. Load bearing components
should be placed near the bearings, again to minimize the bending moment at the loca-
tions that will likely have stress concentrations, and to minimize the deflection at the
load-carrying components.

The components must be accurately located on the shaft to line up with other
mating components, and provision must be made to securely hold the components in
position. The primary means of locating the components is to position them against a
shoulder of the shaft. A shoulder also provides a solid support to minimize deflection
and vibration of the component. Sometimes when the magnitudes of the forces are
reasonably low, shoulders can be constructed with retaining rings in grooves, sleeves
between components, or clamp-on collars. In cases where axial loads are very small, it
may be feasible to do without the shoulders entirely, and rely on press fits, pins, or col-
lars with setscrews to maintain an axial location. See Fig. 7–2b and 7–2d for examples
of some of these means of axial location.

Supporting Axial Loads

In cases where axial loads are not trivial, it is necessary to provide a means to transfer
the axial loads into the shaft, then through a bearing to the ground. This will be partic-
ularly necessary with helical or bevel gears, or tapered roller bearings, as each of these
produces axial force components. Often, the same means of providing axial location,
e.g., shoulders, retaining rings, and pins, will be used to also transmit the axial load into
the shaft.

It is generally best to have only one bearing carry the axial load, to allow greater
tolerances on shaft length dimensions, and to prevent binding if the shaft expands due
to temperature changes. This is particularly important for long shafts. Figures 7–3
and 7–4 show examples of shafts with only one bearing carrying the axial load
against a shoulder, while the other bearing is simply press-fit onto the shaft with no
shoulder.

Providing for Torque Transmission

Most shafts serve to transmit torque from an input gear or pulley, through the shaft, to an
output gear or pulley. Of course, the shaft itself must be sized to support the torsional stress
and torsional deflection. It is also necessary to provide a means of transmitting the torque
between the shaft and the gears. Common torque-transfer elements are:

• Keys

• Splines

• Setscrews
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• Pins

• Press or shrink fits

• Tapered fits

In addition to transmitting the torque, many of these devices are designed to fail if
the torque exceeds acceptable operating limits, protecting more expensive components.

Details regarding hardware components such as keys, pins, and setscrews are
addressed in detail in Sec. 7–7. One of the most effective and economical means of
transmitting moderate to high levels of torque is through a key that fits in a groove in
the shaft and gear. Keyed components generally have a slip fit onto the shaft, so assem-
bly and disassembly is easy. The key provides for positive angular orientation of the
component, which is useful in cases where phase angle timing is important.

Figure 7–3

Tapered roller bearings used
in a mowing machine spindle.
This design represents good
practice for the situation in
which one or more torque-
transfer elements must
be mounted outboard. 
(Source: Redrawn from
material furnished by The
Timken Company.)

Figure 7–4

A bevel-gear drive in 
which both pinion and gear
are straddle-mounted.
(Source: Redrawn from
material furnished by 
Gleason Machine Division.)
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Splines are essentially stubby gear teeth formed on the outside of the shaft and on
the inside of the hub of the load-transmitting component. Splines are generally much
more expensive to manufacture than keys, and are usually not necessary for simple
torque transmission. They are typically used to transfer high torques. One feature of a
spline is that it can be made with a reasonably loose slip fit to allow for large axial
motion between the shaft and component while still transmitting torque. This is useful
for connecting two shafts where relative motion between them is common, such as in
connecting a power takeoff (PTO) shaft of a tractor to an implement. SAE and ANSI
publish standards for splines. Stress-concentration factors are greatest where the spline
ends and blends into the shaft, but are generally quite moderate.

For cases of low torque transmission, various means of transmitting torque are
available. These include pins, setscrews in hubs, tapered fits, and press fits.

Press and shrink fits for securing hubs to shafts are used both for torque transfer
and for preserving axial location. The resulting stress-concentration factor is usually
quite small. See Sec. 7–8 for guidelines regarding appropriate sizing and tolerancing to
transmit torque with press and shrink fits. A similar method is to use a split hub with
screws to clamp the hub to the shaft. This method allows for disassembly and lateral
adjustments. Another similar method uses a two-part hub consisting of a split inner
member that fits into a tapered hole. The assembly is then tightened to the shaft with
screws, which forces the inner part into the wheel and clamps the whole assembly
against the shaft.

Tapered fits between the shaft and the shaft-mounted device, such as a wheel, are
often used on the overhanging end of a shaft. Screw threads at the shaft end then permit
the use of a nut to lock the wheel tightly to the shaft. This approach is useful because it
can be disassembled, but it does not provide good axial location of the wheel on the shaft.

At the early stages of the shaft layout, the important thing is to select an appro-
priate means of transmitting torque, and to determine how it affects the overall shaft
layout. It is necessary to know where the shaft discontinuities, such as keyways, holes,
and splines, will be in order to determine critical locations for analysis.

Assembly and Disassembly

Consideration should be given to the method of assembling the components onto the
shaft, and the shaft assembly into the frame. This generally requires the largest diame-
ter in the center of the shaft, with progressively smaller diameters towards the ends to
allow components to be slid on from the ends. If a shoulder is needed on both sides of
a component, one of them must be created by such means as a retaining ring or by a
sleeve between two components. The gearbox itself will need means to physically posi-
tion the shaft into its bearings, and the bearings into the frame. This is typically accom-
plished by providing access through the housing to the bearing at one end of the shaft.
See Figs. 7–5 through 7–8 for examples.

Figure 7–5

Arrangement showing bearing
inner rings press-fitted to shaft
while outer rings float in the
housing. The axial clearance
should be sufficient only to
allow for machinery vibrations.
Note the labyrinth seal on the
right.
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Figure 7–6

Similar to the arrangement of
Fig. 7–5 except that the outer
bearing rings are preloaded.

Figure 7–7

In this arrangement the inner ring of the left-hand bearing is locked to the shaft between a
nut and a shaft shoulder. The locknut and washer are AFBMA standard. The snap ring in 
the outer race is used to positively locate the shaft assembly in the axial direction. Note the
floating right-hand bearing and the grinding runout grooves in the shaft.

When components are to be press-fit to the shaft, the shaft should be designed so
that it is not necessary to press the component down a long length of shaft. This may
require an extra change in diameter, but it will reduce manufacturing and assembly cost
by only requiring the close tolerance for a short length.

Consideration should also be given to the necessity of disassembling the compo-
nents from the shaft. This requires consideration of issues such as accessibility of
retaining rings, space for pullers to access bearings, openings in the housing to allow
pressing the shaft or bearings out, etc.

7–4 Shaft Design for Stress

Critical Locations

It is not necessary to evaluate the stresses in a shaft at every point; a few potentially
critical locations will suffice. Critical locations will usually be on the outer surface, at
axial locations where the bending moment is large, where the torque is present, and
where stress concentrations exist. By direct comparison of various points along the
shaft, a few critical locations can be identified upon which to base the design. An
assessment of typical stress situations will help.

Figure 7–8

This arrangement is similar to
Fig. 7–7 in that the left-hand
bearing positions the entire
shaft assembly. In this case
the inner ring is secured to
the shaft using a snap ring.
Note the use of a shield to
prevent dirt generated from
within the machine from
entering the bearing.
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Most shafts will transmit torque through a portion of the shaft. Typically the torque
comes into the shaft at one gear and leaves the shaft at another gear. A free body dia-
gram of the shaft will allow the torque at any section to be determined. The torque is
often relatively constant at steady state operation. The shear stress due to the torsion
will be greatest on outer surfaces.

The bending moments on a shaft can be determined by shear and bending moment
diagrams. Since most shaft problems incorporate gears or pulleys that introduce forces
in two planes, the shear and bending moment diagrams will generally be needed in two
planes. Resultant moments are obtained by summing moments as vectors at points of
interest along the shaft. The phase angle of the moments is not important since the
shaft rotates. A steady bending moment will produce a completely reversed moment
on a rotating shaft, as a specific stress element will alternate from compression to
tension in every revolution of the shaft. The normal stress due to bending moments
will be greatest on the outer surfaces. In situations where a bearing is located at the
end of the shaft, stresses near the bearing are often not critical since the bending
moment is small.

Axial stresses on shafts due to the axial components transmitted through helical
gears or tapered roller bearings will almost always be negligibly small compared to
the bending moment stress. They are often also constant, so they contribute little to
fatigue. Consequently, it is usually acceptable to neglect the axial stresses induced by
the gears and bearings when bending is present in a shaft. If an axial load is applied
to the shaft in some other way, it is not safe to assume it is negligible without check-
ing magnitudes.

Shaft Stresses

Bending, torsion, and axial stresses may be present in both midrange and alternating
components. For analysis, it is simple enough to combine the different types of stresses
into alternating and midrange von Mises stresses, as shown in Sec. 6–14, p. 317.
It is sometimes convenient to customize the equations specifically for shaft applica-
tions. Axial loads are usually comparatively very small at critical locations where
bending and torsion dominate, so they will be left out of the following equations. The
fluctuating stresses due to bending and torsion are given by

σa = K f
Mac

I
σm = K f

Mmc

I
(7–1)

τa = K f s
Tac

J
τm = K f s

Tmc

J
(7–2)

where Mm and Ma are the midrange and alternating bending moments, Tm and Ta are
the midrange and alternating torques, and K f and K f s are the fatigue stress-concentration
factors for bending and torsion, respectively.

Assuming a solid shaft with round cross section, appropriate geometry terms can
be introduced for c, I, and J resulting in

σa = K f
32Ma

πd3
σm = K f

32Mm

πd3
(7–3)

τa = K f s
16Ta

πd3
τm = K f s

16Tm

πd3
(7–4)
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Combining these stresses in accordance with the distortion energy failure theory,
the von Mises stresses for rotating round, solid shafts, neglecting axial loads, are
given by

σ ′
a = (σ 2

a + 3τ 2
a )1/2 =

[(
32K f Ma

πd3

)2

+ 3

(
16K f s Ta

πd3

)2
]1/2

(7–5)

σ ′
m = (σ 2

m + 3τ 2
m)1/2 =

[(
32K f Mm

πd3

)2

+ 3

(
16K f s Tm

πd3

)2
]1/2

(7–6)

Note that the stress-concentration factors are sometimes considered optional for the
midrange components with ductile materials, because of the capacity of the ductile
material to yield locally at the discontinuity.

These equivalent alternating and midrange stresses can be evaluated using an
appropriate failure curve on the modified Goodman diagram (See Sec. 6–12, p. 303, and
Fig. 6–27). For example, the fatigue failure criteria for the modified Goodman line as
expressed previously in Eq. (6–46) is

1

n
= σ ′

a

Se
+ σ ′

m

Sut

Substitution of σ ′
a and σ ′

m from Eqs. (7–5) and (7–6) results in

1

n
= 16

πd3

{
1

Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2 + 1

Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

}
For design purposes, it is also desirable to solve the equation for the diameter. This

results in

d =
(

16n

π

{
1

Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2

+ 1

Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

})1/3

Similar expressions can be obtained for any of the common failure criteria by sub-
stituting the von Mises stresses from Eqs. (7–5) and (7–6) into any of the failure
criteria expressed by Eqs. (6–45) through (6–48), p. 306. The resulting equations for
several of the commonly used failure curves are summarized below. The names
given to each set of equations identifies the significant failure theory, followed by a
fatigue failure locus name. For example, DE-Gerber indicates the stresses are com-
bined using the distortion energy (DE) theory, and the Gerber criteria is used for the
fatigue failure.

DE-Goodman

1

n
= 16

πd3

{
1

Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2 + 1

Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

}
(7–7)

d =
(

16n

π

{
1

Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2

+ 1

Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

})1/3 (7–8)

bud29281_ch07_358-408.qxd  12/9/09  4:28PM  Page 368 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Shafts and Shaft Components 369

DE-Gerber

1

n
= 8A

πd3Se

⎧⎨⎩1 +
[

1 +
(

2BSe

ASut

)2
]1/2

⎫⎬⎭ (7–9)

d =
⎛⎝8n A

π Se

⎧⎨⎩1 +
[

1 +
(

2BSe

ASut

)2
]1/2

⎫⎬⎭
⎞⎠1/3

(7–10)

where

A =
√

4(K f Ma)2 + 3(K f s Ta)2

B =
√

4(K f Mm)2 + 3(K f s Tm)2

DE-ASME Elliptic

1

n
= 16

πd3

[
4

(
K f Ma

Se

)2

+ 3

(
K f s Ta

Se

)2

+ 4

(
K f Mm

Sy

)2

+ 3

(
K f s Tm

Sy

)2
]1/2

(7–11)

d =
⎧⎨⎩16n

π

[
4

(
K f Ma

Se

)2

+ 3

(
K f s Ta

Se

)2

+ 4

(
K f Mm

Sy

)2

+ 3

(
K f s Tm

Sy

)2
]1/2

⎫⎬⎭
1/3

(7–12)

DE-Soderberg

1

n
= 16

πd3

{
1

Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2 + 1

Syt

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

}
(7–13)

d =
(

16n

π

{
1

Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2

+ 1

Syt

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

})1/3 (7–14)

For a rotating shaft with constant bending and torsion, the bending stress is com-
pletely reversed and the torsion is steady. Equations (7–7) through (7–14) can be sim-
plified by setting Mm and Ta equal to 0, which simply drops out some of the terms.

Note that in an analysis situation in which the diameter is known and the factor of
safety is desired, as an alternative to using the specialized equations above, it is always
still valid to calculate the alternating and mid-range stresses using Eqs. (7–5) and (7–6),
and substitute them into one of the equations for the failure criteria, Eqs. (6–45) through
(6–48), and solve directly for n. In a design situation, however, having the equations
pre-solved for diameter is quite helpful.

It is always necessary to consider the possibility of static failure in the first load cycle.
The Soderberg criteria inherently guards against yielding, as can be seen by noting that
its failure curve is conservatively within the yield (Langer) line on Fig. 6–27, p. 305. The
ASME Elliptic also takes yielding into account, but is not entirely conservative
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throughout its entire range. This is evident by noting that it crosses the yield line in 
Fig. 6–27. The Gerber and modified Goodman criteria do not guard against yielding,
requiring a separate check for yielding. A von Mises maximum stress is calculated for this
purpose.

σ ′
max = [

(σm + σa)2 + 3 (τm + τa)2]1/2

=
[(

32K f (Mm + Ma)

πd3

)2

+ 3

(
16K f s (Tm + Ta)

πd3

)2
]1/2

(7–15)

To check for yielding, this von Mises maximum stress is compared to the yield
strength, as usual.

ny = Sy

σ ′
max

(7–16)

For a quick, conservative check, an estimate for σ ′
max can be obtained by simply

adding σ ′
a and σ ′

m . (σ ′
a + σ ′

m ) will always be greater than or equal to σ ′
max, and will

therefore be conservative.

EXAMPLE 7–1 At a machined shaft shoulder the small diameter d is 1.100 in, the large diameter D is
1.65 in, and the fillet radius is 0.11 in. The bending moment is 1260 lbf · in and the
steady torsion moment is 1100 lbf · in. The heat-treated steel shaft has an ultimate
strength of Sut = 105 kpsi and a yield strength of Sy = 82 kpsi. The reliability goal
is 0.99.

(a) Determine the fatigue factor of safety of the design using each of the fatigue failure
criteria described in this section.

(b) Determine the yielding factor of safety.

Solution (a) D/d = 1.65/1.100 = 1.50, r/d = 0.11/1.100 = 0.10, Kt = 1.68 (Fig. A–15–9),
Kts = 1.42 (Fig. A–15–8), q = 0.85 (Fig. 6–20), qshear = 0.88 (Fig. 6–21).

From Eq. (6–32), 

K f = 1 + 0.85(1.68 − 1) = 1.58

K f s = 1 + 0.88(1.42 − 1) = 1.37

Eq. (6–8): S′
e = 0.5(105) = 52.5 kpsi

Eq. (6–19): ka = 2.70(105)−0.265 = 0.787

Eq. (6–20): kb =
(

1.100

0.30

)−0.107

= 0.870

kc = kd = kf = 1
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Table 6–6: ke = 0.814

Se = 0.787(0.870)0.814(52.5) = 29.3 kpsi

For a rotating shaft, the constant bending moment will create a completely reversed
bending stress.

Ma = 1260 lbf · in Tm = 1100 lbf · in Mm = Ta = 0

Applying Eq. (7–7) for the DE-Goodman criteria gives

1

n
= 16

π(1.1)3

{[
4 (1.58 · 1260)2

]1/2

29 300
+

[
3 (1.37 · 1100)2

]1/2

105 000

}
= 0.615

Answer n = 1.63 DE-Goodman

Similarly, applying Eqs. (7–9), (7–11), and (7–13) for the other failure criteria,

Answer n = 1.87 DE-Gerber

Answer n = 1.88 DE-ASME Elliptic

Answer n = 1.56 DE-Soderberg

For comparison, consider an equivalent approach of calculating the stresses and apply-
ing the fatigue failure criteria directly. From Eqs. (7–5) and (7–6),

σ ′
a =

[(
32 · 1.58 · 1260

π (1.1)3

)2
]1/2

= 15 235 psi

σ ′
m =

[
3

(
16 · 1.37 · 1100

π (1.1)3

)2
]1/2

= 9988 psi

Taking, for example, the Goodman failure critera, application of Eq. (6–46) 
gives

1

n
= σ ′

a

Se
+ σ ′

m

Sut
= 15 235

29 300
+ 9988

105 000
= 0.615

n = 1.63

which is identical with the previous result. The same process could be used for the other
failure criteria.

(b) For the yielding factor of safety, determine an equivalent von Mises maximum
stress using Eq. (7–15).

σ ′
max =

[(
32(1.58) (1260)

π (1.1)3

)2

+ 3

(
16(1.37) (1100)

π (1.1)3

)2
]1/2

= 18 220 psi

Answer ny = Sy

σ ′
max

= 82 000

18 220
= 4.50
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For comparison, a quick and very conservative check on yielding can be obtained
by replacing σ ′

max with σ ′
a + σ ′

m . This just saves the extra time of calculating σ ′
max if

σ ′
a and σ ′

m have already been determined. For this example,

ny = Sy

σ ′
a + σ ′

m

= 82 000

15 235 + 9988
= 3.25

which is quite conservative compared with ny � 4.50.

Estimating Stress Concentrations

The stress analysis process for fatigue is highly dependent on stress concentrations.
Stress concentrations for shoulders and keyways are dependent on size specifications
that are not known the first time through the process. Fortunately, since these elements
are usually of standard proportions, it is possible to estimate the stress-concentration
factors for initial design of the shaft. These stress concentrations will be fine-tuned in
successive iterations, once the details are known.

Shoulders for bearing and gear support should match the catalog recommendation
for the specific bearing or gear. A look through bearing catalogs shows that a typical
bearing calls for the ratio of D/d to be between 1.2 and 1.5. For a first approximation,
the worst case of 1.5 can be assumed. Similarly, the fillet radius at the shoulder needs
to be sized to avoid interference with the fillet radius of the mating component. There is
a significant variation in typical bearings in the ratio of fillet radius versus bore diameter,
with r/d typically ranging from around 0.02 to 0.06. A quick look at the stress con-
centration charts (Figures A–15–8 and A–15–9) shows that the stress concentrations for
bending and torsion increase significantly in this range. For example, with D/d = 1.5
for bending, Kt = 2.7 at r/d = 0.02, and reduces to Kt = 2.1 at r/d = 0.05, and
further down to Kt = 1.7 at r/d = 0.1. This indicates that this is an area where some
attention to detail could make a significant difference. Fortunately, in most cases the
shear and bending moment diagrams show that bending moments are quite low near
the bearings, since the bending moments from the ground reaction forces are small.

In cases where the shoulder at the bearing is found to be critical, the designer
should plan to select a bearing with generous fillet radius, or consider providing for a
larger fillet radius on the shaft by relieving it into the base of the shoulder as shown
in Fig. 7–9a. This effectively creates a dead zone in the shoulder area that does not

Sharp radius

Bearing

Shaft

Large radius undercut
Stress flow

(a)

Shoulder
relief groove

(b)

Large radius
relief groove

(c)

Figure 7–9

Techniques for reducing stress concentration at a shoulder supporting a bearing with a sharp radius. (a) Large radius undercut 
into the shoulder. (b) Large radius relief groove into the back of the shoulder. (c) Large radius relief groove into the small diameter.
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carry the bending stresses, as shown by the stress flow lines. A shoulder relief groove
as shown in Fig. 7–9b can accomplish a similar purpose. Another option is to cut a
large-radius relief groove into the small diameter of the shaft, as shown in Fig. 7–9c.
This has the disadvantage of reducing the cross-sectional area, but is often used in cases
where it is useful to provide a relief groove before the shoulder to prevent the grinding
or turning operation from having to go all the way to the shoulder.

For the standard shoulder fillet, for estimating Kt values for the first iteration,
an r/d ratio should be selected so Kt values can be obtained. For the worst end
of the spectrum, with r/d = 0.02 and D/d = 1.5, Kt values from the stress
concentration charts for shoulders indicate 2.7 for bending, 2.2 for torsion, and 3.0
for axial.

A keyway will produce a stress concentration near a critical point where the load-
transmitting component is located. The stress concentration in an end-milled keyseat
is a function of the ratio of the radius r at the bottom of the groove and the shaft
diameter d. For early stages of the design process, it is possible to estimate the stress
concentration for keyways regardless of the actual shaft dimensions by assuming a
typical ratio of r/d = 0.02. This gives Kt = 2.14 for bending and Kts = 3.0 for
torsion, assuming the key is in place.

Figures A–15–16 and A–15–17 give values for stress concentrations for flat-
bottomed grooves such as used for retaining rings. By examining typical retaining
ring specifications in vendor catalogs, it can be seen that the groove width is typically
slightly greater than the groove depth, and the radius at the bottom of the groove is
around 1/10 of the groove width. From Figs. A–15–16 and A–15–17, stress-concentration
factors for typical retaining ring dimensions are around 5 for bending and axial, and 3
for torsion. Fortunately, the small radius will often lead to a smaller notch sensitivity,
reducing K f .

Table 7–1 summarizes some typical stress-concentration factors for the first itera-
tion in the design of a shaft. Similar estimates can be made for other features. The point
is to notice that stress concentrations are essentially normalized so that they are depen-
dent on ratios of geometry features, not on the specific dimensions. Consequently, by
estimating the appropriate ratios, the first iteration values for stress concentrations can
be obtained. These values can be used for initial design, then actual values inserted once
diameters have been determined.

Table 7–1

First Iteration Estimates for Stress-Concentration Factors Kt and Kts.

Warning: These factors are only estimates for use when actual dimensions are not yet
determined. Do not use these once actual dimensions are available.

Bending Torsional Axial

Shoulder fillet—sharp (r/d � 0.02) 2.7 2.2 3.0

Shoulder fillet—well rounded (r/d � 0.1) 1.7 1.5 1.9

End-mill keyseat (r/d � 0.02) 2.14 3.0 —

Sled runner keyseat 1.7 — —

Retaining ring groove 5.0 3.0 5.0

Missing values in the table are not readily available.
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EXAMPLE 7–2
This example problem is part of a larger case study. See Chap. 18 for the full
context.

A double reduction gearbox design has developed to the point that the general
layout and axial dimensions of the countershaft carrying two spur gears has been
proposed, as shown in Fig. 7–10. The gears and bearings are located and supported
by shoulders, and held in place by retaining rings. The gears transmit torque
through keys. Gears have been specified as shown, allowing the tangential and
radial forces transmitted through the gears to the shaft to be determined as
follows.

W t
23 = 540 lbf W t

54 = 2431 lbf

W r
23 = 197 lbf W r

54 = 885 lbf

where the superscripts t and r represent tangential and radial directions,
respectively; and, the subscripts 23 and 54 represent the forces exerted 
by gears 2 and 5 (not shown) on gears 3 and 4, respectively. 

Proceed with the next phase of the design, in which a suitable material 
is selected, and appropriate diameters for each section of the shaft are
estimated, based on providing sufficient fatigue and static stress capacity 
for infinite life of the shaft, with minimum safety factors of 1.5.
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Figure 7–10

Shaft layout for Ex. 7–2. Dimensions in inches.
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Start with Point I, where the bending moment is high, there is a stress con-
centration at the shoulder, and the torque is present.

At I , Ma = 3651 lbf � in, Tm = 3240 lbf � in, Mm = Ta = 0

BA
G I J K

RBy

RBz
RAz

RAy

W54
t

W54
r

655

3996
3341

230
2220

�1776x-z Plane

115
V

M

160

1632

1472

713

907

�725

x-y Plane

357V

M

4316
3651

749
2398

MTOT

3240

T

y

z

x

W23
t

W23
rSolution

Perform free body diagram
analysis to get reaction forces
at the bearings.

RAz = 115.0 lbf

RAy = 356.7 lbf

RBz = 1776.0 lbf

RBy = 725.3 lbf

From �Mx , find the torque in
the shaft between the gears,
T = W t

23(d3/2) = 540 (12/2) =
3240 lbf · in �.

Generate shear-moment 
diagrams for two planes.

Combine orthogonal planes as
vectors to get total moments,

e.g., at J,
√

39962 + 16322 =
4316 lbf · in.
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Assume generous fillet radius for gear at I.
From Table 7–1, estimate Kt = 1.7, Kts = 1.5. For quick, conservative first

pass, assume K f = Kt , K f s = Kts .
Choose inexpensive steel, 1020 CD, with Sut = 68 kpsi. For Se,

Eq. (6–19) ka = aSb
ut = 2.7(68)−0.265 = 0.883

Guess kb = 0.9. Check later when d is known.

kc = kd = ke = 1

Eq. (6–18) Se = (0.883)(0.9)(0.5)(68) = 27.0 kpsi

For first estimate of the small diameter at the shoulder at point I, use the 
DE-Goodman criterion of Eq. (7–8). This criterion is good for the initial design,
since it is simple and conservative. With Mm = Ta = 0, Eq. (7–8) reduces to

d =

⎧⎪⎨⎪⎩16n

π

⎛⎜⎝2
(
K f Ma

)
Se

+
[
3
(
K f s Tm

)2
]1/2

Sut

⎞⎟⎠
⎫⎪⎬⎪⎭

1/3

d =
{

16(1.5)

π

(
2 (1.7) (3651)

27 000
+

{
3 [(1.5) (3240)]2

}1/2

68 000

)}1/3

d = 1.65 in

All estimates have probably been conservative, so select the next standard size
below 1.65 in. and check, d � 1.625 in.

A typical D/d ratio for support at a shoulder is D/d � 1.2, thus, D � 1.2(1.625) �
1.95 in. Increase to D � 2.0 in. A nominal 2 in. cold-drawn shaft diameter can be
used. Check if estimates were acceptable.

D/d = 2/1.625 = 1.23

Assume fillet radius r = d/10 ∼= 0.16 in. r/d = 0.1

Kt = 1.6 (Fig. A–15–9), q = 0.82 (Fig. 6–20)

Eq. (6–32) K f = 1 + 0.82(1.6 − 1) = 1.49

Kts = 1.35 (Fig. A–15–8), qs = 0.85 (Fig. 6–21)

K f s = 1 + 0.85(1.35 − 1) = 1.30

ka = 0.883 (no change)

Eq. (6–20) kb =
(

1.625

0.3

)−0.107

= 0.835

Se = (0.883)(0.835)(0.5)(68) = 25.1 kpsi

Eq. (7–5) σ ′
a = 32K f Ma

πd3
= 32(1.49)(3651)

π(1.625)3
= 12 910 psi

Eq. (7–6) σ ′
m =

[
3

(
16K f s Tm

πd3

)2
]1/2

=
√

3(16)(1.30)(3240)

π(1.625)3
= 8659 psi

Using Goodman criterion

1

n f
= σ ′

a

Se
+ σ ′

m

Sut
= 129 10

25 100
+ 8659

68 000
= 0.642

n f = 1.56
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Note that we could have used Eq. (7–7) directly.
Check yielding.

ny = Sy

σ ′
max

>
Sy

σ ′
a + σ ′

m

= 57 000

12 910 + 8659
= 2.64

Also check this diameter at the end of the keyway, just to the right of point I,
and at the groove at point K. From moment diagram, estimate M at end of 
keyway to be M � 3750 lbf-in.

Assume the radius at the bottom of the keyway will be the standard 
r�d � 0.02, r � 0.02 d � 0.02 (1.625) � 0.0325 in.

Kt = 2.14 (Table 7–1), q � 0.65 (Fig. 6–20)

K f = 1 + 0.65(2.14 − 1) = 1.74

Kts = 3.0 (Table 7–1), qs = 0.71 (Fig. 6–21)

K f s = 1 + 0.71(3 − 1) = 2.42

σ ′
a = 32K f Ma

πd3
= 32(1.74)(3750)

π(1.625)3
= 15 490 psi

σ ′
m =

√
3(16)

K f s Tm

πd3
=

√
3(16)(2.42)(3240)

π(1.625)3
= 16 120 psi

1

n f
= σ ′

a

Se
+ σ ′

m

Sut
= 15 490

25 100
+ 16 120

68 000
= 0.854

n f = 1.17

The keyway turns out to be more critical than the shoulder. We can either
increase the diameter or use a higher strength material. Unless the deflection
analysis shows a need for larger diameters, let us choose to increase the
strength. We started with a very low strength and can afford to increase it 
some to avoid larger sizes. Try 1050 CD with Sut = 100 kpsi.

Recalculate factors affected by Sut , i.e., ka → Se; q → K f → σ ′
a

ka = 2.7(100)−0.265 = 0.797, Se = 0.797(0.835)(0.5)(100) = 33.3 kpsi

q = 0.72, K f = 1 + 0.72(2.14 − 1) = 1.82

σ ′
a = 32(1.82)(3750)

π(1.625)3
= 16 200 psi

1

n f
= 16 200

33 300
+ 16 120

100 000
= 0.648

n f = 1.54

Since the Goodman criterion is conservative, we will accept this as close enough
to the requested 1.5.

Check at the groove at K, since Kt for flat-bottomed grooves are often very
high. From the torque diagram, note that no torque is present at the groove.
From the moment diagram, Ma = 2398 lbf � in, Mm = Ta = Tm = 0. To quickly
check if this location is potentially critical, just use K f = Kt = 5.0 as an
estimate, from Table 7–1.

σa = 32K f Ma

πd3
= 32(5)(2398)

π(1.625)3
= 28 460 psi

n f = Se

σa
= 33 300

28 460
= 1.17
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This is low. We will look up data for a specific retaining ring to obtain K f more
accurately. With a quick online search of a retaining ring specification using the
website www.globalspec.com, appropriate groove specifications for a retaining ring
for a shaft diameter of 1.625 in are obtained as follows: width, a = 0.068 in;
depth, t = 0.048 in; and corner radius at bottom of groove, r = 0.01 in. From 
Fig. A–15–16, with r/t = 0.01/0.048 = 0.208, and a/t = 0.068/0.048 = 1.42

Kt = 4.3 , q = 0.65 (Fig. 6–20)

K f = 1 + 0.65(4.3 − 1) = 3.15

σa = 32K f Ma

πd3
= 32(3.15)(2398)

π(1.625)3
= 17 930 psi

n f = Se

σa
= 33 300

17 930
= 1.86

Quickly check if point M might be critical. Only bending is present, and the moment
is small, but the diameter is small and the stress concentration is high for a sharp
fillet required for a bearing. From the moment diagram, 
Ma = 959 lbf · in, and Mm = Tm = Ta = 0.

Estimate Kt = 2.7 from Table 7–1, d = 1.0 in, and fillet radius r to fit a typical
bearing.

r/d = 0.02, r = 0.02(1) = 0.02

q = 0.7 (Fig. 6–20)

K f = 1 + (0.7)(2.7 − 1) = 2.19

σa = 32K f Ma

πd3
= 32(2.19)(959)

π(1)3
= 21 390 psi

n f = Se

σa
= 33 300

21 390
= 1.56

Should be OK. Close enough to recheck after bearing is selected.
With the diameters specified for the critical locations, fill in trial values for

the rest of the diameters, taking into account typical shoulder heights for
bearing and gear support.

D1 = D7 = 1.0 in

D2 = D6 = 1.4 in

D3 = D5 = 1.625 in

D4 = 2.0 in

The bending moments are much less on the left end of shaft, so D1, D2, and D3
could be smaller. However, unless weight is an issue, there is little advantage to
requiring more material removal. Also, the extra rigidity may be needed to keep
deflections small.
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7–5 Deflection Considerations
Deflection analysis at even a single point of interest requires complete geometry infor-
mation for the entire shaft. For this reason, it is desirable to design the dimensions at
critical locations to handle the stresses, and fill in reasonable estimates for all other
dimensions, before performing a deflection analysis. Deflection of the shaft, both lin-
ear and angular, should be checked at gears and bearings. Allowable deflections will
depend on many factors, and bearing and gear catalogs should be used for guidance
on allowable misalignment for specific bearings and gears. As a rough guideline, typ-
ical ranges for maximum slopes and transverse deflections of the shaft centerline are
given in Table 7–2. The allowable transverse deflections for spur gears are dependent
on the size of the teeth, as represented by the diametral pitch P � number of
teeth/pitch diameter.

In Sec. 4–4 several beam deflection methods are described. For shafts, where the
deflections may be sought at a number of different points, integration using either
singularity functions or numerical integration is practical. In a stepped shaft, the cross-
sectional properties change along the shaft at each step, increasing the complexity of
integration, since both M and I vary. Fortunately, only the gross geometric dimensions
need to be included, as the local factors such as fillets, grooves, and keyways do not
have much impact on deflection. Example 4–7 demonstrates the use of singularity func-
tions for a stepped shaft. Many shafts will include forces in multiple planes, requiring
either a three-dimensional analysis, or the use of superposition to obtain deflections in
two planes which can then be summed as vectors.

A deflection analysis is straightforward, but it is lengthy and tedious to carry out
manually, particularly for multiple points of interest. Consequently, practically all shaft
deflection analysis will be evaluated with the assistance of software. Any general-
purpose finite-element software can readily handle a shaft problem (see Chap. 19).
This is practical if the designer is already familiar with using the software and with how
to properly model the shaft. Special-purpose software solutions for 3-D shaft analysis
are available, but somewhat expensive if only used occasionally. Software requiring
very little training is readily available for planar beam analysis, and can be downloaded
from the internet. Example 7–3 demonstrates how to incorporate such a program for a
shaft with forces in multiple planes.

Slopes

Tapered roller 0.0005–0.0012 rad

Cylindrical roller 0.0008–0.0012 rad

Deep-groove ball 0.001–0.003 rad

Spherical ball 0.026–0.052 rad

Self-align ball 0.026–0.052 rad

Uncrowned spur gear < 0.0005 rad

Transverse Deflections

Spur gears with P < 10 teeth/in 0.010 in

Spur gears with 11 < P < 19 0.005 in

Spur gears with 20 < P < 50 0.003 in

Table 7–2

Typical Maximum

Ranges for Slopes and

Transverse Deflections
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Beam length: 11.5 in
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Figure 7–11

Shear, moment, slope, and deflection plots from two planes. (Source: Beam 2D Stress Analysis, Orand
Systems, Inc.)

EXAMPLE 7–3
This example problem is part of a larger case study. See Chap. 18 for the full
context.

In Ex. 7–2, a preliminary shaft geometry was obtained on the basis of design
for stress. The resulting shaft is shown in Fig. 7–10, with proposed diameters of

D1 = D7 = 1 in

D2 = D6 = 1.4 in

D3 = D5 = 1.625 in

D4 = 2.0 in

Check that the deflections and slopes at the gears and bearings are acceptable. If
necessary, propose changes in the geometry to resolve any problems.

Solution
A simple planar beam analysis program will be used. By modeling the shaft twice,
with loads in two orthogonal planes, and combining the results, the shaft deflec-
tions can readily be obtained. For both planes, the material is selected (steel with
E = 30 Mpsi), the shaft lengths and diameters are entered, and the bearing loca-
tions are specified. Local details like grooves and keyways are ignored, as they
will have insignificant effect on the deflections. Then the tangential gear forces
are entered in the horizontal xz plane model, and the radial gear forces are
entered in the vertical xy plane model. The software can calculate the bearing
reaction forces, and numerically integrate to generate plots for shear, moment,
slope, and deflection, as shown in Fig. 7–11.
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The deflections and slopes at points of interest are obtained from the plots,

and combined with orthogonal vector addition, that is, δ =
√

δ2
xz + δ2

xy . Results are
shown in Table 7–3.

Whether these values are acceptable will depend on the specific bearings and
gears selected, as well as the level of performance expected. According 
to the guidelines in Table 7–2, all of the bearing slopes are well below typical
limits for ball bearings. The right bearing slope is within the typical range for
cylindrical bearings. Since the load on the right bearing is relatively high, a
cylindrical bearing might be used. This constraint should be checked against 
the specific bearing specifications once the bearing is selected.

The gear slopes and deflections more than satisfy the limits recommended
in Table 7–2. It is recommended to proceed with the design, with an 
awareness that changes that reduce rigidity should warrant another
deflection check.

Point of Interest xz Plane xy Plane Total

Left bearing slope 0.02263 deg 0.01770 deg 0.02872 deg

0.000501 rad

Right bearing slope 0.05711 deg 0.02599 deg 0.06274 deg

0.001095 rad

Left gear slope 0.02067 deg 0.01162 deg 0.02371 deg

0.000414 rad

Right gear slope 0.02155 deg 0.01149 deg 0.02442 deg

0.000426 rad

Left gear deflection 0.0007568 in 0.0005153 in 0.0009155 in

Right gear deflection 0.0015870 in 0.0007535 in 0.0017567 in

Table 7–3

Slope and Deflection Values at Key Locations

Once deflections at various points have been determined, if any value is larger than
the allowable deflection at that point, since I is proportional to d4, a new diameter can
be found from

dnew = dold

∣∣∣∣nd yold

yall

∣∣∣∣1/4

(7–17)

where yall is the allowable deflection at that station and nd is the design factor. Similarly,
if any slope is larger than the allowable slope θall, a new diameter can be found from

dnew = dold

∣∣∣∣nd (dy/dx)old

(slope)all

∣∣∣∣1/4

(7–18)

where (slope)all is the allowable slope. As a result of these calculations, determine the
largest dnew/dold ratio, then multiply all diameters by this ratio. The tight constraint will
be just tight, and all others will be loose. Don’t be too concerned about end journal
sizes, as their influence is usually negligible. The beauty of the method is that the
deflections need to be completed just once and constraints can be rendered loose but for
one, with diameters all identified without reworking every deflection.
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2C.R. Mischke, “Tabular Method for Transverse Shear Deflection,” Sec. 17.3 in Joseph E. Shigley, Charles
R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill,
New York, 2004.
3R. Bruce Hopkins, Design Analysis of Shafts and Beams, McGraw-Hill, New York, 1970, pp. 93–99.

The transverse shear V at a section of a beam in flexure imposes a shearing deflec-
tion, which is superposed on the bending deflection. Usually such shearing deflection
is less than 1 percent of the transverse bending deflection, and it is seldom evaluated.
However, when the shaft length-to-diameter ratio is less than 10, the shear component
of transverse deflection merits attention. There are many short shafts. A tabular method
is explained in detail elsewhere2, including examples.

For right-circular cylindrical shafts in torsion the angular deflection θ is given in
Eq. (4–5). For a stepped shaft with individual cylinder length li and torque Ti , the
angular deflection can be estimated from

θ =
∑

θi =
∑ Tili

Gi Ji
(7–19)

or, for a constant torque throughout homogeneous material, from

θ = T

G

∑ li

Ji
(7–20)

This should be treated only as an estimate, since experimental evidence shows that the
actual θ is larger than given by Eqs. (7–19) and (7–20).3

EXAMPLE 7–4 For the shaft in Ex. 7–3, it was noted that the slope at the right bearing is near the limit
for a cylindrical roller bearing. Determine an appropriate increase in diameters to bring
this slope down to 0.0005 rad.

Solution Applying Eq. (7–17) to the deflection at the right bearing gives

dnew = dold

∣∣∣∣ndslopeold

slopeall

∣∣∣∣1/4

= 1.0

∣∣∣∣ (1)(0.001095)

(0.0005)

∣∣∣∣1/4

= 1.216 in

Multiplying all diameters by the ratio

dnew

dold
= 1.216

1.0
= 1.216

gives a new set of diameters,

D1 = D7 = 1.216 in

D2 = D6 = 1.702 in

D3 = D5 = 1.976 in

D4 = 2.432 in

Repeating the beam deflection analysis of Ex. 7–3 with these new diameters produces
a slope at the right bearing of 0.0005 in, with all other deflections less than their previ-
ous values.
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If torsional stiffness is defined as ki = Ti/θi and, since θi = Ti/ki and
θ = ∑

θi = ∑
(Ti/ki ), for constant torque θ = T

∑
(1/ki ), it follows that the torsional

stiffness of the shaft k in terms of segment stiffnesses is

1

k
=

∑ 1

ki
(7–21)

7–6 Critical Speeds for Shafts
When a shaft is turning, eccentricity causes a centrifugal force deflection, which is
resisted by the shaft’s flexural rigidity E I . As long as deflections are small, no harm is
done. Another potential problem, however, is called critical speeds: at certain speeds
the shaft is unstable, with deflections increasing without upper bound. It is fortunate
that although the dynamic deflection shape is unknown, using a static deflection curve
gives an excellent estimate of the lowest critical speed. Such a curve meets the bound-
ary condition of the differential equation (zero moment and deflection at both bearings)
and the shaft energy is not particularly sensitive to the exact shape of the deflection
curve. Designers seek first critical speeds at least twice the operating speed.

The shaft, because of its own mass, has a critical speed. The ensemble of attach-
ments to a shaft likewise has a critical speed that is much lower than the shaft’s intrin-
sic critical speed. Estimating these critical speeds (and harmonics) is a task of the
designer. When geometry is simple, as in a shaft of uniform diameter, simply supported,
the task is easy. It can be expressed4 as

ω1 =
(

π

l

)2
√

E I

m
=

(
π

l

)2
√

gE I

Aγ
(7–22)

where m is the mass per unit length, A the cross-sectional area, and γ the specific
weight. For an ensemble of attachments, Rayleigh’s method for lumped masses gives5

ω1 =
√

g
∑

wi yi∑
wi y2

i

(7–23)

where wi is the weight of the ith location and yi is the deflection at the ith body location.
It is possible to use Eq. (7–23) for the case of Eq. (7–22) by partitioning the shaft into
segments and placing its weight force at the segment centroid as seen in Fig. 7–12.
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(a)

x

y

(b)

x

y

Figure 7–12

(a) A uniform-diameter 
shaft for Eq. (7–22). (b) A
segmented uniform-diameter
shaft for Eq. (7–23).

4William T. Thomson and Marie Dillon Dahleh, Theory of Vibration with Applications, Prentice Hall,
5th ed., 1998, p. 273.
5Thomson, op. cit., p. 357.
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Computer assistance is often used to lessen the difficulty in finding transverse deflections
of a stepped shaft. Rayleigh’s equation overestimates the critical speed.

To counter the increasing complexity of detail, we adopt a useful viewpoint.
Inasmuch as the shaft is an elastic body, we can use influence coefficients. An influence
coefficient is the transverse deflection at location i on a shaft due to a unit load at loca-
tion j on the shaft. From Table A–9–6 we obtain, for a simply supported beam with a
single unit load as shown in Fig. 7–13,

δi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bj xi

6E Il

(
l2 − b2

j − x2
i

)
xi ≤ ai

aj (l − xi )

6E Il

(
2lxi − a2

j − x2
i

)
xi > ai

(7–24)

For three loads the influence coefficients may be displayed as

Maxwell’s reciprocity theorem6 states that there is a symmetry about the main diago-
nal, composed of δ11, δ22, and δ33, of the form δi j = δj i . This relation reduces the work
of finding the influence coefficients. From the influence coefficients above, one can find
the deflections y1, y2, and y3 of Eq. (7–23) as follows:

y1 = F1δ11 + F2δ12 + F3δ13

y2 = F1δ21 + F2δ22 + F3δ23 (7–25)

y3 = F1δ31 + F2δ32 + F3δ33

The forces Fi can arise from weight attached wi or centrifugal forces miω
2 yi . The

equation set (7–25) written with inertial forces can be displayed as

y1 = m1ω
2 y1δ11 + m2ω

2 y2δ12 + m3ω
2 y3δ13

y2 = m1ω
2 y1δ21 + m2ω

2 y2δ22 + m3ω
2 y3δ23

y3 = m1ω
2 y1δ31 + m2ω

2 y2δ32 + m3ω
2 y3δ33

j

i 1 2 3

1 δ11 δ12 δ13

2 δ21 δ22 δ23

3 δ31 δ32 δ33
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aj

l

y

bj

x

xi

Unit loadFigure 7–13

The influence coefficient δi j

is the deflection at i due to a
unit load at j.

6Thomson, op. cit., p. 167.

bud29281_ch07_358-408.qxd  12/9/09  4:29PM  Page 384 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



which can be rewritten as

(m1δ11 − 1/ω2)y1 + (m2δ12)y2 + (m3δ13)y3 = 0

(m1δ21)y1 + (m2δ22 − 1/ω2)y2 + (m3δ23)y3 = 0 (a)

(m1δ31)y1 + (m2δ32)y2 + (m3δ33 − 1/ω2)y3 = 0

Equation set (a) is three simultaneous equations in terms of y1, y2, and y3. To avoid the
trivial solution y1 = y2 = y3 = 0, the determinant of the coefficients of y1, y2, and y3

must be zero (eigenvalue problem). Thus,∣∣∣∣∣∣∣
(m1δ11 − 1/ω2) m2δ12 m3δ13

m1δ21 (m2δ22 − 1/ω2) m3δ23

m1δ31 m2δ32 (m3δ33 − 1/ω2)

∣∣∣∣∣∣∣ = 0 (7–26)

which says that a deflection other than zero exists only at three distinct values of ω, the
critical speeds. Expanding the determinant, we obtain(

1

ω2

)3

− (m1δ11 + m2δ22 + m3δ33)

(
1

ω2

)2

+ · · · = 0 (7–27)

The three roots of Eq. (7–27) can be expressed as 1/ω2
1, 1/ω2

2, and 1/ω2
3. Thus

Eq. (7–27) can be written in the form(
1

ω2
− 1

ω2
1

)(
1

ω2
− 1

ω2
2

)(
1

ω2
− 1

ω2
3

)
= 0

or (
1

ω2

)3

−
(

1

ω2
1

+ 1

ω2
2

+ 1

ω2
3

)(
1

ω2

)2

+ · · · = 0 (7–28)

Comparing Eqs. (7–27) and (7–28) we see that

1

ω2
1

+ 1

ω2
2

+ 1

ω2
3

= m1δ11 + m2δ22 + m3δ33 (7–29)

If we had only a single mass m1 alone, the critical speed would be given by 1/ω2 =
m1δ11. Denote this critical speed as ω11 (which considers only m1 acting alone).
Likewise for m2 or m3 acting alone, we similarly define the terms 1/ω2

22 = m2δ22 or
1/ω2

33 = m3δ33, respectively. Thus, Eq. (7–29) can be rewritten as

1

ω2
1

+ 1

ω2
2

+ 1

ω2
3

= 1

ω2
11

+ 1

ω2
22

+ 1

ω2
33

(7–30)

If we order the critical speeds such that ω1 < ω2 < ω3, then 1/ω2
1 � 1/ω2

2 , and 1/ω2
3.

So the first, or fundamental, critical speed ω1 can be approximated by

1

ω2
1

.= 1

ω2
11

+ 1

ω2
22

+ 1

ω2
33

(7–31)

This idea can be extended to an n-body shaft:

1

ω2
1

.=
n∑

1=1

1

ω2
i i

(7–32)
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This is called Dunkerley’s equation. By ignoring the higher mode term(s), the first
critical speed estimate is lower than actually is the case.

Since Eq. (7–32) has no loads appearing in the equation, it follows that if each load
could be placed at some convenient location transformed into an equivalent load, then
the critical speed of an array of loads could be found by summing the equivalent loads,
all placed at a single convenient location. For the load at station 1, placed at the center
of span, denoted with the subscript c, the equivalent load is found from

ω2
11 = 1

m1δ11
= g

w1δ11
= g

w1cδcc

or

w1c = w1
δ11

δcc
(7–33)

EXAMPLE 7–5 Consider a simply supported steel shaft as depicted in Fig. 7–14, with 1 in diameter and
a 31-in span between bearings, carrying two gears weighing 35 and 55 lbf.
(a) Find the influence coefficients.
(b) Find 

∑
wy and 

∑
wy2 and the first critical speed using Rayleigh’s equation,

Eq. (7–23).
(c) From the influence coefficients, find ω11 and ω22.
(d) Using Dunkerley’s equation, Eq. (7–32), estimate the first critical speed.
(e) Use superposition to estimate the first critical speed.
( f ) Estimate the shaft’s intrinsic critical speed. Suggest a modification to Dunkerley’s
equation to include the effect of the shaft’s mass on the first critical speed of the
attachments.

Solution (a) I = πd4

64
= π(1)4

64
= 0.049 09 in4

6E Il = 6(30)106(0.049 09)31 = 0.2739(109) lbf · in3

386 Mechanical Engineering Design

(a)

x

y

31 in

7 in 13 in

w1 = 35 lbf w2 = 55 lbf

11 in

(b)

x

y 17.1 lbfw1c

46.1 lbfw2c

15.5 in 15.5 in

Figure 7–14

(a) A 1-in uniform-diameter
shaft for Ex. 7–5.
(b) Superposing of equivalent
loads at the center of the shaft
for the purpose of finding the
first critical speed.
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From Eq. set (7–24),

δ11 = 24(7)(312 − 242 − 72)

0.2739(109)
= 2.061(10−4) in/lbf

δ22 = 11(20)(312 − 112 − 202)

0.2739(109)
= 3.534(10−4) in/lbf

δ12 = δ21 = 11(7)(312 − 112 − 72)

0.2739(109)
= 2.224(10−4) in/lbf

Answer

y1 = w1δ11 + w2δ12 = 35(2.061)10−4 + 55(2.224)10−4 = 0.019 45 in

y2 = w1δ21 + w2δ22 = 35(2.224)10−4 + 55(3.534)10−4 = 0.027 22 in

(b)
∑

wi yi = 35(0.019 45) + 55(0.027 22) = 2.178 lbf · in

Answer
∑

wi y2
i = 35(0.019 45)2 + 55(0.027 22)2 = 0.053 99 lbf · in2

Answer ω =
√

386.1(2.178)

0.053 99
= 124.8 rad/s , or 1192 rev/min

(c)

Answer
1

ω2
11

= w1

g
δ11

ω11 =
√

g

w1δ11
=

√
386.1

35(2.061)10−4
= 231.4 rad/s, or 2210 rev/min

Answer ω22 =
√

g

w2δ22
=

√
386.1

55(3.534)10−4
= 140.9 rad/s, or 1346 rev/min

(d )
1

ω2
1

.=
∑ 1

ω2
i i

= 1

231.42
+ 1

140.92
= 6.905(10−5) (1)

Answer ω1
.=

√
1

6.905(10−5)
= 120.3 rad/s, or 1149 rev/min

which is less than part b, as expected.
(e) From Eq. (7–24),

δcc = bccxcc
(
l2 − b2

cc − x2
cc

)
6E Il

= 15.5(15.5)(312 − 15.52 − 15.52)

0.2739(109)

= 4.215(10−4) in/lbf

j

i 1 2

1 2.061(10�4) 2.224(10�4)

2 2.224(10�4) 3.534(10�4)
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From Eq. (7–33),

w1c = w1
δ11

δcc
= 35

2.061(10−4)

4.215(10−4)
= 17.11 lbf

w2c = w2
δ22

δcc
= 55

3.534(10−4)

4.215(10−4)
= 46.11 lbf

Answer ω =
√

g

δcc
∑

wic
=

√
386.1

4.215(10−4)(17.11 + 46.11)
= 120.4 rad/s, or 1150 rev/min

which, except for rounding, agrees with part d, as expected.
( f ) For the shaft, E = 30(106) psi, γ = 0.282 lbf/in3, and A = π(12)/4 = 0.7854 in2.
Considering the shaft alone, the critical speed, from Eq. (7–22), is

Answer ωs =
(

π

l

)2
√

gE I

Aγ
=

(
π

31

)2
√

386.1(30)106(0.049 09)

0.7854(0.282)

= 520.4 rad/s, or 4970 rev/min

We can simply add 1/ω2
s to the right side of Dunkerley’s equation, Eq. (1), to include

the shaft’s contribution,

Answer
1

ω2
1

.= 1

520.42
+ 6.905(10−5) = 7.274(10−5)

ω1
.= 117.3 rad/s, or 1120 rev/min

which is slightly less than part d, as expected.
The shaft’s first critical speed ωs is just one more single effect to add to Dunkerley’s

equation. Since it does not fit into the summation, it is usually written up front.

Answer
1

ω2
1

.= 1

ω2
s

+
n∑

i=1

1

ω2
i i

(7–34)

Common shafts are complicated by the stepped-cylinder geometry, which makes the
influence-coefficient determination part of a numerical solution.
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7–7 Miscellaneous Shaft Components

Setscrews

Unlike bolts and cap screws, which depend on tension to develop a clamping force, the
setscrew depends on compression to develop the clamping force. The resistance to axial
motion of the collar or hub relative to the shaft is called holding power. This holding
power, which is really a force resistance, is due to frictional resistance of the contact-
ing portions of the collar and shaft as well as any slight penetration of the setscrew into
the shaft.
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Figure 7–15 shows the point types available with socket setscrews. These are also
manufactured with screwdriver slots and with square heads.

Table 7–4 lists values of the seating torque and the corresponding holding power for
inch-series setscrews. The values listed apply to both axial holding power, for resisting

Shafts and Shaft Components 389

Figure 7–15

Socket setscrews: (a) flat point;
(b) cup point; (c) oval point;
(d ) cone point; (e) half-dog
point. (a)

L

D

T

(c)

L

D

T

(b)

L

D

T

(d)

L

D

T

(e)

L

D P

T

Table 7–4

Typical Holding Power

(Force) for Socket

Setscrews*

Source: Unbrako Division, SPS
Technologies, Jenkintown, Pa.

Seating Holding
Size, Torque, Power,

in lbf . in lbf

#0 1.0 50

#1 1.8 65

#2 1.8 85

#3 5 120

#4 5 160

#5 10 200

#6 10 250

#8 20 385

#10 36 540
1
4 87 1000
5
16 165 1500
3
8 290 2000
7
16 430 2500
1
2 620 3000
9
16 620 3500
5
8 1325 4000
3
4 2400 5000
7
8 5200 6000

1 7200 7000

*Based on alloy-steel screw against steel shaft, class 3A
coarse or fine threads in class 2B holes, and cup-point
socket setscrews.
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thrust, and the tangential holding power, for resisting torsion. Typical factors of safety
are 1.5 to 2.0 for static loads and 4 to 8 for various dynamic loads.

Setscrews should have a length of about half of the shaft diameter. Note that this
practice also provides a rough rule for the radial thickness of a hub or collar.

Keys and Pins

Keys and pins are used on shafts to secure rotating elements, such as gears, pulleys, or
other wheels. Keys are used to enable the transmission of torque from the shaft to the
shaft-supported element. Pins are used for axial positioning and for the transfer of
torque or thrust or both.

Figure 7–16 shows a variety of keys and pins. Pins are useful when the principal
loading is shear and when both torsion and thrust are present. Taper pins are sized
according to the diameter at the large end. Some of the most useful sizes of these are
listed in Table 7–5. The diameter at the small end is

d = D − 0.0208L (7–35)

where d � diameter at small end, in

D � diameter at large end, in

L � length, in

390 Mechanical Engineering Design

Figure 7–16

(a) Square key; (b) round key;
(c and d ) round pins; (e) taper
pin; ( f ) split tubular spring pin.
The pins in parts (e) and
( f ) are shown longer than
necessary, to illustrate the
chamfer on the ends, but their
lengths should be kept smaller
than the hub diameters to
prevent injuries due to
projections on rotating parts.

(a) (b) (c)

(d ) (e) ( f )

Commercial Precision
Size Maximum Minimum Maximum Minimum

4/0 0.1103 0.1083 0.1100 0.1090

2/0 0.1423 0.1403 0.1420 0.1410

0 0.1573 0.1553 0.1570 0.1560

2 0.1943 0.1923 0.1940 0.1930

4 0.2513 0.2493 0.2510 0.2500

6 0.3423 0.3403 0.3420 0.3410

8 0.4933 0.4913 0.4930 0.4920

Table 7–5

Dimensions at Large End

of Some Standard Taper

Pins—Inch Series
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For less important applications, a dowel pin or a drive pin can be used. A large vari-
ety of these are listed in manufacturers’ catalogs.7

The square key, shown in Fig. 7–16a, is also available in rectangular sizes. Standard
sizes of these, together with the range of applicable shaft diameters, are listed in
Table 7–6. The shaft diameter determines standard sizes for width, height, and key depth.
The designer chooses an appropriate key length to carry the torsional load. Failure of the
key can be by direct shear, or by bearing stress. Example 7–6 demonstrates the process to
size the length of a key. The maximum length of a key is limited by the hub length of the
attached element, and should generally not exceed about 1.5 times the shaft diameter to
avoid excessive twisting with the angular deflection of the shaft. Multiple keys may be
used as necessary to carry greater loads, typically oriented at 90° from one another.
Excessive safety factors should be avoided in key design, since it is desirable in an over-
load situation for the key to fail, rather than more costly components.

Stock key material is typically made from low carbon cold-rolled steel, and is
manufactured such that its dimensions never exceed the nominal dimension. This
allows standard cutter sizes to be used for the keyseats. A setscrew is sometimes used
along with a key to hold the hub axially, and to minimize rotational backlash when the
shaft rotates in both directions.

Table 7–6

Inch Dimensions for

Some Standard Square-

and Rectangular-Key

Applications

Source: Joseph E. Shigley,
“Unthreaded Fasteners,” 
Chap. 24 in Joseph E. Shigley,
Charles R. Mischke, and
Thomas H. Brown, Jr. (eds.),
Standard Handbook of
Machine Design, 3rd ed.,
McGraw-Hill, New York, 2004.

Shaft Diameter Key Size
Over To (Incl.) w h Keyway Depth

5
16

7
16

3
32

3
32

3
64

7
16

9
16

1
8

3
32

3
64

1
8

1
8

1
16

9
16

7
8

3
16

1
8

1
16

3
16

3
16

3
32

7
8 1 1

4
1
4

3
16

3
32

1
4

1
4

1
8

1 1
4 1 3

8
5
16

1
4

1
8

5
16

5
16

5
32

1 3
8 1 3

4
3
8

1
4

1
8

3
8

3
8

3
16

1 3
4 2 1

4
1
2

3
8

3
16

1
2

1
2

1
4

2 1
4 2 3

4
5
8

7
16

7
32

5
8

5
8

5
16

2 3
4 3 1

4
3
4

1
2

1
4

3
4

3
4

3
8

7See also Joseph E. Shigley, “Unthreaded Fasteners,” Chap. 24. In Joseph E. Shigley, Charles R. Mischke, and
Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.
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The gib-head key, in Fig. 7–17a, is tapered so that, when firmly driven, it acts to
prevent relative axial motion. This also gives the advantage that the hub position can be
adjusted for the best axial location. The head makes removal possible without access to
the other end, but the projection may be hazardous.

The Woodruff key, shown in Fig. 7–17b, is of general usefulness, especially when a
wheel is to be positioned against a shaft shoulder, since the keyslot need not be machined
into the shoulder stress concentration region. The use of the Woodruff key also yields bet-
ter concentricity after assembly of the wheel and shaft. This is especially important at high
speeds, as, for example, with a turbine wheel and shaft. Woodruff keys are particularly use-
ful in smaller shafts where their deeper penetration helps prevent key rolling. Dimensions
for some standard Woodruff key sizes can be found in Table 7–7, and Table 7–8 gives the
shaft diameters for which the different keyseat widths are suitable.

Pilkey8 gives values for stress concentrations in an end-milled keyseat, as a func-
tion of the ratio of the radius r at the bottom of the groove and the shaft diameter d.
For fillets cut by standard milling-machine cutters, with a ratio of r/d = 0.02,
Peterson’s charts give Kt = 2.14 for bending and Kts = 2.62 for torsion without the
key in place, or Kts = 3.0 for torsion with the key in place. The stress concentration
at the end of the keyseat can be reduced somewhat by using a sled-runner keyseat,
eliminating the abrupt end to the keyseat, as shown in Fig. 7–17. It does, however, still
have the sharp radius in the bottom of the groove on the sides. The sled-runner key-
seat can only be used when definite longitudinal key positioning is not necessary. It is
also not as suitable near a shoulder. Keeping the end of a keyseat at least a distance

392 Mechanical Engineering Design

Figure 7–17

(a) Gib-head key; 
(b) Woodruff key.

Taper    in over 12 in

(a)

(b)

D

h

w w

w

1
8

8W. D. Pilkey, Peterson’s Stress-Concentration Factors, 2nd ed., John Wiley & Sons, New York, 1997, 
pp. 408–409.
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Table 7–7

Dimensions of Woodruff

Keys—Inch Series

Key Size Height Offset Keyseat Depth
w D b e Shaft Hub
1
16

1
4 0.109 1

64 0.0728 0.0372
1
16

3
8 0.172 1

64 0.1358 0.0372
3
32

3
8 0.172 1

64 0.1202 0.0529
3
32

1
2 0.203 3

64 0.1511 0.0529
3
32

5
8 0.250 1

16 0.1981 0.0529
1
8

1
2 0.203 3

64 0.1355 0.0685
1
8

5
8 0.250 1

16 0.1825 0.0685
1
8

3
4 0.313 1

16 0.2455 0.0685
5
32

5
8 0.250 1

16 0.1669 0.0841
5
32

3
4 0.313 1

16 0.2299 0.0841
5
32

7
8 0.375 1

16 0.2919 0.0841
3
16

3
4 0.313 1

16 0.2143 0.0997
3
16

7
8 0.375 1

16 0.2763 0.0997
3
16 1 0.438 1

16 0.3393 0.0997
1
4

7
8 0.375 1

16 0.2450 0.1310
1
4 1 0.438 1

16 0.3080 0.1310
1
4 1 1

4 0.547 5
64 0.4170 0.1310

5
16 1 0.438 1

16 0.2768 0.1622
5
16 1 1

4 0.547 5
64 0.3858 0.1622

5
16 1 1

2 0.641 7
64 0.4798 0.1622

3
8 1 1

4 0.547 5
64 0.3545 0.1935

3
8 1 1

2 0.641 7
64 0.4485 0.1935

Keyseat Shaft Diameter, in
Width, in From To (inclusive)

1
16

5
16

1
2

3
32

3
8

7
8

1
8

3
8 1 1

2
5
32

1
2 1 5

8
3
16

9
16 2

1
4

11
16 2 1

4
5
16

3
4 2 3

8
3
8 1 2 5

8

Table 7–8

Sizes of Woodruff Keys

Suitable for Various

Shaft Diameters
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Figure 7–18

Typical uses for retaining rings.
(a) External ring and (b) its
application; (c) internal ring
and (d ) its application.

Retaining ring

(a) (c) (d)(b)

Retaining ring

of d/10 from the start of the shoulder fillet will prevent the two stress concentrations
from combining with each other.9

Retaining Rings

A retaining ring is frequently used instead of a shaft shoulder or a sleeve to axially posi-
tion a component on a shaft or in a housing bore. As shown in Fig. 7–18, a groove is
cut in the shaft or bore to receive the spring retainer. For sizes, dimensions, and axial
load ratings, the manufacturers’ catalogs should be consulted.

Appendix Tables A–15–16 and A–15–17 give values for stress-concentration fac-
tors for flat-bottomed grooves in shafts, suitable for retaining rings. For the rings to seat
nicely in the bottom of the groove, and support axial loads against the sides of the
groove, the radius in the bottom of the groove must be reasonably sharp, typically about
one-tenth of the groove width. This causes comparatively high values for stress-
concentration factors, around 5 for bending and axial, and 3 for torsion. Care should be
taken in using retaining rings, particularly in locations with high bending stresses.
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Figure 7–19

t

b

F
F

r

a

9Ibid, p. 381.

EXAMPLE 7–6 A UNS G10350 steel shaft, heat-treated to a minimum yield strength of 75 kpsi, has a
diameter of 1 7

16 in. The shaft rotates at 600 rev/min and transmits 40 hp through a gear.
Select an appropriate key for the gear.

Solution A 3
8 -in square key is selected, UNS G10200 cold-drawn steel being used. The design

will be based on a yield strength of 65 kpsi. A factor of safety of 2.80 will be employed
in the absence of exact information about the nature of the load.

The torque is obtained from the horsepower equation

T = 63 025H

n
= (63 025)(40)

600
= 4200 lbf · in

From Fig. 7–19, the force F at the surface of the shaft is

F = T

r
= 4200

1.4375/2
= 5850 lbf

By the distortion-energy theory, the shear strength is

Ssy = 0.577Sy = (0.577)(65) = 37.5 kpsi
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Failure by shear across the area ab will create a stress of τ = F/tl . Substituting the
strength divided by the factor of safety for τ gives

Ssy

n
= F

tl
or

37.5(10)3

2.80
= 5850

0.375l

or l = 1.16 in. To resist crushing, the area of one-half the face of the key is used:

Sy

n
= F

tl/2
or

65(10)3

2.80
= 5850

0.375l/2

and l = 1.34 in. The hub length of a gear is usually greater than the shaft diameter, for
stability. If the key, in this example, is made equal in length to the hub, it would there-
fore have ample strength, since it would probably be 1 7

16 in or longer.
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10Preferred Limits and Fits for Cylindrical Parts, ANSI B4.1-1967. Preferred Metric Limits and Fits, ANSI
B4.2-1978.

7–8 Limits and Fits
The designer is free to adopt any geometry of fit for shafts and holes that will ensure the
intended function. There is sufficient accumulated experience with commonly recurring
situations to make standards useful. There are two standards for limits and fits in the
United States, one based on inch units and the other based on metric units.10 These differ
in nomenclature, definitions, and organization. No point would be served by separately
studying each of the two systems. The metric version is the newer of the two and is well
organized, and so here we present only the metric version but include a set of inch con-
versions to enable the same system to be used with either system of units.

In using the standard, capital letters always refer to the hole; lowercase letters are
used for the shaft.

The definitions illustrated in Fig. 7–20 are explained as follows:

• Basic size is the size to which limits or deviations are assigned and is the same for
both members of the fit.

• Deviation is the algebraic difference between a size and the corresponding basic size.

• Upper deviation is the algebraic difference between the maximum limit and the
corresponding basic size.

• Lower deviation is the algebraic difference between the minimum limit and the
corresponding basic size.

• Fundamental deviation is either the upper or the lower deviation, depending on
which is closer to the basic size.

• Tolerance is the difference between the maximum and minimum size limits of a part.

• International tolerance grade numbers (IT) designate groups of tolerances such that
the tolerances for a particular IT number have the same relative level of accuracy but
vary depending on the basic size.

• Hole basis represents a system of fits corresponding to a basic hole size. The funda-
mental deviation is H.

bud29281_ch07_358-408.qxd  12/8/09  12:52PM  Page 395 ntt 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



• Shaft basis represents a system of fits corresponding to a basic shaft size. The
fundamental deviation is h. The shaft-basis system is not included here.

The magnitude of the tolerance zone is the variation in part size and is the same
for both the internal and the external dimensions. The tolerance zones are specified in
international tolerance grade numbers, called IT numbers. The smaller grade numbers
specify a smaller tolerance zone. These range from IT0 to IT16, but only grades IT6 to
IT11 are needed for the preferred fits. These are listed in Tables A–11 to A–14 for basic
sizes up to 16 in or 400 mm.

The standard uses tolerance position letters, with capital letters for internal dimensions
(holes) and lowercase letters for external dimensions (shafts). As shown in Fig. 7–20, the
fundamental deviation locates the tolerance zone relative to the basic size.

Table 7–9 shows how the letters are combined with the tolerance grades to estab-
lish a preferred fit. The ISO symbol for the hole for a sliding fit with a basic size of
32 mm is 32H7. Inch units are not a part of the standard. However, the designation 
(1 3

8 in) H7 includes the same information and is recommended for use here. In both
cases, the capital letter H establishes the fundamental deviation and the number 7 defines
a tolerance grade of IT7.

For the sliding fit, the corresponding shaft dimensions are defined by the symbol
32g6 [(1 3

8 in)g6].
The fundamental deviations for shafts are given in Tables A–11 and A–13. For

letter codes c, d, f, g, and h,

Upper deviation = fundamental deviation
Lower deviation = upper deviation − tolerance grade

For letter codes k, n, p, s, and u, the deviations for shafts are

Lower deviation = fundamental deviation
Upper deviation = lower deviation + tolerance grade

396 Mechanical Engineering Design

Max. size, dmax

Min. size, dmin

Basic size, D(d)

Max. size, Dmax

Upper deviation, �u

Lower deviation, �l

International tolerance
grade, �d (IT number)

Fundamental deviation,
�F (letter)

Lower deviation, �l

Upper deviation, �u

Min. size, Dmin

Fundamental deviation,
�F (letter)International tolerance

grade, �D (IT number)

Figure 7–20

Definitions applied to a
cylindrical fit.
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The lower deviation H (for holes) is zero. For these, the upper deviation equals the
tolerance grade.

As shown in Fig. 7–20, we use the following notation:

Note that these quantities are all deterministic. Thus, for the hole,

Dmax = D + 
D Dmin = D (7–36)

For shafts with clearance fits c, d, f, g, and h,

dmax = d + δF dmin = d + δF − 
d (7–37)

For shafts with interference fits k, n, p, s, and u,

dmin = d + δF dmax = d + δF + 
d (7–38)

D = basic size of hole
d = basic size of shaft

δu = upper deviation
δl = lower deviation
δF = fundamental deviation


D = tolerance grade for hole

d = tolerance grade for shaft
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Table 7–9

Descriptions of Preferred

Fits Using the Basic

Hole System

Source: Preferred Metric
Limits and Fits, ANSI 
B4.2-1978. See also BS 4500.

Type of Fit Description Symbol

Clearance Loose running fit: for wide commercial tolerances or H11/c11
allowances on external members

Free running fit: not for use where accuracy is H9/d9
essential, but good for large temperature variations,
high running speeds, or heavy journal pressures

Close running fit: for running on accurate machines H8/f7
and for accurate location at moderate speeds and 
journal pressures

Sliding fit: where parts are not intended to run freely, H7/g6
but must move and turn freely and locate accurately

Locational clearance fit: provides snug fit for location H7/h6
of stationary parts, but can be freely assembled and 
disassembled

Transition Locational transition fit: for accurate location, a H7/k6
compromise between clearance and interference

Locational transition fit: for more accurate location H7/n6
where greater interference is permissible

Interference Locational interference fit: for parts requiring rigidity H7/p6
and alignment with prime accuracy of location but
without special bore pressure requirements

Medium drive fit: for ordinary steel parts or shrink fits on H7/s6
light sections, the tightest fit usable with cast iron

Force fit: suitable for parts that can be highly stressed H7/u6
or for shrink fits where the heavy pressing forces required
are impractical
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EXAMPLE 7–7 Find the shaft and hole dimensions for a loose running fit with a 34-mm basic size.

Solution From Table 7–9, the ISO symbol is 34H11/c11. From Table A–11, we find that toler-
ance grade IT11 is 0.160 mm. The symbol 34H11/c11 therefore says that 
D = 
d =
0.160 mm. Using Eq. (7–36) for the hole, we get

Answer Dmax = D + 
D = 34 + 0.160 = 34.160 mm

Answer Dmin = D = 34.000 mm

The shaft is designated as a 34c11 shaft. From Table A–12, the fundamental deviation
is δF = −0.120 mm. Using Eq. (7–37), we get for the shaft dimensions

Answer dmax = d + δF = 34 + (−0.120) = 33.880 mm

Answer dmin = d + δF − 
d = 34 + (−0.120) − 0.160 = 33.720 mm

398 Mechanical Engineering Design

EXAMPLE 7–8 Find the hole and shaft limits for a medium drive fit using a basic hole size of 2 in.

Solution The symbol for the fit, from Table 7–8, in inch units is (2 in)H7/s6. For the hole, we use
Table A–13 and find the IT7 grade to be 
D = 0.0010 in. Thus, from Eq. (7–36),

Answer Dmax = D + 
D = 2 + 0.0010 = 2.0010 in

Answer Dmin = D = 2.0000 in

The IT6 tolerance for the shaft is 
d = 0.0006 in. Also, from Table A–14, the
fundamental deviation is δF = 0.0017 in. Using Eq. (7–38), we get for the shaft that

Answer dmin = d + δF = 2 + 0.0017 = 2.0017 in

Answer dmax = d + δF + 
d = 2 + 0.0017 + 0.0006 = 2.0023 in

Stress and Torque Capacity in Interference Fits

Interference fits between a shaft and its components can sometimes be used effectively
to minimize the need for shoulders and keyways. The stresses due to an interference fit
can be obtained by treating the shaft as a cylinder with a uniform external pressure, and
the hub as a hollow cylinder with a uniform internal pressure. Stress equations for these
situations were developed in Sec. 3–16, and will be converted here from radius terms
into diameter terms to match the terminology of this section. 
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The pressure p generated at the interface of the interference fit, from Eq. (3–56)
converted into terms of diameters, is given by

p = δ

d

Eo

(
d2

o + d2

d2
o − d2

+ νo

)
+ d

Ei

(
d2 + d2

i

d2 − d2
i

− νi

) (7–39)

or, in the case where both members are of the same material,

p = Eδ

2d3

[
(d2

o − d2)(d2 − d2
i )

d2
o − d2

i

]
(7–40)

where d is the nominal shaft diameter, di is the inside diameter (if any) of the shaft,
do is the outside diameter of the hub, E is Young’s modulus, and v is Poisson’s ratio, with
subscripts o and i for the outer member (hub) and inner member (shaft), respectively.
The term δ is the diametral interference between the shaft and hub, that is, the differ-
ence between the shaft outside diameter and the hub inside diameter.

δ = dshaft − dhub (7–41)

Since there will be tolerances on both diameters, the maximum and minimum pres-
sures can be found by applying the maximum and minimum interferences. Adopting the
notation from Fig. 7–20, we write

δmin = dmin − Dmax (7–42)

δmax = dmax − Dmin (7–43)

where the diameter terms are defined in Eqs. (7–36) and (7–38). The maximum inter-
ference should be used in Eq. (7–39) or (7–40) to determine the maximum pressure to
check for excessive stress.

From Eqs. (3–58) and (3–59), with radii converted to diameters, the tangential
stresses at the interface of the shaft and hub are

σt, shaft = −p
d2 + d2

i

d2 − d2
i

(7–44)

σt, hub = p
d2

o + d2

d2
o − d2 (7–45)

The radial stresses at the interface are simply

σr, shaft = −p (7–46)

σr, hub = −p (7–47)

The tangential and radial stresses are orthogonal, and should be combined using a
failure theory to compare with the yield strength. If either the shaft or hub yields during
assembly, the full pressure will not be achieved, diminishing the torque that can be trans-
mitted. The interaction of the stresses due to the interference fit with the other stresses in
the shaft due to shaft loading is not trivial. Finite-element analysis of the interface would
be appropriate when warranted. A stress element on the surface of a rotating shaft will
experience a completely reversed bending stress in the longitudinal direction, as well as
the steady compressive stresses in the tangential and radial directions. This is a three-
dimensional stress element. Shear stress due to torsion in shaft may also be present. Since
the stresses due to the press fit are compressive, the fatigue situation is usually actually
improved. For this reason, it may be acceptable to simplify the shaft analysis by ignoring
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the steady compressive stresses due to the press fit. There is, however, a stress concen-
tration effect in the shaft bending stress near the ends of the hub, due to the sudden change
from compressed to uncompressed material. The design of the hub geometry, and there-
fore its uniformity and rigidity, can have a significant effect on the specific value of the
stress-concentration factor, making it difficult to report generalized values. For first esti-
mates, values are typically not greater than 2.

The amount of torque that can be transmitted through an interference fit can be esti-
mated with a simple friction analysis at the interface. The friction force is the product
of the coefficient of friction f and the normal force acting at the interface. The normal
force can be represented by the product of the pressure p and the surface area A of inter-
face. Therefore, the friction force Ff is

Ff = f N = f (p A) = f [p2π(d/2)l] = π f pld (7–48)

where l is the length of the hub. This friction force is acting with a moment arm of d/2
to provide the torque capacity of the joint, so

T = Ff d/2 = π f pld(d/2)

T = (π/2) f pld2 (7–49)

The minimum interference, from Eq. (7–42), should be used to determine the min-
imum pressure to check for the maximum amount of torque that the joint should be
designed to transmit without slipping.

PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1–1 of Sec. 1–16, p. 24.

7–1 A shaft is loaded in bending and torsion such that Ma = 70 N · m, Ta = 45 N · m, Mm =
55 N · m, and Tm = 35 N · m. For the shaft, Su = 700 MPa and Sy = 560 MPa, and a fully cor-
rected endurance limit of Se = 210 MPa is assumed. Let K f = 2.2 and K f s = 1.8. With a design
factor of 2.0 determine the minimum acceptable diameter of the shaft using the
(a) DE-Gerber criterion.
(b) DE-elliptic criterion.
(c) DE-Soderberg criterion.
(d ) DE-Goodman criterion.
Discuss and compare the results.

7–2 The section of shaft shown in the figure is to be designed to approximate relative sizes of
d = 0.75D and r = D/20 with diameter d conforming to that of standard metric rolling-bearing
bore sizes. The shaft is to be made of SAE 2340 steel, heat-treated to obtain minimum strengths
in the shoulder area of 175 kpsi ultimate tensile strength and 160 kpsi yield strength with a Brinell
hardness not less than 370. At the shoulder the shaft is subjected to a completely reversed bend-
ing moment of 600 lbf · in, accompanied by a steady torsion of 400 lbf · in. Use a design factor
of 2.5 and size the shaft for an infinite life.

400 Mechanical Engineering Design

r

D d

Problem 7–2

Section of a shaft containing a
grinding-relief groove. Unless

otherwise specified, the diameter at
the root of the groove dr = d − 2r,

and though the section of diameter d
is ground, the root of the groove is

still a machined surface. 
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7–3 The rotating solid steel shaft is simply supported by bearings at points B and C and is driven
by a gear (not shown) which meshes with the spur gear at D, which has a 150-mm pitch diam-
eter. The force F from the drive gear acts at a pressure angle of 20°. The shaft transmits a torque
to point A of TA = 340 N · m. The shaft is machined from steel with Sy = 420 MPa and
Sut = 560 MPa. Using a factor of safety of 2.5, determine the minimum allowable diameter of
the 250-mm section of the shaft based on (a) a static yield analysis using the distortion energy
theory and (b) a fatigue-failure analysis. Assume sharp fillet radii at the bearing shoulders for
estimating stress-concentration factors.
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250 mm

100 mm

A
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B

C

F

20�

D

Problem 7–3

Gear 4
3 dia.

x

F

B

A

y

O

z 20°

4 dia.

1

8

2

3

2

3
4

1 3
4

3
4

Problem 7–4

Material moves under the roll.
Dimensions in inches. 

7–5 Design a shaft for the situation of the industrial roll of Prob. 7–4 with a design factor of 2 and a
reliability goal of 0.999 against fatigue failure. Plan for a ball bearing on the left and a cylindri-
cal roller on the right. For deformation use a factor of safety of 2.

7–4 A geared industrial roll shown in the figure is driven at 300 rev/min by a force F acting on a
3-in-diameter pitch circle as shown. The roll exerts a normal force of 30 lbf/in of roll length on
the material being pulled through. The material passes under the roll. The coefficient of friction
is 0.40. Develop the moment and shear diagrams for the shaft modeling the roll force as (a) a
concentrated force at the center of the roll, and (b) a uniformly distributed force along the roll.
These diagrams will appear on two orthogonal planes.
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7–7* to For the problem specified in the table, build upon the results of the original problem to obtain a 
7–16* preliminary design of the shaft by performing the following tasks. 

(a) Sketch a general shaft layout, including means to locate the components and to transmit the
torque. Estimates for the component widths are acceptable at this point.

(b) Specify a suitable material for the shaft.
(c) Determine critical diameters of the shaft based on infinite fatigue life with a design factor

of 1.5. Check for yielding.
(d) Make any other dimensional decisions necessary to specify all diameters and axial dimen-

sions. Sketch the shaft to scale, showing all proposed dimensions.
(e) Check the deflections at the gears, and the slopes at the gears and the bearings for satisfaction

of the recommended limits in Table 7–2. Assume the deflections for any pulleys are not
likely to be critical. If any of the deflections exceed the recommended limits, make appro-
priate changes to bring them all within the limits.

Problem Number Original Problem, Page Number
7–7* 3–68, 137

7–8* 3–69, 137

7–9* 3–70, 137

7–10* 3–71, 137

7–11* 3–72, 138

7–12* 3–73, 138

7–13* 3–74, 138

7–14* 3–76, 139

7–15* 3–77, 139

7–16* 3–79, 139

7–17 In the double-reduction gear train shown, shaft a is driven by a motor attached by a flexible
coupling attached to the overhang. The motor provides a torque of 2500 lbf · in at a speed of
1200 rpm. The gears have 20° pressure angles, with diameters shown on the figure. Use an
AISI 1020 cold-drawn steel. Design one of the shafts (as specified by the instructor) with a design
factor of 1.5 by performing the following tasks.
(a) Sketch a general shaft layout, including means to locate the gears and bearings, and to trans-

mit the torque.
(b) Perform a force analysis to find the bearing reaction forces, and generate shear and bending

moment diagrams.
(c) Determine potential critical locations for stress design.
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Problem 7–6

Bearing shoulder fillets 0.030 in,
others 1

16 in. Sled-runner keyway is 
31

2 in long. Dimensions in inches. 

7–6 The figure shows a proposed design for the industrial roll shaft of Prob. 7–4. Hydrodynamic
film bearings are to be used. All surfaces are machined except the journals, which are
ground and polished. The material is 1035 HR steel. Perform a design assessment. Is the design
satisfactory?
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7–18 In the figure is a proposed shaft design to be used for the input shaft a in Prob. 7–17. A ball bear-
ing is planned for the left bearing, and a cylindrical roller bearing for the right.
(a) Determine the minimum fatigue factor of safety by evaluating at any critical locations. Use

a fatigue failure criteria that is considered to be typical of the failure data, rather than one
that is considered conservative. Also ensure that the shaft does not yield in the first load
cycle.

(b) Check the design for adequacy with respect to deformation, according to the recommenda-
tions in Table 7–2.
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Problem 7–17

Dimensions in inches. 

7

8

0.354

1.574
1.875

9

11 6

1.5001.574

0.453

1.875

3
4

Problem 7–18

Shoulder fillets at bearing seat 
0.030-in radius, others 1

8 -in radius,
except right-hand bearing seat
transition, 1

4 in. The material
is 1030 HR. Keyways 3

8 in wide by
3
16 in deep. Dimensions in inches.

7–19* The shaft shown in the figure is proposed for the application defined in Prob. 3–72, p. 138. The
material is AISI 1018 cold-drawn steel. The gears seat against the shoulders, and have hubs with
setscrews to lock them in place. The effective centers of the gears for force transmission are
shown. The keyseats are cut with standard endmills. The bearings are press-fit against the shoul-
ders. Determine the minimum fatigue factor of safety.

(d) Determine critical diameters of the shaft based on fatigue and static stresses at the critical
locations.

(e) Make any other dimensional decisions necessary to specify all diameters and axial dimen-
sions. Sketch the shaft to scale, showing all proposed dimensions.

( f) Check the deflection at the gear, and the slopes at the gear and the bearings for satisfaction of
the recommended limits in Table 7–2.

(g) If any of the deflections exceed the recommended limits, make appropriate changes to bring
them all within the limits.
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7–20* Continue Prob. 7–19 by checking that the deflections satisfy the suggested minimums for bear-
ings and gears in Table 7–2. If any of the deflections exceed the recommended limits, make
appropriate changes to bring them all within the limits.

7–21* The shaft shown in the figure is proposed for the application defined in Prob. 3–73, p. 138. The
material is AISI 1018 cold-drawn steel. The gears seat against the shoulders, and have hubs with
setscrews to lock them in place. The effective centers of the gears for force transmission are
shown. The keyseats are cut with standard endmills. The bearings are press-fit against the shoul-
ders. Determine the minimum fatigue factor of safety.
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Problem 7–23

Dimensions in inches. 
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400 350 30015

30
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Problem 7–21*

All fillets 2 mm. Dimensions in mm.

7–22* Continue Prob. 7–21 by checking that the deflections satisfy the suggested minimums for bear-
ings and gears in Table 7–2. If any of the deflections exceed the recommended limits, make
appropriate changes to bring them all within the limits.

7–23 The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway,
and is supported by two deep-groove ball bearings. The shaft is made from AISI 1020 cold-drawn

Problem 7–19*

All fillets 1
16 in. Dimensions in inches.

17

15

41

16 14 9

11

10

2

1.001.75

Gear center Gear center

0.5

1.00

1

1.3 1.3
2.5 1.75
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All fillets 2 mm
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3540 40
55 45
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Problem 7–24

Dimensions in millimeters. 

7–25 A shaft is to be designed to support the spur pinion and helical gear shown in the figure on two
bearings spaced 700 mm center-to-center. Bearing A is a cylindrical roller and is to take only
radial load; bearing B is to take the thrust load of 900 N produced by the helical gear and its share
of the radial load. The bearing at B can be a ball bearing. The radial loads of both gears are in the
same plane, and are 2.7 kN for the pinion and 900 N for the gear. The shaft speed is 1200 rev/min.
Design the shaft. Make a sketch to scale of the shaft showing all fillet sizes, keyways, shoulders,
and diameters. Specify the material and its heat treatment.

steel. At steady-state speed, the gear transmits a radial load of 230 lbf and a tangential load of
633 lbf at a pitch diameter of 8 in.
(a) Determine fatigue factors of safety at any potentially critical locations.
(b) Check that deflections satisfy the suggested minimums for bearings and gears.

7–24 An AISI 1020 cold-drawn steel shaft with the geometry shown in the figure carries a transverse
load of 7 kN and a torque of 107 N · m. Examine the shaft for strength and deflection. If the
largest allowable slope at the bearings is 0.001 rad and at the gear mesh is 0.0005 rad, what is the
factor of safety guarding against damaging distortion? What is the factor of safety guarding
against a fatigue failure? If the shaft turns out to be unsatisfactory, what would you recommend
to correct the problem?

175

CL brg CL brg

400 125

50

100

BA

Problem 7–25

Dimensions in millimeters. 

7–26 A heat-treated steel shaft is to be designed to support the spur gear and the overhanging worm
shown in the figure. A bearing at A takes pure radial load. The bearing at B takes the worm-thrust
load for either direction of rotation. The dimensions and the loading are shown in the figure; note
that the radial loads are in the same plane. Make a complete design of the shaft, including a sketch
of the shaft showing all dimensions. Identify the material and its heat treatment (if necessary).
Provide an assessment of your final design. The shaft speed is 310 rev/min.
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7–27 A bevel-gear shaft mounted on two 40-mm 02-series ball bearings is driven at 1720 rev/min by
a motor connected through a flexible coupling. The figure shows the shaft, the gear, and the bear-
ings. The shaft has been giving trouble—in fact, two of them have already failed—and the down
time on the machine is so expensive that you have decided to redesign the shaft yourself rather
than order replacements. A hardness check of the two shafts in the vicinity of the fracture of the two
shafts showed an average of 198 Bhn for one and 204 Bhn of the other. As closely as you can esti-
mate the two shafts failed at a life measure between 600 000 and 1 200 000 cycles of operation.
The surfaces of the shaft were machined, but not ground. The fillet sizes were not measured, but
they correspond with the recommendations for the ball bearings used. You know that the load is
a pulsating or shock-type load, but you have no idea of the magnitude, because the shaft drives
an indexing mechanism, and the forces are inertial. The keyways are 3

8 in wide by 3
16 in deep.

The straight-toothed bevel pinion drives a 48-tooth bevel gear. Specify a new shaft in sufficient
detail to ensure a long and trouble-free life.
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Problem 7–27

Dimensions in inches. 
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T

2.4 kN
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22.4 kN
T = 540 N . m

A B

Problem 7–26

Dimensions in millimeters. 

7–28 A 25-mm-diameter uniform steel shaft is 600 mm long between bearings.
(a) Find the lowest critical speed of the shaft.
(b) If the goal is to double the critical speed, find the new diameter.
(c) A half-size model of the original shaft has what critical speed?

7–29 Demonstrate how rapidly Rayleigh’s method converges for the uniform-diameter solid shaft of
Prob. 7–28, by partitioning the shaft into first one, then two, and finally three elements.

7–30 Compare Eq. (7–27) for the angular frequency of a two-disk shaft with Eq. (7–28), and note that
the constants in the two equations are equal.
(a) Develop an expression for the second critical speed.
(b) Estimate the second critical speed of the shaft addressed in Ex. 7–5, parts a and b.
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7–31 For a uniform-diameter shaft, does hollowing the shaft increase or decrease the critical
speed?

7–32 The shaft shown in the figure carries a 18-lbf gear on the left and a 32-lbf gear on the right.
Estimate the first critical speed due to the loads, the shaft’s critical speed without the loads, and
the critical speed of the combination.

2.000 2.0002.472

1

2
9

14
15

16

2.763

32 lbf18 lbf

Problem 7–32

Dimensions in inches. 

Shafts and Shaft Components 407

7–33 A transverse drilled and reamed hole can be used in a solid shaft to hold a pin that locates and
holds a mechanical element, such as the hub of a gear, in axial position, and allows for the trans-
mission of torque. Since a small-diameter hole introduces high stress concentration, and a larger
diameter hole erodes the area resisting bending and torsion, investigate the existence of a pin
diameter with minimum adverse affect on the shaft. Then formulate a design rule. (Hint: Use
Table A–16.)

7–34* The shaft shown in Prob. 7–19 is proposed for the application defined in Prob. 3–72, p. 138.
Specify a square key for gear B, using a factor of safety of 1.1.

7–35* The shaft shown in Prob. 7–21 is proposed for the application defined in Prob. 3–73, p. 138.
Specify a square key for gear B, using a factor of safety of 1.1.

7–36 A guide pin is required to align the assembly of a two-part fixture. The nominal size of the pin is
15 mm. Make the dimensional decisions for a 15-mm basic size locational clearance fit.

7–37 An interference fit of a cast-iron hub of a gear on a steel shaft is required. Make the dimensional
decisions for a 1.75-in basic size medium drive fit.

7–38 A pin is required for forming a linkage pivot. Find the dimensions required for a 45-mm basic
size pin and clevis with a sliding fit.

7–39 A journal bearing and bushing need to be described. The nominal size is 1.25 in. What dimen-
sions are needed for a 1.25-in basic size with a close running fit if this is a lightly loaded journal
and bushing assembly?

7–40 A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to
35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational
interference fit.

7–41 A shaft diameter is carefully measured to be 1.5020 in. A bearing is selected with a catalog spec-
ification of the bore diameter range from 1.500 in to 1.501 in. Determine if this is an acceptable
selection if a locational interference fit is desired.
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7–42 A gear and shaft with nominal diameter of 35 mm are to be assembled with a medium drive fit,
as specified in Table 7–9. The gear has a hub, with an outside diameter of 60 mm, and an overall
length of 50 mm. The shaft is made from AISI 1020 CD steel, and the gear is made from steel
that has been through hardened to provide Su � 700 MPa and Sy � 600 MPa.
(a) Specify dimensions with tolerances for the shaft and gear bore to achieve the desired fit.
(b) Determine the minimum and maximum pressures that could be experienced at the interface

with the specified tolerances.
(c) Determine the worst-case static factors of safety guarding against yielding at assembly for the

shaft and the gear based on the distortion energy failure theory.
(d) Determine the maximum torque that the joint should be expected to transmit without slipping,

i.e., when the interference pressure is at a minimum for the specified tolerances.

408 Mechanical Engineering Design
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410 Mechanical Engineering Design

The helical-thread screw was undoubtably an extremely important mechanical inven-
tion. It is the basis of power screws, which change angular motion to linear motion
to transmit power or to develop large forces (presses, jacks, etc.), and threaded fas-
teners, an important element in nonpermanent joints.

This book presupposes a knowledge of the elementary methods of fastening. Typ-
ical methods of fastening or joining parts use such devices as bolts, nuts, cap screws,
setscrews, rivets, spring retainers, locking devices, pins, keys, welds, and adhesives.
Studies in engineering graphics and in metal processes often include instruction on var-
ious joining methods, and the curiosity of any person interested in mechanical engi-
neering naturally results in the acquisition of a good background knowledge of fasten-
ing methods. Contrary to first impressions, the subject is one of the most interesting in
the entire field of mechanical design.

One of the key targets of current design for manufacture is to reduce the number
of fasteners. However, there will always be a need for fasteners to facilitate disas-
sembly for whatever purposes. For example, jumbo jets such as Boeing’s 747 require
as many as 2.5 million fasteners, some of which cost several dollars apiece. To keep
costs down, aircraft manufacturers, and their subcontractors, constantly review new
fastener designs, installation techniques, and tooling.

The number of innovations in the fastener field over any period you might care
to mention has been tremendous. An overwhelming variety of fasteners are available
for the designer’s selection. Serious designers generally keep specific notebooks on
fasteners alone. Methods of joining parts are extremely important in the engineering
of a quality design, and it is necessary to have a thorough understanding of the per-
formance of fasteners and joints under all conditions of use and design.

8–1 Thread Standards and Definitions
The terminology of screw threads, illustrated in Fig. 8–1, is explained as follows:

The pitch is the distance between adjacent thread forms measured parallel to
the thread axis. The pitch in U.S. units is the reciprocal of the number of thread forms
per inch N.

The major diameter d is the largest diameter of a screw thread.
The minor (or root) diameter dr is the smallest diameter of a screw thread.
The pitch diameter dp is a theoretical diameter between the major and minor

diameters.
The lead l, not shown, is the distance the nut moves parallel to the screw axis when

the nut is given one turn. For a single thread, as in Fig. 8–1, the lead is the same as
the pitch.

A multiple-threaded product is one having two or more threads cut beside each
other (imagine two or more strings wound side by side around a pencil). Standard-
ized products such as screws, bolts, and nuts all have single threads; a double-threaded
screw has a lead equal to twice the pitch, a triple-threaded screw has a lead equal to
3 times the pitch, and so on.

All threads are made according to the right-hand rule unless otherwise noted.
That is, if the bolt is turned clockwise, the bolt advances toward the nut.

The American National (Unified) thread standard has been approved in this coun-
try and in Great Britain for use on all standard threaded products. The thread angle
is 60◦ and the crests of the thread may be either flat or rounded.

Figure 8–2 shows the thread geometry of the metric M and MJ profiles. The M
profile replaces the inch class and is the basic ISO 68 profile with 60◦ symmetric
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Major diameter

Pitch diameter

Minor diameter

Pitch p

45° chamfer

Thread angle 2α
Root

Crest

Figure 8–1

Terminology of screw threads.
Sharp vee threads shown for
clarity; the crests and roots are
actually flattened or rounded
during the forming operation.
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Figure 8–2

Basic profile for metric M 
and MJ threads. 
d � major diameter 
dr � minor diameter 
dp � pitch diameter 
p � pitch 

H �
√

3
2 p

threads. The MJ profile has a rounded fillet at the root of the external thread and a
larger minor diameter of both the internal and external threads. This profile is espe-
cially useful where high fatigue strength is required.

Tables 8–1 and 8–2 will be useful in specifying and designing threaded parts.
Note that the thread size is specified by giving the pitch p for metric sizes and by
giving the number of threads per inch N for the Unified sizes. The screw sizes in
Table 8–2 with diameter under 1

4 in are numbered or gauge sizes. The second column
in Table 8–2 shows that a No. 8 screw has a nominal major diameter of 0.1640 in.

A great many tensile tests of threaded rods have shown that an unthreaded rod
having a diameter equal to the mean of the pitch diameter and minor diameter will have
the same tensile strength as the threaded rod. The area of this unthreaded rod is called
the tensile-stress area At of the threaded rod; values of At are listed in both tables.

Two major Unified thread series are in common use: UN and UNR. The differ-
ence between these is simply that a root radius must be used in the UNR series.
Because of reduced thread stress-concentration factors, UNR series threads have
improved fatigue strengths. Unified threads are specified by stating the nominal major
diameter, the number of threads per inch, and the thread series, for example, 5

8 in-18
UNRF or 0.625 in-18 UNRF.

Metric threads are specified by writing the diameter and pitch in millimeters, in
that order. Thus, M12 × 1.75 is a thread having a nominal major diameter of 12 mm
and a pitch of 1.75 mm. Note that the letter M, which precedes the diameter, is the
clue to the metric designation.
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412 Mechanical Engineering Design

Nominal Coarse-Pitch Series Fine-Pitch Series
Major Tensile- Minor- Tensile- Minor-

Diameter Pitch Stress Diameter Pitch Stress Diameter
d p Area At Area Ar p Area At Area Ar

mm mm mm2 mm2 mm mm2 mm2

1.6 0.35 1.27 1.07

2 0.40 2.07 1.79

2.5 0.45 3.39 2.98

3 0.5 5.03 4.47

3.5 0.6 6.78 6.00

4 0.7 8.78 7.75

5 0.8 14.2 12.7

6 1 20.1 17.9

8 1.25 36.6 32.8 1 39.2 36.0

10 1.5 58.0 52.3 1.25 61.2 56.3

12 1.75 84.3 76.3 1.25 92.1 86.0

14 2 115 104 1.5 125 116

16 2 157 144 1.5 167 157

20 2.5 245 225 1.5 272 259

24 3 353 324 2 384 365

30 3.5 561 519 2 621 596

36 4 817 759 2 915 884

42 4.5 1120 1050 2 1260 1230

48 5 1470 1380 2 1670 1630

56 5.5 2030 1910 2 2300 2250

64 6 2680 2520 2 3030 2980

72 6 3460 3280 2 3860 3800

80 6 4340 4140 1.5 4850 4800

90 6 5590 5360 2 6100 6020

100 6 6990 6740 2 7560 7470

110 2 9180 9080

*The equations and data used to develop this table have been obtained from ANSI B1.1-1974 and B18.3.1-1978.
The minor diameter was found from the equation dr = d −1.226 869p, and the pitch diameter from dp = d −
0.649 519p. The mean of the pitch diameter and the minor diameter was used to compute the tensile-stress area.

Table 8–1

Diameters and Areas of

Coarse-Pitch and Fine-

Pitch Metric Threads.*

Square and Acme threads, whose profiles are shown in Fig. 8–3a and b, respec-
tively, are used on screws when power is to be transmitted. Table 8–3 lists the pre-
ferred pitches for inch-series Acme threads. However, other pitches can be and often
are used, since the need for a standard for such threads is not great.

Modifications are frequently made to both Acme and square threads. For instance,
the square thread is sometimes modified by cutting the space between the teeth so as
to have an included thread angle of 10 to 15◦. This is not difficult, since these threads
are usually cut with a single-point tool anyhow; the modification retains most of the
high efficiency inherent in square threads and makes the cutting simpler. Acme threads
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29°

(a) (b)

Figure 8–3

(a) Square thread; (b) Acme
thread.

Coarse Series—UNC Fine Series—UNF
Nominal Tensile- Minor- Tensile- Minor-

Major Threads Stress Diameter Threads Stress Diameter
Size Diameter per Inch Area At Area Ar per Inch Area At Area Ar

Designation in N in2 in2 N in2 in2

0 0.0600 80 0.001 80 0.001 51

1 0.0730 64 0.002 63 0.002 18 72 0.002 78 0.002 37

2 0.0860 56 0.003 70 0.003 10 64 0.003 94 0.003 39

3 0.0990 48 0.004 87 0.004 06 56 0.005 23 0.004 51

4 0.1120 40 0.006 04 0.004 96 48 0.006 61 0.005 66

5 0.1250 40 0.007 96 0.006 72 44 0.008 80 0.007 16

6 0.1380 32 0.009 09 0.007 45 40 0.010 15 0.008 74

8 0.1640 32 0.014 0 0.011 96 36 0.014 74 0.012 85

10 0.1900 24 0.017 5 0.014 50 32 0.020 0 0.017 5

12 0.2160 24 0.024 2 0.020 6 28 0.025 8 0.022 6
1
4 0.2500 20 0.031 8 0.026 9 28 0.036 4 0.032 6
5

16 0.3125 18 0.052 4 0.045 4 24 0.058 0 0.052 4

3
8 0.3750 16 0.077 5 0.067 8 24 0.087 8 0.080 9
7

16 0.4375 14 0.106 3 0.093 3 20 0.118 7 0.109 0
1
2 0.5000 13 0.141 9 0.125 7 20 0.159 9 0.148 6
9

16 0.5625 12 0.182 0.162 18 0.203 0.189

5
8 0.6250 11 0.226 0.202 18 0.256 0.240
3
4 0.7500 10 0.334 0.302 16 0.373 0.351
7
8 0.8750 9 0.462 0.419 14 0.509 0.480

1 1.0000 8 0.606 0.551 12 0.663 0.625

1 1
4 1.2500 7 0.969 0.890 12 1.073 1.024

1 1
2 1.5000 6 1.405 1.294 12 1.581 1.521

*This table was compiled from ANSI B1.1-1974. The minor diameter was found from the equation dr = d − 1.299 038p, and the pitch diameter
from dp = d − 0.649 519p. The mean of the pitch diameter and the minor diameter was used to compute the tensile-stress area.

Table 8–2

Diameters and Area of Unified Screw Threads UNC and UNF*
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Figure 8–4

The Joyce worm-gear screw
jack. (Courtesy Joyce-Dayton
Corp., Dayton, Ohio.)

are sometimes modified to a stub form by making the teeth shorter. This results in a
larger minor diameter and a somewhat stronger screw.

8–2 The Mechanics of Power Screws
A power screw is a device used in machinery to change angular motion into linear
motion, and, usually, to transmit power. Familiar applications include the lead screws
of lathes, and the screws for vises, presses, and jacks.

An application of power screws to a power-driven jack is shown in Fig. 8–4. You
should be able to identify the worm, the worm gear, the screw, and the nut. Is the
worm gear supported by one bearing or two?

d, in 1
4

5
16

3
8

1
2

5
8

3
4

7
8 1 1 1

4 1 1
2 1 3

4 2 2 1
2 3

p, in 1
16

1
14

1
12

1
10

1
8

1
6

1
6

1
5

1
5

1
4

1
4

1
4

1
3

1
2

Table 8–3

Preferred Pitches for

Acme Threads
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Portion of a power screw.
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Figure 8–6

Force diagrams: (a) lifting the
load; (b) lowering the load.

In Fig. 8–5 a square-threaded power screw with single thread having a mean
diameter dm , a pitch p, a lead angle λ, and a helix angle ψ is loaded by the axial
compressive force F. We wish to find an expression for the torque required to raise
this load, and another expression for the torque required to lower the load.

First, imagine that a single thread of the screw is unrolled or developed (Fig. 8–6)
for exactly a single turn. Then one edge of the thread will form the hypotenuse of a right
triangle whose base is the circumference of the mean-thread-diameter circle and whose
height is the lead. The angle λ, in Figs. 8–5 and 8–6, is the lead angle of the thread. We
represent the summation of all the axial forces acting upon the normal thread area by F.
To raise the load, a force PR acts to the right (Fig. 8–6a), and to lower the load, PL acts
to the left (Fig. 8–6b). The friction force is the product of the coefficient of friction f
with the normal force N, and acts to oppose the motion. The system is in equilibrium
under the action of these forces, and hence, for raising the load, we have∑

Fx = PR − N sin λ − f N cos λ = 0
(a)∑

Fy = −F − f N sin λ + N cos λ = 0

In a similar manner, for lowering the load, we have∑
Fx = −PL − N sin λ + f N cos λ = 0

(b)∑
Fy = −F + f N sin λ + N cos λ = 0
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416 Mechanical Engineering Design

Since we are not interested in the normal force N, we eliminate it from each of these
sets of equations and solve the result for P. For raising the load, this gives

PR = F(sin λ + f cos λ)

cos λ − f sin λ
(c)

and for lowering the load,

PL = F( f cos λ − sin λ)

cos λ + f sin λ
(d)

Next, divide the numerator and the denominator of these equations by cos λ and use
the relation tan λ = l/πdm (Fig. 8–6). We then have, respectively,

PR = F[(l/πdm) + f ]

1 − ( f l/πdm)
(e)

PL = F[ f − (l/πdm)]

1 + ( f l/πdm)
(f )

Finally, noting that the torque is the product of the force P and the mean radius dm/2,
for raising the load we can write

TR = Fdm

2

(
l + π f dm

πdm − f l

)
(8–1)

where TR is the torque required for two purposes: to overcome thread friction and to
raise the load.

The torque required to lower the load, from Eq. ( f ), is found to be

TL = Fdm

2

(
π f dm − l
πdm + f l

)
(8–2)

This is the torque required to overcome a part of the friction in lowering the load. It may
turn out, in specific instances where the lead is large or the friction is low, that the load
will lower itself by causing the screw to spin without any external effort. In such cases, 
the torque TL from Eq. (8–2) will be negative or zero. When a positive torque is
obtained from this equation, the screw is said to be self-locking. Thus the condition
for self-locking is

π f dm > l

Now divide both sides of this inequality by πdm . Recognizing that l/πdm = tan λ, we
get

f > tan λ (8–3)

This relation states that self-locking is obtained whenever the coefficient of thread
friction is equal to or greater than the tangent of the thread lead angle.

An expression for efficiency is also useful in the evaluation of power screws. If
we let f = 0 in Eq. (8–1), we obtain

T0 = Fl
2π

(g)
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(a) Normal thread force is
increased because of angle α;
(b) thrust collar has frictional
diameter dc.

which, since thread friction has been eliminated, is the torque required only to raise
the load. The efficiency is therefore

e = T0

TR
= Fl

2πTR
(8–4)

The preceding equations have been developed for square threads where the nor-
mal thread loads are parallel to the axis of the screw. In the case of Acme or other
threads, the normal thread load is inclined to the axis because of the thread angle 2α

and the lead angle λ. Since lead angles are small, this inclination can be neglected
and only the effect of the thread angle (Fig. 8–7a) considered. The effect of the angle
α is to increase the frictional force by the wedging action of the threads. Therefore
the frictional terms in Eq. (8–1) must be divided by cos α. For raising the load, or for
tightening a screw or bolt, this yields

TR = Fdm

2

(
l + π f dm sec α

πdm − f l sec α

)
(8–5)

In using Eq. (8–5), remember that it is an approximation because the effect of the
lead angle has been neglected.

For power screws, the Acme thread is not as efficient as the square thread, because
of the additional friction due to the wedging action, but it is often preferred because
it is easier to machine and permits the use of a split nut, which can be adjusted to
take up for wear.

Usually a third component of torque must be applied in power-screw applications.
When the screw is loaded axially, a thrust or collar bearing must be employed between
the rotating and stationary members in order to carry the axial component. Figure 8–7b
shows a typical thrust collar in which the load is assumed to be concentrated at the
mean collar diameter dc. If fc is the coefficient of collar friction, the torque required is

Tc = F fcdc

2
(8–6)

For large collars, the torque should probably be computed in a manner similar to that
employed for disk clutches.

Nominal body stresses in power screws can be related to thread parameters as follows.
The maximum nominal shear stress τ in torsion of the screw body can be expressed as

τ = 16T
πd3

r
(8–7)
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Figure 8–8

Geometry of square thread
useful in finding bending and
transverse shear stresses at the
thread root.

The axial stress σ in the body of the screw due to load F is

σ = F
A

= 4F
πd2

r
(8–8)

in the absence of column action. For a short column the J. B. Johnson buckling
formula is given by Eq. (4–43), which is(

F
A

)
crit

= Sy −
(

Sy

2π

l
k

)2 1

C E
(8–9)

Nominal thread stresses in power screws can be related to thread parameters as
follows. The bearing stress in Fig. 8–8, σB , is

σB = − F
πdmnt p/2

= − 2F
πdmnt p

(8–10)

where nt is the number of engaged threads. The bending stress at the root of the thread
σb is found from

Z = I
c

= (πdr nt) (p/2)2

6
= π

24
dr nt p2 M = Fp

4

so

σb = M
Z

= Fp
4

24

πdr nt p2
= 6F

πdr nt p
(8–11)

The transverse shear stress τ at the center of the root of the thread due to load F is

τ = 3V
2A

= 3

2

F
πdr nt p/2

= 3F
πdr nt p

(8–12)

and at the top of the root it is zero. The von Mises stress σ ′ at the top of the root “plane”
is found by first identifying the orthogonal normal stresses and the shear stresses. From
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the coordinate system of Fig. 8–8, we note

σx = 6F
πdr nt p

τxy = 0

σy = − 4F
πd2

r
τyz = 16T

πd3
r

σz = 0 τzx = 0

then use Eq. (5–14) of Sec. 5–5.
The screw-thread form is complicated from an analysis viewpoint. Remember the

origin of the tensile-stress area At , which comes from experiment. A power screw lift-
ing a load is in compression and its thread pitch is shortened by elastic deformation.
Its engaging nut is in tension and its thread pitch is lengthened. The engaged threads
cannot share the load equally. Some experiments show that the first engaged thread
carries 0.38 of the load, the second 0.25, the third 0.18, and the seventh is free of load.
In estimating thread stresses by the equations above, substituting 0.38F for F and set-
ting nt to 1 will give the largest level of stresses in the thread-nut combination.

EXAMPLE 8–1 A square-thread power screw has a major diameter of 32 mm and a pitch of 4 mm
with double threads, and it is to be used in an application similar to that in Fig. 8–4.
The given data include f = fc = 0.08, dc = 40 mm, and F = 6.4 kN per screw.
(a) Find the thread depth, thread width, pitch diameter, minor diameter, and lead.
(b) Find the torque required to raise and lower the load.
(c) Find the efficiency during lifting the load.
(d ) Find the body stresses, torsional and compressive.
(e) Find the bearing stress.
( f ) Find the thread bending stress at the root of the thread.
(g) Determine the von Mises stress at the root of the thread.
(h) Determine the maximum shear stress at the root of the thread.

Solution (a) From Fig. 8–3a the thread depth and width are the same and equal to half the
pitch, or 2 mm. Also

dm = d − p/2 = 32 − 4/2 = 30 mm

Answer dr = d − p = 32 − 4 = 28 mm

l = np = 2(4) = 8 mm

(b) Using Eqs. (8–1) and (8–6), the torque required to turn the screw against the load is 

TR = Fdm

2

(
l + π f dm

πdm − f l

)
+ F fcdc

2

= 6.4(30)

2

[
8 + π(0.08)(30)

π(30) − 0.08(8)

]
+ 6.4(0.08)40

2

Answer = 15.94 + 10.24 = 26.18 N · m
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Using Eqs. (8–2) and (8–6), we find the load-lowering torque is

TL = Fdm

2

(
π f dm − l
πdm + f l

)
+ F fcdc

2

= 6.4(30)

2

[
π(0.08)30 − 8

π(30) + 0.08(8)

]
+ 6.4(0.08)(40)

2

Answer = −0.466 + 10.24 = 9.77 N · m

The minus sign in the first term indicates that the screw alone is not self-locking and
would rotate under the action of the load except for the fact that the collar friction is
present and must be overcome, too. Thus the torque required to rotate the screw “with”
the load is less than is necessary to overcome collar friction alone.
(c) The overall efficiency in raising the load is

Answer e = Fl
2πTR

= 6.4(8)

2π(26.18)
= 0.311

(d) The body shear stress τ due to torsional moment TR at the outside of the screw
body is

Answer τ = 16TR

πd3
r

= 16(26.18)(103)

π(283)
= 6.07 MPa

The axial nominal normal stress σ is

Answer σ = − 4F
πd2

r
= −4(6.4)103

π(282)
= −10.39 MPa

(e) The bearing stress σB is, with one thread carrying 0.38F ,

Answer σB = −2(0.38F)

πdm(1)p
= −2(0.38)(6.4)103

π(30)(1)(4)
= −12.9 MPa

( f ) The thread-root bending stress σb with one thread carrying 0.38F is

Answer σb = 6(0.38F)

πdr (1)p
= 6(0.38)(6.4)103

π(28)(1)4
= 41.5 MPa

(g) The transverse shear at the extreme of the root cross section due to bending is
zero. However, there is a circumferential shear stress at the extreme of the root cross
section of the thread as shown in part (d) of 6.07 MPa. The three-dimensional stresses,
after Fig. 8–8, noting the y coordinate is into the page, are

σx = 41.5 MPa τxy = 0

σy = −10.39 MPa τyz = 6.07 MPa

σz = 0 τzx = 0

For the von Mises stress, Eq. (5–14) of Sec. 5–5 can be written as

Answer σ ′ = 1√
2
{(41.5 − 0)2 + [0 − (−10.39)]2 + (−10.39 − 41.5)2 + 6(6.07)2}1/2

= 48.7 MPa
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Screw Nut
Material Material Safe pb, psi Notes

Steel Bronze 2500–3500 Low speed

Steel Bronze 1600–2500 ≤10 fpm

Cast iron 1800–2500 ≤8 fpm

Steel Bronze 800–1400 20–40 fpm

Cast iron 600–1000 20–40 fpm

Steel Bronze 150–240 ≥50 fpm

Table 8–4

Screw Bearing

Pressure pb

Source: H. A. Rothbart and 
T. H. Brown, Jr., Mechanical
Design Handbook, 2nd ed.,
McGraw-Hill, New York, 2006.

Alternatively, you can determine the principal stresses and then use Eq. (5–12) to find
the von Mises stress. This would prove helpful in evaluating τmax as well. The prin-
cipal stresses can be found from Eq. (3–15); however, sketch the stress element and
note that there are no shear stresses on the x face. This means that σx is a principal
stress. The remaining stresses can be transformed by using the plane stress equation,
Eq. (3–13). Thus, the remaining principal stresses are

−10.39

2
±

√(−10.39

2

)2

+ 6.072 = 2.79,−13.18 MPa

Ordering the principal stresses gives σ1, σ2, σ3 = 41.5, 2.79, −13.18 MPa. Substi-
tuting these into Eq. (5–12) yields

Answer σ ′ =
{

[41.5 − 2.79]2 + [2.79 − (−13.18)]2 + [−13.18 − 41.5]2

2

}1/2

= 48.7 MPa

(h) The maximum shear stress is given by Eq. (3–16), where τmax = τ1/3, giving

Answer τmax = σ1 − σ3

2
= 41.5 − (−13.18)

2
= 27.3 MPa

1Ham and Ryan, An Experimental Investigation of the Friction of Screw-threads, Bulletin 247, University of
Illinois Experiment Station, Champaign-Urbana, Ill., June 7, 1932.

Ham and Ryan1 showed that the coefficient of friction in screw threads is inde-
pendent of axial load, practically independent of speed, decreases with heavier lubri-
cants, shows little variation with combinations of materials, and is best for steel on
bronze. Sliding coefficients of friction in power screws are about 0.10–0.15.

Table 8–4 shows safe bearing pressures on threads, to protect the moving sur-
faces from abnormal wear. Table 8–5 shows the coefficients of sliding friction for
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common material pairs. Table 8–6 shows coefficients of starting and running friction
for common material pairs.

8–3 Threaded Fasteners
As you study the sections on threaded fasteners and their use, be alert to the stochastic
and deterministic viewpoints. In most cases the threat is from overproof loading of
fasteners, and this is best addressed by statistical methods. The threat from fatigue is
lower, and deterministic methods can be adequate.

Figure 8–9 is a drawing of a standard hexagon-head bolt. Points of stress con-
centration are at the fillet, at the start of the threads (runout), and at the thread-root
fillet in the plane of the nut when it is present. See Table A–29 for dimensions. The
diameter of the washer face is the same as the width across the flats of the hexagon.
The thread length of inch-series bolts, where d is the nominal diameter, is

LT =
{

2d + 1
4 in L ≤ 6 in

2d + 1
2 in L > 6 in

(8–13)

and for metric bolts is

LT =

⎧⎪⎨⎪⎩
2d + 6

2d + 12 125 <

2d + 25

L ≤ 125 d ≤ 48

L ≤ 200

L > 200

(8–14)

where the dimensions are in millimeters. The ideal bolt length is one in which only
one or two threads project from the nut after it is tightened. Bolt holes may have burrs
or sharp edges after drilling. These could bite into the fillet and increase stress con-
centration. Therefore, washers must always be used under the bolt head to prevent
this. They should be of hardened steel and loaded onto the bolt so that the rounded
edge of the stamped hole faces the washer face of the bolt. Sometimes it is necessary
to use washers under the nut too.

The purpose of a bolt is to clamp two or more parts together. The clamping load
stretches or elongates the bolt; the load is obtained by twisting the nut until the bolt

Screw Nut Material
Material Steel Bronze Brass Cast Iron

Steel, dry 0.15–0.25 0.15–0.23 0.15–0.19 0.15–0.25

Steel, machine oil 0.11–0.17 0.10–0.16 0.10–0.15 0.11–0.17

Bronze 0.08–0.12 0.04–0.06 — 0.06–0.09

Table 8–5

Coefficients of Friction f
for Threaded Pairs

Source: H. A. Rothbart and 
T. H. Brown, Jr., Mechanical
Design Handbook, 2nd ed.,
McGraw-Hill, New York, 2006.

Combination Running Starting

Soft steel on cast iron 0.12 0.17

Hard steel on cast iron 0.09 0.15

Soft steel on bronze 0.08 0.10

Hard steel on bronze 0.06 0.08

Table 8–6

Thrust-Collar Friction

Coefficients 

Source: H. A. Rothbart and 
T. H. Brown, Jr., Mechanical
Design Handbook, 2nd ed.,
McGraw-Hill, New York, 2006.
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Figure 8–9

Hexagon-head bolt; note the
washer face, the fillet under the
head, the start of threads, and
the chamfer on both ends. Bolt
lengths are always measured
from below the head.

l

(a)

L

H

A

l
l

L

H

(b)

L

H

A

80 to 82°

(c)

A

D D
D

Figure 8–10

Typical cap-screw heads:
(a) fillister head; (b) flat head;
(c) hexagonal socket head. Cap
screws are also manufactured
with hexagonal heads similar to
the one shown in Fig. 8–9, as
well as a variety of other head
styles. This illustration uses
one of the conventional
methods of representing
threads.

has elongated almost to the elastic limit. If the nut does not loosen, this bolt tension
remains as the preload or clamping force. When tightening, the mechanic should, if
possible, hold the bolt head stationary and twist the nut; in this way the bolt shank
will not feel the thread-friction torque.

The head of a hexagon-head cap screw is slightly thinner than that of a hexagon-
head bolt. Dimensions of hexagon-head cap screws are listed in Table A–30.
Hexagon-head cap screws are used in the same applications as bolts and also in appli-
cations in which one of the clamped members is threaded. Three other common cap-
screw head styles are shown in Fig. 8–10.

A variety of machine-screw head styles are shown in Fig. 8–11. Inch-series
machine screws are generally available in sizes from No. 0 to about 3

8 in.
Several styles of hexagonal nuts are illustrated in Fig. 8–12; their dimensions are

given in Table A–31. The material of the nut must be selected carefully to match that
of the bolt. During tightening, the first thread of the nut tends to take the entire load;
but yielding occurs, with some strengthening due to the cold work that takes place,
and the load is eventually divided over about three nut threads. For this reason you
should never reuse nuts; in fact, it can be dangerous to do so.

1
64

H
Approx. in

30°

R

W
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A

H

D

L

(a) Round head

A D

L
H

A

(b) Flat head

A

H

D

L

(c) Fillister head

D

L
H

(d) Oval head

A

H

D

L

(e) Truss head

W

H

D

L

(g) Hex head (trimmed)

80
 to

 8
2°

80
 to

 8
2°

R

A D

L

( f ) Binding head

5° ±3°

W

H

D

L

(h) Hex head (upset)

Figure 8–11

Types of heads used on
machine screws.

30� 30�

Approx. in
W H

(a) (b) (c) (d) (e)

30�

H
H

30�

H
Approx. in1

64
1
64

Figure 8–12

Hexagonal nuts: (a) end view,
general; (b) washer-faced
regular nut; (c) regular nut
chamfered on both sides;
(d) jam nut with washer face;
(e) jam nut chamfered on 
both sides.

8–4 Joints—Fastener Stiffness
When a connection is desired that can be disassembled without destructive methods
and that is strong enough to resist external tensile loads, moment loads, and shear
loads, or a combination of these, then the simple bolted joint using hardened-steel
washers is a good solution. Such a joint can also be dangerous unless it is properly
designed and assembled by a trained mechanic.
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PP

PP

l

Figure 8–13

A bolted connection loaded in
tension by the forces P. Note
the use of two washers. Note
how the threads extend into the
body of the connection. This is
usual and is desired. l is the
grip of the connection.

l

Figure 8–14

Section of cylindrical pressure
vessel. Hexagon-head cap
screws are used to fasten the
cylinder head to the body. 
Note the use of an O-ring seal. 
l is the effective grip of the
connection (see Table 8–7).

A section through a tension-loaded bolted joint is illustrated in Fig. 8–13. Notice
the clearance space provided by the bolt holes. Notice, too, how the bolt threads
extend into the body of the connection.

As noted previously, the purpose of the bolt is to clamp the two, or more, parts
together. Twisting the nut stretches the bolt to produce the clamping force. This clamping
force is called the pretension or bolt preload. It exists in the connection after the nut has
been properly tightened no matter whether the external tensile load P is exerted or not.

Of course, since the members are being clamped together, the clamping force that
produces tension in the bolt induces compression in the members.

Figure 8–14 shows another tension-loaded connection. This joint uses cap screws
threaded into one of the members. An alternative approach to this problem (of not using
a nut) would be to use studs. A stud is a rod threaded on both ends. The stud is screwed 
into the lower member first; then the top member is positioned and fastened down
with hardened washers and nuts. The studs are regarded as permanent, and so the joint
can be disassembled merely by removing the nut and washer. Thus the threaded part
of the lower member is not damaged by reusing the threads.

The spring rate is a limit as expressed in Eq. (4–1). For an elastic member such
as a bolt, as we learned in Eq. (4–2), it is the ratio between the force applied to the
member and the deflection produced by that force. We can use Eq. (4–4) and the results
of Prob. 4–1 to find the stiffness constant of a fastener in any bolted connection.

The grip l of a connection is the total thickness of the clamped material. In
Fig. 8–13 the grip is the sum of the thicknesses of both members and both washers.
In Fig. 8–14 the effective grip is given in Table 8–7.

The stiffness of the portion of a bolt or screw within the clamped zone will gen-
erally consist of two parts, that of the unthreaded shank portion and that of the
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l

L

ld

LT

h

t t2t1
ld

d

l

LT

L

t

lt
H

lt

(a) (b)

d

Given fastener diameter d and pitch p in mm or number of threads per inch

Washer thickness: t from Table A–32 or A–33

Nut thickness [Fig. (a) only]: H from Table A–31

Grip length:
For Fig. (a): l � thickness of all material squeezed

between face of bolt and face of nut

For Fig. (b): l =
{

h + t2/2, t2 < d
h + d/2, t2 ≥ d

Fastener length (round up using Table A–17*):

For Fig. (a): L > l + H

For Fig. (b): L > h + 1.5d

Threaded length LT: Inch series:

LT =
{

2d + 1
4 in, L ≤ 6 in

2d + 1
2 in, L > 6 in

Metric series:

LT =

⎧⎪⎨⎪⎩
2d + 6 mm,

2d + 12 mm,

2d + 25 mm,

L ≤ 125 mm, d ≤ 48 mm

125 < L ≤ 200 mm

L > 200 mm

Length of unthreaded portion in grip: ld = L − LT

Length of threaded portion in grip: lt = l − ld
Area of unthreaded portion:  Ad = πd2/4

Area of threaded portion: At from Table 8–1 or 8–2

Fastener stiffness:  kb = Ad At E
Adlt + Atld

Table 8–7

Suggested Procedure for Finding Fastener Stiffness

*Bolts and cap screws may not be available in all the preferred lengths listed in Table A–17. Large fasteners may not be available in fractional
inches or in millimeter lengths ending in a nonzero digit. Check with your bolt supplier for availability.
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threaded portion. Thus the stiffness constant of the bolt is equivalent to the stiffnesses
of two springs in series. Using the results of Prob. 4–1, we find

1

k
= 1

k1
+ 1

k2
or k = k1k2

k1 + k2
(8–15)

for two springs in series. From Eq. (4–4), the spring rates of the threaded and
unthreaded portions of the bolt in the clamped zone are, respectively,

kt = At E
lt

kd = Ad E
ld

(8–16)

where At = tensile-stress area (Tables 8–1, 8–2)

lt = length of threaded portion of grip

Ad = major-diameter area of fastener

ld = length of unthreaded portion in grip

Substituting these stiffnesses in Eq. (8–15) gives

kb = Ad At E
Adlt + Atld

(8–17)

where kb is the estimated effective stiffness of the bolt or cap screw in the clamped
zone. For short fasteners, the one in Fig. 8–14, for example, the unthreaded area is
small and so the first of the expressions in Eq. (8–16) can be used to find kb. For long
fasteners, the threaded area is relatively small, and so the second expression in
Eq. (8–16) can be used. Table 8–7 is useful.

8–5 Joints—Member Stiffness
In the previous section, we determined the stiffness of the fastener in the clamped zone.
In this section, we wish to study the stiffnesses of the members in the clamped zone.
Both of these stiffnesses must be known in order to learn what happens when the
assembled connection is subjected to an external tensile loading.

There may be more than two members included in the grip of the fastener. All
together these act like compressive springs in series, and hence the total spring rate
of the members is

1

km
= 1

k1
+ 1

k2
+ 1

k3
+ · · · + 1

ki
(8–18)

If one of the members is a soft gasket, its stiffness relative to the other members is
usually so small that for all practical purposes the others can be neglected and only
the gasket stiffness used.

If there is no gasket, the stiffness of the members is rather difficult to obtain,
except by experimentation, because the compression region spreads out between the
bolt head and the nut and hence the area is not uniform. There are, however, some
cases in which this area can be determined.

Ito2 has used ultrasonic techniques to determine the pressure distribution at the mem-
ber interface. The results show that the pressure stays high out to about 1.5 bolt radii.

2Y. Ito, J. Toyoda, and S. Nagata, “Interface Pressure Distribution in a Bolt-Flange Assembly,” ASME paper
no. 77-WA/DE-11, 1977.
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The pressure, however, falls off farther away from the bolt. Thus Ito suggests the use
of Rotscher’s pressure-cone method for stiffness calculations with a variable cone
angle. This method is quite complicated, and so here we choose to use a simpler
approach using a fixed cone angle.

Figure 8–15 illustrates the general cone geometry using a half-apex angle α. An
angle α = 45◦ has been used, but Little3 reports that this overestimates the clamping
stiffness. When loading is restricted to a washer-face annulus (hardened steel, cast
iron, or aluminum), the proper apex angle is smaller. Osgood4 reports a range of
25◦ ≤ α ≤ 33◦ for most combinations. In this book we shall use α = 30◦ except in
cases in which the material is insufficient to allow the frusta to exist.

Referring now to Fig. 8–15b, the contraction of an element of the cone of thick-
ness dx subjected to a compressive force P is, from Eq. (4–3),

dδ = P dx
E A

(a)

The area of the element is

A = π
(
r2

o − r2
i

) = π

[(
x tan α + D

2

)2

−
(

d
2

)2 ]
= π

(
x tan α + D + d

2

)(
x tan α + D − d

2

) (b)

Substituting this in Eq. (a) and integrating gives a total contraction of

δ = P
π E

∫ t

0

dx
[x tan α + (D + d)/2][x tan α + (D − d)/2]

(c)

Using a table of integrals, we find the result to be

δ = P
π Ed tan α

ln
(2t tan α + D − d)(D + d)

(2t tan α + D + d)(D − d)
(d)

Thus the spring rate or stiffness of this frustum is

k = P
δ

= π Ed tan α

ln
(2t tan α + D − d)(D + d)

(2t tan α + D + d)(D − d)

(8–19)

(a) (b)

t

y

t

D

x

y
l
2

d

dw 

d

x

dx

�

xFigure 8–15

Compression of a member with
the equivalent elastic properties
represented by a frustum of a
hollow cone. Here, l represents
the grip length.

3R. E. Little, “Bolted Joints: How Much Give?” Machine Design, Nov. 9, 1967.
4C. C. Osgood, “Saving Weight on Bolted Joints,” Machine Design, Oct. 25, 1979.
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5J. Wileman, M. Choudury, and I. Green, “Computation of Member Stiffness in Bolted Connections,” Trans.
ASME, J. Mech. Design, vol. 113, December 1991, pp. 432–437.

With α = 30◦, this becomes

k = 0.5774π Ed

ln
(1.155t + D − d)(D + d)

(1.155t + D + d)(D − d)

(8–20)

Equation (8–20), or (8–19), must be solved separately for each frustum in the
joint. Then individual stiffnesses are assembled to obtain km using Eq. (8–18).

If the members of the joint have the same Young’s modulus E with symmetrical
frusta back to back, then they act as two identical springs in series. From Eq. (8–18)
we learn that km = k/2. Using the grip as l = 2t and dw as the diameter of the washer
face, from Eq. (8–19) we find the spring rate of the members to be

km = π Ed tan α

2 ln
(l tan α + dw − d) (dw + d)

(l tan α + dw + d) (dw − d)

(8–21)

The diameter of the washer face is about 50 percent greater than the fastener diame-
ter for standard hexagon-head bolts and cap screws. Thus we can simplify Eq. (8–21)
by letting dw = 1.5d . If we also use α = 30◦, then Eq. (8–21) can be written as

km = 0.5774π Ed

2 ln
(

5
0.5774l + 0.5d
0.5774l + 2.5d

)
(8–22)

It is easy to program the numbered equations in this section, and you should do so.
The time spent in programming will save many hours of formula plugging.

To see how good Eq. (8–21) is, solve it for km/Ed :

km

Ed
= π tan α

2 ln
[
(l tan α + dw − d) (dw + d)

(l tan α + dw + d) (dw − d)

]
Earlier in the section use of α = 30◦ was recommended for hardened steel, cast iron,
or aluminum members. Wileman, Choudury, and Green5 conducted a finite element
study of this problem. The results, which are depicted in Fig. 8–16, agree with the
α = 30◦ recommendation, coinciding exactly at the aspect ratio d/ l = 0.4. Addition-
ally, they offered an exponential curve-fit of the form

km

Ed
= A exp(Bd/ l) (8–23)

with constants A and B defined in Table 8–8. Equation (8–23) offers a simple calcu-
lation for member stiffness km. However, it is very important to note that the entire
joint must be made up of the same material. For departure from these conditions,
Eq. (8–20) remains the basis for approaching the problem.
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Material Poisson Elastic Modulus
Used Ratio GPa Mpsi A B

Steel 0.291 207 30.0 0.787 15 0.628 73

Aluminum 0.334 71 10.3 0.796 70 0.638 16

Copper 0.326 119 17.3 0.795 68 0.635 53

Gray cast iron 0.211 100 14.5 0.778 71 0.616 16

General expression 0.789 52 0.629 14

Table 8–8

Stiffness Parameters

of Various Member

Materials†

†Source: J. Wileman, 
M. Choudury, and I. Green,
“Computation of Member
Stiffness in Bolted
Connections,” Trans. ASME,
J. Mech. Design, vol. 113,
December 1991, pp. 432–437.

EXAMPLE 8–2 As shown in Fig. 8–17a, two plates are clamped by washer-faced 1
2 in-20 UNF × 1 1

2 in
SAE grade 5 bolts each with a standard 1

2 N steel plain washer.
(a) Determine the member spring rate km if the top plate is steel and the bottom plate
is gray cast iron.
(b) Using the method of conical frusta, determine the member spring rate km if both
plates are steel.
(c) Using Eq. (8–23), determine the member spring rate km if both plates are steel.
Compare the results with part (b).
(d) Determine the bolt spring rate kb.

Solution From Table A–32, the thickness of a standard 1
2 N plain washer is 0.095 in. 

(a) As shown in Fig. 8–17b, the frusta extend halfway into the joint the distance

1

2
(0.5 + 0.75 + 0.095) = 0.6725 in

3.4

3.2

3.0
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1.8
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0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Aspect ratio, d ⁄ l

FEA Rotscher Mischke 45° Mischke 30° Motosh

Figure 8–16

The dimensionless plot of
stiffness versus aspect ratio of
the members of a bolted joint,
showing the relative accuracy
of methods of Rotscher,
Mischke, and Motosh,
compared to a finite-element
analysis (FEA) conducted by
Wileman, Choudury, and
Green.
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0.095

3
4

1
2 0.6725

0.6725

(b)(a)

1.437

0.75

0.0775

1.527

Figure 8–17

Dimensions in inches.

The distance between the joint line and the dotted frusta line is 0.6725 − 0.5 −
0.095 = 0.0775 in. Thus, the top frusta consist of the steel washer, steel plate, and
0.0775 in of the cast iron. Since the washer and top plate are both steel with
E = 30(106) psi, they can be considered a single frustum of 0.595 in thick. The outer
diameter of the frustum of the steel member at the joint interface is 0.75 + 2(0.595)
tan 30° = 1.437 in. The outer diameter at the midpoint of the entire joint is 0.75 +
2(0.6725) tan 30° = 1.527 in. Using Eq. (8–20), the spring rate of the steel is

k1 = 0.5774π(30)(106)0.5

ln

{
[1.155(0.595) + 0.75 − 0.5](0.75 + 0.5)

[1.155(0.595) + 0.75 + 0.5](0.75 − 0.5)

} = 30.80(106) lbf/in

For the upper cast-iron frustum

k2 = 0.5774π(14.5)(106)0.5

ln

{
[1.155(0.0775) + 1.437 − 0.5](1.437 + 0.5)

[1.155(0.0775) + 1.437 + 0.5](1.437 − 0.5)

} = 285.5(106) lbf/in

For the lower cast-iron frustum

k3 = 0.5774π(14.5)(106)0.5

ln

{
[1.155(0.6725) + 0.75 − 0.5](0.75 + 0.5)

[1.155(0.6725) + 0.75 + 0.5](0.75 − 0.5)

} = 14.15(106) lbf/in

The three frusta are in series, so from Eq. (8–18)

1

km
= 1

30.80(106)
+ 1

285.5(106)
+ 1

14.15(106)
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Answer This results in km = 9.378 (106) lbf/in.
(b) If the entire joint is steel, Eq. (8–22) with l = 2(0.6725) = 1.345 in gives

Answer km = 0.5774π(30.0)(106)0.5

2 ln
{

5
[

0.5774(1.345) + 0.5(0.5)

0.5774(1.345) + 2.5(0.5)

]} = 14.64(106) lbf/in.

(c) From Table 8–8, A = 0.787 15, B = 0.628 73. Equation (8–23) gives

Answer km = 30(106)(0.5)(0.787 15) exp[0.628 73(0.5)/1.345] = 14.92(106) lbf/in

For this case, the difference between the results for Eqs. (8–22) and (8–23) is less
than 2 percent.
(d ) Following the procedure of Table 8–7, the threaded length of a 0.5-in bolt is 
LT = 2(0.5) + 0.25 = 1.25 in. The length of the unthreaded portion is ld = 1.5 −
1.25 = 0.25 in. The length of the unthreaded portion in grip is lt = 1.345 − 0.25 =
1.095 in. The major diameter area is Ad = (π/4)(0.52) = 0.196 3 in2. From
Table 8–2, the tensile-stress area is At = 0.159 9 in2. From Eq. (8–17)

Answer kb = 0.196 3(0.159 9)30(106)

0.196 3(1.095) + 0.159 9(0.25)
= 3.69(106) lbf/in

8–6 Bolt Strength
In the specification standards for bolts, the strength is specified by stating SAE or
ASTM minimum quantities, the minimum proof strength, or minimum proof load, and
the minimum tensile strength. The proof load is the maximum load (force) that a bolt
can withstand without acquiring a permanent set. The proof strength is the quotient
of the proof load and the tensile-stress area. The proof strength thus corresponds
roughly to the proportional limit and corresponds to 0.0001-in permanent set in the
fastener (first measurable deviation from elastic behavior). Tables 8–9, 8–10, and 8–11
provide minimum strength specifications for steel bolts. The values of the mean proof
strength, the mean tensile strength, and the corresponding standard deviations are not
part of the specification codes, so it is the designer’s responsibility to obtain these
values, perhaps by laboratory testing, if designing to a reliability specification.

The SAE specifications are found in Table 8–9. The bolt grades are numbered
according to the tensile strengths, with decimals used for variations at the same
strength level. Bolts and screws are available in all grades listed. Studs are available
in grades 1, 2, 4, 5, 8, and 8.1. Grade 8.1 is not listed.

ASTM specifications are listed in Table 8–10. ASTM threads are shorter because
ASTM deals mostly with structures; structural connections are generally loaded in
shear, and the decreased thread length provides more shank area.

Specifications for metric fasteners are given in Table 8–11.
It is worth noting that all specification-grade bolts made in this country bear a man-

ufacturer’s mark or logo, in addition to the grade marking, on the bolt head. Such marks
confirm that the bolt meets or exceeds specifications. If such marks are missing, the bolt
may be imported; for imported bolts there is no obligation to meet specifications.

Bolts in fatigue axial loading fail at the fillet under the head, at the thread runout,
and at the first thread engaged in the nut. If the bolt has a standard shoulder under
the head, it has a value of K f from 2.1 to 2.3, and this shoulder fillet is protected
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Table 8–9

SAE Specifications for Steel Bolts

Size Minimum Minimum Minimum
SAE Range Proof Tensile Yield

Grade Inclusive, Strength,* Strength,* Strength,*
No. in kpsi kpsi kpsi Material Head Marking

1 1
4 –1 1

2 33 60 36 Low or medium carbon

2 1
4 – 3

4 55 74 57 Low or medium carbon

7
8 –1 1

2 33 60 36

4 1
4 –1 1

2 65 115 100 Medium carbon, cold-drawn

5 1
4 –1 85 120 92 Medium carbon, Q&T

1 1
8 –1 1

2 74 105 81

5.2 1
4 –1 85 120 92 Low-carbon martensite, Q&T

7 1
4 –1 1

2 105 133 115 Medium-carbon alloy, Q&T

8 1
4 –1 1

2 120 150 130 Medium-carbon alloy, Q&T

8.2 1
4 –1 120 150 130 Low-carbon martensite, Q&T

*Minimum strengths are strengths exceeded by 99 percent of fasteners.

from scratching or scoring by a washer. If the thread runout has a 15◦ or less half-cone
angle, the stress is higher at the first engaged thread in the nut. Bolts are sized by
examining the loading at the plane of the washer face of the nut. This is the weakest
part of the bolt if and only if the conditions above are satisfied (washer protection of
the shoulder fillet and thread runout ≤15◦). Inattention to this requirement has led to
a record of 15 percent fastener fatigue failure under the head, 20 percent at thread
runout, and 65 percent where the designer is focusing attention. It does little good to
concentrate on the plane of the nut washer face if it is not the weakest location.

Nuts are graded so that they can be mated with their corresponding grade of bolt.
The purpose of the nut is to have its threads deflect to distribute the load of the bolt
more evenly to the nut. The nut’s properties are controlled in order to accomplish this.
The grade of the nut should be the grade of the bolt.
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Table 8–10

ASTM Specifications for Steel Bolts

ASTM Size Minimum Minimum Minimum
Desig- Range, Proof Tensile Yield
nation Inclusive, Strength,* Strength,* Strength,*

No. in kpsi kpsi kpsi Material Head Marking

A307 1
4 –1 1

2 33 60 36 Low carbon

A325, 1
2 –1 85 120 92 Medium carbon, Q&T

type 1
1 1

8 –1 1
2 74 105 81

A325, 1
2 –1 85 120 92 Low-carbon, martensite,

type 2
1 1

8 –1 1
2 74 105 81

Q&T

A325, 1
2 –1 85 120 92 Weathering steel,

type 3
1 1

8 –1 1
2 74 105 81

Q&T

A354, 1
4 –2 1

2 105 125 109 Alloy steel, Q&T
grade BC

2 3
4 –4 95 115 99

A354, 1
4 –4 120 150 130 Alloy steel, Q&T

grade BD

A449 1
4 –1 85 120 92 Medium-carbon, Q&T

1 1
8 –1 1

2 74 105 81

1 3
4 –3 55 90 58

A490, 1
2 –1 1

2 120 150 130 Alloy steel, Q&T
type 1

A490, 1
2 –1 1

2 120 150 130 Weathering steel,
type 3 Q&T

*Minimum strengths are strengths exceeded by 99 percent of fasteners.

A325

A325

A325

BC

A490

A490
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Minimum Minimum Minimum
Size Proof Tensile Yield

Property Range, Strength,† Strength,† Strength,†
Class Inclusive MPa MPa MPa Material Head Marking

4.6 M5–M36 225 400 240 Low or medium carbon

4.8 M1.6–M16 310 420 340 Low or medium carbon

5.8 M5–M24 380 520 420 Low or medium carbon

8.8 M16–M36 600 830 660 Medium carbon, Q&T

9.8 M1.6–M16 650 900 720 Medium carbon, Q&T

10.9 M5–M36 830 1040 940 Low-carbon martensite,
Q&T

12.9 M1.6–M36 970 1220 1100 Alloy, Q&T

*The thread length for bolts and cap screws is

L T =
⎧⎨⎩

2d + 6

2d + 12

2d + 25

L ≤ 125

125 < L ≤ 200

L > 200

where L is the bolt length. The thread length for structural bolts is slightly shorter than given above.
†Minimum strengths are strengths exceeded by 99 percent of fasteners.

4.6

4.8

5.8

8.8

9.8

10.9

12.9

Table 8–11

Metric Mechanical-Property Classes for Steel Bolts, Screws, and Studs*

8–7 Tension Joints—The External Load
Let us now consider what happens when an external tensile load P, as in Fig. 8–13,
is applied to a bolted connection. It is to be assumed, of course, that the clamping
force, which we will call the preload Fi , has been correctly applied by tightening the
nut before P is applied. The nomenclature used is:

Fi = preload

Ptotal = Total external tensile load applied to the joint
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P = external tensile load per bolt

Pb = portion of P taken by bolt

Pm = portion of P taken by members

Fb = Pb + Fi = resultant bolt load

Fm = Pm − Fi = resultant load on members

C = fraction of external load P carried by bolt

1 − C = fraction of external load P carried by members

N = Number of bolts in the joint

If N bolts equally share the total external load, then 

P = Ptotal/N (a)

The load P is tension, and it causes the connection to stretch, or elongate, through
some distance δ. We can relate this elongation to the stiffnesses by recalling that k is
the force divided by the deflection. Thus

δ = Pb

kb
and δ = Pm

km
(b)

or

Pm = Pb
km

kb
(c)

Since P = Pb + Pm , we have

Pb = kb P
kb + km

= C P (d)

and

Pm = P − Pb = (1 − C)P (e)

where

C = kb

kb + km
(f )

is called the stiffness constant of the joint. The resultant bolt load is

Fb = Pb + Fi = C P + Fi Fm < 0 (8–24)

and the resultant load on the connected members is

Fm = Pm − Fi = (1 − C)P − Fi Fm < 0 (8–25)

Of course, these results are valid only as long as some clamping load remains in the
members; this is indicated by the qualifier in the equations.

Table 8–12 is included to provide some information on the relative values of the
stiffnesses encountered. The grip contains only two members, both of steel, and no
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washers. The ratios C and 1 − C are the coefficients of P in Eqs. (8–24) and (8–25),
respectively. They describe the proportion of the external load taken by the bolt and
by the members, respectively. In all cases, the members take over 80 percent of the
external load. Think how important this is when fatigue loading is present. Note also
that making the grip longer causes the members to take an even greater percentage
of the external load.

8–8 Relating Bolt Torque to Bolt Tension
Having learned that a high preload is very desirable in important bolted connections,
we must next consider means of ensuring that the preload is actually developed when
the parts are assembled.

If the overall length of the bolt can actually be measured with a micrometer when
it is assembled, the bolt elongation due to the preload Fi can be computed using the
formula δ = Fil/(AE). Then the nut is simply tightened until the bolt elongates
through the distance δ. This ensures that the desired preload has been attained.

The elongation of a screw cannot usually be measured, because the threaded end is
often in a blind hole. It is also impractical in many cases to measure bolt elongation. In
such cases the wrench torque required to develop the specified preload must be estimated.
Then torque wrenching, pneumatic-impact wrenching, or the turn-of-the-nut method may
be used.

The torque wrench has a built-in dial that indicates the proper torque.
With impact wrenching, the air pressure is adjusted so that the wrench stalls when

the proper torque is obtained, or in some wrenches, the air automatically shuts off at
the desired torque.

The turn-of-the-nut method requires that we first define the meaning of snug-tight.
The snug-tight condition is the tightness attained by a few impacts of an impact
wrench, or the full effort of a person using an ordinary wrench. When the snug-tight
condition is attained, all additional turning develops useful tension in the bolt. The
turn-of-the-nut method requires that you compute the fractional number of turns nec-
essary to develop the required preload from the snug-tight condition. For example, for
heavy hexagonal structural bolts, the turn-of-the-nut specification states that the nut
should be turned a minimum of 180◦ from the snug-tight condition under optimum
conditions. Note that this is also about the correct rotation for the wheel nuts of a pas-
senger car. Problems 8–15 to 8–17 illustrate the method further.

Although the coefficients of friction may vary widely, we can obtain a good estimate
of the torque required to produce a given preload by combining Eqs. (8–5) and (8–6):

T = Fi dm

2

(
l + π f dm sec α

πdm − f l sec α

)
+ Fi fcdc

2
(a)

Stiffnesses, M lbf/in
Bolt Grip, in kb km C 1 � C

2 2.57 12.69 0.168 0.832

3 1.79 11.33 0.136 0.864

4 1.37 10.63 0.114 0.886

Table 8–12

Computation of Bolt 

and Member Stiffnesses.

Steel members clamped

using a 1
2 in-13 NC 

steel bolt. C = kb

kb + km
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where dm is the average of the major and minor diameters. Since tan λ = l/πdm , we
divide the numerator and denominator of the first term by πdm and get

T = Fi dm

2

(
tan λ + f sec α

1 − f tan λ sec α

)
+ Fi fcdc

2
(b)

The diameter of the washer face of a hexagonal nut is the same as the width across
flats and equal to 1 1

2 times the nominal size. Therefore the mean collar diameter is
dc = (d + 1.5d)/2 = 1.25d . Equation (b) can now be arranged to give

T =
[(

dm

2d

)(
tan λ + f sec α

1 − f tan λ sec α

)
+ 0.625 fc

]
Fi d (c)

We now define a torque coefficient K as the term in brackets, and so

K =
(

dm

2d

)(
tan λ + f sec α

1 − f tan λ sec α

)
+ 0.625 fc (8–26)

Equation (c) can now be written

T = K Fi d (8–27)

The coefficient of friction depends upon the surface smoothness, accuracy, and
degree of lubrication. On the average, both f and fc are about 0.15. The interesting
fact about Eq. (8–26) is that K .= 0.20 for f = fc = 0.15 no matter what size bolts
are employed and no matter whether the threads are coarse or fine.

Blake and Kurtz have published results of numerous tests of the torquing of bolts.6

By subjecting their data to a statistical analysis, we can learn something about the
distribution of the torque coefficients and the resulting preload. Blake and Kurtz deter-
mined the preload in quantities of unlubricated and lubricated bolts of size 1

2 in-20
UNF when torqued to 800 lbf · in. This corresponds roughly to an M12 × 1.25 bolt
torqued to 90 N · m. The statistical analyses of these two groups of bolts, converted
to SI units, are displayed in Tables 8–13 and 8–14.

We first note that both groups have about the same mean preload, 34 kN. The
unlubricated bolts have a standard deviation of 4.9 kN and a COV of about 0.15. The
lubricated bolts have a standard deviation of 3 kN and a COV of about 0.9.

The means obtained from the two samples are nearly identical, approximately
34 kN; using Eq. (8–27), we find, for both samples, K = 0.208.

Bowman Distribution, a large manufacturer of fasteners, recommends the values
shown in Table 8–15. In this book we shall use these values and use K = 0.2 when
the bolt condition is not stated.

6J. C. Blake and H. J. Kurtz, “The Uncertainties of Measuring Fastener Preload,” Machine Design, vol. 37,
Sept. 30, 1965, pp. 128–131.

23.6, 27.6, 28.0, 29.4, 30.3, 30.7, 32.9, 33.8, 33.8, 33.8,

34.7, 35.6, 35.6, 37.4, 37.8, 37.8, 39.2, 40.0, 40.5, 42.7

Mean value  -Fi = 34.3 kN. Standard deviation, σ̂ = 4.91 kN.

Table 8–13

Distribution of Preload

Fi for 20 Tests of

Unlubricated Bolts

Torqued to 90 N · m
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EXAMPLE 8–3 A 3
4 in-16 UNF × 2 1

2 in SAE grade 5 bolt is subjected to a load P of 6 kip in a ten-
sion joint. The initial bolt tension is Fi = 25 kip. The bolt and joint stiffnesses are
kb = 6.50 and km = 13.8 Mlbf/in, respectively.
(a) Determine the preload and service load stresses in the bolt. Compare these to the
SAE minimum proof strength of the bolt.
(b) Specify the torque necessary to develop the preload, using Eq. (8–27).
(c) Specify the torque necessary to develop the preload, using Eq. (8–26) with f =
fc = 0.15.

Solution From Table 8–2, At = 0.373 in2.
(a) The preload stress is

Answer σi = Fi

At
= 25

0.373
= 67.02 kpsi

The stiffness constant is

C = kb

kb + km
= 6.5

6.5 + 13.8
= 0.320

From Eq. (8–24), the stress under the service load is

Answer
σb = Fb

At
= C P + Fi

At
= C

P
At

+ σi

= 0.320
6

0.373
+ 67.02 = 72.17 kpsi

From Table 8–9, the SAE minimum proof strength of the bolt is Sp = 85 kpsi. The
preload and service load stresses are respectively 21 and 15 percent less than the proof
strength.

30.3, 32.5, 32.5, 32.9, 32.9, 33.8, 34.3, 34.7, 37.4, 40.5

Mean value,
-Fi = 34.18 kN. Standard deviation, σ̂ = 2.88 kN.

Table 8–14

Distribution of Preload Fi

for 10 Tests of Lubricated

Bolts Torqued to 90 N · m

Bolt Condition K

Nonplated, black finish 0.30

Zinc-plated 0.20

Lubricated 0.18

Cadmium-plated 0.16

With Bowman Anti-Seize 0.12

With Bowman-Grip nuts 0.09

Table 8–15

Torque Factors K for Use

with Eq. (8–27)
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(b) From Eq. (8–27), the torque necessary to achieve the preload is

Answer T = K Fi d = 0.2(25)(103)(0.75) = 3750 lbf · in

(c) The minor diameter can be determined from the minor area in Table 8–2. Thus dr =√
4Ar/π = √

4(0.351)/π = 0.6685 in. Thus, the mean diameter is dm = (0.75 +
0.6685)/2 = 0.7093 in. The lead angle is

λ = tan−1 l
πdm

= tan−1 1

πdm N
= tan−1 1

π(0.7093)(16)
= 1.6066◦

For α = 30◦, Eq. (8–26) gives

T =
{[

0.7093

2(0.75)

] [
tan 1.6066◦ + 0.15(sec 30◦)

1 − 0.15(tan 1.6066◦)(sec 30◦)

]
+ 0.625(0.15)

}
25(103)(0.75)

= 3551 lbf · in

which is 5.3 percent less than the value found in part (b).

440 Mechanical Engineering Design

8–9 Statically Loaded Tension Joint with Preload
Equations (8–24) and (8–25) represent the forces in a bolted joint with preload. The
tensile stress in the bolt can be found as in Ex. 8–3 as

σb = Fb

At
= CP + Fi

At
(a)

Thus, the yielding factor of safety guarding against the static stress exceeding the proof
strength is

np = Sp

σb
= Sp

(CP + Fi )/At
(b)

or

np = Sp At

CP + Fi
(8–28)

Since it is common to load a bolt close to the proof strength, the yielding factor of
safety is often not much greater than unity. Another indicator of yielding that is some-
times used is a load factor, which is applied only to the load P as a guard against
overloading. Applying such a load factor to the load P in Eq. (a), and equating it to
the proof strength gives

CnL P + Fi

At
= Sp (c)

Solving for the load factor gives

nL = Sp At − Fi

CP
(8–29)

It is also essential for a safe joint that the external load be smaller than that needed
to cause the joint to separate. If separation does occur, then the entire external load
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will be imposed on the bolt. Let P0 be the value of the external load that would cause
joint separation. At separation, Fm = 0 in Eq. (8–25), and so

(1 − C)P0 − Fi = 0 (d )

Let the factor of safety against joint separation be

n0 = P0

P
(e)

Substituting P0 = n0 P in Eq. (d), we find

n0 = Fi

P(1 − C)
(8–30)

as a load factor guarding against joint separation.
Figure 8–18 is the stress-strain diagram of a good-quality bolt material. Notice that

there is no clearly defined yield point and that the diagram progresses smoothly up to
fracture, which corresponds to the tensile strength. This means that no matter how much
preload is given the bolt, it will retain its load-carrying capacity. This is what keeps the
bolt tight and determines the joint strength. The pretension is the “muscle” of the joint,
and its magnitude is determined by the bolt strength. If the full bolt strength is not used
in developing the pretension, then money is wasted and the joint is weaker.

Good-quality bolts can be preloaded into the plastic range to develop more
strength. Some of the bolt torque used in tightening produces torsion, which increases
the principal tensile stress. However, this torsion is held only by the friction of the
bolt head and nut; in time it relaxes and lowers the bolt tension slightly. Thus, as a
rule, a bolt will either fracture during tightening, or not at all.

Above all, do not rely too much on wrench torque; it is not a good indicator of
preload. Actual bolt elongation should be used whenever possible—especially with
fatigue loading. In fact, if high reliability is a requirement of the design, then preload
should always be determined by bolt elongation.

Russell, Burdsall & Ward Inc. (RB&W) recommendations for preload are 60 kpsi
for SAE grade 5 bolts for nonpermanent connections, and that A325 bolts (equivalent
to SAE grade 5) used in structural applications be tightened to proof load or beyond

Sy

Sut

Sp

St
re

ss

Strain

Figure 8–18

Typical stress-strain diagram
for bolt materials showing
proof strength Sp, yield
strength Sy, and ultimate
tensile strength Sut.
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7Russell, Burdsall & Ward Inc., Helpful Hints for Fastener Design and Application, Mentor, Ohio, 1965, p. 42.
8Bowman Distribution–Barnes Group, Fastener Facts, Cleveland, 1985, p. 90.

No. 25 CI

in-11 UNC × 2

in

in grade 5
       finished hex head bolt

5
8

1
4

3
4

in3
4

Figure 8–19

EXAMPLE 8–4 Figure 8–19 is a cross section of a grade 25 cast-iron pressure vessel. A total of N bolts
are to be used to resist a separating force of 36 kip.
(a) Determine kb, km , and C.
(b) Find the number of bolts required for a load factor of 2 where the bolts may be
reused when the joint is taken apart.
(c) With the number of bolts obtained in part (b), determine the realized load factor
for overload, the yielding factor of safety, and the load factor for joint separation.

Solution (a) The grip is l = 1.50 in. From Table A–31, the nut thickness is 35
64 in. Adding two

threads beyond the nut of 2
11 in gives a bolt length of 

L = 35

64
+ 1.50 + 2

11
= 2.229 in

From Table A–17 the next fraction size bolt is L = 2 1
4 in. From Eq. (8–13), the thread

length is LT = 2(0.625) + 0.25 = 1.50 in. Thus, the length of the unthreaded portion

(85 kpsi up to a diameter of 1 in).7 Bowman8 recommends a preload of 75 percent of
proof load, which is about the same as the RB&W recommendations for reused bolts.
In view of these guidelines, it is recommended for both static and fatigue loading that
the following be used for preload:

Fi =
{

0.75Fp for nonpermanent connections, reused fasteners
0.90Fp for permanent connections

(8–31)

where Fp is the proof load, obtained from the equation

Fp = At Sp (8–32)

Here Sp is the proof strength obtained from Tables 8–9 to 8–11. For other materials,
an approximate value is Sp = 0.85Sy . Be very careful not to use a soft material in a
threaded fastener. For high-strength steel bolts used as structural steel connectors, if
advanced tightening methods are used, tighten to yield.

You can see that the RB&W recommendations on preload are in line with what
we have encountered in this chapter. The purposes of development were to give the
reader the perspective to appreciate Eqs. (8–31) and a methodology with which to
handle cases more specifically than the recommendations.
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in the grip is ld = 2.25 − 1.50 = 0.75 in. The threaded length in the grip is lt = l −
ld = 0.75 in. From Table 8–2, At = 0.226 in2. The major-diameter area is Ad =
π(0.625)2/4 = 0.3068 in2. The bolt stiffness is then

Answer
kb = Ad At E

Adlt + Atld
= 0.3068(0.226)(30)

0.3068(0.75) + 0.226(0.75)

= 5.21 Mlbf/in

From Table A–24, for no. 25 cast iron we will use E = 14 Mpsi. The stiffness of the
members, from Eq. (8–22), is

Answer

km = 0.5774π Ed

2 ln
(

5
0.5774l + 0.5d
0.5774l + 2.5d

) = 0.5774π(14)(0.625)

2 ln
[

5
0.5774 (1.5) + 0.5 (0.625)

0.5774 (1.5) + 2.5 (0.625)

]
= 8.95 Mlbf/in

If you are using Eq. (8–23), from Table 8–8, A = 0.778 71 and B = 0.616 16, and

km = Ed A exp(Bd/ l)

= 14(0.625)(0.778 71) exp[0.616 16(0.625)/1.5]

= 8.81 Mlbf/in

which is only 1.6 percent lower than the previous result.
From the first calculation for km , the stiffness constant C is

Answer C = kb

kb + km
= 5.21

5.21 + 8.95
= 0.368

(b) From Table 8–9, Sp = 85 kpsi. Then, using Eqs. (8–31) and (8–32), we find the
recommended preload to be

Fi = 0.75At Sp = 0.75(0.226)(85) = 14.4 kip

For N bolts, Eq. (8–29) can be written

nL = Sp At − Fi

C(Ptotal/N )
(1)

or

N = CnL Ptotal

Sp At − Fi
= 0.368(2)(36)

85(0.226) − 14.4
= 5.52

Answer Six bolts should be used to provide the specified load factor.
(c) With six bolts, the load factor actually realized is

Answer nL = 85(0.226) − 14.4

0.368(36/6)
= 2.18

From Eq. (8–28), the yielding factor of safety is

Answer np = Sp At

C(Ptotal/N ) + Fi
= 85(0.226)

0.368(36/6) + 14.4
= 1.16

From Eq. (8–30), the load factor guarding against joint separation is

Answer n0 = Fi

(Ptotal/N )(1 − C)
= 14.4

(36/6)(1 − 0.368)
= 3.80
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8–10 Gasketed Joints
If a full gasket is present in the joint, the gasket pressure p is found by dividing the
force in the member by the gasket area per bolt. Thus, for N bolts,

p = − Fm

Ag/N
(a)

With a load factor n, Eq. (8–25) can be written as

Fm = (1 − C)n P − Fi (b)

Substituting this into Eq. (a) gives the gasket pressure as

p = [Fi − n P(1 − C)]
N
Ag

(8–33)

In full-gasketed joints uniformity of pressure on the gasket is important. To main-
tain adequate uniformity of pressure adjacent bolts should not be placed more than six
nominal diameters apart on the bolt circle. To maintain wrench clearance, bolts should
be placed at least three diameters apart. A rough rule for bolt spacing around a bolt
circle is

3 ≤ π Db

Nd
≤ 6 (8–34)

where Db is the diameter of the bolt circle and N is the number of bolts.

8–11 Fatigue Loading of Tension Joints
Tension-loaded bolted joints subjected to fatigue action can be analyzed directly by
the methods of Chap. 6. Table 8–16 lists average fatigue stress-concentration factors
for the fillet under the bolt head and also at the beginning of the threads on the bolt
shank. These are already corrected for notch sensitivity and for surface finish.
Designers should be aware that situations may arise in which it would be advisable
to investigate these factors more closely, since they are only average values. In fact,
Peterson9 observes that the distribution of typical bolt failures is about 15 percent
under the head, 20 percent at the end of the thread, and 65 percent in the thread at
the nut face.

Use of rolled threads is the predominant method of thread-forming in screw fas-
teners, where Table 8–16 applies. In thread-rolling, the amount of cold work and strain-
strengthening is unknown to the designer; therefore, fully corrected (including K f )
axial endurance strength is reported in Table 8–17. For cut threads, the methods of
Chap. 6 are useful. Anticipate that the endurance strengths will be considerably lower.

9W. D. Pilkey, Peterson’s Stress-Concentration Factors, 2nd ed., John Wiley & Sons, New York, 1997, p. 387.

SAE Metric Rolled Cut
Grade Grade Threads Threads Fillet

0 to 2 3.6 to 5.8 2.2 2.8 2.1

4 to 8 6.6 to 10.9 3.0 3.8 2.3

Table 8–16

Fatigue Stress-

Concentration Factors Kf

for Threaded Elements
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For a general case with a constant preload, and an external load on a per bolt
basis fluctuating between Pmin and Pmax, a bolt will experience fluctuating forces such
that

Fbmin = CPmin + Fi (a)

Fbmax = CPmax + Fi (b)

The alternating stress experienced by a bolt is

σa = (Fbmax − Fbmin)/2

At
= (CPmax + Fi ) − (CPmin + Fi )

2At

σa = C(Pmax − Pmin)

2At
(8–35)

The midrange stress experienced by a bolt is

σm = (Fbmax + Fbmin)/2

At
= (CPmax + Fi ) + (CPmin + Fi )

2At

σm = C(Pmax + Pmin)

2At
+ Fi

At
(8–36)

A load line typically experienced by a bolt is shown in Fig. 8–20, where the stress
starts from the preload stress and increases with a constant slope of σa/(σm − σi ).
The Goodman failure line is also shown in Fig. 8–20. The fatigue factor of safety can
be found by intersecting the load line and the Goodman line to find the intersection
point (Sm, Sa). The load line is given by

Load line: Sa = σa

σm − σi
(Sm − σi ) (a)

The Goodman line, rearranging Eq. (6–40), p. 306, is

Goodman line: Sa = Se − Se

Sut
Sm (b)

Equating Eqs. (a) and (b), solving for Sm, then substituting Sm back into Eq. (b) yields

Sa = Seσa(Sut − σi )

Sutσa + Se(σm − σi )
(c)

Grade or Class Size Range Endurance Strength

SAE 5 1
4 –1 in 18.6 kpsi

1 1
8 –1 1

2 in 16.3 kpsi

SAE 7 1
4 –1 1

2 in 20.6 kpsi

SAE 8 1
4 –1 1

2 in 23.2 kpsi

ISO 8.8 M16–M36 129 MPa

ISO 9.8 M1.6–M16 140 MPa

ISO 10.9 M5–M36 162 MPa

ISO 12.9 M1.6–M36 190 MPa

*Repeatedly applied, axial loading, fully corrected.

Table 8–17

Fully Corrected

Endurance Strengths for

Bolts and Screws with

Rolled Threads*
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The fatigue factor of safety is given by

n f = Sa

σa
(8–37)

Substituting Eq. (c) into Eq. (8–37) gives

n f = Se(Sut − σi )

Sutσa + Se(σm − σi )
(8–38)

The same approach can be used for the other failure curves, though the algebra
is a bit more tedious to put in equation form such as Eq. (8–38). An easier approach
would be to solve in stages numerically, first Sm, then Sa, and finally nf.

Often, the type of fatigue loading encountered in the analysis of bolted joints is one
in which the externally applied load fluctuates between zero and some maximum force P.
This would be the situation in a pressure cylinder, for example, where a pressure either
exists or does not exist. For such cases, Eqs. (8–35) and (8–36) can be simplified by
setting Pmax = P and Pmin = 0, resulting in

σa = CP
2At

(8–39)

σm = CP
2At

+ Fi

At
(8–40)

Note that Eq. (8–40) can be viewed as the sum of the alternating stress and the pre-
load stress. If the preload is considered to be constant, the load line relationship
between the alternating and midrange stresses can be treated as

σm = σa + σi (8–41)

This load line has a slope of unity, and is a special case of the load line shown in
Fig. 8–20. With the simplifications in the algebra, we can now proceed as before to
obtain the fatigue factor of safety using each of the typical failure criteria, duplicated
here from Eqs. (6–40), (6–41), and (6–42).

Se

Sa

�a

Load line

A
lte

rn
at

in
g 

st
re

ss
 �

a

Steady stress �m

B

A

Fi �m�i = At

D

C

Sm Sut

Figure 8–20

Designer’s fatigue diagram
showing a Goodman failure
line and a commonly used load
line for a constant preload and
a fluctuating load.
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Goodman:

Sa

Se
+ Sm

Sut
= 1 (8–42)

Gerber:

Sa

Se
+

(
Sm

Sut

)2

= 1 (8–43)

ASME-elliptic: (
Sa

Se

)2

+
(

Sm

Sp

)2

= 1 (8–44)

Now if we intersect Eq. (8–41) and each of Eqs. (8–42) to (8–44) to solve for Sa, and
apply Eq. (8–37), we obtain fatigue factors of safety for each failure criteria in a repeated
loading situation.

Goodman:

n f = Se(Sut − σi )

σa(Sut + Se)
(8–45)

Gerber:

n f = 1

2σa Se

[
Sut

√
S2

ut + 4Se(Se + σi ) − S2
ut − 2σi Se

]
(8–46)

ASME-elliptic:

n f = Se

σa(S2
p + S2

e )

(
Sp

√
S2

p + S2
e − σ 2

i − σi Se

)
(8–47)

Note that Eqs. (8–45) to (8–47) are only applicable for repeated loads. Be sure to use
Kf for both σa and σm . Otherwise, the slope of the load line will not remain 1 to 1.

If desired, σa from Eq. (8–39) and σi = Fi/At can be directly substituted into
any of Eqs. (8–45) to (8–47). If we do so for the Goodman criteria in Eq. (8–45), we
obtain

n f = 2Se(Sut At − Fi )

C P(Sut + Se)
(8–48)

when preload Fi is present. With no preload, C = 1, Fi = 0, and Eq. (8–48) becomes

n f 0 = 2Se Sut At

P(Sut + Se)
(8–49)

Preload is beneficial for resisting fatigue when n f /n f 0 is greater than unity. For
Goodman, Eqs. (8–48) and (8–49) with n f /n f 0 ≥ 1 puts an upper bound on the pre-
load Fi of

Fi ≤ (1 − C)Sut At (8–50)

If this cannot be achieved, and nf is unsatisfactory, use the Gerber or ASME-elliptic
criterion to obtain a less conservative assessment. If the design is still not satisfactory,
additional bolts and/or a different size bolt may be called for.
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Bolts loosen, as they are friction devices, and cyclic loading and vibration as well as
other effects allow the fasteners to lose tension with time. How does one fight loosening?
Within strength limitations, the higher the preload the better. A rule of thumb is that pre-
loads of 60 percent of proof load rarely loosen. If more is better, how much more? Well,
not enough to create reused fasteners as a future threat. Alternatively, fastener-locking
schemes can be employed.

After solving for the fatigue factor of safety, you should also check the possibility
of yielding, using the proof strength

np = Sp

σm + σa
(8–51)

which is equivalent to Eq. (8–28).

Figure 8–21

Pressure-cone frustum member
model for a cap screw. For this
model the significant sizes are

l =
{

h + t2/2 t 2 < d

h + d/2 t 2 ≥ d
D1 = dw + l tan α =
1.5d + 0.577l
D2 = dw = 1.5d
where l = effective grip. The
solutions are for α = 30◦ and
dw = 1.5d .

l

D1

h

d

t2

t1

D2

l
2

EXAMPLE 8–5 Figure 8–21 shows a connection using cap screws. The joint is subjected to a fluctu-
ating force whose maximum value is 5 kip per screw. The required data are: cap screw,
5/8 in-11 NC, SAE 5; hardened-steel washer, tw = 1

16 in thick; steel cover plate, t1 =
5
8 in, Es = 30 Mpsi; and cast-iron base, t2 = 5

8 in, Eci = 16 Mpsi.
(a) Find kb, km , and C using the assumptions given in the caption of Fig. 8–21. 
(b) Find all factors of safety and explain what they mean.

Solution (a) For the symbols of Figs. 8–15 and 8–21, h = t1 + tw = 0.6875 in, l = h + d/2 =
1 in, and D2 = 1.5d = 0.9375 in. The joint is composed of three frusta; the upper
two frusta are steel and the lower one is cast iron.

For the upper frustum: t = l/2 = 0.5 in, D = 0.9375 in, and E = 30 Mpsi. Using
these values in Eq. (8–20) gives k1 = 46.46 Mlbf/in. 

For the middle frustum: t = h − l/2 = 0.1875 in and D = 0.9375 + 2(l − h)

tan 30◦ = 1.298 in. With these and Es = 30 Mpsi, Eq. (8–20) gives k2 = 197.43 Mlbf/in.
The lower frustum has D = 0.9375 in, t = l − h = 0.3125 in, and Eci = 16 Mpsi.

The same equation yields k3 = 32.39 Mlbf/in.
Substituting these three stiffnesses into Eq. (8–18) gives km = 17.40 Mlbf/in. The

cap screw is short and threaded all the way. Using l = 1 in for the grip and
At = 0.226 in2 from Table 8–2, we find the stiffness to be kb = At E/ l = 6.78
Mlbf/in. Thus the joint constant is

Answer C = kb

kb + km
= 6.78

6.78 + 17.40
= 0.280
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(b) Equation (8–30) gives the preload as

Fi = 0.75Fp = 0.75At Sp = 0.75(0.226)(85) = 14.4 kip

where from Table 8–9, Sp = 85 kpsi for an SAE grade 5 cap screw. Using Eq. (8–28),
we obtain the load factor as the yielding factor of safety is

Answer np = Sp At

CP + Fi
= 85(0.226)

0.280(5) + 14.4
= 1.22

This is the traditional factor of safety, which compares the maximum bolt stress to the
proof strength.

Using Eq. (8–29),

Answer nL = Sp At − Fi

CP
= 85(0.226) − 14.4

0.280(5)
= 3.44

This factor is an indication of the overload on P that can be applied without exceeding
the proof strength.

Next, using Eq. (8–30), we have

Answer n0 = Fi

P(1 − C)
= 14.4

5(1 − 0.280)
= 4.00

If the force P gets too large, the joint will separate and the bolt will take the entire
load. This factor guards against that event.

For the remaining factors, refer to Fig. 8–22. This diagram contains the modified
Goodman line, the Gerber line, the proof-strength line, and the load line. The intersection
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m
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 �
a

Steady stress component �m

Gerber line

Proof-
strength
line

L

L

�i Sp Sut

Modified Goodman line

90Sp

SmSm

Sm

Sa

Sa

Sa

8070�m�i

�a

60
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D

Figure 8–22

Designer’s fatigue diagram for
preloaded bolts, drawn to scale,
showing the modified Goodman
line, the Gerber line, and the
Langer proof-strength line, with
an exploded view of the area of
interest. The strengths used are 
Sp = 85 kpsi, Se = 18.6 kpsi,
and Sut = 120 kpsi. The
coordinates are A, σi =
63.72 kpsi; B, σa = 3.10 kpsi,
σm = 66.82 kpsi; C, Sa =
7.55 kpsi, Sm = 71.29 kpsi;
D, Sa = 10.64 kpsi, Sm =
74.36 kpsi; E, Sa = 11.32 kpsi,
Sm = 75.04 kpsi.
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of the load line L with the respective failure lines at points C, D, and E defines a set of
strengths Sa and Sm at each intersection. Point B represents the stress state σa, σm. Point A
is the preload stress σi. Therefore the load line begins at A and makes an angle having a
unit slope. This angle is 45° only when both stress axes have the same scale.

The factors of safety are found by dividing the distances AC , AD, and AE by
the distance AB. Note that this is the same as dividing Sa for each theory by σa .

The quantities shown in the caption of Fig. 8–22 are obtained as follows:

Point A

σi = Fi

At
= 14.4

0.226
= 63.72 kpsi

Point B

σa = C P

2At
= 0.280(5)

2(0.226)
= 3.10 kpsi

σm = σa + σi = 3.10 + 63.72 = 66.82 kpsi

Point C
This is the modified Goodman criteria. From Table 8–17, we find Se = 18.6 kpsi.
Then, using Eq. (8–45), the factor of safety is found to be

Answer n f = Se(Sut − σi )

σa(Sut + Se)
= 18.6(120 − 63.72)

3.10(120 + 18.6)
= 2.44

Point D
This is on the proof-strength line where

Sm + Sa = Sp (1)

In addition, the horizontal projection of the load line AD is

Sm = σi + Sa (2)

Solving Eqs. (1) and (2) simultaneously results in

Sa = Sp − σi

2
= 85 − 63.72

2
= 10.64 kpsi

The factor of safety resulting from this is

Answer np = Sa

σa
= 10.64

3.10
= 3.43

which, of course, is identical to the result previously obtained by using Eq. (8–29).
A similar analysis of a fatigue diagram could have been done using yield strength

instead of proof strength. Though the two strengths are somewhat related, proof
strength is a much better and more positive indicator of a fully loaded bolt than is the
yield strength. It is also worth remembering that proof-strength values are specified
in design codes; yield strengths are not.

We found n f = 2.44 on the basis of fatigue and the modified Goodman line, and
np = 3.43 on the basis of proof strength. Thus the danger of failure is by fatigue, not
by overproof loading. These two factors should always be compared to determine
where the greatest danger lies.
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Point E
For the Gerber criterion, from Eq. (8–46), the safety factor is

Answer n f = 1

2σa Se

[
Sut

√
S2

ut + 4Se(Se + σi ) − S2
ut − 2σi Se

]
= 1

2(3.10)(18.6)

[
120

√
1202 + 4(18.6)(18.6 + 63.72) − 1202 − 2(63.72)(18.6)

]
= 3.65

which is greater than np = 3.43 and contradicts the conclusion earlier that the dan-
ger of failure is fatigue. Figure 8–22 clearly shows the conflict where point D lies
between points C and E. Again, the conservative nature of the Goodman criterion
explains the discrepancy and the designer must form his or her own conclusion.

8–12 Bolted and Riveted Joints Loaded in Shear10

Riveted and bolted joints loaded in shear are treated exactly alike in design and
analysis.

Figure 8–23a shows a riveted connection loaded in shear. Let us now study the
various means by which this connection might fail.

Figure 8–23b shows a failure by bending of the rivet or of the riveted members.
The bending moment is approximately M = Ft/2, where F is the shearing force and
t is the grip of the rivet, that is, the total thickness of the connected parts. The bend-
ing stress in the members or in the rivet is, neglecting stress concentration,

σ = M
I/c

(8–52)

where I/c is the section modulus for the weakest member or for the rivet or rivets,
depending upon which stress is to be found. The calculation of the bending stress in
this manner is an assumption, because we do not know exactly how the load is dis-
tributed to the rivet or the relative deformations of the rivet and the members.
Although this equation can be used to determine the bending stress, it is seldom used
in design; instead its effect is compensated for by an increase in the factor of safety.

In Fig. 8–23c failure of the rivet by pure shear is shown; the stress in the rivet is

τ = F
A

(8–53)

where A is the cross-sectional area of all the rivets in the group. It may be noted that
it is standard practice in structural design to use the nominal diameter of the rivet
rather than the diameter of the hole, even though a hot-driven rivet expands and nearly
fills up the hole.

10The design of bolted and riveted connections for boilers, bridges, buildings, and other structures in which
danger to human life is involved is strictly governed by various construction codes. When designing these
structures, the engineer should refer to the American Institute of Steel Construction Handbook, the American
Railway Engineering Association specifications, or the Boiler Construction Code of the American Society of
Mechanical Engineers.
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Rupture of one of the connected members or plates by pure tension is illustrated
in Fig. 8–23d. The tensile stress is

σ = F
A

(8–54)

where A is the net area of the plate, that is, the area reduced by an amount equal to
the area of all the rivet holes. For brittle materials and static loads and for either duc-
tile or brittle materials loaded in fatigue, the stress-concentration effects must be
included. It is true that the use of a bolt with an initial preload and, sometimes, a rivet
will place the area around the hole in compression and thus tend to nullify the effects
of stress concentration, but unless definite steps are taken to ensure that the preload
does not relax, it is on the conservative side to design as if the full stress-concentration
effect were present. The stress-concentration effects are not considered in structural
design, because the loads are static and the materials ductile.

In calculating the area for Eq. (8–54), the designer should, of course, use the
combination of rivet or bolt holes that gives the smallest area.

Figure 8–23e illustrates a failure by crushing of the rivet or plate. Calculation of
this stress, which is usually called a bearing stress, is complicated by the distribution
of the load on the cylindrical surface of the rivet. The exact values of the forces act-
ing upon the rivet are unknown, and so it is customary to assume that the components
of these forces are uniformly distributed over the projected contact area of the rivet.
This gives for the stress

σ = − F
A

(8–55)

where the projected area for a single rivet is A = td . Here, t is the thickness of the
thinnest plate and d is the rivet or bolt diameter.

452 Mechanical Engineering Design

(a)

(e) ( f ) (g)

(b) (c) (d )

Figure 8–23

Modes of failure in shear
loading of a bolted or riveted
connection: (a) shear loading;
(b) bending of rivet; (c) shear
of rivet; (d ) tensile failure of
members; (e) bearing of rivet
on members or bearing of
members on rivet; ( f ) shear
tear-out; (g) tensile tear-out.
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Edge shearing, or tearing, of the margin is shown in Fig. 8–23f and g, respec-
tively. In structural practice this failure is avoided by spacing the rivets at least 1 1

2
diameters away from the edge. Bolted connections usually are spaced an even greater
distance than this for satisfactory appearance, and hence this type of failure may usu-
ally be neglected.

In a rivet joint, the rivets all share the load in shear, bearing in the rivet, bearing
in the member, and shear in the rivet. Other failures are participated in by only some
of the joint. In a bolted joint, shear is taken by clamping friction, and bearing does
not exist. When bolt preload is lost, one bolt begins to carry the shear and bearing
until yielding slowly brings other fasteners in to share the shear and bearing. Finally,
all participate, and this is the basis of most bolted-joint analysis if loss of bolt pre-
load is complete. The usual analysis involves

• Bearing in the bolt (all bolts participate)

• Bearing in members (all holes participate)

• Shear of bolt (all bolts participate eventually)

• Distinguishing between thread and shank shear

• Edge shearing and tearing of member (edge bolts participate)

• Tensile yielding of member across bolt holes

• Checking member capacity

Screws, Fasteners, and the Design of Nonpermanent Joints 453

EXAMPLE 8–6 Two 1- by 4-in 1018 cold-rolled steel bars are butt-spliced with two 1
2 - by 4-in 1018

cold-rolled splice plates using four 3
4 in-16 UNF grade 5 bolts as depicted in Fig. 8–24.

For a design factor of nd = 1.5 estimate the static load F that can be carried if the
bolts lose preload.

Solution From Table A–20, minimum strengths of Sy = 54 kpsi and Sut = 64 kpsi are found
for the members, and from Table 8–9 minimum strengths of Sp = 85 kpsi and
Sut = 120 kpsi for the bolts are found.

F F

F w F

1in

(a)

(b)

3
4

1 1
2 in

1
2 in

1
2 in

1 1
2 in

1 1
4 in

1 1
4 in

1 1
2 in 1 1

2 in 1 1
2 in

in-16 UNF SAE grade 5

Figure 8–24
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454 Mechanical Engineering Design

F/2 is transmitted by each of the splice plates, but since the areas of the splice
plates are half those of the center bars, the stresses associated with the plates are the
same. So for stresses associated with the plates, the force and areas used will be those
of the center plates.

Bearing in bolts, all bolts loaded:

σ = F
2td

= Sp

nd

F = 2tdSp

nd
= 2(1)

(
3
4

)
85

1.5
= 85 kip

Bearing in members, all bolts active:

σ = F
2td

= (Sy)mem

nd

F = 2td(Sy)mem

nd
= 2(1)

(
3
4

)
54

1.5
= 54 kip

Shear of bolt, all bolts active: If the bolt threads do not extend into the shear planes
for four shanks:

τ = F
4πd2/4

= 0.577
Sp

nd

F = 0.577πd2 Sp

nd
= 0.577π(0.75)2 85

1.5
= 57.8 kip

If the bolt threads extend into a shear plane:

τ = F
4Ar

= 0.577
Sp

nd

F = 0.577(4)Ar Sp

nd
= 0.577(4)0.351(85)

1.5
= 45.9 kip

Edge shearing of member at two margin bolts: From Fig. 8–25,

τ = F
4at

= 0.577(Sy)mem

nd

F = 4at0.577(Sy)mem

nd
= 4(1.125)(1)0.577(54)

1.5
= 93.5 kip

Tensile yielding of members across bolt holes:

σ = F[
4 − 2

(
3
4

)]
t

= (Sy)mem

nd

F =
[
4 − 2

(
3
4

)]
t (Sy)mem

nd
=

[
4 − 2

(
3
4

)]
(1)54

1.5
= 90 kip
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Member yield:

F = wt (Sy)mem

nd
= 4(1)54

1.5
= 144 kip

On the basis of bolt shear, the limiting value of the force is 45.9 kip, assuming the
threads extend into a shear plane. However, it would be poor design to allow the threads
to extend into a shear plane. So, assuming a good design based on bolt shear, the lim-
iting value of the force is 57.8 kip. For the members, the bearing stress limits the load
to 54 kip.

Screws, Fasteners, and the Design of Nonpermanent Joints 455

Bolt

d

a

Figure 8–25

Edge shearing of member.

Shear Joints with Eccentric Loading

In the previous example, the load distributed equally to the bolts since the load acted
along a line of symmetry of the fasteners. The analysis of a shear joint undergoing
eccentric loading requires locating the center of relative motion between the two mem-
bers. In Fig. 8–26 let A1 to A5 be the respective cross-sectional areas of a group of
five pins, or hot-driven rivets, or tight-fitting shoulder bolts. Under this assumption the
rotational pivot point lies at the centroid of the cross-sectional area pattern of the pins,
rivets, or bolts. Using statics, we learn that the centroid G is located by the coordi-
nates x̄ and ȳ, where x1 and yi are the distances to the ith area center:

x̄ = A1x1 + A2x2 + A3x3 + A4x4 + A5x5

A1 + A2 + A3 + A4 + A5
=

∑n
1 Ai xi∑n

1 Ai

ȳ = A1 y1 + A2 y2 + A3 y3 + A4 y4 + A5 y5

A1 + A2 + A3 + A4 + A5
=

∑n
1 Ai yi∑n

1 Ai

(8–56)

y

y
_

x

x
_O

G

A1

A2

A4

A3

A5

Figure 8–26

Centroid of pins, rivets, or
bolts.
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456 Mechanical Engineering Design

In many instances the centroid can be located by symmetry.
An example of eccentric loading of fasteners is shown in Fig. 8–27. This is a

portion of a machine frame containing a beam subjected to the action of a bending
load. In this case, the beam is fastened to vertical members at the ends with spe-
cially prepared load-sharing bolts. You will recognize the schematic representation in
Fig. 8–27b as a statically indeterminate beam with both ends fixed and with moment
and shear reactions at each end.

For convenience, the centers of the bolts at the left end of the beam are drawn to a
larger scale in Fig. 8–27c. Point O represents the centroid of the group, and it is assumed
in this example that all the bolts are of the same diameter. Note that the forces shown
in Fig. 8–27c are the resultant forces acting on the pins with a net force and moment
equal and opposite to the reaction loads V1 and M1 acting at O. The total load taken by
each bolt will be calculated in three steps. In the first step the shear V1 is divided equally
among the bolts so that each bolt takes F ′ = V1/n, where n refers to the number of bolts
in the group and the force F ′ is called the direct load, or primary shear.

It is noted that an equal distribution of the direct load to the bolts assumes an
absolutely rigid member. The arrangement of the bolts or the shape and size of the
members sometimes justifies the use of another assumption as to the division of the
load. The direct loads F ′

n are shown as vectors on the loading diagram (Fig. 8–27c).
The moment load, or secondary shear, is the additional load on each bolt due to

the moment M1. If rA, rB , rC , etc., are the radial distances from the centroid to the
center of each bolt, the moment and moment loads are related as follows:

M1 = F ′′
ArA + F ′′

BrB + F ′′
CrC + · · · (a)

where the F ′′ are the moment loads. The force taken by each bolt depends upon its
radial distance from the centroid; that is, the bolt farthest from the centroid takes the
greatest load, while the nearest bolt takes the smallest. We can therefore write

F ′′
A

rA
= F ′′

B

rB
= F ′′

C

rC
(b)

w lbf ⁄ in

(a)

(c)

(b)

F '

F "

F "
F '

F "
F 'F '

F "

rB

rD

BA

DC

O

O

Beam

V1 V2

M2M1

w lbf ⁄ in
O

rA

rC

A
B

B

A

C

C

D
D

+

Figure 8–27

(a) Beam bolted at both ends
with distributed load; (b) free-
body diagram of beam;
(c) enlarged view of bolt group
centered at O showing primary
and secondary resultant shear
forces.
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where again, the diameters of the bolts are assumed equal. If not, then one replaces
F ′′ in Eq. (b) with the shear stresses τ ′′ = 4F ′′/πd2 for each bolt. Solving Eqs. (a)
and (b) simultaneously, we obtain

F ′′
n = M1rn

r2
A + r2

B + r2
C + · · · (8–57)

where the subscript n refers to the particular bolt whose load is to be found. These
moment loads are also shown as vectors on the loading diagram.

In the third step the direct and moment loads are added vectorially to obtain the
resultant load on each bolt. Since all the bolts or rivets are usually the same size, only
that bolt having the maximum load need be considered. When the maximum load is
found, the strength may be determined by using the various methods already described.

Figure 8–28

Dimensions in millimeters.

250

10 15

200
60

60

75 75 50 300

C

D

B

A
O

M16 � 2 bolts
F = 16 kN

EXAMPLE 8–7 Shown in Fig. 8–28 is a 15- by 200-mm rectangular steel bar cantilevered to a 250-mm
steel channel using four tightly fitted bolts located at A, B, C, and D.

For a F = 16 kN load find
(a) The resultant load on each bolt
(b) The maximum shear stress in each bolt
(c) The maximum bearing stress
(d) The critical bending stress in the bar

Solution (a) Point O, the centroid of the bolt group in Fig. 8–28, is found by symmetry. If a
free-body diagram of the beam were constructed, the shear reaction V would pass
through O and the moment reactions M would be about O. These reactions are 

V = 16 kN M = 16(425) = 6800 N · m

In Fig. 8–29, the bolt group has been drawn to a larger scale and the reactions
are shown. The distance from the centroid to the center of each bolt is

r =
√

(60)2 + (75)2 = 96.0 mm
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458 Mechanical Engineering Design

The primary shear load per bolt is

F ′ = V
n

= 16

4
= 4 kN

Since the secondary shear forces are equal, Eq. (8–57) becomes

F ′′ = Mr
4r2

= M
4r

= 6800

4(96.0)
= 17.7 kN

The primary and secondary shear forces are plotted to scale in Fig. 8–29 and the resul-
tants obtained by using the parallelogram rule. The magnitudes are found by measurement
(or analysis) to be

Answer FA = FB = 21.0 kN

Answer FC = FD = 14.8 kN

(b) Bolts A and B are critical because they carry the largest shear load. Does this shear
act on the threaded portion of the bolt, or on the unthreaded portion? The bolt length
will be 25 mm plus the height of the nut plus about 2 mm for a washer. Table A–31
gives the nut height as 14.8 mm. Including two threads beyond the nut, this adds up
to a length of 43.8 mm, and so a bolt 46 mm long will be needed. From Eq. (8–14)
we compute the thread length as LT = 38 mm. Thus the unthreaded portion of the bolt
is 46 − 38 = 8 mm long. This is less than the 15 mm for the plate in Fig. 8–28, and
so the bolt will tend to shear across its minor diameter. Therefore the shear-stress area
is As = 144 mm2, and so the shear stress is

Answer τ = F
As

= −21.0(10)3

144
= 146 MPa

A

FA'

FA"

FA

B

FB'

rBrC

rD

rA

FB"

FB

C

FC'

FC"

FC

D

FD'

F D"

FD

x

y

M V

O

Figure 8–29
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(c) The channel is thinner than the bar, and so the largest bearing stress is due to the
pressing of the bolt against the channel web. The bearing area is Ab = td = 10(16) =
160 mm2. Thus the bearing stress is

Answer σ = − F
Ab

= −21.0(10)3

160
= −131 MPa

(d) The critical bending stress in the bar is assumed to occur in a section parallel to
the y axis and through bolts A and B. At this section the bending moment is

M = 16(300 + 50) = 5600 N · m

The second moment of area through this section is obtained by the use of the trans-
fer formula, as follows:

I = Ibar − 2(Iholes + d̄2 A)

= 15(200)3

12
− 2

[
15(16)3

12
+ (60)2(15)(16)

]
= 8.26(10)6 mm4

Then

Answer σ = Mc
I

= 5600(100)

8.26(10)6
(10)3 = 67.8 MPa

PROBLEMS
8–1 A power screw is 25 mm in diameter and has a thread pitch of 5 mm.

(a) Find the thread depth, the thread width, the mean and root diameters, and the lead, pro-
vided square threads are used.

(b) Repeat part (a) for Acme threads.

8–2 Using the information in the footnote of Table 8–1, show that the tensile-stress area is

At = π

4
(d − 0.938 194p)2

8–3 Show that for zero collar friction the efficiency of a square-thread screw is given by the equation

e = tan λ
1 − f tan λ

tan λ + f

Plot a curve of the efficiency for lead angles up to 45◦ . Use f = 0.08.

8–4 A single-threaded 25-mm power screw is 25 mm in diameter with a pitch of 5 mm. A vertical
load on the screw reaches a maximum of 5 kN. The coefficients of friction are 0.06 for the
collar and 0.09 for the threads. The frictional diameter of the collar is 45 mm. Find the over-
all efficiency and the torque to “raise” and “lower” the load.

8–5 The machine shown in the figure can be used for a tension test but not for a compression test.
Why? Can both screws have the same hand?
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Problem 8–5

Foot
2 [ 's

C.I.

2� 's

Collar
bearing

Bronze
bushings

Worm

MotorBearings

Spur gears

C

B

A

[

A

B

Problem 8–7

8–6 The press shown for Prob. 8–5 has a rated load of 5000 lbf. The twin screws have Acme threads,
a diameter of 2 in, and a pitch of 1

4 in. Coefficients of friction are 0.05 for the threads and
0.08 for the collar bearings. Collar diameters are 3.5 in. The gears have an efficiency of 95 per-
cent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-
load motor speed is 1720 rev/min.
(a) When the motor is turned on, how fast will the press head move?
(b) What should be the horsepower rating of the motor?

8–7 A screw clamp similar to the one shown in the figure has a handle with diameter 3
8 in made

of cold-drawn AISI 1006 steel. The overall length is 4.25 in. The screw is 3
4 in-10 UNC and

is 8 in long, overall. Distance A is 3 in. The clamp will accommodate parts up to 6 in high.
(a) What screw torque will cause the handle to bend permanently?
(b) What clamping force will the answer to part (a) cause if the collar friction is neglected and

if the thread friction is 0.15?
(c) What clamping force will cause the screw to buckle?
(d) Are there any other stresses or possible failures to be checked?
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8–8 The C clamp shown in the figure for Prob. 8–7 uses a 3
4 in-6 Acme thread. The frictional coef-

ficients are 0.15 for the threads and for the collar. The collar, which in this case is the anvil
striker’s swivel joint, has a friction diameter of 1 in. Calculations are to be based on a maxi-
mum force of 8 lbf applied to the handle at a radius of 3 1

2 in from the screw centerline. Find
the clamping force.

8–9 Find the power required to drive a 1.5-in power screw having double square threads with a
pitch of 1

4 in. The nut is to move at a velocity of 2 in/s and move a load of F = 2.2 kips. The
frictional coefficients are 0.10 for the threads and 0.15 for the collar. The frictional diameter
of the collar is 2.25 in.

8–10 A single square-thread power screw has an input power of 3 kW at a speed of 1 rev/s. The
screw has a diameter of 40 mm and a pitch of 8 mm. The frictional coefficients are 0.14 for
the threads and 0.09 for the collar, with a collar friction radius of 50 mm. Find the axial resist-
ing load F and the combined efficiency of the screw and collar.

8–11 An M14 × 2 hex-head bolt with a nut is used to clamp together two 15-mm steel plates.
(a) Determine a suitable length for the bolt, rounded up to the nearest 5 mm.
(b) Determine the bolt stiffness.
(c) Determine the stiffness of the members.

8–12 Repeat Prob. 8–11 with the addition of one 14R metric plain washer under the nut.

8–13 Repeat Prob. 8–11 with one of the plates having a threaded hole to eliminate the nut.

8–14 A 2-in steel plate and a 1-in cast-iron plate are compressed with one bolt and nut. The bolt is
1
2 in-13 UNC.
(a) Determine a suitable length for the bolt, rounded up to the nearest 1

4 in.
(b) Determine the bolt stiffness.
(c) Determine the stiffness of the members.

8–15 Repeat Prob. 8–14 with the addition of one 1
2 N American Standard plain washer under the

head of the bolt, and another identical washer under the nut.

8–16 Repeat Prob. 8–14 with the cast-iron plate having a threaded hole to eliminate the nut.

8–17 Two identical aluminum plates are each 2 in thick, and are compressed with one bolt and nut.
Washers are used under the head of the bolt and under the nut. 
Washer properties: steel; ID = 0.531 in; OD = 1.062 in; thickness = 0.095 in
Nut properties: steel; height = 7

16 in  
Bolt properties: 1

2 in-13 UNC grade 8
Plate properties: aluminum; E = 10.3 Mpsi; Su = 47 kpsi; Sy = 25 kpsi
(a) Determine a suitable length for the bolt, rounded up to the nearest 1

4 in.
(b) Determine the bolt stiffness.
(c) Determine the stiffness of the members.

8–18 Repeat Prob. 8–17 with no washer under the head of the bolt, and two washers stacked under
the nut.

8–19 A 30-mm thick AISI 1020 steel plate is sandwiched between two 10-mm thick 2024-T3
aluminum plates and compressed with a bolt and nut with no washers. The bolt is M10 × 1.5,
property class 5.8.
(a) Determine a suitable length for the bolt, rounded up to the nearest 5 mm.
(b) Determine the bolt stiffness.
(c) Determine the stiffness of the members.
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10 in

1.125 in

in-16 UNF grade 3
4

Problem 8–26

8–20 Repeat Prob. 8–19 with the bottom aluminum plate replaced by one that is 20 mm thick. 

8–21 Repeat Prob. 8–19 with the bottom aluminum plate having a threaded hole to eliminate the nut.

8–22 Two 20-mm steel plates are to be clamped together with a bolt and nut. Specify a bolt to pro-
vide a joint constant C between 0.2 and 0.3.

8–23 A 2-in steel plate and a 1-in cast-iron plate are to be compressed with one bolt and nut. Specify
a bolt to provide a joint constant C between 0.2 and 0.3.

8–24 An aluminum bracket with a 1
2 -in thick flange is to be clamped to a steel column with a 3

4 -in
wall thickness. A cap screw passes through a hole in the bracket flange, and threads into a
tapped hole through the column wall. Specify a cap screw to provide a joint constant C between
0.2 and 0.3.

8–25 An M14 × 2 hex-head bolt with a nut is used to clamp together two 20-mm steel plates.
Compare the results of finding the overall member stiffness by use of Eqs. (8–20), (8–22),
and (8–23).

8–26 A 3
4 in-16 UNF series SAE grade 5 bolt has a 3

4 -in ID steel tube 10 in long, clamped between
washer faces of bolt and nut by turning the nut snug and adding one-third of a turn. The tube
OD is the washer-face diameter dw = 1.5d = 1.5(0.75) = 1.125 in = OD.

(a) Determine the bolt stiffness, the tube stiffness, and the joint constant C.
(b) When the one-third turn-of-nut is applied, what is the initial tension Fi in the bolt?

8–27 From your experience with Prob. 8–26, generalize your solution to develop a turn-of-nut equation

Nt = θ

360◦ =
(

kb + km

kbkm

)
Fi N

where Nt = turn of the nut from snug tight

θ = turn of the nut in degrees

N = number of thread/in (1/p where p is pitch)

Fi = initial preload

kb, km = spring rates of the bolt and members, respectively

Use this equation to find the relation between torque-wrench setting T and turn-of-nut Nt .
(“Snug tight” means the joint has been tightened to perhaps half the intended preload to flat-
ten asperities on the washer faces and the members. Then the nut is loosened and retightened
finger tight, and the nut is rotated the number of degrees indicated by the equation. Properly
done, the result is competitive with torque wrenching.)
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11Russell, Burdsall & Ward, Inc., Metal Forming Specialists, Mentor, Ohio.

8–28 RB&W11 recommends turn-of-nut from snug fit to preload as follows: 1/3 turn for bolt grips
of 1–4 diameters, 1/2 turn for bolt grips 4–8 diameters, and 2/3 turn for grips of 8–12 diam-
eters. These recommendations are for structural steel fabrication (permanent joints), producing
preloads of 100 percent of proof strength and beyond. Machinery fabricators with fatigue load-
ings and possible joint disassembly have much smaller turns-of-nut. The RB&W recommen-
dation enters the nonlinear plastic deformation zone.

For Ex. 8–4, use Eq. (8–27) with K = 0.2 to estimate the torque necessary to establish
the desired preload. Then, using the results from Prob. 8–27, determine the turn of the nut in
degrees. How does this compare with the RB&W recommendations?

8–29 For a bolted assembly with six bolts, the stiffness of each bolt is kb = 3 Mlbf/in and the stiff-
ness of the members is km = 12 Mlbf/in per bolt. An external load of 80 kips is applied to the
entire joint. Assume the load is equally distributed to all the bolts. It has been determined to
use 1

2 in-13 UNC grade 8 bolts with rolled threads. Assume the bolts are preloaded to 75 per-
cent of the proof load.
(a) Determine the yielding factor of safety.
(b) Determine the overload factor of safety.
(c) Determine the factor of safety based on joint separation.

8–30 For the bolted assembly of Prob. 8–29, it is desired to find the range of torque that a mechanic
could apply to initially preload the bolts without expecting failure once the joint is loaded.
Assume a torque coefficient of K = 0.2.
(a) Determine the maximum bolt preload that can be applied without exceeding the proof

strength of the bolts.
(b) Determine the minimum bolt preload that can be applied while avoiding joint separation.
(c) Determine the value of torque in units of lbf · ft that should be specified for preloading the

bolts if it is desired to preload to the midpoint of the values found in parts (a) and (b).

8–31 For a bolted assembly with eight bolts, the stiffness of each bolt is kb = 1.0 MN/mm and the
stiffness of the members is km = 2.6 MN/mm per bolt. The joint is subject to occasional dis-
assembly for maintenance and should be preloaded accordingly. Assume the external load is
equally distributed to all the bolts. It has been determined to use M6 × 1 class 5.8 bolts with
rolled threads.
(a) Determine the maximum external load Pmax that can be applied to the entire joint without

exceeding the proof strength of the bolts.
(b) Determine the maximum external load Pmax that can be applied to the entire joint without

causing the members to come out of compression.

8–32 For a bolted assembly, the stiffness of each bolt is kb = 4 Mlbf/in and the stiffness of the
members is km = 12 Mlbf/in per bolt. The joint is subject to occasional disassembly for
maintenance and should be preloaded accordingly. A fluctuating external load is applied to
the entire joint with Pmax = 80 kips and Pmin = 20 kips. Assume the load is equally dis-
tributed to all the bolts. It has been determined to use 1

2 in-13 UNC grade 8 bolts with rolled
threads.
(a) Determine the minimum number of bolts necessary to avoid yielding of the bolts.
(b) Determine the minimum number of bolts necessary to avoid joint separation.

The figure illustrates the connection of a steel cylinder head to a grade 30 cast-iron pressure
vessel using N bolts. A confined gasket seal has an effective sealing diameter D. The cylinder
stores gas at a maximum pressure pg. For the specifications given in the table for the specific

8–33 to
8–36
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problem assigned, select a suitable bolt length from the preferred sizes in Table A–17, then
determine the yielding factor of safety np, the load factor nL, and the joint separation factor n0.

Repeat the requirements for the problem specified in the table if the bolts and nuts are replaced
with cap screws that are threaded into tapped holes in the cast-iron cylinder.

8–37 to
8–40

C

F

E

A

B

D

Problems 8–33 to 8–36

Problem Number 8–33 8–34 8–35 8–36

A 20 mm 1
2 in 20 mm 3

8 in

B 20 mm 5
8 in 25 mm 1

2 in

C 100 mm 3.5 in 0.8 m 3.25 in

D 150 mm 4.25 in 0.9 m 3.5 in

E 200 mm 6 in 1.0 m 5.5 in

F 300 mm 8 in 1.1 m 7 in

N 10 10 36 8

pg 6 MPa 1500 psi 550 kPa 1200 psi

Bolt grade ISO 9.8 SAE 5 ISO 10.9 SAE 8

Bolt spec. M12 × 1.75 1
2 in-13 M10 × 1.5 7

16 in-14

Originating
Problem Problem
Number Number

8–37 8–33

8–38 8–34

8–39 8–35

8–40 8–36

For the pressure vessel defined in the problem specified in the table, redesign the bolt specifi-
cations to satisfy all of the following requirements.

• Use coarse-thread bolts selecting a class from Table 8–11 for Probs. 8–41 and 8–43, or
a grade from Table 8–9 for Probs. 8–42 and 8–44.

• To ensure adequate gasket sealing around the bolt circle, use enough bolts to provide a
maximum center-to-center distance between bolts of four bolt diameters.

8–41 to
8–44
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• Obtain a joint stiffness constant C between 0.2 and 0.3 to ensure most of the pressure
load is carried by the members.

• The bolts may be reused, so the yielding factor of safety should be at least 1.1.

• The overload factor and the joint separation factor should allow for the pressure to exceed
the expected pressure by 15 percent.

Neutral
axis

�
R

MM

Problem 8–45

Bolted connection subjected to
bending.

8–45 Bolts distributed about a bolt circle are often called upon to resist an external bending moment
as shown in the figure. The external moment is 12 kip · in and the bolt circle has a diameter
of 8 in. The neutral axis for bending is a diameter of the bolt circle. What needs to be deter-
mined is the most severe external load seen by a bolt in the assembly.
(a) View the effect of the bolts as placing a line load around the bolt circle whose intensity

F ′
b , in pounds per inch, varies linearly with the distance from the neutral axis according to

the relation F ′
b = F ′

b,max R sin θ . The load on any particular bolt can be viewed as the effect
of the line load over the arc associated with the bolt. For example, there are 12 bolts shown
in the figure. Thus each bolt load is assumed to be distributed on a 30° arc of the bolt cir-
cle. Under these conditions, what is the largest bolt load?

(b) View the largest load as the intensity F ′
b,max multiplied by the arc length associated with

each bolt and find the largest bolt load.
(c) Express the load on any bolt as F = Fmax sin θ , sum the moments due to all the bolts, and

estimate the largest bolt load. Compare the results of these three approaches to decide how
to attack such problems in the future.

Originating
Problem Problem
Number Number

8–41 8–33

8–42 8–34

8–43 8–35

8–44 8–36

8–46 The figure shows a cast-iron bearing block that is to be bolted to a steel ceiling joist and is
to support a gravity load of 18 kN. Bolts used are M24 ISO 8.8 with coarse threads and with
4.6-mm-thick steel washers under the bolt head and nut. The joist flanges are 20 mm in thick-
ness, and the dimension A, shown in the figure, is 20 mm. The modulus of elasticity of the
bearing block is 135 GPa.
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W = 40 kN

Drill 2 holes for
M20 × 2.5 bolts

Problem 8–47

8–48 For the bolted assembly in Prob. 8–29, assume the external load is a repeated load. Determine
the fatigue factor of safety for the bolts using the following failure criteria:
(a) Goodman.
(b) Gerber.
(c) ASME-elliptic.

8–49 For a bolted assembly with eight bolts, the stiffness of each bolt is kb = 1.0 MN/mm and the
stiffness of the members is km = 2.6 MN/mm per bolt. The bolts are preloaded to 75 percent
of proof strength. Assume the external load is equally distributed to all the bolts. The bolts are
M6 × 1 class 5.8 with rolled threads. A fluctuating external load is applied to the entire joint
with Pmax = 60 kN and Pmin = 20 kN.
(a) Determine the yielding factor of safety.
(b) Determine the overload factor of safety.

C

A

d

BProblem 8–46

(a) Find the wrench torque required if the fasteners are lubricated during assembly and the joint
is to be permanent.

(b) Determine the factors of safety guarding against yielding, overload, and joint separation.

8–47 The upside-down steel A frame shown in the figure is to be bolted to steel beams on the ceil-
ing of a machine room using ISO grade 8.8 bolts. This frame is to support the 40-kN radial
load as illustrated. The total bolt grip is 48 mm, which includes the thickness of the steel beam,
the A-frame feet, and the steel washers used. The bolts are size M20 × 2.5.
(a) What tightening torque should be used if the connection is permanent and the fasteners are

lubricated?
(b) Determine the factors of safety guarding against yielding, overload, and joint separation.
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For the pressure cylinder defined in the problem specified in the table, the gas pressure is cycled
between pg and pg/2. Determine the fatigue factor of safety for the bolts using the Goodman
criterion.

8–55 to
8–58

(c) Determine the factor of safety based on joint separation.
(d) Determine the fatigue factor of safety using the Goodman criterion.

8–50 For the bolted assembly in Prob. 8–32, assume 10 bolts are used. Determine the fatigue factor
of safety using the Goodman criterion.

For the pressure cylinder defined in the problem specified in the table, the gas pressure is cycled
between zero and pg. Determine the fatigue factor of safety for the bolts using the following
failure criteria:
(a) Goodman.
(b) Gerber.
(c) ASME-elliptic.

8–51 to
8–54

Originating
Problem Problem
Number Number

8–51 8–33

8–52 8–34

8–53 8–35

8–54 8–36

Originating
Problem Problem
Number Number

8–55 8–33

8–56 8–34

8–57 8–35

8–58 8–36

8–59 A 1-in-diameter hot-rolled AISI 1144 steel rod is hot-formed into an eyebolt similar to that shown
in the figure for Prob. 3–122, with an inner 3-in-diameter eye. The threads are 1 in-12 UNF and
are die-cut.
(a) For a repeatedly applied load collinear with the thread axis, using the Gerber criterion, is

fatigue failure more likely in the thread or in the eye?
(b) What can be done to strengthen the bolt at the weaker location?
(c) If the factor of safety guarding against a fatigue failure is n f = 2, what repeatedly applied

load can be applied to the eye?

8–60 The section of the sealed joint shown in the figure is loaded by a force cycling between 4
and 6 kips. The members have E = 16 Mpsi. All bolts have been carefully preloaded to Fi =
25 kip each.
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(a) Assuming that the bolts, rather than the welds, govern the strength of this design, determine
the safe repeated load that can be imposed on this assembly using the Goodman criterion
with the load line in Fig. 8–20 and a fatigue design factor of 2.

(b) Compute the static load factors based on the load found in part (a).

8–62 Using the Gerber fatigue criterion and a fatigue-design factor of 2, determine the external
repeated load P that a 1 1

4 -in SAE grade 5 coarse-thread bolt can take compared with that for
a fine-thread bolt. The joint constants are C = 0.30 for coarse- and 0.32 for fine-thread bolts.

8–63 An M30 × 3.5 ISO 8.8 bolt is used in a joint at recommended preload, and the joint is sub-
ject to a repeated tensile fatigue load of P = 65 kN per bolt. The joint constant is C = 0.28.
Find the static load factors and the factor of safety guarding against a fatigue failure based on
the Gerber fatigue criterion.

8–64 The figure shows a fluid-pressure linear actuator (hydraulic cylinder) in which D = 4 in, t = 3
8 in,

L = 12 in, and w = 3
4 in. Both brackets as well as the cylinder are of steel. The actuator has

been designed for a working pressure of 2000 psi. Six 3
8 -in SAE grade 5 coarse-thread bolts

are used, tightened to 75 percent of proof load.

Problem 8–61

Problem 8–60

(a) Determine the yielding factor of safety.
(b) Determine the overload factor of safety.
(c) Determine the factor of safety based on joint separation.
(d ) Determine the fatigue factor of safety using the Goodman criterion.

8–61 Suppose the welded steel bracket shown in the figure is bolted underneath a structural-steel
ceiling beam to support a fluctuating vertical load imposed on it by a pin and yoke. The
bolts are 1

2 -in coarse-thread SAE grade 8, tightened to recommended preload for nonper-
manent assembly. The stiffnesses have already been computed and are kb = 4 Mlb/in and
km = 16 Mlb/in.

1 in No. 40 CI1
2

2 in1
2in-16 UNF

SAE grade 5

3
4

×

C

B
d

A
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(a) Find the stiffnesses of the bolts and members, assuming that the entire cylinder is com-
pressed uniformly and that the end brackets are perfectly rigid.

(b) Using the Gerber fatigue criterion, find the factor of safety guarding against a fatigue failure.
(c) What pressure would be required to cause total joint separation?

8–65 Using the Goodman fatigue criterion, repeat Prob. 8–64 with the working pressure cycling
between 1200 psi and 2000 psi.

8–66 The figure shows a bolted lap joint that uses SAE grade 5 bolts. The members are made of
cold-drawn AISI 1020 steel. Find the safe tensile shear load F that can be applied to this con-
nection to provide a minimum factor of safety of 2 for the following failure modes: shear of
bolts, bearing on bolts, bearing on members, and tension of members.

in

in

in-20 UNC

in1

in1

5
8

in5
8

1
8

1
4

1
4

5
16

in1
4

Problem 8–66

in in1
in

in-18 UNC

5
8

in5
8

in5
8

in5
8

5
16

1
4

in1
4

1
8

Problem 8–67

Problem 8–64

8–67 The bolted connection shown in the figure uses SAE grade 8 bolts. The members are hot-rolled
AISI 1040 steel. A tensile shear load F = 5000 lbf is applied to the connection. Find the fac-
tor of safety for all possible modes of failure.

L
t

ww

D

8–68 A bolted lap joint using ISO class 5.8 bolts and members made of cold-drawn SAE 1040 steel
is shown in the figure. Find the tensile shear load F that can be applied to this connection to
provide a minimum factor of safety of 2.5 for the following failure modes: shear of bolts, bear-
ing on bolts, bearing on members, and tension of members.
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8–70 The figure shows a connection that employs three SAE grade 4 bolts. The tensile shear load
on the joint is 5000 lbf. The members are cold-drawn bars of AISI 1020 steel. Find the factor
of safety for each possible mode of failure.

8–69 The bolted connection shown in the figure is subjected to a tensile shear load of 90 kN. The
bolts are ISO class 5.8 and the material is cold-drawn AISI 1015 steel. Find the factor of safety
of the connection for all possible modes of failure.

40

70

40

M20 × 2.5

80
20

20

Problem 8–68

Dimensions in millimeters.

Problem 8–69

Dimensions in millimeters.

35 60 60 35

35

35

15

20

M20 × 2.5

in
in-20 UNC

in in1

1 in

in1

in2

5
8

in5
8

in5
8

3
16

1
4

3
8

1
8 5

16

in5
16

Problem 8–70

8–71 A beam is made up by bolting together two cold-drawn bars of AISI 1018 steel as a lap joint,
as shown in the figure. The bolts used are ISO 5.8. Ignoring any twisting, determine the fac-
tor of safety of the connection.

200 50 100

M12 � 1.75

350
10

10

50

Section A–A

3.2 kN
A

A

x

y

Problem 8–71

Dimensions in millimeters.
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8–72 Standard design practice, as exhibited by the solutions to Probs. 8–66 to 8–70, is to assume
that the bolts, or rivets, share the shear equally. For many situations, such an assumption may
lead to an unsafe design. Consider the yoke bracket of Prob. 8–61, for example. Suppose this
bracket is bolted to a wide-flange column with the centerline through the two bolts in the ver-
tical direction. A vertical load through the yoke-pin hole at distance B from the column flange
would place a shear load on the bolts as well as a tensile load. The tensile load comes about
because the bracket tends to pry itself about the bottom corner, much like a claw hammer, exert-
ing a large tensile load on the upper bolt. In addition, it is almost certain that both the spac-
ing of the bolt holes and their diameters will be slightly different on the column flange from
what they are on the yoke bracket. Thus, unless yielding occurs, only one of the bolts will take
the shear load. The designer has no way of knowing which bolt this will be.

In this problem the bracket is 8 in long, A = 1
2 in, B = 3 in, C = 6 in, and the col-

umn flange is 1
2 in thick. The bolts are 1

2 -in UNC SAE grade 4. The nuts are tightened to
75 percent of proof load. The vertical yoke-pin load is 2500 lbf. If the upper bolt takes all
the shear load as well as the tensile load, how closely does the bolt stress approach the
proof strength?

8–73 The bearing of Prob. 8–46 is bolted to a vertical surface and supports a horizontal shaft. The
bolts used have coarse threads and are M20 ISO 5.8. The joint constant is C = 0.25, and the
dimensions are A = 20 mm, B = 50 mm, and C = 160 mm. The bearing base is 240 mm long.
The bearing load is 14 kN. If the bolts are tightened to 75 percent of proof load, will the bolt
stress exceed the proof strength? Use worst-case loading, as discussed in Prob. 8–72.

8–74 A split-ring clamp-type shaft collar such as is described in Prob. 5–67 must resist an axial load
of 1000 lbf. Using a design factor of n = 3 and a coefficient of friction of 0.12, specify an SAE
Grade 5 cap screw using fine threads. What wrench torque should be used if a lubricated screw
is used?

8–75 A vertical channel 152 × 76 (see Table A–7) has a cantilever beam bolted to it as shown. The
channel is hot-rolled AISI 1006 steel. The bar is of hot-rolled AISI 1015 steel. The shoulder
bolts are M10 × 1.5 ISO 5.8. For a design factor of 2.0, find the safe force F that can be
applied to the cantilever.

50 26

50

12

12550

F

BOA

Problem 8–75

Dimensions in millimeters.

8–76 The cantilever bracket is bolted to a column with three M12 × 1.75 ISO 5.8 bolts. The
bracket is made from AISI 1020 hot-rolled steel. Find the factors of safety for the follow-
ing failure modes: shear of bolts, bearing of bolts, bearing of bracket, and bending of
bracket.
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8–77 A 3
8 - × 2-in AISI 1018 cold-drawn steel bar is cantilevered to support a static load of 250 lbf

as illustrated. The bar is secured to the support using two 3
8 in-16 UNC SAE grade 4 bolts.

Find the factor of safety for the following modes of failure: shear of bolt, bearing on bolt, bear-
ing on member, and strength of member.

472 Mechanical Engineering Design

F = 2000 lbf

7 in

5 in

4 in

8 in [ 11.5

1 in

6 holes for in-13 UNC bolts

2 in

8 in
in

in
1
2 1

4

3
16

1
4

1
2

Problem 8–78

12 in

in

3 in 1 in1 in

250 lbf

3
8

Problem 8–77

8 mm thick

Holes for M12 � 1.75 bolts 

36

36

64
32

200

Column

12 kN

Problem 8–76

Dimensions in millimeters.

8–78 The figure shows a welded fitting which has been tentatively designed to be bolted to a chan-
nel so as to transfer the 2000-lbf load into the channel. The channel and the two fitting plates
are of hot-rolled stock having a minimum Sy of 42 kpsi. The fitting is to be bolted using six
SAE grade 4 shoulder bolts. Check the strength of the design by computing the factor of safety
for all possible modes of failure.

8–79 A cantilever is to be attached to the flat side of a 6-in, 13.0-lbf/in channel used as a column.
The cantilever is to carry a load as shown in the figure. To a designer the choice of a bolt array
is usually an a priori decision. Such decisions are made from a background of knowledge of
the effectiveness of various patterns.
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(a) If two fasteners are used, should the array be arranged vertically, horizontally, or diago-
nally? How would you decide?

(b) If three fasteners are used, should a linear or triangular array be used? For a triangular array,
what should be the orientation of the triangle? How would you decide?

8–80 Using your experience with Prob. 8–79, specify an optimal bolt pattern for two bolts for the
bracket in Prob. 8–79 and size the bolts.

8–81 Using your experience with Prob. 8–79, specify an optimal bolt pattern for three bolts for the
bracket in Prob. 8–79 and size the bolts.
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-in steel plate

6 in

6 in

2000 lbf

6 in

1
2

Problem 8–79

bud29281_ch08_409-474.qxd  12/16/2009  7:11 pm  Page 473 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



This page intentionally left blank 



Welding, Bonding, and the
Design of Permanent Joints

Chapter Outline

9–1 Welding Symbols 476

9–2 Butt and Fillet Welds 478

9–3 Stresses in Welded Joints in Torsion 482

9–4 Stresses in Welded Joints in Bending 487

9–5 The Strength of Welded Joints 489

9–6 Static Loading 492

9–7 Fatigue Loading 496

9–8 Resistance Welding 498

9–9 Adhesive Bonding 498

475

9
bud29281_ch09_475-516.qxd  12/16/2009  7:12 pm  Page 475 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



476 Mechanical Engineering Design

Form can more readily pursue function with the help of joining processes such as weld-
ing, brazing, soldering, cementing, and gluing—processes that are used extensively in
manufacturing today. Whenever parts have to be assembled or fabricated, there is usu-
ally good cause for considering one of these processes in preliminary design work.
Particularly when sections to be joined are thin, one of these methods may lead to sig-
nificant savings. The elimination of individual fasteners, with their holes and assembly
costs, is an important factor. Also, some of the methods allow rapid machine assembly,
furthering their attractiveness.

Riveted permanent joints were common as the means of fastening rolled steel
shapes to one another to form a permanent joint. The childhood fascination of seeing a
cherry-red hot rivet thrown with tongs across a building skeleton to be unerringly
caught by a person with a conical bucket, to be hammered pneumatically into its final
shape, is all but gone. Two developments relegated riveting to lesser prominence.
The first was the development of high-strength steel bolts whose preload could be
controlled. The second was the improvement of welding, competing both in cost and in
latitude of possible form.

9–1 Welding Symbols
A weldment is fabricated by welding together a collection of metal shapes, cut to par-
ticular configurations. During welding, the several parts are held securely together,
often by clamping or jigging. The welds must be precisely specified on working
drawings, and this is done by using the welding symbol, shown in Fig. 9–1, as stan-
dardized by the American Welding Society (AWS). The arrow of this symbol points to
the joint to be welded. The body of the symbol contains as many of the following ele-
ments as are deemed necessary:

• Reference line

• Arrow

F
A

R

S L – P

(N)

T

Field weld symbol

Weld all around symbol

Number of spot or
projection welds

Groove angle; included
angle of countersink
for plug welds

Length of weld

Pitch (center-to-center
spacing) of welds

Arrow connecting reference
line to arrow side of joint,
to grooved member, or both

Basic weld symbol
or detail reference

Tail (may be omitted
when reference
is not used)

Specification; process;
or other reference

Finish symbol

Contour symbol

Root opening; depth of filling
for plug and slot welds

Size; size or strength
for resistance welds

Reference line

(B
ot

h 
   

   
   

  s
id

es
)

A
rr

ow
si

de
O

th
er

si
de

Figure 9–1

The AWS standard welding
symbol showing the location of
the symbol elements.
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Type of weld

Bead Fillet
Plug

or
slot Square V Bevel U J

Groove

Figure 9–2

Arc- and gas-weld symbols.

• Basic weld symbols as in Fig. 9–2

• Dimensions and other data

• Supplementary symbols

• Finish symbols

• Tail

• Specification or process

The arrow side of a joint is the line, side, area, or near member to which the arrow
points. The side opposite the arrow side is the other side.

Figures 9–3 to 9–6 illustrate the types of welds used most frequently by designers.
For general machine elements most welds are fillet welds, though butt welds are used a
great deal in designing pressure vessels. Of course, the parts to be joined must be
arranged so that there is sufficient clearance for the welding operation. If unusual joints
are required because of insufficient clearance or because of the section shape, the
design may be a poor one and the designer should begin again and endeavor to synthe-
size another solution.

Since heat is used in the welding operation, there are metallurgical changes in the
parent metal in the vicinity of the weld. Also, residual stresses may be introduced because
of clamping or holding or, sometimes, because of the order of welding. Usually these

(b)(a)

5 60–200

60 200Figure 9–3

Fillet welds. (a) The number
indicates the leg size; the arrow
should point only to one weld
when both sides are the same.
(b) The symbol indicates that
the welds are intermittent 
and staggered 60 mm along on
200-mm centers.

5

Figure 9–4

The circle on the weld symbol
indicates that the welding is to
go all around.
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(a)

(c)

(b)

(d )

60°

60°

2

2
60°

45°

Figure 9–5

Butt or groove welds:
(a) square butt-welded on both
sides; (b) single V with 60°
bevel and root opening of
2 mm; (c) double V; (d) single
bevel.

(a)

(c)

(b)

(d )

Figure 9–6

Special groove welds: 
(a) T joint for thick plates; 
(b) U and J welds for thick
plates; (c) corner weld (may
also have a bead weld on inside
for greater strength but should
not be used for heavy loads);
(d ) edge weld for sheet metal
and light loads.

residual stresses are not severe enough to cause concern; in some cases a light heat treat-
ment after welding has been found helpful in relieving them. When the parts to be welded
are thick, a preheating will also be of benefit. If the reliability of the component is to be
quite high, a testing program should be established to learn what changes or additions to
the operations are necessary to ensure the best quality.

9–2 Butt and Fillet Welds
Figure 9–7a shows a single V-groove weld loaded by the tensile force F. For either
tension or compression loading, the average normal stress is

σ = F
hl

(9–1)

where h is the weld throat and l is the length of the weld, as shown in the figure. Note that
the value of h does not include the reinforcement. The reinforcement can be desirable,
but it varies somewhat and does produce stress concentration at point A in the figure. If
fatigue loads exist, it is good practice to grind or machine off the reinforcement.
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Reinforcement

Throat h

F F

A

l

(a) Tensile loading

Reinforcement

Throat h

F

F

l

(b) Shear loading

Figure 9–7

A typical butt joint.

h

h A

2F

B
F

F

C

Throat

D

h

Figure 9–8

A transverse fillet weld.

h

x

y

t

Fn

Fs F

45�

�

Figure 9–9

Free body from Fig. 9–8.

The average stress in a butt weld due to shear loading (Fig. 9–7b) is

τ = F
hl

(9–2)

Figure 9–8 illustrates a typical transverse fillet weld. In Fig. 9–9 a portion of the
welded joint has been isolated from Fig. 9–8 as a free body. At angle θ the forces on
each weldment consist of a normal force Fn and a shear force Fs . Summing forces in
the x and y directions gives

Fs = F sin θ (a)

Fn = F cos θ (b)

Using the law of sines for the triangle in Fig. 9–9 yields

t
sin 45◦ = h

sin(180◦ − 45◦ − θ)
= h

sin(135◦ − θ)
=

√
2h

cos θ + sin θ

Solving for the throat thickness t gives

t = h
cos θ + sin θ

(c)
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1C. H. Norris, “Photoelastic Investigation of Stress Distribution in Transverse Fillet Welds,” Welding J.,
vol. 24, 1945, p. 557s. 
2A. G. Salakian and G. E. Claussen, “Stress Distribution in Fillet Welds: A Review of the Literature,”
Welding J., vol. 16, May 1937, pp. 1–24.

The nominal stresses at the angle θ in the weldment, τ and σ, are

τ = Fs

A
= F sin θ(cos θ + sin θ)

hl
= F

hl
(sin θ cos θ + sin2 θ) (d)

σ = Fn

A
= F cos θ(cos θ + sin θ)

hl
= F

hl
(cos2 θ + sin θ cos θ) (e)

The von Mises stress σ ′ at angle θ is

σ ′ = (σ 2 + 3τ 2)1/2 = F
hl

[(cos2 θ + sin θ cos θ)2 + 3(sin2 θ + sin θ cos θ)2]1/2 (f )

The largest von Mises stress occurs at θ = 62.5◦ with a value of σ ′ = 2.16F/(hl). The
corresponding values of τ and σ are τ = 1.196F/(hl) and σ = 0.623F/(hl).

The maximum shear stress can be found by differentiating Eq. (d) with respect to
θ and equating to zero. The stationary point occurs at θ = 67.5◦ with a corresponding
τmax = 1.207F/(hl) and σ = 0.5F/(hl).

There are some experimental and analytical results that are helpful in evaluating
Eqs. ( d) through ( f ) and consequences. A model of the transverse fillet weld of Fig. 9–8
is easily constructed for photoelastic purposes and has the advantage of a balanced loading
condition. Norris constructed such a model and reported the stress distribution along the
sides AB and BC of the weld.1 An approximate graph of the results he obtained is shown
as Fig. 9–10a. Note that stress concentration exists at A and B on the horizontal leg and at
B on the vertical leg. Norris states that he could not determine the stresses at A and B with
any certainty.

Salakian2 presents data for the stress distribution across the throat of a fillet weld
(Fig. 9–10b). This graph is of particular interest because we have just learned that it is
the throat stresses that are used in design. Again, the figure shows stress concentration
at point B. Note that Fig. 9–10a applies either to the weld metal or to the parent metal,
and that Fig. 9–10b applies only to the weld metal.

Equations (a) through ( f ) and their consequences seem familiar, and we can become
comfortable with them. The net result of photoelastic and finite element analysis of trans-
verse fillet weld geometry is more like that shown in Fig. 9–10 than those given by
mechanics of materials or elasticity methods. The most important concept here is that we
have no analytical approach that predicts the existing stresses. The geometry of the fillet
is crude by machinery standards, and even if it were ideal, the macrogeometry is too abrupt
and complex for our methods. There are also subtle bending stresses due to eccentricities.
Still, in the absence of robust analysis, weldments must be specified and the resulting joints
must be safe. The approach has been to use a simple and conservative model, verified by
testing as conservative. The approach has been to

• Consider the external loading to be carried by shear forces on the throat area of the
weld. By ignoring the normal stress on the throat, the shearing stresses are inflated
sufficiently to render the model conservative.
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Figure 9–10

Stress distribution in fillet
welds: (a) stress distribution on
the legs as reported by Norris;
(b) distribution of principal
stresses and maximum shear
stress as reported by Salakian.
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2F

F

F

h

Figure 9–11

Parallel fillet welds.

• Use distortion energy for significant stresses.

• Circumscribe typical cases by code.

For this model, the basis for weld analysis or design employs

τ = F
0.707hl

= 1.414F
hl

(9–3)

which assumes the entire force F is accounted for by a shear stress in the minimum
throat area. Note that this inflates the maximum estimated shear stress by a factor of
1.414/1.207 = 1.17. Further, consider the parallel fillet welds shown in Fig. 9–11
where, as in Fig. 9–8, each weld transmits a force F. However, in the case of
Fig. 9–11, the maximum shear stress is at the minimum throat area and corresponds to
Eq. (9–3).

Under circumstances of combined loading we

• Examine primary shear stresses due to external forces.

• Examine secondary shear stresses due to torsional and bending moments.

• Estimate the strength(s) of the parent metal(s).

• Estimate the strength of deposited weld metal.

• Estimate permissible load(s) for parent metal(s).

• Estimate permissible load for deposited weld metal.
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9–3 Stresses in Welded Joints in Torsion
Figure 9–12 illustrates a cantilever of length l welded to a column by two fillet welds.
The reaction at the support of a cantilever always consists of a shear force V and a
moment M. The shear force produces a primary shear in the welds of magnitude

τ ′ = V
A

(9–4)

where A is the throat area of all the welds.
The moment at the support produces secondary shear or torsion of the welds, and

this stress is given by the equation

τ ′′ = Mr
J

(9–5)

where r is the distance from the centroid of the weld group to the point in the weld of
interest and J is the second polar moment of area of the weld group about the centroid
of the group. When the sizes of the welds are known, these equations can be solved and
the results combined to obtain the maximum shear stress. Note that r is usually the
farthest distance from the centroid of the weld group.

Figure 9–13 shows two welds in a group. The rectangles represent the throat areas
of the welds. Weld 1 has a throat thickness t1 = 0.707h1, and weld 2 has a throat thick-
ness t2 = 0.707h2. Note that h1 and h2 are the respective weld sizes. The throat area of
both welds together is

A = A1 + A2 = t1d + t2b (a)

This is the area that is to be used in Eq. (9–4).
The x axis in Fig. 9–13 passes through the centroid G1 of weld 1. The second

moment of area about this axis is

Ix = t1d3

12

Similarly, the second moment of area about an axis through G1 parallel to the y axis is

Iy = dt3
1

12

F

l

O

ro r

O′

� ′
� ′′

�

Figure 9–12

This is a moment connection;
such a connection produces
torsion in the welds. The shear
stresses shown are resultant
stresses.
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Figure 9–13

Thus the second polar moment of area of weld 1 about its own centroid is

JG1 = Ix + Iy = t1d3

12
+ dt3

1

12
(b)

In a similar manner, the second polar moment of area of weld 2 about its centroid is

JG2 = bt3
2

12
+ t2b3

12
(c)

The centroid G of the weld group is located at

x̄ = A1x1 + A2x2

A
ȳ = A1 y1 + A2 y2

A

Using Fig. 9–13 again, we see that the distances r1 and r2 from G1 and G2 to G,
respectively, are

r1 = [(x̄ − x1)
2 + ȳ2]1/2 r2 = [(y2 − ȳ)2 + (x2 − x̄)2]1/2

Now, using the parallel-axis theorem, we find the second polar moment of area of the
weld group to be

J = (
JG1 + A1r2

1

) + (
JG2 + A2r2

2

)
(d)

This is the quantity to be used in Eq. (9–5). The distance r must be measured from G
and the moment M computed about G.

The reverse procedure is that in which the allowable shear stress is given and we
wish to find the weld size. The usual procedure is to estimate a probable weld size and
then to use iteration.

Observe in Eqs. (b) and (c) the quantities t3
1 and t3

2 , respectively, which are the
cubes of the weld thicknesses. These quantities are small and can be neglected. This
leaves the terms t1d3/12 and t2b3/12, which make JG1 and JG2 linear in the weld width.
Setting the weld thicknesses t1 and t2 to unity leads to the idea of treating each fillet
weld as a line. The resulting second moment of area is then a unit second polar moment
of area. The advantage of treating the weld size as a line is that the value of Ju is the
same regardless of the weld size. Since the throat width of a fillet weld is 0.707h, the
relationship between J and the unit value is

J = 0.707h Ju (9–6)
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in which Ju is found by conventional methods for an area having unit width. The trans-
fer formula for Ju must be employed when the welds occur in groups, as in Fig. 9–12.
Table 9–1 lists the throat areas and the unit second polar moments of area for the most
common fillet welds encountered. The example that follows is typical of the calcula-
tions normally made.

Table 9–1

Torsional Properties of Fillet Welds*

d
G

y

y
dG

x

b

d

b

y

x

G

dG
y

b

x

dG
y

b

x

G
r

Unit Second Polar
Weld Throat Area Location of G Moment of Area

1. A = 0.707 hd x̄ = 0 Ju = d 3/12

ȳ = d/2

2. A = 1.414 hd x̄ = b/2 Ju = d(3b2 + d 2)

6
ȳ = d/2

3. A = 0.707h(b � d) x̄ = b2

2(b + d)
Ju = (b + d )4 − 6b 2d 2

12(b + d )

ȳ = d 2

2(b + d )

4.
A = 0.707h(2b � d) x̄ = b2

2b + d
Ju = 8b3 + 6bd 2 + d3

12
− b4

2b + d

ȳ = d/2

5.
A = 1.414h(b � d) x̄ = b/2 Ju = (b + d)3

6
ȳ = d/2

6. A = 1.414 πhr Ju = 2πr3

*G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of unit width.
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3We are indebted to Professor George Piotrowski of the University of Florida for the detailed steps,
presented here, of his method of weld analysis R.G.B, J.K.N.

EXAMPLE 9–1 A 50-kN load is transferred from a welded fitting into a 200-mm steel channel as illus-
trated in Fig. 9–14. Estimate the maximum stress in the weld.

Solution3 (a) Label the ends and corners of each weld by letter. See Fig. 9–15. Sometimes it is
desirable to label each weld of a set by number.
(b) Estimate the primary shear stress τ ′. As shown in Fig. 9–14, each plate is welded to
the channel by means of three 6-mm fillet welds. Figure 9–15 shows that we have
divided the load in half and are considering only a single plate. From case 4 of 
Table 9–1 we find the throat area as

A = 0.707(6)[2(56) + 190] = 1280 mm2

Then the primary shear stress is

τ ′ = V

A
= 25(10)3

1280
= 19.5 MPa

(c) Draw the τ ′ stress, to scale, at each lettered corner or end. See Fig. 9–16.
(d) Locate the centroid of the weld pattern. Using case 4 of Table 9–1, we find

x̄ = (56)2

2(56) + 190
= 10.4 mm

This is shown as point O on Figs. 9–15 and 9–16.
(e) Find the distances ri (see Fig. 9–16):

rA = rB = [(190/2)2 + (56 − 10.4)2]1/2 = 105 mm

rC = rD = [(190/2)2 + (10.4)2]1/2 = 95.6 mm

These distances can also be scaled from the drawing.

6 200 6

6 6

200 

6

190

100

50 kN

56

Figure 9–14

Dimensions in millimeters.

56

C

B A

V O

M

x

y

D

25 kN

100
110.4

45.6

95

Figure 9–15

Diagram showing the weld
geometry on a single plate; all
dimensions in millimeters.
Note that V and M represent the
reaction loads applied by the
welds to the plate.
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F
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Figure 9–16

Free-body diagram of one of
the side plates.

( f ) Find J. Using case 4 of Table 9–1 again, with Eq. (9–6), we get

J = 0.707(6)

[
8(56)3 + 6(56)(190)2 + (190)3

12
− (56)4

2(56) + 190

]
= 7.07(10)6 mm4

(g) Find M:
M = Fl = 25(100 + 10.4) = 2760 N · m

(h) Estimate the secondary shear stresses τ ′′ at each lettered end or corner:

τ ′′
A = τ ′′

B = Mr
J

= 2760(10)3(105)

7.07(10)6
= 41.0 MPa

τ ′′
C = τ ′′

D = 2760(10)3(95.6)

7.07(10)6
= 37.3 MPa

(i) Draw the τ ′′ stress at each corner and end. See Fig. 9–16. Note that this is a free-body
diagram of one of the side plates, and therefore the τ ′ and τ ′′ stresses represent what the
channel is doing to the plate (through the welds) to hold the plate in equilibrium.
( j) At each point labeled, combine the two stress components as vectors (since they
apply to the same area). At point A, the angle that τA

′′ makes with the vertical, α, is also
the angle rA makes with the horizontal, which is α = tan−1(45.6/95) = 25.64◦. This
angle also applies to point B. Thus

τA = τB =
√

(19.5 − 41.0 sin 25.64◦)2 + (41.0 cos 25.64◦)2 = 37.0 MPa

Similarly, for C and D, β = tan−1(10.4/95) = 6.25◦. Thus

τC = τD =
√

(19.5 + 37.3 sin 6.25◦)2 + (37.3 cos 6.25◦)2 = 43.9 MPa

(k) Identify the most highly stressed point:

Answer τmax = τC = τD = 43.9 MPa
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9–4 Stresses in Welded Joints in Bending
Figure 9–17a shows a cantilever welded to a support by fillet welds at top and bot-
tom. A free-body diagram of the beam would show a shear-force reaction V and
a moment reaction M. The shear force produces a primary shear in the welds of
magnitude

τ ′ = V
A

(a)

where A is the total throat area.
The moment M induces a horizontal shear stress component in the welds. Treating

the two welds of Fig. 9–17b as lines we find the unit second moment of area to be

Iu = bd2

2
(b)

The second moment of area I, based on weld throat area, is

I = 0.707hIu = 0.707h
bd2

2
(c)

The nominal throat shear stress is now found to be

τ ′′ = Mc
I

= Md/2

0.707hbd2/2
= 1.414M

bdh
(d )

The model gives the coefficient of 1.414, in contrast to the predictions of Sec. 9–2 of
1.197 from distortion energy, or 1.207 from maximum shear. The conservatism of the
model’s 1.414 is not that it is simply larger than either 1.196 or 1.207, but the tests
carried out to validate the model show that it is large enough.

The second moment of area in Eq. (d ) is based on the distance d between the two
welds. If this moment is found by treating the two welds as having rectangular foot-
prints, the distance between the weld throat centroids is approximately (d + h). This
would produce a slightly larger second moment of area, and result in a smaller level
of stress. This method of treating welds as a line does not interfere with the conser-
vatism of the model. It also makes Table 9–2 possible with all the conveniences that
ensue.

The vertical (primary) shear of Eq. (a) and the horizontal (secondary) shear of
Eq. (d) are then combined as vectors to give

τ = (τ ′2 + τ ′′2)1/2 (e)

h

F

x

b
b

d

h

z

h

y
y

d

(a) (b) Weld pattern

Figure 9–17

A rectangular cross-section
cantilever welded to a support
at the top and bottom edges.
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Table 9–2

Bending Properties of Fillet Welds*

d
G

y

y
dG

x

b

dG
y

b

x

dG
y

b

x

y

d
G

x

b

dG
y

b

x

dG

y

b

x

Weld Throat Area Location of G Unit Second Moment of Area

1.
A = 0.707hd x̄ = 0 Iu = d 3

12
ȳ = d/2

2.
A = 1.414hd x̄ = b/2 Iu = d 3

6
ȳ = d/2

3.
A = 1.414hb x̄ = b/2 Iu = bd 2

2
ȳ = d/2

4.
A = 0.707h(2b � d ) x̄ = b2

2b + d
Iu = d 2

12
(6b + d )

ȳ � d/2

5.
A = 0.707h(b � 2d ) x̄ = b/2 Iu = 2d 3

3
− 2d 2 ȳ + (b + 2d )ȳ 2

ȳ = d 2

b + 2d

6.
A = 1.414h(b � d ) x̄ = b/2 Iu = d 2

6
(3b + d )

ȳ = d/2

7.
A = 0.707h(b � 2d ) x̄ = b/2 Iu = 2d 3

3
− 2d 2 ȳ + (b + 2d )ȳ 2

ȳ = d 2

b + 2d

bud29281_ch09_475-516.qxd  12/16/2009  7:12 pm  Page 488 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Welding, Bonding, and the Design of Permanent Joints 489

dG
y

b

x

r
G

Table 9–2

Continued

4For a copy, either write the AISC, 400 N. Michigan Ave., Chicago, IL 60611, or contact on the Internet at
www.aisc.org.

9–5 The Strength of Welded Joints
The matching of the electrode properties with those of the parent metal is usually not
so important as speed, operator appeal, and the appearance of the completed joint. The
properties of electrodes vary considerably, but Table 9–3 lists the minimum properties
for some electrode classes.

It is preferable, in designing welded components, to select a steel that will result in a
fast, economical weld even though this may require a sacrifice of other qualities such as
machinability. Under the proper conditions, all steels can be welded, but best results will be
obtained if steels having a UNS specification between G10140 and G10230 are chosen.All
these steels have a tensile strength in the hot-rolled condition in the range of 60 to 70 kpsi.

The designer can choose factors of safety or permissible working stresses with more
confidence if he or she is aware of the values of those used by others. One of the best stan-
dards to use is the American Institute of Steel Construction (AISC) code for building
construction.4 The permissible stresses are now based on the yield strength of the mate-
rial instead of the ultimate strength, and the code permits the use of a variety of ASTM
structural steels having yield strengths varying from 33 to 50 kpsi. Provided the loading
is the same, the code permits the same stress in the weld metal as in the parent metal. For
these ASTM steels, Sy = 0.5Su. Table 9–4 lists the formulas specified by the code for
calculating these permissible stresses for various loading conditions. The factors of safety
implied by this code are easily calculated. For tension, n = 1/0.60 = 1.67. For shear,
n = 0.577/0.40 = 1.44, using the distortion-energy theory as the criterion of failure.

It is important to observe that the electrode material is often the strongest material
present. If a bar of AISI 1010 steel is welded to one of 1018 steel, the weld metal is
actually a mixture of the electrode material and the 1010 and 1018 steels. Furthermore,

Weld Throat Area Location of G Unit Second Moment of Area

8.
A = 1.414h(b � d) x̄ = b/2 Iu = d 2

6
(3b + d )

ȳ = d/2

9. A = 1.414π ihr lu � πr3

*Iu, unit second moment of area, is taken about a horizontal axis through G, the centroid of the weld group, h is weld size; the plane of the bending
couple is normal to the plane of the paper and parallel to the y-axis; all welds are of the same size.
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Table 9–3

Minimum Weld-Metal

Properties

AWS Electrode Tensile Strength Yield Strength, Percent
Number* kpsi (MPa) kpsi (MPa) Elongation

E60xx 62 (427) 50 (345) 17–25

E70xx 70 (482) 57 (393) 22

E80xx 80 (551) 67 (462) 19

E90xx 90 (620) 77 (531) 14–17

E100xx 100 (689) 87 (600) 13–16

E120xx 120 (827) 107 (737) 14

*The American Welding Society (AWS) specification code numbering system for electrodes. This system
uses an E prefixed to a four- or five-digit numbering system in which the first two or three digits designate
the approximate tensile strength. The last digit includes variables in the welding technique, such as current
supply. The next-to-last digit indicates the welding position, as, for example, flat, or vertical, or overhead.
The complete set of specifications may be obtained from the AWS upon request.

Table 9–4

Stresses Permitted by the

AISC Code for Weld

Metal

Type of Loading Type of Weld Permissible Stress n*

Tension Butt 0.60Sy 1.67

Bearing Butt 0.90Sy 1.11

Bending Butt 0.60–0.66Sy 1.52–1.67

Simple compression Butt 0.60Sy 1.67

Shear Butt or fillet 0.30S†
ut

*The factor of safety n has been computed by using the distortion-energy theory.
†Shear stress on base metal should not exceed 0.40Sy of base metal.

a welded cold-drawn bar has its cold-drawn properties replaced with the hot-rolled
properties in the vicinity of the weld. Finally, remembering that the weld metal is usu-
ally the strongest, do check the stresses in the parent metals.

The AISC code, as well as the AWS code, for bridges includes permissible stresses
when fatigue loading is present. The designer will have no difficulty in using these
codes, but their empirical nature tends to obscure the fact that they have been estab-
lished by means of the same knowledge of fatigue failure already discussed in Chap. 6.
Of course, for structures covered by these codes, the actual stresses cannot exceed the
permissible stresses; otherwise the designer is legally liable. But in general, codes tend
to conceal the actual margin of safety involved.

The fatigue stress-concentration factors listed in Table 9–5 are suggested for
use. These factors should be used for the parent metal as well as for the weld metal.
Table 9–6 gives steady-load information and minimum fillet sizes.

Table 9–5

Fatigue 

Stress-Concentration

Factors, Kfs

Type of Weld Kfs

Reinforced butt weld 1.2

Toe of transverse fillet weld 1.5

End of parallel fillet weld 2.7

T-butt joint with sharp corners 2.0
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Table 9–6

Allowable Steady Loads and Minimum Fillet Weld Sizes

Strength Level of Weld Metal (EXX)

60* 70* 80 90* 100 110* 120

Allowable shear stress on throat, ksi (1000 psi) of fillet weld 
or partial penetration groove weld

τ = 18.0 21.0 24.0 27.0 30.0 33.0 36.0

Allowable Unit Force on Fillet Weld, kip/linear in

†f = 12.73h 14.85h 16.97h 19.09h 21.21h 23.33h 25.45h

Leg Allowable Unit Force for Various Sizes of Fillet Welds
Size h, in kip/linear in

1 12.73 14.85 16.97 19.09 21.21 23.33 25.45

7/8 11.14 12.99 14.85 16.70 18.57 20.41 22.27

3/4 9.55 11.14 12.73 14.32 15.92 17.50 19.09

5/8 7.96 9.28 10.61 11.93 13.27 14.58 15.91

1/2 6.37 7.42 8.48 9.54 10.61 11.67 12.73

7/16 5.57 6.50 7.42 8.35 9.28 10.21 11.14

3/8 4.77 5.57 6.36 7.16 7.95 8.75 9.54

5/16 3.98 4.64 5.30 5.97 6.63 7.29 7.95

1/4 3.18 3.71 4.24 4.77 5.30 5.83 6.36

3/16 2.39 2.78 3.18 3.58 3.98 4.38 4.77

1/8 1.59 1.86 2.12 2.39 2.65 2.92 3.18

1/16 0.795 0.930 1.06 1.19 1.33 1.46 1.59

*Fillet welds actually tested by the joint AISC-AWS Task Committee.
†f = 0.707h τ all.

Schedule A: Allowable Load for Various Sizes of Fillet Welds Schedule B: Minimum Fillet Weld Size, h

Source: From Omer W. Blodgett (ed.), Stress Allowables Affect Weldment Design, D412, The James F. Lincoln Arc Welding Foundation, Cleveland, May 1991, p. 3. Reprinted by
permission of Lincoln Electric Company.

Material Thickness of Weld Size,
Thicker Part Joined, in in

*To 1
4 incl. 1

8

Over 1
4 To 1

2
3
16

Over 1
2 To 3

4
1
4

†Over 3
4 To 1 1

2
5
16

Over 1 1
2 To 2 1

4
3
8

Over 2 1
4 To 6 1

2

Over 6 5
8

Not to exceed the thickness of the thinner part.

*Minimum size for bridge application does not go below 3
16 in.

†For minimum fillet weld size, schedule does not go above 5
16 in fillet

weld for every 3
4 in material.
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F = 16.5 kip2 in

1
2 inFigure 9–18

9–6 Static Loading
Some examples of statically loaded joints are useful in comparing and contrasting the
conventional method of analysis and the welding code methodology.

EXAMPLE 9–2 A 1
2 -in by 2-in rectangular-cross-section 1015 bar carries a static load of 16.5 kip. It is

welded to a gusset plate with a 3
8 -in fillet weld 2 in long on both sides with an E70XX

electrode as depicted in Fig. 9–18. Use the welding code method.
(a) Is the weld metal strength satisfactory?
(b) Is the attachment strength satisfactory?

Solution (a) From Table 9–6, allowable force per unit length for a 3
8 -in E70 electrode metal is

5.57 kip/in of weldment; thus

F = 5.57l = 5.57(4) = 22.28 kip

Since 22.28 > 16.5 kip, weld metal strength is satisfactory.
(b) Check shear in attachment adjacent to the welds. From Table A–20, Sy = 27.5 kpsi.
Then, from Table 9–4, the allowable attachment shear stress is

τall = 0.4Sy = 0.4(27.5) = 11 kpsi

The shear stress τ on the base metal adjacent to the weld is

τ = F
2hl

= 16.5

2(0.375)2
= 11 kpsi

Since τall ≥ τ , the attachment is satisfactory near the weld beads. The tensile stress in
the shank of the attachment σ is

σ = F
tl

= 16.5

(1/2)2
= 16.5 kpsi

The allowable tensile stress σall, from Table 9–4, is 0.6Sy and, with welding code safety
level preserved,

σall = 0.6Sy = 0.6(27.5) = 16.5 kpsi

Since σ ≤ σall, the shank tensile stress is satisfactory.
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F = 24 kip

2 in

2 in

F1
l1

l2

F2

A

B

b +
y

3
4 in

3
8 inFigure 9–19

EXAMPLE 9–3 A specially rolled A36 structural steel section for the attachment has a cross section
as shown in Fig. 9–19 and has yield and ultimate tensile strengths of 36 and 58 kpsi,
respectively. It is statically loaded through the attachment centroid by a load of F =
24 kip. Unsymmetrical weld tracks can compensate for eccentricity such that there is
no moment to be resisted by the welds. Specify the weld track lengths l1 and l2 for a
5
16 -in fillet weld using an E70XX electrode. This is part of a design problem in which
the design variables include weld lengths and the fillet leg size.

Solution The y coordinate of the section centroid of the attachment is

ȳ =
∑

yi Ai∑
Ai

= 1(0.75)2 + 3(0.375)2

0.75(2) + 0.375(2)
= 1.67 in

Summing moments about point B to zero gives∑
MB = 0 = −F1b + F ȳ = −F1(4) + 24(1.67)

from which
F1 = 10 kip

It follows that

F2 = 24 − 10.0 = 14.0 kip

The weld throat areas have to be in the ratio 14/10 = 1.4, that is, l2 = 1.4l1. The weld
length design variables are coupled by this relation, so l1 is the weld length design vari-
able. The other design variable is the fillet weld leg size h, which has been decided by
the problem statement. From Table 9–4, the allowable shear stress on the throat τall is

τall = 0.3(70) = 21 kpsi

The shear stress τ on the 45° throat is

τ = F
(0.707)h(l1 + l2)

= F
(0.707)h(l1 + 1.4l1)

= F
(0.707)h(2.4l1)

= τall = 21 kpsi

from which the weld length l1 is

l1 = 24

21(0.707)0.3125(2.4)
= 2.16 in

and

l2 = 1.4l1 = 1.4(2.16) = 3.02 in
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These are the weld-bead lengths required by weld metal strength. The attachment shear
stress allowable in the base metal, from Table 9–4, is

τall = 0.4Sy = 0.4(36) = 14.4 kpsi

The shear stress τ in the base metal adjacent to the weld is

τ = F
h(l1 + l2)

= F
h(l1 + 1.4l1)

= F
h(2.4l1)

= τall = 14.4 kpsi

from which

l1 = F
14.4h(2.4)

= 24

14.4(0.3125)2.4
= 2.22 in

l2 = 1.4l1 = 1.4(2.22) = 3.11 in

These are the weld-bead lengths required by base metal (attachment) strength. The base
metal controls the weld lengths. For the allowable tensile stress σall in the shank of the
attachment, the AISC allowable for tension members is 0.6Sy ; therefore,

σall = 0.6Sy = 0.6(36) = 21.6 kpsi

The nominal tensile stress σ is uniform across the attachment cross section because of
the load application at the centroid. The stress σ is

σ = F
A

= 24

0.75(2) + 2(0.375)
= 10.7 kpsi

Since σ ≤ σall, the shank section is satisfactory. With l1 set to a nominal 2 1
4 in, l2 should

be 1.4(2.25) = 3.15 in.

Decision Set l1 = 2 1
4 in, l2 = 3 1

4 in. The small magnitude of the departure from l2/ l1 = 1.4 is not
serious. The joint is essentially moment-free.

EXAMPLE 9–4 Perform an adequacy assessment of the statically loaded welded cantilever carrying
500 lbf depicted in Fig. 9–20. The cantilever is made of AISI 1018 HR steel and welded
with a 3

8-in fillet weld as shown in the figure. An E6010 electrode was used, and the
design factor was 3.0.
(a) Use the conventional method for the weld metal.
(b) Use the conventional method for the attachment (cantilever) metal.
(c) Use a welding code for the weld metal.

Solution (a) From Table 9–3, Sy = 50 kpsi, Sut = 62 kpsi. From Table 9–2, second pattern, b =
0.375 in, d = 2 in, so

A = 1.414hd = 1.414(0.375)2 = 1.06 in2

Iu = d3/6 = 23/6 = 1.33 in3

I = 0.707hIu = 0.707(0.375)1.33 = 0.353 in4

bud29281_ch09_475-516.qxd  12/16/2009  7:12 pm  Page 494 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Welding, Bonding, and the Design of Permanent Joints 495

6 in

2 in

F = 500 lbf

3
8 in

3
8 in

Figure 9–20

Primary shear:

τ ′ = F
A

= 500(10−3)

1.06
= 0.472 kpsi

Secondary shear:

τ ′′ = Mr
I

= 500(10−3)(6)(1)

0.353
= 8.50 kpsi

The shear magnitude τ is the Pythagorean combination

τ = (τ ′2 + τ ′′2)1/2 = (0.4722 + 8.502)1/2 = 8.51 kpsi

The factor of safety based on a minimum strength and the distortion-energy criterion is

Answer n = Ssy

τ
= 0.577(50)

8.51
= 3.39

Since n ≥ nd , that is, 3.39 ≥ 3.0, the weld metal has satisfactory strength.
(b) From Table A–20, minimum strengths are Sut = 58 kpsi and Sy = 32 kpsi. Then

Answer

σ = M
I/c

= M
bd2/6

= 500(10−3)6

0.375(22)/6
= 12 kpsi

n = Sy

σ
= 32

12
= 2.67

Since n < nd, that is, 2.67 < 3.0, the joint is unsatisfactory as to the attachment strength.
(c) From part (a), τ = 8.51 kpsi. For an E6010 electrode Table 9–6 gives the allowable
shear stress τall as 18 kpsi. Since τ < τall, the weld is satisfactory. Since the code already
has a design factor of 0.577(50)/18 = 1.6 included at the equality, the corresponding
factor of safety to part (a) is

Answer n = 1.6
18

8.51
= 3.38

which is consistent.
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2 in
E6010

4- × 7.25-in channel

2 in

1018

1018

1000 lbf
completely
reversed

1
2 in

3
8 in

Figure 9–21

9–7 Fatigue Loading
The conventional methods will be provided here. In fatigue, the Gerber criterion is best;
however, you will find that the Goodman criterion is in common use. For the surface
factor of Eq. 6–19, an as-forged surface should always be assumed for weldments
unless a superior finish is specified and obtained.

Some examples of fatigue loading of welded joints follow.

EXAMPLE 9–5 The 1018 steel strap of Fig. 9–21 has a 1000 lbf, completely reversed load applied.
Determine the factor of safety of the weldment for infinite life.

Solution From Table A–20 for the 1018 attachment metal the strengths are Sut = 58 kpsi and
Sy = 32 kpsi. For the E6010 electrode, from Table 9–3 Sut = 62 kpsi and Sy = 50 kpsi.
The fatigue stress-concentration factor, from Table 9–5, is K f s = 2.7. From Table 6–2,
p. 288, ka = 39.9(58)−0.995 = 0.702. For case 2 of Table 9–5, the shear area is:

A = 1.414(0.375)(2) = 1.061 in2

For a uniform shear stress on the throat, kb = 1.
From Eq. (6–26), p. 290, for torsion (shear),

kc = 0.59 kd = ke = kf = 1

From Eqs. (6–8), p. 282, and (6–18), p. 287,

Sse = 0.702(1)0.59(1)(1)(1)0.5(58) = 12.0 kpsi

From Table 9–5, K fs = 2.7. Only primary shear is present. So, with Fa = 1000 lbf and
Fm = 0

τ ′
a = K fs Fa

A
= 2.7(1000)

1.061
= 2545 psi τ ′

m = 0 psi
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In the absence of a midrange component, the fatigue factor of safety n f is given by

Answer n f = Sse

τ ′
a

= 12 000

2545
= 4.72

EXAMPLE 9–6 The 1018 steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf (Fa = Fm =
1000 lbf). Determine the fatigue factor of safety fatigue strength of the weldment.

Solution From Table 6–2, p. 288, ka = 39.9(58)−0.995 = 0.702. From case 2 of Table 9–2

A = 1.414(0.375)(2) = 1.061 in2

For uniform shear stress on the throat kb = 1.
From Eq. (6–26), p. 290, kc = 0.59. From Eqs. (6–8), p. 282, and (6–18), p. 287,

Sse = 0.702(1)0.59(1)(1)(1)0.5(58) = 12.0 kpsi

From Table 9–5, K f s = 2. Only primary shear is present:

τ ′
a = τ ′

m = K f s Fa

A
= 2(1000)

1.061
= 1885 psi

From Eq. (6–54), p. 317, Ssu
.= 0.67Sut . This, together with the Gerber fatigue failure

criterion for shear stresses from Table 6–7, p. 307, gives

n f = 1

2

(
0.67Sut

τm

)2
τa

Sse

⎡⎣−1 +
√

1 +
(

2τm Sse

0.67Sutτa

)2
⎤⎦

Answer n f = 1

2

[
0.67(58)

1.885

]2 1.885

12.0

⎧⎨⎩−1 +
√

1 +
[

2(1.885)12.0

0.67(58)1.885

]2
⎫⎬⎭ = 5.85

E6010

W 4- × 13-in I beam

2 in

1018
2000 lbf
repeatedly
applied (0–2000 lbf)

1018 3
8 in

1 
2 in

Figure 9–22
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(a) (b)

Figure 9–23

(a) Spot welding; (b) seam
welding.

5For a more extensive discussion of this topic, see J. E. Shigley and C. R. Mischke, Mechanical Engineering
Design, 6th ed., McGraw-Hill, New York, 2001, Sec. 9–11. This section was prepared with the assistance of
Professor David A. Dillard, Professor of Engineering Science and Mechanics and Director of the Center for
Adhesive and Sealant Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, and with
the encouragement and technical support of the Bonding Systems Division of 3M, Saint Paul, Minnesota.

9–8 Resistance Welding
The heating and consequent welding that occur when an electric current is passed
through several parts that are pressed together is called resistance welding. Spot weld-
ing and seam welding are forms of resistance welding most often used. The advantages
of resistance welding over other forms are the speed, the accurate regulation of time and
heat, the uniformity of the weld, and the mechanical properties that result. In addition
the process is easy to automate, and filler metal and fluxes are not needed.

The spot- and seam-welding processes are illustrated schematically in Fig. 9–23.
Seam welding is actually a series of overlapping spot welds, since the current is applied
in pulses as the work moves between the rotating electrodes.

Failure of a resistance weld occurs either by shearing of the weld or by tearing of
the metal around the weld. Because of the possibility of tearing, it is good practice to
avoid loading a resistance-welded joint in tension. Thus, for the most part, design so
that the spot or seam is loaded in pure shear. The shear stress is then simply the load
divided by the area of the spot. Because the thinner sheet of the pair being welded may
tear, the strength of spot welds is often specified by stating the load per spot based on
the thickness of the thinnest sheet. Such strengths are best obtained by experiment.

Somewhat larger factors of safety should be used when parts are fastened by spot
welding rather than by bolts or rivets, to account for the metallurgical changes in the
materials due to the welding.

9–9 Adhesive Bonding5

The use of polymeric adhesives to join components for structural, semistructural, and non-
structural applications has expanded greatly in recent years as a result of the unique advan-
tages adhesives may offer for certain assembly processes and the development of new
adhesives with improved robustness and environmental acceptability. The increasing
complexity of modern assembled structures and the diverse types of materials used have
led to many joining applications that would not be possible with more conventional join-
ing techniques. Adhesives are also being used either in conjunction with or to replace
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6From E. M. Petrie, Handbook of Adhesives and Sealants, 2nd ed., McGraw-Hill, New York, 2007.

mechanical fasteners and welds. Reduced weight, sealing capabilities, and reduced part
count and assembly time, as well as improved fatigue and corrosion resistance, all combine
to provide the designer with opportunities for customized assembly. The worldwide size of
the adhesive and sealant industry is approximately 40 billion Euro dollars, and the United
States market is about 12 billion US dollars.6 At the current exchange rates, the global
market is therefore approximately $57 billon. Figure 9–24 illustrates the numerous places
where adhesives are used on a modern automobile. Indeed, the fabrication of many modern
vehicles, devices, and structures is dependent on adhesives.

In well-designed joints and with proper processing procedures, use of adhesives can
result in significant reductions in weight. Eliminating mechanical fasteners eliminates
the weight of the fasteners, and also may permit the use of thinner-gauge materials
because stress concentrations associated with the holes are eliminated. The capability of
polymeric adhesives to dissipate energy can significantly reduce noise, vibration, and
harshness (NVH), crucial in modern automobile performance. Adhesives can be used to
assemble heat-sensitive materials or components that might be damaged by drilling holes
for mechanical fasteners. They can be used to join dissimilar materials or thin-gauge
stock that cannot be joined through other means.

Types of Adhesive

There are numerous adhesive types for various applications. They may be classified in
a variety of ways depending on their chemistry (e.g., epoxies, polyurethanes, poly-
imides), their form (e.g., paste, liquid, film, pellets, tape), their type (e.g., hot melt,
reactive hot melt, thermosetting, pressure sensitive, contact), or their load-carrying
capability (structural, semistructural, or nonstructural).

Structural adhesives are relatively strong adhesives that are normally used well
below their glass transition temperature; common examples include epoxies and certain
acrylics. Such adhesives can carry significant stresses, and they lend themselves to struc-
tural applications. For many engineering applications, semistructural applications (where

10

413

9

12

2
1 8

15

8 2

1

9

3

6

13

11

5

11

14

7 Exterior Trim

Sound Insulation

Brake/
Transmission

Wheel Housing

Body-in-White

Interior
Trim

Bumper
Assembly

Engine
Compartment

Hem Flange
Windshield/

Windows Exterior Body Panels

Light Assemblies

Antiflutter

Panel
Reinforcements

Paint Shop

4

1010

Figure 9–24

Diagram of an automobile body showing at least 15 locations at which adhesives and sealants could be used
or are being used. Particular note should be made of the windshield (8), which is considered a load-bearing
structure in modern automobiles and is adhesively bonded. Also attention should be paid to hem flange
bonding (1), in which adhesives are used to bond and seal. Adhesives are used to bond friction surfaces in
brakes and clutches (10). Antiflutter adhesive bonding (2) helps control deformation of hood and trunk lids
under wind shear. Thread-sealing adhesives are used in engine applications (12). (From A. V. Pocius, Adhesion
and Adhesives Technology, 2nd edition, Hanser Publishers, Munich, 2002. Reprinted by permission.)
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failure would be less critical) and nonstructural applications (of headliners, etc., for aes-
thetic purposes) are also of significant interest to the design engineer, providing cost-
effective means required for assembly of finished products. These include contact
adhesives, where a solution or emulsion containing an elastomeric adhesive is coated onto
both adherends, the solvent is allowed to evaporate, and then the two adherends are
brought into contact. Examples include rubber cement and adhesives used to bond lami-
nates to countertops. Pressure-sensitive adhesives are very low modulus elastomers that
deform easily under small pressures, permitting them to wet surfaces. When the substrate
and adhesive are brought into intimate contact, van der Waals forces are sufficient to main-
tain the contact and provide relatively durable bonds. Pressure-sensitive adhesives are nor-
mally purchased as tapes or labels for nonstructural applications, although there are also
double-sided foam tapes that can be used in semistructural applications. As the name
implies, hot melts become liquid when heated, wetting the surfaces and then cooling into
a solid polymer. These materials are increasingly applied in a wide array of engineering
applications by more sophisticated versions of the glue guns in popular use. Anaerobic
adhesives cure within narrow spaces deprived of oxygen; such materials have been widely
used in mechanical engineering applications to lock bolts or bearings in place. Cure in
other adhesives may be induced by exposure to ultraviolet light or electron beams, or it
may be catalyzed by certain materials that are ubiquitous on many surfaces, such as water. 

Table 9–7 presents important strength properties of commonly used adhesives.

Table 9–7

Mechanical Performance of Various Types of Adhesives

Room Temperature Peel Strength
Adhesive Chemistry Lap-Shear Strength, per Unit Width,
or Type MPa (psi) kN/m (lbf/in)

Pressure-sensitive 0.01–0.07 (2–10) 0.18–0.88 (1–5)

Starch-based 0.07–0.7 (10–100) 0.18–0.88 (1–5)

Cellosics 0.35–3.5 (50–500) 0.18–1.8 (1–10)

Rubber-based 0.35–3.5 (50–500) 1.8–7 (10–40)

Formulated hot melt 0.35–4.8 (50–700) 0.88–3.5 (5–20)

Synthetically designed hot melt 0.7–6.9 (100–1000) 0.88–3.5 (5–20)

PVAc emulsion (white glue) 1.4–6.9 (200–1000) 0.88–1.8 (5–10)

Cyanoacrylate 6.9–13.8 (1000–2000) 0.18–3.5 (1–20)

Protein-based 6.9–13.8 (1000–2000) 0.18–1.8 (1–10)

Anaerobic acrylic 6.9–13.8 (1000–2000) 0.18–1.8 (1–10)

Urethane 6.9–17.2 (1000–2500) 1.8–8.8 (10–50)

Rubber-modified acrylic 13.8–24.1 (2000–3500) 1.8–8.8 (10–50)

Modified phenolic 13.8–27.6 (2000–4000) 3.6–7 (20–40)

Unmodified epoxy 10.3–27.6 (1500–4000) 0.35–1.8 (2–10)

Bis-maleimide 13.8–27.6 (2000–4000) 0.18–3.5 (1–20)

Polyimide 13.8–27.6 (2000–4000) 0.18–0.88 (1–5)

Rubber-modified epoxy 20.7–41.4 (3000–6000) 4.4–14 (25–80)

Source: From A. V. Pocius, Adhesion and Adhesives Technology, 2nd ed., Hanser Gardner Publishers, Ohio, 2002. Reprinted by permission.
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Stress Distributions

Good design practice normally requires that adhesive joints be constructed in such
a manner that the adhesive carries the load in shear rather than tension. Bonds are
typically much stronger when loaded in shear rather than in tension across the
bond plate. Lap-shear joints represent an important family of joints, both for
test specimens to evaluate adhesive properties and for actual incorporation into
practical designs. Generic types of lap joints that commonly arise are illustrated in
Fig. 9–25.

The simplest analysis of lap joints suggests the applied load is uniformly dis-
tributed over the bond area. Lap joint test results, such as those obtained following
the ASTM D1002 for single-lap joints, report the “apparent shear strength” as the
breaking load divided by the bond area. Although this simple analysis can be ade-
quate for stiff adherends bonded with a soft adhesive over a relatively short bond
length, significant peaks in shear stress occur except for the most flexible adhesives.
In an effort to point out the problems associated with such practice, ASTM D4896
outlines some of the concerns associated with taking this simplistic view of stresses
within lap joints.

In 1938, O. Volkersen presented an analysis of the lap joint, known as the shear-
lag model. It provides valuable insights into the shear-stress distributions in a host of
lap joints. Bending induced in the single-lap joint due to eccentricity significantly
complicates the analysis, so here we will consider a symmetric double-lap joint to

(a)

(b)

(c)

(d)

(e)

(g)

(h)

( f )

Figure 9–25

Common types of lap joints
used in mechanical design:
(a) single lap; (b) double lap;
(c) scarf; (d) bevel; (e) step;
(f) butt strap; (g) double butt
strap; (h) tubular lap. (Adapted
from R. D. Adams, J. Comyn,
and W. C. Wake, Structural
Adhesive Joints in Engineering,
2nd ed., Chapman and Hall,
New York, 1997.)
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illustrate the principles. The shear-stress distribution for the double lap joint of
Fig. 9–26 is given by

τ(x) = Pω

4b sinh(ωl/2)
cosh(ωx) +

[
Pω

4b cosh(ωl/2)

(
2Eoto − Ei ti
2Eoto + Ei ti

)

+ (αi − αo)	T ω

(1/Eoto + 2/Ei ti ) cosh(ωl/2)

]
sinh(ωx) (9–7)

where

ω =
√

G
h

(
1

Eoto
+ 2

Ei ti

)
and Eo, to, αo, and Ei, ti, αi , are the modulus, thickness, coefficient of thermal expansion
for the outer and inner adherend, respectively; G, h, b, and l are the shear modulus,
thickness, width, and length of the adhesive, respectively; and 	T is a change in tem-
perature of the joint. If the adhesive is cured at an elevated temperature such that the
stress-free temperature of the joint differs from the service temperature, the mismatch
in thermal expansion of the outer and inner adherends induces a thermal shear across
the adhesive.

(a)

P
2
P
2

P

(b)

to

h
h x

y

to

ti

l
2

l
2

Figure 9–26

Double-lap joint.

EXAMPLE 9–7 The double-lap joint depicted in Fig. 9–26 consists of aluminum outer adherends and an
inner steel adherend. The assembly is cured at 250°F and is stress-free at 200°F. The
completed bond is subjected to an axial load of 2000 lbf at a service temperature of 70°F.
The width b is 1 in, the length of the bond l is 1 in. Additional information is tabulated
below:

G, psi E, psi �, in/(in . °F) Thickness, in

Adhesive 0.2(106) 55(10−6) 0.020

Outer adherend 10(106) 13.3(10−6) 0.150

Inner adherend 30(106) 6.0(10−6) 0.100
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Sketch a plot of the shear stress as a function of the length of the bond due to (a) thermal
stress, (b) load-induced stress, and (c) the sum of stresses in a and b; and (d) find where
the largest shear stress is maximum.

Solution In Eq. (9–7) the parameter ω is given by

ω =
√

G
h

(
1

Eoto
+ 2

Ei ti

)

=
√

0.2(106)

0.020

[
1

10(106)0.15
+ 2

30(106)0.10

]
= 3.65 in−1

(a) For the thermal component, αi − αo = 6(10−6) − 13.3(10−6) = −7.3(10−6)

in�(in � °F), 	T = 70 − 200 = −130◦F,

τth(x) = (αi − αo)	T ω sinh(ωx)

(1/Eoto + 2/Ei ti ) cosh(ωl/2)

τth(x) = −7.3(10−6)(−130)3.65 sinh(3.65x)[
1

10(106)0.150
+ 2

30(106)0.100

]
cosh

[
3.65(1)

2

]
= 816.4 sinh(3.65x)

The thermal stress is plotted in Fig. (9–27) and tabulated at x = −0.5, 0, and 0.5 in the
table below.
(b) The bond is “balanced” (Eoto = Ei ti/2), so the load-induced stress is given by

τP(x) = Pω cosh(ωx)

4b sinh(ωl/2)
= 2000(3.65) cosh(3.65x)

4(1)3.0208
= 604.1 cosh(3.65x) (1)

The load-induced stress is plotted in Fig. (9–27) and tabulated at x = −0.5, 0, and 0.5
in the table below.
(c) Total stress table (in psi):

�(�0.5) �(0) �(0.5)

Thermal only −2466 0 2466

Load-induced only 1922 604 1922

Combined −544 604 4388

(d) The maximum shear stress predicted by the shear-lag model will always occur at
the ends. See the plot in Fig. 9–27. Since the residual stresses are always present, sig-
nificant shear stresses may already exist prior to application of the load. The large
stresses present for the combined-load case could result in local yielding of a ductile
adhesive or failure of a more brittle one. The significance of the thermal stresses
serves as a caution against joining dissimilar adherends when large temperature
changes are involved. Note also that the average shear stress due to the load is
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504 Mechanical Engineering Design

Although design considerations for single-lap joints are beyond the scope of this
chapter, one should note that the load eccentricity is an important aspect in the stress
state of single-lap joints. Adherend bending can result in shear stresses that may be as
much as double those given for the double-lap configuration (for a given total bond area).
In addition, peel stresses can be quite large and often account for joint failure. Finally,
plastic bending of the adherends can lead to high strains, which less ductile adhesives
cannot withstand, leading to bond failure as well. Bending stresses in the adherends at
the end of the overlap can be four times greater than the average stress within the
adherend; thus, they must be considered in the design. Figure 9–28 shows the shear and
peel stresses present in a typical single-lap joint that corresponds to the ASTM D1002
test specimen. Note that the shear stresses are significantly larger than predicted by the
Volkersen analysis, a result of the increased adhesive strains associated with adherend
bending.

Joint Design

Some basic guidelines that should be used in adhesive joint design include:

• Design to place bondline in shear, not peel. Beware of peel stresses focused at bond
terminations. When necessary, reduce peel stresses through tapering the adherend
ends, increasing bond area where peel stresses occur, or utilizing rivets at bond termi-
nations where peel stresses can initiate failures.

• Where possible, use adhesives with adequate ductility. The ability of an adhesive to
yield reduces the stress concentrations associated with the ends of joints and increases
the toughness to resist debond propagation.

• Recognize environmental limitations of adhesives and surface preparation methods.
Exposure to water, solvents, and other diluents can significantly degrade adhesive
performance in some situations, through displacing the adhesive from the surface or
degrading the polymer. Certain adhesives may be susceptible to environmental stress
cracking in the presence of certain solvents. Exposure to ultraviolet light can also
degrade adhesives.

1000

2000

−2000

−1000

3000

4000

0.2 0.4−0.4

Shear stress � (psi)

Combined

Thermal

Load induced

x (in)
−0.2

Figure 9–27

Plot for Ex. 9–7.

τavg = P/(2bl) = 1000 psi. Equation (1) produced a maximum of 1922 psi, almost
double the average.

bud29281_ch09_475-516.qxd  12/16/2009  7:13 pm  Page 504 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Welding, Bonding, and the Design of Permanent Joints 505

• Design in a way that permits or facilitates inspections of bonds where possible. A
missing rivet or bolt is often easy to detect, but debonds or unsatisfactory adhesive
bonds are not readily apparent.

• Allow for sufficient bond area so that the joint can tolerate some debonding before
going critical. This increases the likelihood that debonds can be detected. Having
some regions of the overall bond at relatively low stress levels can significantly
improve durability and reliability.

• Where possible, bond to multiple surfaces to offer support to loads in any direction.
Bonding an attachment to a single surface can place peel stresses on the bond, whereas
bonding to several adjacent planes tends to permit arbitrary loads to be carried pre-
dominantly in shear.

• Adhesives can be used in conjunction with spot welding. The process is known as
weld bonding. The spot welds serve to fixture the bond until it is cured.

Figure 9–29 presents examples of improvements in adhesive bonding.

(a)

(b)

(c)

Peel and
shear stresses

10000

8000

6000

4000

2000

−2000

−0.2 −0.1

Stresses shown for an
applied load of
P = 1000 lbf (4.4 kN)

Note: For very long joints,
Volkersen predicts only 50% of
the G-R shear stress.

�, Goland and
Reissner

�, Goland and
Reissner

�, Volkersen

�ave

x (in)

l = 0.5 in (12.7 mm)
t = 0.064 in (1.6 mm)
Aluminum: E = 10 Msi (70 GPa)
Epoxy: Ea = 500 ksi (3.5 GPa)

Stress (psi)

ASTM D 1002-94

0.1 0.2

(d )

Figure 9–28

Stresses within a single-lap
joint. (a) Lap-joint tensile
forces have a line of action that
is not initially parallel to the
adherend sides. (b) As the load
increases the adherends and
bond bend. (c) In the locality of
the end of an adherend peel and
shear stresses appear, and the
peel stresses often induce joint
failure. (d) The seminal Goland
and Reissner stress predictions
(J. Appl. Mech., vol. 77, 1944)
are shown. (Note that the
predicted shear-stress
maximum is higher than that
predicted by the Volkersen
shear-lag model because of
adherend bending.)
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Original Improved Original

(a)

(b)

Improved

Peel stresses can be a problem
at ends of lap joints of all types

Tapered to reduce peel Mechanically reduce peel

Rivet, spot weld, or
bolt to reduce peel

Larger bond area to reduce peel

Figure 9–29

Design practices that improve adhesive bonding. (a) Gray load vectors are to be avoided as resulting strength is
poor. (b) Means to reduce peel stresses in lap-type joints.
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PROBLEMS
9–1 to The figure shows a horizontal steel bar of thickness h loaded in steady tension and welded to a 

9–4 vertical support. Find the load F that will cause an allowable shear stress, τallow, in the throats of
the welds.

Problem
Number b d h �allow

9–1 50 mm 50 mm 5 mm 140 MPa

9–2 2 in 2 in 5
16

in 25 kpsi

9–3 50 mm 30 mm 5 mm 140 MPa

9–4 4 in 2 in 5
16

in 25 kpsi

F

h

d

b

Problems 9–1 to 9–4

9–5 to For the weldments of Probs. 9–1 to 9–4, the electrodes are specified in the table. For the electrode 
9–8 metal indicated, what is the allowable load on the weldment?
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508 Mechanical Engineering Design

Problem Reference
Number Problem Electrode

9–5 9–1 E7010

9–6 9–2 E6010

9–7 9–3 E7010

9–8 9–4 E6010

9–9 to The materials for the members being joined in Probs. 9–1 to 9–4 are specified below. What load 
9–12 on the weldment is allowable because member metal is incorporated in the welds?

Problem Reference Vertical
Number Problem Bar Support

9–9 9–1 1018 CD 1018 HR

9–10 9–2 1020 CD 1020 CD

9–11 9–3 1035 HR 1035 CD

9–12 9–4 1035 HR 1020 CD

9–13 to A steel bar of thickness h is welded to a vertical support as shown in the figure. What is the shear 
9–16 stress in the throat of the welds due to the force F?

Problem
Number b d h F

9–13 50 mm 50 mm 5 mm 100 kN

9–14 2 in 2 in 5
16

in 40 kip

9–15 50 mm 30 mm 5 mm 100 kN

9–16 4 in 2 in 5
16

in 40 kip

9–17 to A steel bar of thickness h, to be used as a beam, is welded to a vertical support by two fillet welds 
9–20 as shown in the figure. 

(a) Find the safe bending force F if the allowable shear stress in the welds is τallow.

(b) In part a, you found a simple expression for F in terms of the allowable shear stress. Find the
allowable load if the electrode is E7010, the bar is hot-rolled 1020, and the support is hot-
rolled 1015.

Problem
Number b c d h �allow

9–17 50 mm 150 mm 50 mm 5 mm 140 MPa

9–18 2 in 6 in 2 in 5
16

in 25 kpsi

9–19 50 mm 150 mm 30 mm 5 mm 140 MPa

9–20 4 in 6 in 2 in 5
16

in 25 kpsi

F

h

d

b

Problems 9–13 to 9–16
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9–21 to The figure shows a weldment just like that for Probs. 9–17 to 9–20 except there are four welds 
9–24 instead of two. Find the safe bending force F if the allowable shear stress in the welds is τallow.

Problem
Number b c d h �allow

9–21 50 mm 150 mm 50 mm 5 mm 140 MPa

9–22 2 in 6 in 2 in 5
16

in 25 kpsi

9–23 50 mm 150 mm 30 mm 5 mm 140 MPa

9–24 4 in 6 in 2 in 5
16

in 25 kpsi

b

h

F

d

c

Problems 9–21 to 9–24

F

h
h

d

b

Problems 9–25 to 9–28

9–25 to The weldment shown in the figure is subjected to an alternating force F. The hot-rolled steel bar 
9–28 has a thickness h and is of AISI 1010 steel. The vertical support is likewise AISI 1010 HR steel.

The electrode is given in the table below. Estimate the fatigue load F the bar will carry if three
fillet welds are used.

Problem
Number b d h Electrode

9–25 50 mm 50 mm 5 mm E6010

9–26 2 in 2 in 5
16

in E6010

9–27 50 mm 30 mm 5 mm E7010

9–28 4 in 2 in 5
16

in E7010

F

b

d

c

h

Problems 9–17 to 9–20
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9–29 The permissible shear stress for the weldment illustrated is 20 kpsi. Estimate the load, F, that will
cause this stress in the weldment throat.

9–30 to A steel bar of thickness h is subjected to a bending force F. The vertical support is stepped such that 
9–31 the horizontal welds are b1 and b2 long. Determine F if the maximum allowable shear stress is τallow.

Problem
Number b1 b2 c d h �allow

9–30 2 in 4 in 6 in 4 in 5
16

in 25 kpsi

9–31 30 mm 50 mm 150 mm 50 mm 5 mm 140 MPa

9–32 In the design of weldments in torsion it is helpful to have a hierarchical perception of the relative
efficiency of common patterns. For example, the weld-bead patterns shown in Table 9–1 can be
ranked for desirability. Assume the space available is an a × a square. Use a formal figure of merit
that is directly proportional to J and inversely proportional to the volume of weld metal laid down:

fom = J
vol

= 0.707h Ju

(h2/2)l
= 1.414

Ju

hl

A tactical figure of merit could omit the constant, that is, fom′ = Ju/(hl). Rank the six patterns
of Table 9–1 from most to least efficient.

9–33 The space available for a weld-bead pattern subject to bending is a × a. Place the patterns of
Table 9–2 in hierarchical order of efficiency of weld metal placement to resist bending. A formal
figure of merit can be directly proportion to I and inversely proportional to the volume of weld
metal laid down:

fom = I
vol

= 0.707hIu

(h2/2)l
= 1.414

Iu

hl

3 in

8 in

F

1
4 in

Problem 9–29

F 

b2

b1

c

h

h
d

h

Problems 9–30 to 9–31
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The tactical figure of merit can omit the constant 1.414, that is, fom′ = Iu/(hl). Omit the patterns
intended for T beams and I beams. Rank the remaining seven.

9–34 The attachment shown in the figure is made of 1018 HR steel 12 mm thick. The static force is
100 kN. The member is 75 mm wide. Specify the weldment (give the pattern, electrode number,
type of weld, length of weld, and leg size).

1018 HR

1018 HR

l1

ab

1-in dia.
2- in dia.

F = 20 kip

6 ind

Problem 9–37

100

1018 HR

1018 HR
37.5 dia.

75 dia.

F = 100 kN

225

12
Problem 9–34

Dimensions in millimeters.

9–35 The attachment shown carries a static bending load of 12 kN. The attachment length, l1, is 225 mm.
Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size).

100

1018 HR

1018 HR

37.5 dia.

75 dia.

F = 12 kN

l1

150

12Problem 9–35

Dimensions in millimeters.

9–36 The attachment in Prob. 9–35 has not had its length determined. The static force is 12 kN. Specify
the weldment (give the pattern, electrode number, type of weld, length of bead, and leg size).
Specify the attachment length.

9–37 A vertical column of 1018 hot-rolled steel is 10 in wide. An attachment has been designed to the
point shown in the figure. The static load of 20 kip is applied, and the clearance a of 6.25 in has
to be equaled or exceeded. The attachment is also 1018 hot-rolled steel, to be made from 1

2 -in
plate with weld-on bosses when all dimensions are known. Specify the weldment (give the pat-
tern, electrode number, type of weld, length of weld bead, and leg size). Specify also the length l1

for the attachment.
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512 Mechanical Engineering Design

9–38 Write a computer program to assist with a task such as that of Prob. 9–37 with a rectangular weld-
bead pattern for a torsional shear joint. In doing so solicit the force F, the clearance a, and the
largest allowable shear stress. Then, as part of an iterative loop, solicit the dimensions b and d of
the rectangle. These can be your design variables. Output all the parameters after the leg size has
been determined by computation. In effect this will be your adequacy assessment when you stop
iterating. Include the figure of merit Ju/(hl) in the output. The fom and the leg size h with avail-
able width will give you a useful insight into the nature of this class of welds. Use your program
to verify your solutions to Prob. 9–37.

9–39 Fillet welds in joints resisting bending are interesting in that they can be simpler than those resist-
ing torsion. From Prob. 9–33 you learned that your objective is to place weld metal as far away
from the weld-bead centroid as you can, but distributed in an orientation parallel to the x axis.
Furthermore, placement on the top and bottom of the built-in end of a cantilever with rectangu-
lar cross section results in parallel weld beads, each element of which is in the ideal position. The
object of this problem is to study the full weld bead and the interrupted weld-bead pattern.
Consider the case of Fig. 9–17, p. 487, with F = 10 kips, the beam length is 10 in, b = 8 in, and
d = 8 in. For the second case, for the interrupted weld consider a centered gap of b1 = 2 in exist-
ing in the top and bottom welds. Study the two cases with τall = 12.8 kpsi. What do you notice
about τ, σ, and τmax? Compare the fom′ .

9–40 For a rectangular weld-bead track resisting bending, develop the necessary equations to treat
cases of vertical welds, horizontal welds, and weld-all-around patterns with depth d and width b
and allowing central gaps in parallel beads of length b1 and d1 . Do this by superposition of par-
allel tracks, vertical tracks subtracting out the gaps. Then put the two together for a rectangular
weld bead with central gaps of length b1 and d1 . Show that the results are

A = 1.414(b − b1 + d − d1)h

Iu = (b − b1)d2

2
+ d3 − d3

1

6

I = 0.707hIu

l = 2(b − b1) + 2(d − d1)

fom = Iu

hl

9–41 Write a computer program based on the Prob. 9–40 protocol. Solicit the largest allowable shear
stress, the force F, and the clearance a, as well as the dimensions b and d. Begin an iterative loop
by soliciting b1 and d1. Either or both of these can be your design variables. Program to find
the leg size corresponding to a shear-stress level at the maximum allowable at a corner. Output
all your parameters including the figure of merit. Use the program to check any previous problems
to which it is applicable. Play with it in a “what if” mode and learn from the trends in your
parameters.

9–42 When comparing two different weldment patterns it is useful to observe the resistance to bend-
ing or torsion and the volume of weld metal deposited. Measure of effectiveness, defined as sec-
ond moment of area divided by weld-metal volume, is useful. If a 3-in by 6-in section of a can-
tilever carries a static bending moment of 100 kip · in in the weldment plane, with an allowable
shear stress of 12 kpsi realized, compare horizontal weldments with vertical weldments. The
horizontal beads are to be 3 in long and the vertical beads, 6 in long.
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9–43 to A 2-in dia. steel bar is subjected to the loading indicated. Locate and estimate the maximum shear
9–45 stress in the weld throat.

Problem
Number F T

9–43 0 15 kip · in

9–44 2 kips 0

9–45 2 kips 15 kip · in

F = 2 kips5 in

2.5 in
5 in

45°
1
4 in

1
4 in

Problem 9–48

25 50

25

25

9

18
25 25

100

200

F = 25 kN

150

Problem 9–47

Dimensions in millimeters.

9–46 For Prob. 9–45, determine the weld size if the maximum allowable shear stress is 20 kpsi.

9–47 Find the maximum shear stress in the throat of the weld metal in the figure.

6 in

2-in dia.

1
4 in

T
F

Problems 9–43 to 9–45

9–48 The figure shows a welded steel bracket loaded by a static force F. Estimate the factor of safety
if the allowable shear stress in the weld throat is 18 kpsi.
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9–49 The figure shows a formed sheet-steel bracket. Instead of securing it to the support with machine
screws, welding has been proposed. If the combined shear stress in the weld metal is limited to
1.5 kpsi, estimate the total load W the bracket will support. The dimensions of the top flange are
the same as the mounting flange.

W

0.0625 in 1 in

8 in

3
4 in

3
4 in

1
2 in

3
16 - in dia. holes

3
16 - in R

Problem 9–49

Structural support is 1030 HR 
steel, bracket is 1020 press

cold-formed steel. The weld 
electrode is E6010.

9–50 Without bracing, a machinist can exert only about 100 lbf on a wrench or tool handle. The lever
shown in the figure has t = 1

2 in and w = 2 in. We wish to specify the fillet-weld size to secure
the lever to the tubular part at A. Both parts are of steel, and the shear stress in the weld throat
should not exceed 3000 psi. Find a safe weld size.

Fillet welds

Rubber grip

Tapered handle

16 in

t

F

A

A

B

h

w

30° 3 in

- in ID × 1- in OD × 2 in long; 2 required

B
b

1
2

Problem 9–50

9–51 Estimate the safe static load F for the weldment shown in the figure if an E6010 electrode is used
and the design factor is to be 2. The steel members are 1015 hot-rolled steel. Use conventional
analysis.

F

150100150

200 9
6

Problem 9–51

Dimensions in millimeters.
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9–52 Brackets, such as the one shown, are used in mooring small watercraft. Failure of such brackets is
usually caused by bearing pressure of the mooring clip against the side of the hole. Our purpose
here is to get an idea of the static and dynamic margins of safety involved. We use a bracket 1/4 in
thick made of hot-rolled 1018 steel. We then assume wave action on the boat will create force F
no greater than 1200 lbf.
(a) Identify the moment M that produces a shear stress on the throat resisting bending action with

a “tension” at A and “compression” at C.
(b) Find the force component Fy that produces a shear stress at the throat resisting a “tension”

throughout the weld.
(c) Find the force component Fx that produces an in-line shear throughout the weld.
(d) Find A, Iu , and I using Table 9–2, in part.
(e) Find the shear stress τ1 at A due to Fy and M, the shear stress τ2 due to Fx , and combine to

find τ .
( f ) Find the factor of safety guarding against shear yielding in the weldment.
(g) Find the factor of safety guarding against a static failure in the parent metal at the weld.
(h) Find the factor of safety guarding against a fatigue failure in the weld metal using a Gerber

failure criterion.

y

x

F

30°

1 in

(a)

(b)

G

M C

B
A

Fx

FG

Fy

30°

0.366 in

1 in

x

x

y

1 in
0.732 in

A B G O C

z

1
4 in

1
2

-in dia.

1
2

-in R

1
2 in2 3

4 in

d = 2 1
2 in

1
4 in

1 1
4 in

Problem 9–52

Small watercraft mooring bracket.
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9–53 For the sake of perspective it is always useful to look at the matter of scale. Double all dimensions
in Prob. 9–18 and find the allowable load. By what factor has it increased? First make a guess, then
carry out the computation. Would you expect the same ratio if the load had been variable?

9–54 Hardware stores often sell plastic hooks that can be mounted on walls with pressure-sensitive
adhesive foam tape. Two designs are shown in (a) and (b) of the figure. Indicate which one you
would buy and why.

516 Mechanical Engineering Design

9–55 For a balanced double-lap joint cured at room temperature, Volkersen’s equation simplifies to

τ(x) = Pω cosh(ωx)

4b sinh(ωl/2)
= A1 cosh(ωx)

(a) Show that the average stress τ̄ is P/(2bl).
(b) Show that the largest shear stress is Pω/[4b tanh(ωl/2)].
(c) Define a stress-augmentation factor K such that

τ(l/2) = K τ̄

and it follows that

K = Pω

4b tanh(ωl/2)

2bl
P

= ωl/2

tanh(ωl/2)
= ωl

2

exp(ωl/2) + exp(−ωl/2)

exp(ωl/2) − exp(−ωl/2)

9–56 Program the shear-lag solution for the shear-stress state into your computer using Eq. (9–7).
Determine the maximum shear stress for each of the following scenarios:

Part Ea, psi to, in ti, in Eo, psi Ei, psi h, in

a 0.2(106) 0.125 0.250 30(106) 30(106) 0.005

b 0.2(106) 0.125 0.250 30(106) 30(106) 0.015

c 0.2(106) 0.125 0.125 30(106) 30(106) 0.005

d 0.2(106) 0.125 0.250 30(106) 10(106) 0.005

Provide plots of the actual stress distributions predicted by this analysis. You may omit thermal
stresses from the calculations, assuming that the service temperature is similar to the stress-free
temperature. If the allowable shear stress is 800 psi and the load to be carried is 300 lbf, estimate
the respective factors of safety for each geometry. Let l = 1.25 in and b = 1 in.

P

3.5 in

0.75 in

0.2 in

(a)

1 in

(b)

3.5 in P

1 in

Problem 9–54
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518 Mechanical Engineering Design

When a designer wants rigidity, negligible deflection is an acceptable approximation
as long as it does not compromise function. Flexibility is sometimes needed and is
often provided by metal bodies with cleverly controlled geometry. These bodies can
exhibit flexibility to the degree the designer seeks. Such flexibility can be linear or
nonlinear in relating deflection to load. These devices allow controlled application of
force or torque; the storing and release of energy can be another purpose. Flexibility
allows temporary distortion for access and the immediate restoration of function.
Because of machinery’s value to designers, springs have been intensively studied;
moreover, they are mass-produced (and therefore low cost), and ingenious configura-
tions have been found for a variety of desired applications. In this chapter we will
discuss the more frequently used types of springs, their necessary parametric rela-
tionships, and their design.

In general, springs may be classified as wire springs, flat springs, or special-
shaped springs, and there are variations within these divisions. Wire springs include
helical springs of round or square wire, made to resist and deflect under tensile, com-
pressive, or torsional loads. Flat springs include cantilever and elliptical types, wound
motor- or clock-type power springs, and flat spring washers, usually called Belleville
springs.

10–1 Stresses in Helical Springs
Figure 10–1a shows a round-wire helical compression spring loaded by the axial force F.
We designate D as the mean coil diameter and d as the wire diameter. Now imagine
that the spring is cut at some point (Fig. 10–1b), a portion of it removed, and the effect
of the removed portion replaced by the net internal reactions. Then, as shown in the
figure, from equilibrium the cut portion would contain a direct shear force F and a tor-
sion T = F D/2.

The maximum stress in the wire may be computed by superposition of the direct
shear stress given by Eq. (3–23), p. 89, with V = F and the torsional shear stress given
by Eq. (3–37), p. 101. The result is

τmax = T r
J

+ F
A

(a)

d

F F

F

F

T = FD�2

D

(a)

(b)

Figure 10–1

(a) Axially loaded helical
spring; (b) free-body diagram
showing that the wire is
subjected to a direct shear and
a torsional shear.
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2Cyril Samónov, “Some Aspects of Design of Helical Compression Springs,” Int. Symp. Design and
Synthesis, Tokyo, 1984.

at the inside fiber of the spring. Substitution of τmax = τ , T = F D/2, r = d/2, J =
πd4/32, and A = πd2/4 gives

τ = 8F D
πd3

+ 4F
πd2

(b)

Now we define the spring index

C = D
d

(10–1)

which is a measure of coil curvature. The preferred value of C ranges from 4 to 12.1

With this relation, Eq. (b) can be rearranged to give

τ = Ks
8F D
πd3

(10–2)

where Ks is a shear stress-correction factor and is defined by the equation

Ks = 2C + 1

2C
(10–3)

The use of square or rectangular wire is not recommended for springs unless
space limitations make it necessary. Springs of special wire shapes are not made in
large quantities, unlike those of round wire; they have not had the benefit of refining
development and hence may not be as strong as springs made from round wire. When
space is severely limited, the use of nested round-wire springs should always be con-
sidered. They may have an economical advantage over the special-section springs, as
well as a strength advantage.

10–2 The Curvature Effect
Equation (10–2) is based on the wire being straight. However, the curvature of the wire
increases the stress on the inside of the spring but decreases it only slightly on the out-
side. This curvature stress is primarily important in fatigue because the loads are lower
and there is no opportunity for localized yielding. For static loading, these stresses can
normally be neglected because of strain-strengthening with the first application of load.

Unfortunately, it is necessary to find the curvature factor in a roundabout way. The
reason for this is that the published equations also include the effect of the direct shear
stress. Suppose Ks in Eq. (10–2) is replaced by another K factor, which corrects for
both curvature and direct shear. Then this factor is given by either of the equations

KW = 4C − 1

4C − 4
+ 0.615

C
(10–4)

K B = 4C + 2

4C − 3
(10–5)

The first of these is called the Wahl factor, and the second, the Bergsträsser factor.2

Since the results of these two equations differ by the order of 1 percent, Eq. (10–6)
is preferred. The curvature correction factor can now be obtained by canceling out the

1Design Handbook: Engineering Guide to Spring Design, Associated Spring-Barnes Group Inc.,
Bristol, CT, 1987.
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520 Mechanical Engineering Design

3For a thorough discussion and development of these relations, see Cyril Samónov, “Computer-Aided
Design of Helical Compression Springs,” ASME paper No. 80-DET-69, 1980.

effect of the direct shear. Thus, using Eq. (10–5) with Eq. (10–3), the curvature cor-
rection factor is found to be

Kc = K B

Ks
= 2C(4C + 2)

(4C − 3)(2C + 1)
(10–6)

Now, Ks , K B or KW , and Kc are simply stress-correction factors applied multiplica-
tively to T r/J at the critical location to estimate a particular stress. There is no stress-
concentration factor. In this book we will use

τ = K B
8F D
πd3

(10–7)

to predict the largest shear stress.

10–3 Deflection of Helical Springs
The deflection-force relations are quite easily obtained by using Castigliano’s theorem.
The total strain energy for a helical spring is composed of a torsional component and
a shear component. From Eqs. (4–18) and (4–20), p. 162, the strain energy is

U = T 2l
2G J

+ F2l
2AG

(a)

Substituting T = F D/2, l = π DN , J = πd4/32, and A = πd2/4 results in

U = 4F2 D3 N
d4G

+ 2F2 DN
d2G

(b)

where N = Na = number of active coils. Then using Castigliano’s theorem, Eq. (4–26),
p. 165, to find total deflection y gives

y = ∂U
∂ F

= 8F D3 N
d4G

+ 4F DN
d2G

(c)

Since C = D/d , Eq. (c) can be rearranged to yield

y = 8F D3 N
d4G

(
1 + 1

2C2

)
.= 8F D3 N

d4G
(10–8)

The spring rate, also called the scale of the spring, is k = F/y, and so

k .= d4G
8D3 N

(10–9)

10–4 Compression Springs
The four types of ends generally used for compression springs are illustrated in Fig. 10–2.
A spring with plain ends has a noninterrupted helicoid; the ends are the same as if a
long spring had been cut into sections. A spring with plain ends that are squared or
closed is obtained by deforming the ends to a zero-degree helix angle. Springs should
always be both squared and ground for important applications, because a better transfer
of the load is obtained.

Table 10–1 shows how the type of end used affects the number of coils and the
spring length.3 Note that the digits 0, 1, 2, and 3 appearing in Table 10–1 are often
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(a) Plain end, right hand (c) Squared and ground end,
left hand

(b) Squared or closed end,
right hand

(d ) Plain end, ground,
left hand

+ +

+ +

Figure 10–2

Types of ends for compression
springs: (a) both ends plain; 
(b) both ends squared; (c) both
ends squared and ground;
(d) both ends plain and ground.

Type of Spring Ends
Plain and Squared or Squared and

Term Plain Ground Closed Ground

End coils, Ne 0 1 2 2

Total coils, Nt Na Na � 1 Na � 2 Na � 2

Free length, L0 pNa � d p(Na � 1) pNa � 3d pNa � 2d

Solid length, Ls d (Nt � 1) dNt d (Nt � 1) dNt

Pitch, p (L0 � d)�Na L0 �(Na � 1) (L0 � 3d )�Na (L0 � 2d )�Na

Table 10–1

Formulas for the

Dimensional

Characteristics of

Compression-Springs.

(Na = Number of Active

Coils) 

Source: From Design
Handbook, 1987, p. 32.
Courtesy of Associated Spring.

4Edward L. Forys, “Accurate Spring Heights,” Machine Design, vol. 56, no. 2, January 26, 1984.

used without question. Some of these need closer scrutiny as they may not be integers.
This depends on how a springmaker forms the ends. Forys4 pointed out that squared
and ground ends give a solid length Ls of

Ls = (Nt − a)d

where a varies, with an average of 0.75, so the entry d Nt in Table 10–1 may be over-
stated. The way to check these variations is to take springs from a particular spring-
maker, close them solid, and measure the solid height. Another way is to look at the
spring and count the wire diameters in the solid stack.

Set removal or presetting is a process used in the manufacture of compression
springs to induce useful residual stresses. It is done by making the spring longer than
needed and then compressing it to its solid height. This operation sets the spring to the
required final free length and, since the torsional yield strength has been exceeded,
induces residual stresses opposite in direction to those induced in service. Springs to
be preset should be designed so that 10 to 30 percent of the initial free length is
removed during the operation. If the stress at the solid height is greater than 1.3 times
the torsional yield strength, distortion may occur. If this stress is much less than 1.1
times, it is difficult to control the resulting free length.

Set removal increases the strength of the spring and so is especially useful when
the spring is used for energy-storage purposes. However, set removal should not be
used when springs are subject to fatigue.
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5Cyril Samónov “Computer-Aided Design,” op. cit.
6A. M. Wahl, Mechanical Springs, 2d ed., McGraw-Hill, New York, 1963.
7J. A. Haringx, “On Highly Compressible Helical Springs and Rubber Rods and Their Application for
Vibration-Free Mountings,” I and II, Philips Res. Rep., vol. 3, December 1948, pp. 401–449, and vol. 4,
February 1949, pp. 49–80.

10–5 Stability
In Chap. 4 we learned that a column will buckle when the load becomes too large.
Similarly, compression coil springs may buckle when the deflection becomes too
large. The critical deflection is given by the equation

ycr = L0C ′
1

[
1 −

(
1 − C ′

2

λ2
eff

)1/2
]

(10–10)

where ycr is the deflection corresponding to the onset of instability. Samónov5 states that
this equation is cited by Wahl6 and verified experimentally by Haringx.7 The quantity
λeff in Eq. (10–10) is the effective slenderness ratio and is given by the equation

λeff = αL0

D
(10–11)

C ′
1 and C ′

2 are elastic constants defined by the equations

C ′
1 = E

2(E − G)

C ′
2 = 2π2(E − G)

2G + E

Equation (10–11) contains the end-condition constant α. This depends upon how the
ends of the spring are supported. Table 10–2 gives values of α for usual end conditions.
Note how closely these resemble the end conditions for columns.

Absolute stability occurs when, in Eq. (10–10), the term C ′
2/λ

2
eff is greater than

unity. This means that the condition for absolute stability is that

L0 <
π D
α

[
2(E − G)

2G + E

]1/2

(10–12)

End Condition Constant �

Spring supported between flat parallel surfaces (fixed ends) 0.5

One end supported by flat surface perpendicular to spring axis (fixed);
other end pivoted (hinged) 0.707

Both ends pivoted (hinged) 1

One end clamped; other end free 2

∗Ends supported by flat surfaces must be squared and ground.

Table 10–2

End-Condition 

Constants α for Helical

Compression Springs* 
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For steels, this turns out to be

L0 < 2.63
D
α

(10–13)

For squared and ground ends α = 0.5 and L0 < 5.26D.

10–6 Spring Materials
Springs are manufactured either by hot- or cold-working processes, depending upon
the size of the material, the spring index, and the properties desired. In general, pre-
hardened wire should not be used if D/d < 4 or if d > 1

4 in. Winding of the spring
induces residual stresses through bending, but these are normal to the direction of the
torsional working stresses in a coil spring. Quite frequently in spring manufacture,
they are relieved, after winding, by a mild thermal treatment.

A great variety of spring materials are available to the designer, including plain
carbon steels, alloy steels, and corrosion-resisting steels, as well as nonferrous materi-
als such as phosphor bronze, spring brass, beryllium copper, and various nickel alloys.
Descriptions of the most commonly used steels will be found in Table 10–3. The UNS
steels listed in Appendix A should be used in designing hot-worked, heavy-coil springs,
as well as flat springs, leaf springs, and torsion bars.

Spring materials may be compared by an examination of their tensile strengths;
these vary so much with wire size that they cannot be specified until the wire size is
known. The material and its processing also, of course, have an effect on tensile
strength. It turns out that the graph of tensile strength versus wire diameter is almost
a straight line for some materials when plotted on log-log paper. Writing the equation
of this line as

Sut = A
dm (10–14)

furnishes a good means of estimating minimum tensile strengths when the intercept A
and the slope m of the line are known. Values of these constants have been worked out
from recent data and are given for strengths in units of kpsi and MPa in Table 10–4.
In Eq. (10–14) when d is measured in millimeters, then A is in MPa · mmm and when
d is measured in inches, then A is in kpsi · inm .

Although the torsional yield strength is needed to design the spring and to analyze
the performance, spring materials customarily are tested only for tensile strength—
perhaps because it is such an easy and economical test to make. A very rough estimate
of the torsional yield strength can be obtained by assuming that the tensile yield strength
is between 60 and 90 percent of the tensile strength. Then the distortion-energy theory
can be employed to obtain the torsional yield strength (Sys = 0.577Sy). This approach
results in the range

0.35Sut ≤ Ssy ≤ 0.52Sut (10–15)

for steels.
For wires listed in Table 10–5, the maximum allowable shear stress in a spring

can be seen in column 3. Music wire and hard-drawn steel spring wire have a low end
of range Ssy = 0.45Sut . Valve spring wire, Cr-Va, Cr-Si, and other (not shown) hard-
ened and tempered carbon and low-alloy steel wires as a group have Ssy ≥ 0.50Sut .
Many nonferrous materials (not shown) as a group have Ssy ≥ 0.35Sut . In view of this,
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Name of Similar
Material Specifications Description

Music wire,
0.80–0.95C

Oil-tempered wire,
0.60–0.70C

Hard-drawn wire,
0.60–0.70C

Chrome-vanadium

Chrome-silicon

UNS G10850
AISI 1085
ASTM A228-51

UNS G10650
AISI 1065
ASTM 229-41

UNS G10660
AISI 1066
ASTM A227-47

UNS G61500
AISI 6150
ASTM 231-41

UNS G92540
AISI 9254

This is the best, toughest, and most
widely used of all spring materials for
small springs. It has the highest tensile
strength and can withstand higher
stresses under repeated loading than
any other spring material.Available in
diameters 0.12 to 3 mm (0.005 to
0.125 in). Do not use above 120°C
(250°F) or at subzero temperatures.

This general-purpose spring steel is
used for many types of coil springs
where the cost of music wire is
prohibitive and in sizes larger than
available in music wire. Not for shock
or impact loading. Available in
diameters 3 to 12 mm (0.125 to 
0.5000 in), but larger and smaller sizes
may be obtained. Not for use above
180°C (350°F) or at subzero
temperatures.

This is the cheapest general-purpose
spring steel and should be used only
where life, accuracy, and deflection 
are not too important. Available in
diameters 0.8 to 12 mm (0.031 to
0.500 in). Not for use above 
120°C (250°F) or at subzero
temperatures.

This is the most popular alloy spring
steel for conditions involving higher
stresses than can be used with the 
high-carbon steels and for use where
fatigue resistance and long endurance
are needed. Also good for shock
and impact loads. Widely used for
aircraft-engine valve springs and for
temperatures to 220°C (425°F).
Available in annealed or pretempered
sizes 0.8 to 12 mm (0.031 to 0.500 in)
in diameter.

This alloy is an excellent material for
highly stressed springs that require
long life and are subjected to shock
loading. Rockwell hardnesses of C50 
to C53 are quite common, and the
material may be used up to 250°C
(475°F). Available from 0.8 to 12 mm
(0.031 to 0.500 in) in diameter.

Table 10–3

High-Carbon and Alloy

Spring Steels

Source: From Harold C. R.
Carlson, “Selection and
Application of Spring
Materials,” Mechanical
Engineering, vol. 78, 1956, 
pp. 331–334.
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Relative
ASTM Exponent Diameter, A, Diameter, A, Cost

Material No. m in kpsi � inm mm MPa � mmm of Wire

Music wire* A228 0.145 0.004–0.256 201 0.10–6.5 2211 2.6

OQ&T wire† A229 0.187 0.020–0.500 147 0.5–12.7 1855 1.3

Hard-drawn wire‡ A227 0.190 0.028–0.500 140 0.7–12.7 1783 1.0

Chrome-vanadium wire§ A232 0.168 0.032–0.437 169 0.8–11.1 2005 3.1

Chrome-silicon wire‖ A401 0.108 0.063–0.375 202 1.6–9.5 1974 4.0

302 Stainless wire# A313 0.146 0.013–0.10 169 0.3–2.5 1867 7.6–11

0.263 0.10–0.20 128 2.5–5 2065

0.478 0.20–0.40 90 5–10 2911

Phosphor-bronze wire** B159 0 0.004–0.022 145 0.1–0.6 1000 8.0

0.028 0.022–0.075 121 0.6–2 913

0.064 0.075–0.30 110 2–7.5 932

∗Surface is smooth, free of defects, and has a bright, lustrous finish.
†Has a slight heat-treating scale which must be removed before plating.
‡Surface is smooth and bright with no visible marks.
§Aircraft-quality tempered wire, can also be obtained annealed.
‖Tempered to Rockwell C49, but may be obtained untempered.
#Type 302 stainless steel.
∗∗Temper CA510.

Table 10–4

Constants A and m of Sut = A/dm for Estimating Minimum Tensile Strength of Common Spring Wires 

Source: From Design Handbook, 1987, p. 19. Courtesy of Associated Spring.

Joerres8 uses the maximum allowable torsional stress for static application shown in
Table 10–6. For specific materials for which you have torsional yield information use
this table as a guide. Joerres provides set-removal information in Table 10–6, that
Ssy ≥ 0.65Sut increases strength through cold work, but at the cost of an additional
operation by the springmaker. Sometimes the additional operation can be done by the
manufacturer during assembly. Some correlations with carbon steel springs show that
the tensile yield strength of spring wire in torsion can be estimated from 0.75Sut . The
corresponding estimate of the yield strength in shear based on distortion energy theory
is Ssy = 0.577(0.75)Sut = 0.433Sut

.= 0.45Sut . Samónov discusses the problem of
allowable stress and shows that

Ssy = τall = 0.56Sut (10–16)

for high-tensile spring steels, which is close to the value given by Joerres for hard-
ened alloy steels. He points out that this value of allowable stress is specified by Draft
Standard 2089 of the German Federal Republic when Eq. (10–2) is used without stress-
correction factor.

8Robert E. Joerres, “Springs,” Chap. 6 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown,
Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.
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Elastic Limit,
Percent of Sut Diameter E G

Material Tension Torsion d, in Mpsi GPa Mpsi GPa

Music wire A228 65–75 45–60 <0.032 29.5 203.4 12.0 82.7

0.033–0.063 29.0 200 11.85 81.7

0.064–0.125 28.5 196.5 11.75 81.0

>0.125 28.0 193 11.6 80.0

HD spring A227 60–70 45–55 <0.032 28.8 198.6 11.7 80.7

0.033–0.063 28.7 197.9 11.6 80.0

0.064–0.125 28.6 197.2 11.5 79.3

>0.125 28.5 196.5 11.4 78.6

Oil tempered A239 85–90 45–50 28.5 196.5 11.2 77.2

Valve spring A230 85–90 50–60 29.5 203.4 11.2 77.2

Chrome-vanadium A231 88–93 65–75 29.5 203.4 11.2 77.2

A232 88–93 29.5 203.4 11.2 77.2

Chrome-silicon A401 85–93 65–75 29.5 203.4 11.2 77.2

Stainless steel

A313* 65–75 45–55 28 193 10 69.0

17-7PH 75–80 55–60 29.5 208.4 11 75.8

414 65–70 42–55 29 200 11.2 77.2

420 65–75 45–55 29 200 11.2 77.2

431 72–76 50–55 30 206 11.5 79.3

Phosphor-bronze B159 75–80 45–50 15 103.4 6 41.4

Beryllium-copper B197 70 50 17 117.2 6.5 44.8

75 50–55 19 131 7.3 50.3

Inconel alloy X-750 65–70 40–45 31 213.7 11.2 77.2

*Also includes 302, 304, and 316.

Note: See Table 10–6 for allowable torsional stress design values.

Table 10–5

Mechanical Properties of Some Spring Wires

Maximum Percent of Tensile Strength
Before Set Removed After Set Removed

Material (includes KW or KB) (includes Ks)

Music wire and cold- 45 60–70
drawn carbon steel

Hardened and tempered 50 65–75
carbon and low-alloy
steel

Austenitic stainless 35 55–65
steels

Nonferrous alloys 35 55–65

Table 10–6

Maximum Allowable

Torsional Stresses for

Helical Compression

Springs in Static

Applications

Source: Robert E. Joerres,
“Springs,” Chap. 6 in Joseph 
E. Shigley, Charles R. Mischke,
and Thomas H. Brown, Jr. (eds.),
Standard Handbook of Machine
Design, 3rd ed., McGraw-Hill,
New York, 2004.
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EXAMPLE 10–1 A helical compression spring is made of no. 16 music wire. The outside coil diam-
eter of the spring is 7

16 in. The ends are squared and there are 12 1
2 total turns.

(a) Estimate the torsional yield strength of the wire.
(b) Estimate the static load corresponding to the yield strength.
(c) Estimate the scale of the spring.
(d) Estimate the deflection that would be caused by the load in part (b).
(e) Estimate the solid length of the spring.
( f ) What length should the spring be to ensure that when it is compressed solid and
then released, there will be no permanent change in the free length?
(g) Given the length found in part ( f ), is buckling a possibility?
(h) What is the pitch of the body coil?

Solution (a) From Table A–28, the wire diameter is d = 0.037 in. From Table 10–4, we find
A = 201 kpsi · inm and m = 0.145. Therefore, from Eq. (10–14)

Sut = A
dm

= 201

0.0370.145
= 324 kpsi

Then, from Table 10–6,

Answer Ssy = 0.45Sut = 0.45(324) = 146 kpsi

(b) The mean spring coil diameter is D = 7
16 − 0.037 = 0.400 in, and so the spring

index is C = 0.400/0.037 = 10.8. Then, from Eq. (10–6),

K B = 4C + 2

4C − 3
= 4 (10.8) + 2

4 (10.8) − 3
= 1.124

Now rearrange Eq. (10–7) replacing τ with Ssy , and solve for F:

Answer F = πd3Ssy

8K B D
= π(0.0373)146(103)

8(1.124) 0.400
= 6.46 lbf

(c) From Table 10–1, Na = 12.5 − 2 = 10.5 turns. In Table 10–5, G = 11.85 Mpsi,
and the scale of the spring is found to be, from Eq. (10–9),

Answer k = d4G
8D3 Na

= 0.0374 (11.85)106

8(0.4003)10.5
= 4.13 lbf/in

Answer (d) y = F
k

= 6.46

4.13
= 1.56 in

(e) From Table 10–1,

Answer Ls = (Nt + 1)d = (12.5 + 1)0.037 = 0.500 in

Answer ( f ) L0 = y + Ls = 1.56 + 0.500 = 2.06 in.

(g) To avoid buckling, Eq. (10–13) and Table 10–2 give

L0 < 2.63
D
α

= 2.63
0.400

0.5
= 2.10 in
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Mathematically, a free length of 2.06 in is less than 2.10 in, and buckling is unlikely.
However, the forming of the ends will control how close α is to 0.5. This has to be
investigated and an inside rod or exterior tube or hole may be needed.
(h) Finally, from Table 10–1, the pitch of the body coil is

Answer p = L0 − 3d
Na

= 2.06 − 3(0.037)

10.5
= 0.186 in

10–7 Helical Compression Spring 
Design for Static Service
The preferred range of spring index is 4 ≤ C ≤ 12, with the lower indexes being more
difficult to form (because of the danger of surface cracking) and springs with higher
indexes tending to tangle often enough to require individual packing. This can be the first
item of the design assessment. The recommended range of active turns is 3 ≤ Na ≤ 15.
To maintain linearity when a spring is about to close, it is necessary to avoid the gradual
touching of coils (due to nonperfect pitch). A helical coil spring force-deflection charac-
teristic is ideally linear. Practically, it is nearly so, but not at each end of the force-deflection
curve. The spring force is not reproducible for very small deflections, and near closure,
nonlinear behavior begins as the number of active turns diminishes as coils begin to touch.
The designer confines the spring’s operating point to the central 75 percent of the curve
between no load, F = 0, and closure, F = Fs . Thus, the maximum operating force should
be limited to Fmax ≤ 7

8 Fs . Defining the fractional overrun to closure as ξ , where

Fs = (1 + ξ)Fmax (10–17)

it follows that

Fs = (1 + ξ)Fmax = (1 + ξ)

(
7

8

)
Fs

From the outer equality ξ = 1/7 = 0.143
.= 0.15. Thus, it is recommended that ξ ≥ 0.15.

In addition to the relationships and material properties for springs, we now have
some recommended design conditions to follow, namely:

4 ≤ C ≤ 12 (10–18)

3 ≤ Na ≤ 15 (10–19)

ξ ≥ 0.15 (10–20)

ns ≥ 1.2 (10–21)

where ns is the factor of safety at closure (solid height).
When considering designing a spring for high volume production, the figure of

merit can be the cost of the wire from which the spring is wound. The fom would be
proportional to the relative material cost, weight density, and volume:

fom = −(relative material cost)
γ π2d2 Nt D

4
(10–22)

For comparisons between steels, the specific weight γ can be omitted.
Spring design is an open-ended process. There are many decisions to be made,

and many possible solution paths as well as solutions. In the past, charts, nomographs,
and “spring design slide rules” were used by many to simplify the spring design prob-
lem. Today, the computer enables the designer to create programs in many different
formats—direct programming, spreadsheet, MATLAB, etc. Commercial programs are

bud29281_ch10_517-568.qxd  12/16/2009  7:14 pm  Page 528 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Mechanical Springs 529

9For example, see Advanced Spring Design, a program developed jointly between the Spring Manufacturers
Institute (SMI), www.smihq.org, and Universal Technical Systems, Inc. (UTS), www.uts.com.

also available.9 There are almost as many ways to create a spring-design program as
there are programmers. Here, we will suggest one possible design approach.

Design Strategy

Make the a priori decisions, with hard-drawn steel wire the first choice (relative mate-
rial cost is 1.0). Choose a wire size d. With all decisions made, generate a column of
parameters: d, D, C, OD or ID, Na , Ls , L0, (L0)cr, ns , and fom. By incrementing
wire sizes available, we can scan the table of parameters and apply the design rec-
ommendations by inspection. After wire sizes are eliminated, choose the spring design
with the highest figure of merit. This will give the optimal design despite the presence
of a discrete design variable d and aggregation of equality and inequality constraints.
The column vector of information can be generated by using the flowchart displayed
in Fig. 10–3. It is general enough to accommodate to the situations of as-wound and

STATIC SPRING DESIGN

Choose d

Free In-a-holeOver-a-rod

As-wound Set removed As-wound or setAs-wound or set

D = drod + d + allow D = dhole − d − allowSsy = const(A) ⁄dm† Ssy = 0.65A ⁄dm

D = 
Ssy�d3

8ns(1 + �)Fmax

� = 
8(1 + �)Fmax

�d2� = 
Ssy
ns

D = Cd

C = D ⁄d

KB = (4C + 2) ⁄ (4C − 3)

�s = KB8(1 + �)FmaxD ⁄ (�d3)

ns = Ssy ⁄�s

OD = D + d

ID = D − d

Na = Gd 4ymax/(8D3Fmax)

Nt: Table 10–1

Ls: Table 10–1

LO: Table 10–1

(LO)cr = 2.63D/�

fom = −(rel. cost)��2d 2Nt D ⁄4 

Print or display: d, D, C, OD, ID, Na, Nt, Ls, LO, (LO)cr, ns, fom

Build a table, conduct design assessment by inspection

Eliminate infeasible designs by showing active constraints

Choose among satisfactory designs using the figure of merit

C =  + 
2� – �

4�
–

3�
4�

2� – � 2

4�√(    )

†const is found from Table 10–6.

Figure 10–3

Helical coil compression spring
design flowchart for static
loading.
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set-removed springs, operating over a rod, or in a hole free of rod or hole. In as-wound
springs the controlling equation must be solved for the spring index as follows. From
Eq. (10–3) with τ = Ssy/ns , C = D/d, K B from Eq. (10–6), and Eq. (10–17),

Ssy

ns
= K B

8Fs D
πd3

= 4C + 2

4C − 3

[
8(1 + ξ) FmaxC

πd2

]
(a)

Let

α = Ssy

ns
(b)

β = 8 (1 + ξ) Fmax

πd2
(c)

Substituting Eqs. (b) and (c) into (a) and simplifying yields a quadratic equation in C.
The larger of the two solutions will yield the spring index

C = 2α − β

4β
+

√(
2α − β

4β

)2

− 3α

4β
(10–23)

EXAMPLE 10–2 A music wire helical compression spring is needed to support a 20-lbf load after being
compressed 2 in. Because of assembly considerations the solid height cannot exceed
1 in and the free length cannot be more than 4 in. Design the spring.

Solution The a priori decisions are

• Music wire, A228; from Table 10–4, A = 201 000 psi-inm; m = 0.145; from
Table 10–5, E = 28.5 Mpsi, G = 11.75 Mpsi (expecting d > 0.064 in)

• Ends squared and ground

• Function: Fmax = 20 lbf, ymax = 2 in

• Safety: use design factor at solid height of (ns)d = 1.2

• Robust linearity: ξ = 0.15

• Use as-wound spring (cheaper), Ssy = 0.45Sut from Table 10–6

• Decision variable: d = 0.080 in, music wire gage #30, Table A–28. From Fig. 10–3
and Table 10–6,

Ssy = 0.45
201 000

0.0800.145
= 130 455 psi

From Fig. 10–3 or Eq. (10–23)

α = Ssy

ns
= 130 455

1.2
= 108 713 psi

β = 8(1 + ξ)Fmax

πd2
= 8(1 + 0.15)20

π(0.0802)
= 9151.4 psi

C = 2(108 713) − 9151.4

4(9151.4)
+

√[
2(108 713) − 9151.4

4(9151.4)

]2

− 3(108 713)

4(9151.4)
= 10.53
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Continuing with Fig. 10–3:

D = Cd = 10.53(0.080) = 0.8424 in

K B = 4(10.53) + 2

4(10.53) − 3
= 1.128

τs = 1.128
8(1 + 0.15)20(0.8424)

π(0.080)3
= 108 700 psi

ns = 130 445

108 700
= 1.2

OD = 0.843 + 0.080 = 0.923 in

Na = 11.75(106)0.0804(2)

8(0.843)320
= 10.05 turns

Nt = 10.05 + 2 = 12.05 total turns

Ls = 0.080(12.05) = 0.964 in

L0 = 0.964 + (1 + 0.15)2 = 3.264 in

(L)cr = 2.63(0.843/0.5) = 4.43 in

fom = −2.6π2(0.080)212.05(0.843)/4 = −0.417

Repeat the above for other wire diameters and form a table (easily accomplished with
a spreadsheet program):

Now examine the table and perform the adequacy assessment. The shading of the table
indicates values outside the range of recommended or specified values. The spring
index constraint 4 ≤ C ≤ 12 rules out diameters larger than 0.085 in. The constraint
3 ≤ Na ≤ 15 rules out wire diameters less than 0.075 in. The Ls ≤ 1 constraint rules
out diameters less than 0.080 in. The L0 ≤ 4 constraint rules out diameters less than
0.071 in. The buckling criterion rules out free lengths longer than (L0)cr, which rules
out diameters less than 0.075 in. The factor of safety ns is exactly 1.20 because the

d: 0.063 0.067 0.071 0.075 0.080 0.085 0.090 0.095

D 0.391 0.479 0.578 0.688 0.843 1.017 1.211 1.427

C 6.205 7.153 8.143 9.178 10.53 11.96 13.46 15.02

OD 0.454 0.546 0.649 0.763 0.923 1.102 1.301 1.522

Na 39.1 26.9 19.3 14.2 10.1 7.3 5.4 4.1

Ls 2.587 1.936 1.513 1.219 0.964 0.790 0.668 0.581

L0 4.887 4.236 3.813 3.519 3.264 3.090 2.968 2.881

(L0)cr 2.06 2.52 3.04 3.62 4.43 5.35 6.37 7.51

ns 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

fom −0.409 −0.399 −0.398 −0.404 −0.417 −0.438 −0.467 −0.505
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mathematics forced it. Had the spring been in a hole or over a rod, the helix diameter
would be chosen without reference to (ns)d. The result is that there are only two springs
in the feasible domain, one with a wire diameter of 0.080 in and the other with a wire
diameter of 0.085. The figure of merit decides and the decision is the design with 0.080
in wire diameter.

Having designed a spring, will we have it made to our specifications? Not neces-
sarily. There are vendors who stock literally thousands of music wire compression
springs. By browsing their catalogs, we will usually find several that are close. Max-
imum deflection and maximum load are listed in the display of characteristics. Check
to see if this allows soliding without damage. Often it does not. Spring rates may only
be close. At the very least this situation allows a small number of springs to be ordered
“off the shelf” for testing. The decision often hinges on the economics of special order
versus the acceptability of a close match.

Spring design is not a closed-form approach and requires iteration. Example 10–2
provided an iterative approach to spring design for static service by first selecting the
wire diameter. The diameter selection can be rather arbitrary. In the next example, we
will first select a value for the spring index C, which is within the recommended range.

EXAMPLE 10–3 Design a compression spring with plain ends using hard-drawn wire. The deflection
is to be 2.25 in when the force is 18 lbf and to close solid when the force is 24 lbf.
Upon closure, use a design factor of 1.2 guarding against yielding. Select the small-
est gauge W&M (Washburn & Moen) wire.

Solution Instead of starting with a trial wire diameter, we will start with an acceptable spring
index for C after some preliminaries. From Eq. (10–14) and Table 10–6 the shear
strength, in kpsi, is

Ssy = 0.45Sut = 0.45
(

A
dm

)
(1)

The shear stress is given by Eq. (10–7) replacing τ and F with τmax and Fmax, respec-
tively, gives

τmax = K B
8Fmax D

πd3
= K B

8FmaxC
πd2

(2)

where the Bergsträsser factor, KB, from Eq. (10–5) is

K B = 4C + 2

4C − 3
(3)

Dividing Eq. (1) by the design factor n and equating this to Eq. (2), in kpsi, gives

0.45

n

(
A

dm

)
= K B

8FmaxC
πd2

(10−3) (4)
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For the problem Fmax = 24 lbf and n = 1.2. Solving for d gives

d =
(

0.163
K BC

A

)1/(2−m)

(5)

Try a trial spring index of C = 10. From Eq. (3)

K B = 4(10) + 2

4(10) − 3
= 1.135

From Table 10–4, m = 0.190 and A = 140 kpsi · in0.190. Thus, Eq. (5) gives

d =
(

0.163
1.135(10)

140

)1/(2−0.190)

= 0.09160 in

From Table A–28, a 12-gauge W&M wire, d = 0.105 5 in, is selected. Checking the
resulting factor of safety, from Eq. (4) with Fmax = 24 lbf

n = 7.363
Ad2−m

K BC
(6)

= 7.363
140(0.105 52−0.190)

1.135(10)
= 1.55

which is pretty conservative. If we had selected the 13-gauge wire, d = 0.091 5 in,
the factor of safety would be n = 1.198, which rounds to 1.2. Taking a little liberty
here we will select the W&M 13-gauge wire.

To continue with the design, the spring rate is

k = F
y

= 18

2.25
= 8 lbf/in

From Eq. (10–9) solving for the active number of coils

Na = d4G
8k D3

= dG
8kC3

= 0.091 5(11.5)106

8(8)103
= 16.4 turns

This exceeds the recommended range of 3 ≤ Na ≤ 15. To decrease Na, increase C.
Repeating the process with C = 12 gives K B = 1.111 and d = 0.100 1 in. Selecting
a 12-gauge W&M wire, d = 0.105 5 in. From Eq. (6), this gives n = 1.32, which is
acceptable. The number of active coils is

Na = dG
8kC3

= 0.105 5(11.5)106

8(8)123
= 10.97 = 11 turns

which is acceptable. From Table 10–1, for plain ends, the total number of coils is
Nt = Na = 11 turns. The deflection from free length to solid length of the spring is
given by

ys = Fmax

k
= 24

8
= 3 in

From Table 10–1, the solid length is

Ls = d(Nt + 1) = 0.105 5(11 + 1) = 1.266 in
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The free length of the spring is then

L0 = Ls + ys = 1.266 + 3 = 4.266 in

The mean coil diameter of the spring is

D = Cd = 12(0.105 5) = 1.266 in

and the outside coil diameter of the spring is OD = D + d = 1.266 + 0.105 5 =
1.372 in.

To avoid buckling, Eq. (10–13) gives

α < 2.63
D
L0

= 2.63
1.266

4.266
= 0.780

From Table 10–2, the spring is stable provided it is supported between either fixed-
fixed or fixed-hinged ends.

The final results are:

Answer W&M wire size: 12 gauge, d = 0.105 5 in
Outside coil diameter: OD = 1.372 in
Total number of coils: Nt = 11 turns with plain ends
Free length: L0 = 4.266 in

10–8 Critical Frequency of Helical Springs
If a wave is created by a disturbance at one end of a swimming pool, this wave will
travel down the length of the pool, be reflected back at the far end, and continue in
this back-and-forth motion until it is finally damped out. The same effect occurs in
helical springs, and it is called spring surge. If one end of a compression spring is held
against a flat surface and the other end is disturbed, a compression wave is created that
travels back and forth from one end to the other exactly like the swimming-pool wave.

Spring manufacturers have taken slow-motion movies of automotive valve-spring
surge. These pictures show a very violent surging, with the spring actually jumping
out of contact with the end plates. Figure 10–4 is a photograph of a failure caused by
such surging.

When helical springs are used in applications requiring a rapid reciprocating
motion, the designer must be certain that the physical dimensions of the spring are not
such as to create a natural vibratory frequency close to the frequency of the applied force;
otherwise, resonance may occur, resulting in damaging stresses, since the internal
damping of spring materials is quite low.

The governing equation for the translational vibration of a spring is the wave
equation

∂2u
∂x2

= W
kgl2

∂2u
∂t2

(10–24)

where k = spring rate

g = acceleration due to gravity

l = length of spring

W = weight of spring

x = coordinate along length of spring

u = motion of any particle at distance x
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10J. C. Wolford and G. M. Smith, “Surge of Helical Springs,” Mech. Eng. News, vol. 13, no. 1,
February 1976, pp. 4–9.

The solution to this equation is harmonic and depends on the given physical prop-
erties as well as the end conditions of the spring. The harmonic, natural, frequencies
for a spring placed between two flat and parallel plates, in radians per second, are

ω = mπ

√
kg
W

m = 1, 2, 3, . . .

where the fundamental frequency is found for m = 1, the second harmonic for m = 2,
and so on. We are usually interested in the frequency in cycles per second; since ω =
2π f , we have, for the fundamental frequency in hertz,

f = 1

2

√
kg
W

(10–25)

assuming the spring ends are always in contact with the plates.
Wolford and Smith10 show that the frequency is

f = 1

4

√
kg
W

(10–26)

where the spring has one end against a flat plate and the other end free. They also
point out that Eq. (10–25) applies when one end is against a flat plate and the other
end is driven with a sine-wave motion.

The weight of the active part of a helical spring is

W = ALγ = πd2

4
(π DNa)(γ ) = π2d2 DNaγ

4
(10–27)

where γ is the specific weight.

Figure 10–4

Valve-spring failure in an
overrevved engine. Fracture
is along the 45◦ line of
maximum principal stress
associated with pure torsional
loading.
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The fundamental critical frequency should be greater than 15 to 20 times the fre-
quency of the force or motion of the spring in order to avoid resonance with the har-
monics. If the frequency is not high enough, the spring should be redesigned to
increase k or decrease W.

10–9 Fatigue Loading of Helical Compression Springs
Springs are almost always subject to fatigue loading. In many instances the number of
cycles of required life may be small, say, several thousand for a padlock spring or a
toggle-switch spring. But the valve spring of an automotive engine must sustain mil-
lions of cycles of operation without failure; so it must be designed for infinite life.

To improve the fatigue strength of dynamically loaded springs, shot peening can
be used. It can increase the torsional fatigue strength by 20 percent or more. Shot size
is about 1

64 in, so spring coil wire diameter and pitch must allow for complete cov-
erage of the spring surface.

The best data on the torsional endurance limits of spring steels are those reported by
Zimmerli.11 He discovered the surprising fact that size, material, and tensile strength have
no effect on the endurance limits (infinite life only) of spring steels in sizes under 3

8 in
(10 mm). We have already observed that endurance limits tend to level out at high ten-
sile strengths (Fig. 6–17), p. 283, but the reason for this is not clear. Zimmerli suggests
that it may be because the original surfaces are alike or because plastic flow during test-
ing makes them the same. Unpeened springs were tested from a minimum torsional stress
of 20 kpsi to a maximum of 90 kpsi and peened springs in the range 20 kpsi to 135 kpsi.
The corresponding endurance strength components for infinite life were found to be

Unpeened:

Ssa = 35 kpsi (241 MPa) Ssm = 55 kpsi (379 MPa) (10–28)

Peened:

Ssa = 57.5 kpsi (398 MPa) Ssm = 77.5 kpsi (534 MPa) (10–29)

For example, given an unpeened spring with Ssu = 211.5 kpsi, the Gerber ordinate inter-
cept for shear, from Eq. (6–42), p. 306, is

Sse = Ssa

1 −
(

Ssm

Ssu

)2 = 35

1 −
(

55

211.5

)2 = 37.5 kpsi

For the Goodman failure criterion, the intercept would be 47.3 kpsi. Each possible
wire size would change these numbers, since Ssu would change.

An extended study12 of available literature regarding torsional fatigue found that
for polished, notch-free, cylindrical specimens subjected to torsional shear stress, the
maximum alternating stress that may be imposed without causing failure is constant
and independent of the mean stress in the cycle provided that the maximum stress
range does not equal or exceed the torsional yield strength of the metal. With notches
and abrupt section changes this consistency is not found. Springs are free of notches
and surfaces are often very smooth. This failure criterion is known as the Sines failure
criterion in torsional fatigue.

11F. P. Zimmerli, “Human Failures in Spring Applications,” The Mainspring, no. 17, Associated Spring
Corporation, Bristol, Conn., August–September 1957.
12Oscar J. Horger (ed.), Metals Engineering: Design Handbook, McGraw-Hill, New York, 1953, p. 84.
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In constructing certain failure criteria on the designers’ torsional fatigue diagram,
the torsional modulus of rupture Ssu is needed. We shall continue to employ Eq. (6–54),
p. 317, which is

Ssu = 0.67Sut (10–30)

In the case of shafts and many other machine members, fatigue loading in the form
of completely reversed stresses is quite ordinary. Helical springs, on the other hand,
are never used as both compression and extension springs. In fact, they are usually
assembled with a preload so that the working load is additional. Thus the stress-time
diagram of Fig. 6–23d, p. 301, expresses the usual condition for helical springs. The
worst condition, then, would occur when there is no preload, that is, when τmin = 0.

Now, we define

Fa = Fmax − Fmin

2
(10–31a)

Fm = Fmax + Fmin

2
(10–31b)

where the subscripts have the same meaning as those of Fig. 6–23d when applied to
the axial spring force F. Then the shear stress amplitude is

τa = K B
8Fa D
πd3

(10–32)

where K B is the Bergsträsser factor, obtained from Eq. (10–5), and corrects for both
direct shear and the curvature effect. As noted in Sec. 10–2, the Wahl factor KW can
be used instead, if desired.

The midrange shear stress is given by the equation

τm = K B
8Fm D
πd3

(10–33)

EXAMPLE 10–4 An as-wound helical compression spring, made of music wire, has a wire size of 0.092
in, an outside coil diameter of 9

16 in, a free length of 4 3
8 in, 21 active coils, and both ends

squared and ground. The spring is unpeened. This spring is to be assembled with a
preload of 5 lbf and will operate with a maximum load of 35 lbf during use.
(a) Estimate the factor of safety guarding against fatigue failure using a torsional
Gerber fatigue failure criterion with Zimmerli data.
(b) Repeat part (a) using the Sines torsional fatigue criterion (steady stress compo-
nent has no effect), with Zimmerli data.
(c) Repeat using a torsional Goodman failure criterion with Zimmerli data.
(d) Estimate the critical frequency of the spring.

Solution The mean coil diameter is D = 0.5625 − 0.092 = 0.4705 in. The spring index is C =
D/d = 0.4705/0.092 = 5.11. Then

K B = 4C + 2

4C − 3
= 4(5.11) + 2

4(5.11) − 3
= 1.287
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From Eqs. (10–31),

Fa = 35 − 5

2
= 15 lbf Fm = 35 + 5

2
= 20 lbf

The alternating shear-stress component is found from Eq. (10–32) to be

τa = K B
8Fa D
πd3

= (1.287)
8(15)0.4705

π(0.092)3
(10−3) = 29.7 kpsi

Equation (10–33) gives the midrange shear-stress component

τm = K B
8Fm D
πd3

= 1.287
8(20)0.4705

π(0.092)3
(10−3) = 39.6 kpsi

From Table 10–4 we find A = 201 kpsi · inm and m = 0.145. The ultimate tensile
strength is estimated from Eq. (10–14) as

Sut = A
dm

= 201

0.0920.145
= 284.1 kpsi

Also the shearing ultimate strength is estimated from

Ssu = 0.67Sut = 0.67(284.1) = 190.3 kpsi

The load-line slope r = τa/τm = 29.7/39.6 = 0.75.
(a) The Gerber ordinate intercept for the Zimmerli data, Eq. (10–28), is

Sse = Ssa

1 − (Ssm/Ssu)2
= 35

1 − (55/190.3)2
= 38.2 kpsi

The amplitude component of strength Ssa , from Table 6–7, p. 307, is

Ssa = r2S2
su

2Sse

⎡⎣−1 +
√

1 +
(

2Sse

r Ssu

)2
⎤⎦

= 0.752190.32

2(38.2)

⎧⎨⎩−1 +
√

1 +
[

2(38.2)

0.75(190.3)

]2
⎫⎬⎭ = 35.8 kpsi

and the fatigue factor of safety n f is given by

Answer n f = Ssa

τa
= 35.8

29.7
= 1.21

(b) The Sines failure criterion ignores Ssm so that, for the Zimmerli data with Ssa =
35 kpsi,

Answer n f = Ssa

τa
= 35

29.7
= 1.18

(c) The ordinate intercept Sse for the Goodman failure criterion with the Zimmerli
data is

Sse = Ssa

1 − (Ssm/Ssu)
= 35

1 − (55/190.3)
= 49.2 kpsi
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The amplitude component of the strength Ssa for the Goodman criterion, from
Table 6–6, p. 307, is

Ssa = r Sse Ssu

r Ssu + Sse
= 0.75(49.2)190.3

0.75(190.3) + 49.2
= 36.6 kpsi

The fatigue factor of safety is given by

Answer n f = Ssa

τa
= 36.6

29.7
= 1.23

(d ) Using Eq. (10–9) and Table 10–5, we estimate the spring rate as

k = d4G
8D3 Na

= 0.0924[11.75(106)]

8(0.4705)321
= 48.1 lbf/in

From Eq. (10–27) we estimate the spring weight as

W = π2(0.0922)0.4705(21)0.284

4
= 0.0586 lbf

and from Eq. (10–25) the frequency of the fundamental wave is

Answer fn = 1

2

[
48.1(386)

0.0586

]1/2

= 281 Hz

If the operating or exciting frequency is more than 281/20 = 14.1 Hz, the spring may
have to be redesigned.

We used three approaches to estimate the fatigue factor of safety in Ex. 10–4.
The results, in order of smallest to largest, were 1.18 (Sines), 1.21 (Gerber), and 1.23
(Goodman). Although the results were very close to one another, using the Zimmerli
data as we have, the Sines criterion will always be the most conservative and the
Goodman the least. If we perform a fatigue analysis using strength properties as was
done in Chap. 6, different results would be obtained, but here the Goodman criterion
would be more conservative than the Gerber criterion. Be prepared to see designers
or design software using any one of these techniques. This is why we cover them.
Which criterion is correct? Remember, we are performing estimates and only testing
will reveal the truth—statistically.

10–10 Helical Compression Spring Design
for Fatigue Loading
Let us begin with the statement of a problem. In order to compare a static spring to
a dynamic spring, we shall design the spring in Ex. 10–2 for dynamic service.

EXAMPLE 10–5 A music wire helical compression spring with infinite life is needed to resist a
dynamic load that varies from 5 to 20 lbf at 5 Hz while the end deflection varies from
1
2 to 2 in. Because of assembly considerations, the solid height cannot exceed 1 in
and the free length cannot be more than 4 in. The springmaker has the following wire
sizes in stock: 0.069, 0.071, 0.080, 0.085, 0.090, 0.095, 0.105, and 0.112 in.
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Solution The a priori decisions are:

• Material and condition: for music wire, A = 201 kpsi · inm , m = 0.145, G =
11.75(106) psi; relative cost is 2.6

• Surface treatment: unpeened

• End treatment: squared and ground

• Robust linearity: ξ = 0.15

• Set: use in as-wound condition

• Fatigue-safe: n f = 1.5 using the Sines-Zimmerli fatigue-failure criterion

• Function: Fmin = 5 lbf, Fmax = 20 lbf, ymin = 0.5 in, ymax = 2 in, spring operates
free (no rod or hole)

• Decision variable: wire size d

The figure of merit will be the volume of wire to wind the spring, Eq. (10–22). The
design strategy will be to set wire size d, build a table, inspect the table, and choose
the satisfactory spring with the highest figure of merit.

Solution Set d = 0.112 in. Then

Fa = 20 − 5

2
= 7.5 lbf Fm = 20 + 5

2
= 12.5 lbf

k = Fmax

ymax
= 20

2
= 10 lbf/in

Sut = 201

0.1120.145
= 276.1 kpsi

Ssu = 0.67(276.1) = 185.0 kpsi

Ssy = 0.45(276.1) = 124.2 kpsi

From Eq. (10–28), with the Sines criterion, Sse = Ssa = 35 kpsi. Equation (10–23)
can be used to determine C with Sse , n f , and Fa in place of Ssy , ns , and (1 + ξ )Fmax,
respectively. Thus,

α = Sse

n f
= 35 000

1.5
= 23 333 psi

β = 8Fa

πd2
= 8(7.5)

π(0.1122)
= 1522.5 psi

C = 2(23 333) − 1522.5

4(1522.5)
+

√[
2(23 333) − 1522.5

4(1522.5)

]2

− 3(23 333)

4(1522.5)
= 14.005
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D = Cd = 14.005(0.112) = 1.569 in

Fs = (1 + ξ)Fmax = (1 + 0.15)20 = 23 lbf

Na = d4G
8D3k

= 0.1124(11.75)(106)

8(1.569)310
= 5.98 turns

Nt = Na + 2 = 5.98 + 2 = 7.98 turns

Ls = d Nt = 0.112(7.98) = 0.894 in

L0 = Ls + Fs

k
= 0.894 + 23

10
= 3.194 in

ID = 1.569 − 0.112 = 1.457 in

OD = 1.569 + 0.112 = 1.681 in

ys = L0 − Ls = 3.194 − 0.894 = 2.30 in

(L0)cr <
2.63D

α
= 2.63

(1.569)

0.5
= 8.253 in

K B = 4(14.005) + 2

4(14.005) − 3
= 1.094

W = π2d2 DNaγ

4
= π20.1122(1.569)5.98(0.284)

4
= 0.0825 lbf

fn = 0.5

√
386k

W
= 0.5

√
386(10)

0.0825
= 108 Hz

τa = K B
8Fa D
πd3

= 1.094
8(7.5)1.569

π0.1123
= 23 334 psi

τm = τa
Fm

Fa
= 23 334

12.5

7.5
= 38 890 psi

τs = τa
Fs

Fa
= 23 334

23

7.5
= 71 560 psi

n f = Ssa

τa
= 35 000

23 334
= 1.5

ns = Ssy

τs
= 124 200

71 560
= 1.74

fom = −(relative material cost)π2d2 Nt D/4

= −2.6π2(0.1122)(7.98)1.569/4 = −1.01
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Inspection of the results shows that all conditions are satisfied except for 4 ≤ C ≤ 12.
Repeat the process using the other available wire sizes and develop the following table:

The problem-specific inequality constraints are

Ls ≤ 1 in

L0 ≤ 4 in

fn ≥ 5(20) = 100 Hz

The general constraints are
3 ≤ Na ≤ 15

4 ≤ C ≤ 12

(L0)cr > L0

We see that none of the diameters satisfy the given constraints. The 0.105-in-diameter
wire is the closest to satisfying all requirements. The value of C � 12.14 is not a
serious deviation and can be tolerated. However, the tight constraint on Ls needs to be
addressed. If the assembly conditions can be relaxed to accept a solid height of 1.116 in,
we have a solution. If not, the only other possibility is to use the 0.112-in diameter
and accept a value C � 14, individually package the springs, and possibly reconsider
supporting the spring in service.

10–11 Extension Springs
Extension springs differ from compression springs in that they carry tensile loading,
they require some means of transferring the load from the support to the body of the
spring, and the spring body is wound with an initial tension. The load transfer can be
done with a threaded plug or a swivel hook; both of these add to the cost of the fin-
ished product, and so one of the methods shown in Fig. 10–5 is usually employed.

Stresses in the body of the extension spring are handled the same as compres-
sion springs. In designing a spring with a hook end, bending and torsion in the hook

d: 0.069 0.071 0.080 0.085 0.090 0.095 0.105 0.112

D 0.297 0.332 0.512 0.632 0.767 0.919 1.274 1.569

ID 0.228 0.261 0.432 0.547 0.677 0.824 1.169 1.457

OD 0.366 0.403 0.592 0.717 0.857 1.014 1.379 1.681

C 4.33 4.67 6.40 7.44 8.53 9.67 12.14 14.00

Na 127.2 102.4 44.8 30.5 21.3 15.4 8.63 6.0

Ls 8.916 7.414 3.740 2.750 2.100 1.655 1.116 0.895

L0 11.216 9.714 6.040 5.050 4.400 3.955 3.416 3.195

(L0)cr 1.562 1.744 2.964 3.325 4.036 4.833 6.703 8.250

nf 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50

ns 1.86 1.85 1.82 1.81 1.79 1.78 1.75 1.74

fn 87.5 89.7 96.9 99.7 101.9 103.8 106.6 108

fom −1.17 −1.12 −0.983 −0.948 −0.930 −0.927 −0.958 −1.01
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Figure 10–6

Ends for extension springs.
(a) Usual design; stress at A is
due to combined axial force
and bending moment. (b) Side
view of part a; stress is mostly
torsion at B. (c) Improved
design; stress at A is due to
combined axial force and
bending moment. (d ) Side
view of part c ; stress at B is
mostly torsion.

F
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A

(c) (d )
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d

(a) (b)

r1

F F

B

d

r1

r2

r2

d

Note: Radius r1 is in the plane of
the end coil for curved beam
bending stress. Radius r2 is
at a right angle to the end 
coil for torsional shear stress.

Figure 10–5

Types of ends used on
extension springs. (Courtesy
of Associated Spring.)

(a) Machine half loop–open (b) Raised hook

(c) Short twisted loop (d ) Full twisted loop

+ +

++

must be included in the analysis. In Fig. 10–6a and b a commonly used method of
designing the end is shown. The maximum tensile stress at A, due to bending and
axial loading, is given by

σA = F
[
(K )A

16D
πd3

+ 4

πd2

]
(10–34)
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where (K )A is a bending stress-correction factor for curvature, given by

(K )A = 4C2
1 − C1 − 1

4C1(C1 − 1)
C1 = 2r1

d
(10–35)

The maximum torsional stress at point B is given by

τB = (K )B
8F D
πd3

(10–36)

where the stress-correction factor for curvature, (K)B, is

(K )B = 4C2 − 1

4C2 − 4
C2 = 2r2

d
(10–37)

Figure 10–6c and d show an improved design due to a reduced coil diameter.
When extension springs are made with coils in contact with one another, they are

said to be close-wound. Spring manufacturers prefer some initial tension in close-wound
springs in order to hold the free length more accurately. The corresponding load-
deflection curve is shown in Fig. 10–7a, where y is the extension beyond the free length
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Figure 10–7

(a) Geometry of the force F
and extension y curve of an
extension spring; (b) geometry
of the extension spring; and 
(c) torsional stresses due to
initial tension as a function of
spring index C in helical
extension springs.
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Table 10–7

Maximum Allowable

Stresses (KW or KB

corrected) for Helical

Extension Springs in

Static Applications

Source: From Design
Handbook, 1987, p. 52.
Courtesy of Associated Spring.

Percent of Tensile Strength
In Torsion In Bending

Materials Body End End

Patented, cold-drawn or 45–50 40 75
hardened and tempered
carbon and low-alloy
steels

Austenitic stainless 35 30 55
steel and nonferrous
alloys

This information is based on the following conditions: set not removed and low
temperature heat treatment applied. For springs that require high initial tension,
use the same percent of tensile strength as for end.

L0 and Fi is the initial tension in the spring that must be exceeded before the spring
deflects. The load-deflection relation is then

F = Fi + ky (10–38)

where k is the spring rate. The free length L0 of a spring measured inside the end
loops or hooks as shown in Fig. 10–7b can be expressed as

L0 = 2(D − d) + (Nb + 1)d = (2C − 1 + Nb)d (10–39)

where D is the mean coil diameter, Nb is the number of body coils, and C is the
spring index. With ordinary twisted end loops as shown in Fig. 10–7b, to account for
the deflection of the loops in determining the spring rate k, the equivalent number of
active helical turns Na for use in Eq. (10–9) is

Na = Nb + G
E

(10–40)

where G and E are the shear and tensile moduli of elasticity, respectively (see
Prob. 10–38).

The initial tension in an extension spring is created in the winding process by
twisting the wire as it is wound onto the mandrel. When the spring is completed and
removed from the mandrel, the initial tension is locked in because the spring cannot
get any shorter. The amount of initial tension that a springmaker can routinely incor-
porate is as shown in Fig. 10–7c. The preferred range can be expressed in terms of
the uncorrected torsional stress τi as

τi = 33 500

exp(0.105C)
± 1000

(
4 − C − 3

6.5

)
psi (10–41)

where C is the spring index. 
Guidelines for the maximum allowable corrected stresses for static applications of

extension springs are given in Table 10–7.
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EXAMPLE 10–6 A hard-drawn steel wire extension spring has a wire diameter of 0.035 in, an outside
coil diameter of 0.248 in, hook radii of r1 = 0.106 in and r2 = 0.089 in, and an initial
tension of 1.19 lbf. The number of body turns is 12.17. From the given information:
(a) Determine the physical parameters of the spring.
(b) Check the initial preload stress conditions. 
(c) Find the factors of safety under a static 5.25-lbf load.

Solution (a) D = OD − d = 0.248 − 0.035 = 0.213 in

C = D
d

= 0.213

0.035
= 6.086

K B = 4C + 2

4C − 3
= 4(6.086) + 2

4(6.086) − 3
= 1.234

Eq. (10–40) and Table 10–5:

Na = Nb + G/E = 12.17 + 11.6/28.7 = 12.57 turns

Eq. (10–9): k = d4G
8D3 Na

= 0.0354(11.6)106

8(0.2133)12.57
= 17.91 lbf/in

Eq. (10–39): L0 = (2C − 1 + Nb)d = [2(6.086) − 1 + 12.17] 0.035 = 0.817 in

The deflection under the service load is

ymax = Fmax − Fi

k
= 5.25 − 1.19

17.91
= 0.227 in

where the spring length becomes L = L0 + y = 0.817 + 0.227 = 1.044 in.
(b) The uncorrected initial stress is given by Eq. (10–2) without the correction factor.
That is,

(τi )uncorr = 8Fi D
πd3

= 8(1.19)0.213(10−3)

π(0.0353)
= 15.1 kpsi

The preferred range is given by Eq. (10–41) and for this case is

(τi )pref = 33 500

exp(0.105C)
± 1000

(
4 − C − 3

6.5

)

= 33 500

exp[0.105(6.086)]
± 1000

(
4 − 6.086 − 3

6.5

)
= 17 681 ± 3525 = 21.2, 14.2 kpsi

Answer Thus, the initial tension of 15.1 kpsi is in the preferred range.
(c) For hard-drawn wire, Table 10–4 gives m = 0.190 and A = 140 kpsi · inm . From
Eq. (10–14)

Sut = A
dm

= 140

0.0350.190
= 264.7 kpsi

For torsional shear in the main body of the spring, from Table 10–7,

Ssy = 0.45Sut = 0.45(264.7) = 119.1 kpsi
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The shear stress under the service load is

τmax = 8K B Fmax D
πd3

= 8(1.234)5.25(0.213)

π(0.0353)
(10−3) = 82.0 kpsi

Thus, the factor of safety is

Answer n = Ssy

τmax
= 119.1

82.0
= 1.45

For the end-hook bending at A,

C1 = 2r1/d = 2(0.106)/0.0.035 = 6.057

From Eq. (10–35)

(K )A = 4C2
1 − C1 − 1

4C1(C1 − 1)
= 4(6.0572) − 6.057 − 1

4(6.057)(6.057 − 1)
= 1.14

From Eq. (10–34)

σA = Fmax

[
(K )A

16D
πd3

+ 4

πd2

]

= 5.25
[

1.14
16(0.213)

π(0.0353)
+ 4

π(0.0352)

]
(10−3) = 156.9 kpsi

The yield strength, from Table 10–7, is given by

Sy = 0.75Sut = 0.75(264.7) = 198.5 kpsi

The factor of safety for end-hook bending at A is then

Answer n A = Sy

σA
= 198.5

156.9
= 1.27

For the end-hook in torsion at B, from Eq. (10–37)

C2 = 2r2/d = 2(0.089)/0.035 = 5.086

(K )B = 4C2 − 1

4C2 − 4
= 4(5.086) − 1

4(5.086) − 4
= 1.18

and the corresponding stress, given by Eq. (10–36), is

τB = (K )B
8Fmax D

πd3
= 1.18

8(5.25)0.213

π(0.0353)
(10−3) = 78.4 kpsi

Using Table 10–7 for yield strength, the factor of safety for end-hook torsion at B is

Answer nB = (Ssy)B

τB
= 0.4(264.7)

78.4
= 1.35

Yield due to bending of the end hook will occur first.

Next, let us consider a fatigue problem.
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EXAMPLE 10–7 The helical coil extension spring of Ex. 10–6 is subjected to a dynamic loading from
1.5 to 5 lbf. Estimate the factors of safety using the Gerber failure criterion for (a) coil
fatigue, (b) coil yielding, (c) end-hook bending fatigue at point A of Fig. 10–6a, and
(d) end-hook torsional fatigue at point B of Fig. 10–6b.

Solution A number of quantities are the same as in Ex. 10–6: d = 0.035 in, Sut = 264.7 kpsi,
D = 0.213 in, r1 = 0.106 in, C = 6.086, K B = 1.234, (K )A = 1.14, (K)B = 1.18,
Nb = 12.17 turns, L0 = 0.817 in, k = 17.91 lbf/in, Fi = 1.19 lbf, and (τi)uncorr = 15.1
kpsi. Then

Fa = (Fmax − Fmin)/2 = (5 − 1.5)/2 = 1.75 lbf

Fm = (Fmax + Fmin)/2 = (5 + 1.5)/2 = 3.25 lbf

The strengths from Ex. 10–6 include Sut = 264.7 kpsi, Sy = 198.5 kpsi, and Ssy =
119.1 kpsi. The ultimate shear strength is estimated from Eq. (10–30) as

Ssu = 0.67Sut = 0.67(264.7) = 177.3 kpsi

(a) Body-coil fatigue:

τa = 8K B Fa D
πd3

= 8(1.234)1.75(0.213)

π(0.0353)
(10−3) = 27.3 kpsi

τm = Fm

Fa
τa = 3.25

1.75
27.3 = 50.7 kpsi

Using the Zimmerli data of Eq. (10–28) gives

Sse = Ssa

1 −
(

Ssm

Ssu

)2 = 35

1 −
(

55

177.3

)2 = 38.7 kpsi

From Table 6–7, p. 307, the Gerber fatigue criterion for shear is

Answer (n f )body = 1

2

(
Ssu

τm

)2
τa

Sse

⎡⎣−1 +
√

1 +
(

2
τm

Ssu

Sse

τa

)2
⎤⎦

= 1

2

(
177.3

50.7

)2 27.3

38.7

⎡⎣−1 +
√

1 +
(

2
50.7

177.3

38.7

27.3

)2
⎤⎦ = 1.24

(b) The load-line for the coil body begins at Ssm = τi and has a slope r = τa/(τm − τi ).
It can be shown that the intersection with the yield line is given by (Ssa)y =
[r/(r + 1)](Ssy − τi ). Consequently, τi = (Fi/Fa)τa = (1.19/1.75)27.3 = 18.6 kpsi,
r = 27.3/(50.7 − 18.6) = 0.850, and

(Ssa)y = 0.850

0.850 + 1
(119.1 − 18.6) = 46.2 kpsi

Thus,

Answer (ny)body = (Ssa)y

τa
= 46.2

27.3
= 1.69
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(c) End-hook bending fatigue: using Eqs. (10–34) and (10–35) gives

σa = Fa

[
(K )A

16D
πd3

+ 4

πd2

]
= 1.75

[
1.14

16(0.213)

π(0.0353)
+ 4

π(0.0352)

]
(10−3) = 52.3 kpsi

σm = Fm

Fa
σa = 3.25

1.75
52.3 = 97.1 kpsi

To estimate the tensile endurance limit using the distortion-energy theory, 

Se = Sse/0.577 = 38.7/0.577 = 67.1 kpsi

Using the Gerber criterion for tension gives

Answer (n f )A = 1

2

(
Sut

σm

)2
σa

Se

⎡⎣−1 +
√

1 +
(

2
σm

Sut

Se

σa

)2
⎤⎦

= 1

2

(
264.7

97.1

)2 52.3

67.1

⎡⎣−1 +
√

1 +
(

2
97.1

264.7

67.1

52.3

)2
⎤⎦ = 1.08

(d) End-hook torsional fatigue: from Eq. (10–36)

(τa)B = (K )B
8Fa D
πd3

= 1.18
8(1.75)0.213

π(0.0353)
(10−3) = 26.1 kpsi

(τm)B = Fm

Fa
(τa)B = 3.25

1.75
26.1 = 48.5 kpsi

Then, again using the Gerber criterion, we obtain

Answer (n f )B = 1

2

(
Ssu

τm

)2
τa

Sse

⎡⎣−1 +
√

1 +
(

2
τm

Ssu

Sse

τa

)2
⎤⎦

= 1

2

(
177.3

48.5

)2 26.1

38.7

⎡⎣−1 +
√

1 +
(

2
48.5

177.3

38.7

26.1

)2
⎤⎦ = 1.30

The analyses in Exs. 10–6 and 10–7 show how extension springs differ from com-
pression springs. The end hooks are usually the weakest part, with bending usually
controlling. We should also appreciate that a fatigue failure separates the extension
spring under load. Flying fragments, lost load, and machine shutdown are threats to
personal safety as well as machine function. For these reasons higher design factors
are used in extension-spring design than in the design of compression springs.

In Ex. 10–7 we estimated the endurance limit for the hook in bending using the
Zimmerli data, which are based on torsion in compression springs and the distortion
theory. An alternative method is to use Table 10–8, which is based on a stress-ratio
of R = τmin/τmax = 0. For this case, τa = τm = τmax/2. Label the strength values of
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Table 10–8

Maximum Allowable

Stresses for ASTM A228

and Type 302 Stainless

Steel Helical Extension

Springs in Cyclic

Applications 

Source: From Design
Handbook, 1987, p. 52.
Courtesy of Associated Spring.

Percent of Tensile Strength
Number In Torsion In Bending
of Cycles Body End End

105 36 34 51

106 33 30 47

107 30 28 45

This information is based on the following conditions: not shot-peened, no
surging and ambient environment with a low temperature heat treatment applied.
Stress ratio � 0.

Table 10–8 as Sr for bending or Ssr for torsion. Then for torsion, for example,
Ssa = Ssm = Ssr/2 and the Gerber ordinate intercept, given by Eq. (6–42) for shear, is

Sse = Ssa

1 − (Ssm/Ssu)
2 = Ssr/2

1 −
(

Ssr/2

Ssu

)2 (10–42)

So in Ex. 10–7 an estimate for the bending endurance limit from Table 10–8 would be

Sr = 0.45Sut = 0.45(264.7) = 119.1 kpsi

and from Eq. (10–42)

Se = Sr/2

1 − [Sr/ (2Sut)]2 = 119.1/2

1 −
(

119.1/2

264.7

)2 = 62.7 kpsi

Using this in place of 67.1 kpsi in Ex. 10–7 results in (n f )A = 1.03, a reduction of
5 percent.

10–12 Helical Coil Torsion Springs
When a helical coil spring is subjected to end torsion, it is called a torsion spring. It
is usually close-wound, as is a helical coil extension spring, but with negligible initial
tension. There are single-bodied and double-bodied types as depicted in Fig. 10–8. As
shown in the figure, torsion springs have ends configured to apply torsion to the coil
body in a convenient manner, with short hook, hinged straight offset, straight torsion,
and special ends. The ends ultimately connect a force at a distance from the coil axis
to apply a torque. The most frequently encountered (and least expensive) end is the
straight torsion end. If intercoil friction is to be avoided completely, the spring can
be wound with a pitch that just separates the body coils. Helical coil torsion springs
are usually used with a rod or arbor for reactive support when ends cannot be built in,
to maintain alignment, and to provide buckling resistance if necessary.

The wire in a torsion spring is in bending, in contrast to the torsion encountered
in helical coil compression and extension springs. The springs are designed to wind
tighter in service. As the applied torque increases, the inside diameter of the coil
decreases. Care must be taken so that the coils do not interfere with the pin, rod, or
arbor. The bending mode in the coil might seem to invite square- or rectangular-cross-
section wire, but cost, range of materials, and availability discourage its use.
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Torsion springs are familiar in clothespins, window shades, and animal traps,
where they may be seen around the house, and out of sight in counterbalance mech-
anisms, ratchets, and a variety of other machine components. There are many stock
springs that can be purchased off-the-shelf from a vendor. This selection can add
economy of scale to small projects, avoiding the cost of custom design and small-
run manufacture.

Describing the End Location

In specifying a torsion spring, the ends must be located relative to each other. Commer-
cial tolerances on these relative positions are listed in Table 10–9. The simplest scheme
for expressing the initial unloaded location of one end with respect to the other is in terms
of an angle β defining the partial turn present in the coil body as Np = β/360°, as shown
in Fig. 10–9. For analysis purposes the nomenclature of Fig. 10–9 can be used. Commu-
nication with a springmaker is often in terms of the back-angle α.

The number of body turns Nb is the number of turns in the free spring body by
count. The body-turn count is related to the initial position angle β by

Nb = integer + β

360◦ = integer + Np

Figure 10–8

Torsion springs. (Courtesy of
Associated Spring.)

Short hook ends

Special ends

Double torsion

Hinge ends

Straight offset

Straight torsion

Table 10–9

End Position Tolerances

for Helical Coil Torsion

Springs (for D/d Ratios

up to and Including 16) 

Source: From Design
Handbook, 1987, p. 52.
Courtesy of Associated Spring.

Total Coils Tolerance: � Degrees*

Up to 3 8

Over 3–10 10

Over 10–20 15

Over 20–30 20

Over 30 25

∗Closer tolerances available on request.
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where Np is the number of partial turns. The above equation means that Nb takes on
noninteger, discrete values such as 5.3, 6.3, 7.3, . . . , with successive differences of 1
as possibilities in designing a specific spring. This consideration will be discussed later.

Bending Stress

A torsion spring has bending induced in the coils, rather than torsion. This means that
residual stresses built in during winding are in the same direction but of opposite sign
to the working stresses that occur during use. The strain-strengthening locks in resid-
ual stresses opposing working stresses provided the load is always applied in the wind-
ing sense. Torsion springs can operate at bending stresses exceeding the yield strength
of the wire from which it was wound.

The bending stress can be obtained from curved-beam theory expressed in the form

σ = K
Mc
I

where K is a stress-correction factor. The value of K depends on the shape of the wire
cross section and whether the stress sought is at the inner or outer fiber. Wahl analytically
determined the values of K to be, for round wire,

Ki = 4C2 − C − 1

4C(C − 1)
Ko = 4C2 + C − 1

4C(C + 1)
(10–43)

where C is the spring index and the subscripts i and o refer to the inner and outer
fibers, respectively. In view of the fact that Ko is always less than unity, we shall use
Ki to estimate the stresses. When the bending moment is M = Fr and the section
modulus I/c = d3/32, we express the bending equation as

σ = Ki
32Fr
πd3

(10–44)

which gives the bending stress for a round-wire torsion spring.

Deflection and Spring Rate

For torsion springs, angular deflection can be expressed in radians or revolutions
(turns). If a term contains revolution units the term will be expressed with a prime
sign. The spring rate k ′ is expressed in units of torque/revolution (lbf · in/rev or
N · mm/rev) and moment is proportional to angle θ ′ expressed in turns rather than
radians. The spring rate, if linear, can be expressed as

k ′ = M1

θ ′
1

= M2

θ ′
2

= M2 − M1

θ ′
2 − θ ′

1

(10–45)

where the moment M can be expressed as Fl or Fr .

Figure 10–9

The free-end location angle is β.
The rotational coordinate θ is
proportional to the product Fl.
Its back angle is α. For all
positions of the moving end
θ + α = 
 = constant.

�

�

�

F

l
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The angle subtended by the end deflection of a cantilever, when viewed from the
built-in ends, is y/ l rad. From Table A–9–1,

θe = y
l

= Fl2

3E I
= Fl2

3E(πd4/64)
= 64Ml

3πd4 E
(10–46)

For a straight torsion end spring, end corrections such as Eq. (10–46) must be added
to the body-coil deflection. The strain energy in bending is, from Eq. (4–23),

U =
∫

M2 dx
2E I

For a torsion spring, M = Fl = Fr , and integration must be accomplished over the
length of the body-coil wire. The force F will deflect through a distance rθ where θ is
the angular deflection of the coil body, in radians. Applying Castigliano’s theorem gives

rθ = ∂U
∂ F

=
∫ π DNb

0

∂

∂ F

(
F2r2 dx

2E I

)
=

∫ π DNb

0

Fr2 dx
E I

Substituting I = πd4/64 for round wire and solving for θ gives

θ = 64Fr DNb

d4 E
= 64M DNb

d4 E

The total angular deflection in radians is obtained by adding Eq. (10–46) for each end
of lengths l1, l2:

θt = 64M DNb

d4 E
+ 64Ml1

3πd4 E
+ 64Ml2

3πd4 E
= 64M D

d4 E

(
Nb + l1 + l2

3π D

)
(10–47)

The equivalent number of active turns Na is expressed as

Na = Nb + l1 + l2

3π D
(10–48)

The spring rate k in torque per radian is

k = Fr
θt

= M
θt

= d4 E
64DNa

(10–49)

The spring rate may also be expressed as torque per turn. The expression for this is
obtained by multiplying Eq. (10–49) by 2π rad/turn. Thus spring rate k ′ (units
torque/turn) is

k ′ = 2πd4 E
64DNa

= d4 E
10.2DNa

(10–50)

Tests show that the effect of friction between the coils and arbor is such that the con-
stant 10.2 should be increased to 10.8. The equation above becomes

k ′ = d4 E
10.8DNa

(10–51)

(units torque per turn). Equation (10–51) gives better results. Also Eq. (10–47) becomes

θ ′
t = 10.8M D

d4 E

(
Nb + l1 + l2

3π D

)
(10–52)

bud29281_ch10_517-568.qxd  12/16/2009  7:14 pm  Page 553 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



554 Mechanical Engineering Design

Torsion springs are frequently used over a round bar or pin. When the load is applied
to a torsion spring, the spring winds up, causing a decrease in the inside diameter of
the coil body. It is necessary to ensure that the inside diameter of the coil never
becomes equal to or less than the diameter of the pin, in which case loss of spring
function would ensue. The helix diameter of the coil D′ becomes

D′ = Nb D
Nb + θ ′

c
(10–53)

where θ ′
c is the angular deflection of the body of the coil in number of turns, given by

θ ′
c = 10.8M DNb

d4 E
(10–54)

The new inside diameter D′
i = D′ − d makes the diametral clearance � between the

body coil and the pin of diameter Dp equal to

� = D′ − d − Dp = Nb D
Nb + θ ′

c
− d − Dp (10–55)

Equation (10–55) solved for Nb is

Nb = θ ′
c(� + d + Dp)

D − � − d − Dp
(10–56)

which gives the number of body turns corresponding to a specified diametral clear-
ance of the arbor. This angle may not be in agreement with the necessary partial-turn
remainder. Thus the diametral clearance may be exceeded but not equaled.

Static Strength

First column entries in Table 10–6 can be divided by 0.577 (from distortion-energy
theory) to give

Sy =

⎧⎪⎨⎪⎩
0.78Sut Music wire and cold-drawn carbon steels

0.87Sut OQ&T carbon and low-alloy steels

0.61Sut Austenitic stainless steel and nonferrous alloys

(10–57)

Fatigue Strength

Since the spring wire is in bending, the Sines equation is not applicable. The Sines
model is in the presence of pure torsion. Since Zimmerli’s results were for compres-
sion springs (wire in pure torsion), we will use the repeated bending stress (R = 0)

values provided by Associated Spring in Table 10–10. As in Eq. (10–40) we will use
the Gerber fatigue-failure criterion incorporating the Associated Spring R = 0 fatigue
strength Sr :

Se = Sr/2

1 −
(

Sr/2

Sut

)2 (10–58)

The value of Sr (and Se) has been corrected for size, surface condition, and type of
loading, but not for temperature or miscellaneous effects. The Gerber fatigue criterion
is now defined. The strength-amplitude component is given by Table 6–7, p. 307, as

Sa = r2S2
ut

2Se

⎡⎣−1 +
√

1 +
(

2Se

r Sut

)2
⎤⎦ (10–59)
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Figure 10–10

Angles α, β , and θ are
measured between the straight-
end centerline translated to the
coil axis. Coil OD is 19

32
in.

F

F

2 in

1 in

1 in�

�

�

where the slope of the load line is r = Ma/Mm . The load line is radial through the origin
of the designer’s fatigue diagram. The factor of safety guarding against fatigue failure is 

n f = Sa

σa
(10–60)

Alternatively, we can find n f directly by using Table 6–7, p. 307:

n f = 1

2

σa

Se

(
Sut

σm

)2
⎡⎣−1 +

√
1 +

(
2

σm

Sut

Se

σa

)2
⎤⎦ (10–61)

EXAMPLE 10–8 A stock spring is shown in Fig. 10–10. It is made from 0.072-in-diameter music wire
and has 4 1

4 body turns with straight torsion ends. It works over a pin of 0.400 in
diameter. The coil outside diameter is 19

32 in.
(a) Find the maximum operating torque and corresponding rotation for static loading.
(b) Estimate the inside coil diameter and pin diametral clearance when the spring is
subjected to the torque in part (a).

Table 10–10

Maximum

Recommended Bending

Stresses (KB Corrected)

for Helical Torsion

Springs in Cyclic

Applications as 

Percent of Sut

Source: Courtesy of Associated
Spring.

ASTM A228
Fatigue and Type 302 Stainless Steel ASTM A230 and A232

Life, Not Shot- Not Shot-
Cycles Peened Shot-Peened* Peened Shot-Peened*

105 53 62 55 64

106 50 60 53 62

This information is based on the following conditions: no surging, springs are in the “as-stress-relieved”
condition. 
∗Not always possible.
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(c) Estimate the fatigue factor of safety n f if the applied moment varies between
Mmin = 1 to Mmax = 5 lbf . in. 

Solution (a) For music wire, from Table 10–4 we find that A = 201 kpsi · inm and m = 0.145.
Therefore,

Sut = A
dm

= 201

(0.072)0.145
= 294.4 kpsi

Using Eq. (10–57) gives

Sy = 0.78Sut = 0.78(294.4) = 229.6 kpsi

The mean coil diameter is D = 19/32 − 0.072 = 0.5218 in. The spring index
C = D/d = 0.5218/0.072 = 7.247. The bending stress-correction factor Ki from
Eq. (10–43), is

Ki = 4(7.247)2 − 7.247 − 1

4(7.247)(7.247 − 1)
= 1.115

Now rearrange Eq. (10–44), substitute Sy for σ , and solve for the maximum torque
Fr to obtain

Mmax = (Fr)max = πd3Sy

32Ki
= π(0.072)3229 600

32(1.115)
= 7.546 lbf · in

Note that no factor of safety has been used. Next, from Eq. (10–54) and Table 10–5,
the number of turns of the coil body θ ′

c is

θ ′
c = 10.8MDNb

d4 E
= 10.8(7.546)0.5218(4.25)

0.0724(28.5)106
= 0.236 turn

Answer (θ ′
c)deg = 0.236(360◦) = 85.0◦

The active number of turns Na , from Eq. (10–48), is

Na = Nb + l1 + l2

3π D
= 4.25 + 1 + 1

3π(0.5218)
= 4.657 turns

The spring rate of the complete spring, from Eq. (10–51), is

k ′ = 0.0724(28.5)106

10.8(0.5218)4.657
= 29.18 lbf · in/turn

The number of turns of the complete spring θ ′ is 

θ ′ = M
k ′ = 7.546

29.18
= 0.259 turn

Answer (θ ′
s)deg = 0.259(360◦) = 93.24◦

(b) With no load, the mean coil diameter of the spring is 0.5218 in. From Eq. (10–53),

D′ = Nb D
Nb + θ ′

c
= 4.25(0.5218)

4.25 + 0.236
= 0.494 in
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The diametral clearance between the inside of the spring coil and the pin at load is

Answer � = D′ − d − Dp = 0.494 − 0.072 − 0.400 = 0.022 in

(c) Fatigue:

Ma = (Mmax − Mmin)/2 = (5 − 1)/2 = 2 lbf · in

Mm = (Mmax + Mmin)/2 = (5 + 1)/2 = 3 lbf · in

r = Ma

Mm
= 2

3

σa = Ki
32Ma

πd3
= 1.115

32(2)

π0.0723
= 60 857 psi

σm = Mm

Ma
σa = 3

2
(60 857) = 91 286 psi

From Table 10–10, Sr = 0.50Sut = 0.50(294.4) = 147.2 kpsi. Then

Se = 147.2/2

1 −
(

147.2/2

294.4

)2 = 78.51 kpsi

The amplitude component of the strength Sa , from Eq. (10–59), is

Sa = (2/3)2294.42

2(78.51)

⎡⎣−1 +
√

1 +
(

2

2/3

78.51

294.4

)2
⎤⎦ = 68.85 kpsi

The fatigue factor of safety is

Answer n f = Sa

σa
= 68.85

60.86
= 1.13

10–13 Belleville Springs
The inset of Fig. 10–11 shows the cross-section of a coned-disk spring, commonly
called a Belleville spring. Although the mathematical treatment is beyond the scope
of this book, you should at least become familiar with the remarkable characteristics
of these springs.

Aside from the obvious advantage that a Belleville spring occupies only a small
space, variation in the h/t ratio will produce a wide variety of load-deflection curve
shapes, as illustrated in Fig. 10–11. For example, using an h/t ratio of 2.83 or larger
gives an S curve that might be useful for snap-acting mechanisms. A reduction of
the ratio to a value between 1.41 and 2.1 causes the central portion of the curve to become
horizontal, which means that the load is constant over a considerable deflection range.

A higher load for a given deflection may be obtained by nesting, that is, by stack-
ing the springs in parallel. On the other hand, stacking in series provides a larger
deflection for the same load, but in this case there is danger of instability.
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10–14 Miscellaneous Springs
The extension spring shown in Fig. 10–12 is made of slightly curved strip steel, not
flat, so that the force required to uncoil it remains constant; thus it is called a constant-
force spring. This is equivalent to a zero spring rate. Such springs can also be man-
ufactured having either a positive or a negative spring rate.

A volute spring, shown in Fig. 10–13a, is a wide, thin strip, or “flat,” of mater-
ial wound on the flat so that the coils fit inside one another. Since the coils do not
stack, the solid height of the spring is the width of the strip. A variable-spring scale,
in a compression volute spring, is obtained by permitting the coils to contact the sup-
port. Thus, as the deflection increases, the number of active coils decreases. The volute
spring has another important advantage that cannot be obtained with round-wire
springs: if the coils are wound so as to contact or slide on one another during action,
the sliding friction will serve to damp out vibrations or other unwanted transient
disturbances.

A conical spring, as the name implies, is a coil spring wound in the shape of a
cone (see Prob. 10–28). Most conical springs are compression springs and are wound
with round wire. But a volute spring is a conical spring too. Probably the principal
advantage of this type of spring is that it can be wound so that the solid height is
only a single wire diameter.

Flat stock is used for a great variety of springs, such as clock springs, power
springs, torsion springs, cantilever springs, and hair springs; frequently it is specially
shaped to create certain spring actions for fuse clips, relay springs, spring washers,
snap rings, and retainers.

In designing many springs of flat stock or strip material, it is often economical
and of value to proportion the material so as to obtain a constant stress throughout
the spring material. A uniform-section cantilever spring has a stress

σ = M
I/c

= Fx
I/c

(a)

Figure 10–11

Load-deflection curves for
Belleville springs. (Courtesy
of Associated Spring.)
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which is proportional to the distance x if I/c is a constant. But there is no reason
why I/c need be a constant. For example, one might design such a spring as that
shown in Fig. 10–13b, in which the thickness h is constant but the width b is per-
mitted to vary. Since, for a rectangular section, I/c = bh2/6, we have, from Eq. (a),

bh2

6
= Fx

σ

or

b = 6Fx
h2σ

(b)

Since b is linearly related to x , the width bo at the base of the spring is 

bo = 6Fl
h2σ

(10–62)

Good approximations for deflections can be found easily by using Castigliano’s
theorem. To demonstrate this, assume that deflection of the triangular flat spring is
primarily due to bending and we can neglect the transverse shear force.13 The bending
moment as a function of x is M = −Fx and the beam width at x can be expressed

Figure 10–13

(a) A volute spring; (b) a flat
triangular spring.

l
F

h x

bo b

F

(a) (b)

Figure 10–12

Constant-force spring.
(Courtesy of Vulcan Spring &
Mfg. Co. Telford, PA.
www.vulcanspring.com.)

ID

Initial
deflection

Rated load

b

t

F

13Note that, because of shear, the width of the beam cannot be zero at x = 0. So, there is already some
simplification in the design model. All of this can be accounted for in a more sophisticated model.
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as b = box/ l . Thus, the deflection of F is given by Eq. (4–31), p. 166, as

y =
∫ l

0

M(∂M/∂F)

E I
dx = 1

E

∫ l

0

−Fx(−x)
1
12 (box/ l)h3

dx

= 12Fl
boh3 E

∫ l

0
x dx = 6Fl3

boh3 E

(10–63)

Thus the spring constant, k = F/y, is estimated as

k = boh3 E
6l3

(10–64)

The methods of stress and deflection analysis illustrated in previous sections of
this chapter have served to illustrate that springs may be analyzed and designed by
using the fundamentals discussed in the earlier chapters of this book. This is also true
for most of the miscellaneous springs mentioned in this section, and you should now
experience no difficulty in reading and understanding the literature of such springs.

10–15 Summary
In this chapter we have considered helical coil springs in considerable detail in order
to show the importance of viewpoint in approaching engineering problems, their
analysis, and design. For compression springs undergoing static and fatigue loads, the
complete design process was presented. This was not done for extension and torsion
springs, as the process is the same, although the governing conditions are not. The
governing conditions, however, were provided and extension to the design process
from what was provided for the compression spring should be straightforward. Prob-
lems are provided at the end of the chapter, and it is hoped that the reader will develop
additional, similar, problems to tackle.

Stochastic considerations are notably missing in this chapter. The complexity and
nuances of the deterministic approach alone are enough to handle in a first presenta-
tion of spring design. Springmakers offer a vast array of information concerning tol-
erances on springs.14 This, together with the material in Chaps. 5, 6, and 20, should
provide the reader with ample ability to advance and incorporate statistical analyses
in their design evaluations.

As spring problems become more computationally involved, programmable cal-
culators and computers must be used. Spreadsheet programming is very popular for
repetitive calculations. As mentioned earlier, commercial programs are available. With
these programs, backsolving can be performed; that is, when the final objective criteria
are entered, the program determines the input values.

PROBLEMS
10–1 Within the range of recommended values of the spring index, C, determine the maximum

and minimum percentage difference between the Bergsträsser factor, KB, and the Wahl
factor, KW.

14See, for example, Associated Spring–Barnes Group, Design Handbook, Bristol, Conn., 1987.
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10–2 It is instructive to examine the question of the units of the parameter A of Eq. (10–14). Show that
for U.S. customary units the units for Auscu are kpsi · inm and for SI units are MPa · mmm for ASI.
which make the dimensions of both Auscu and ASI different for every material to which Eq. (10–14)
applies. Also show that the conversion from Auscu to ASI is given by

ASI = 6.895(25.40)m Auscu

10–3 A helical compression spring is wound using 2.5-mm-diameter music wire. The spring has an
outside diameter of 31 mm with plain ground ends, and 14 total coils. 
(a) What should the free length be to ensure that when the spring is compressed solid the torsional

stress does not exceed the yield strength, that is, that it is solid-safe?
(b) What force is needed to compress this spring to closure?
(c) Estimate the spring rate.
(d) Is there a possibility that the spring might buckle in service?

10–4 The spring in Prob. 10–3 is to be used with a static load of 130 N. Perform a design assess-
ment represented by Eqs. (10–13) and (10–18) through (10–21) if the spring is closed to solid
height.

10–5 A helical compression spring is made with oil-tempered wire with wire diameter of 0.2 in,
mean coil diameter of 2 in, a total of 12 coils, a free length of 5 in, with squared ends.
(a) Find the solid length.
(b) Find the force necessary to deflect the spring to its solid length.
(c) Find the factor of safety guarding against yielding when the spring is compressed to its

solid length.

10–6 A helical compression spring is to be made of oil-tempered wire of 4-mm diameter with a
spring index of C = 10. The spring is to operate inside a hole, so buckling is not a problem
and the ends can be left plain. The free length of the spring should be 80 mm. A force of 50 N
should deflect the spring 15 mm.
(a) Determine the spring rate.
(b) Determine the minimum hole diameter for the spring to operate in.
(c) Determine the total number of coils needed.
(d) Determine the solid length.
(e) Determine a static factor of safety based on the yielding of the spring if it is compressed

to its solid length.

10–7 A helical compression spring is made of hard-drawn spring steel wire 0.080-in in diameter and
has an outside diameter of 0.880 in. The ends are plain and ground, and there are 8 total coils.
(a) The spring is wound to a free length, which is the largest possible with a solid-safe prop-

erty. Find this free length.
(b) What is the pitch of this spring?
(c) What force is needed to compress the spring to its solid length?
(d) Estimate the spring rate.
(e ) Will the spring buckle in service?

10–8 The spring of Prob. 10–7 is to be used with a static load of 16.5 lbf. Perform a design assess-
ment represented by Eqs. (10–13) and (10–18) through (10–21) if the spring closed to solid
height.

Listed in the tables are six springs described in customary units and five springs described in
SI units. Investigate these squared-and-ground-ended helical compression springs to see if they
are solid-safe. If not, what is the largest free length to which they can be wound using ns = 1.2?

10–9 to
10–19

bud29281_ch10_517-568.qxd  12/16/2009  7:14 pm  Page 561 pinnacle 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



562 Mechanical Engineering Design

Problem 10–20

0.135 in

2 in

4 3
4 in

10–20 Consider the steel spring in the illustration.
(a) Find the pitch, solid height, and number of active turns.
(b) Find the spring rate. Assume the material is A227 HD steel.
(c) Find the force Fs required to close the spring solid.
(d) Find the shear stress in the spring due to the force Fs .

10–21 A static service music wire helical compression spring is needed to support a 20-lbf load after
being compressed 2 in. The solid height of the spring cannot exceed 1 1

2 in. The free length
must not exceed 4 in. The static factor of safety must equal or exceed 1.2. For robust linearity
use a fractional overrun to closure ξ of 0.15. There are two springs to be designed. Start with
a wire diameter of 0.075 in.
(a) The spring must operate over a 3

4 -in rod. A 0.050-in diametral clearance allowance should
be adequate to avoid interference between the rod and the spring due to out-of-round coils.
Design the spring.

(b) The spring must operate in a 1-in-diameter hole. A 0.050-in diametral clearance allowance
should be adequate to avoid interference between the spring and the hole due to swelling
of the spring diameter as the spring is compressed and out-of-round coils. Design the spring.

10–22 Solve Prob. 10–21 by iterating with an initial value of C = 10. If you have already solved
Prob. 10–21, compare the steps and the results.

Problem
Number d, in OD, in L0, in Nt Material

10–9 0.007 0.038 0.58 38 A228 music wire

10–10 0.014 0.128 0.50 16 B159 phosphor-bronze

10–11 0.050 0.250 0.68 11.2 A313 stainless steel

10–12 0.148 2.12 2.5 5.75 A227 hard-drawn steel

10–13 0.138 0.92 2.86 12 A229 OQ&T steel

10–14 0.185 2.75 7.5 8 A232 chrome-vanadium

d, mm OD, mm L0, mm Nt Material

10–15 0.25 0.95 12.1 38 A313 stainless steel

10–16 1.2 6.5 15.7 10.2 A228 music wire

10–17 3.5 50.6 75.5 5.5 A229 OQ&T spring steel

10–18 3.8 31.4 71.4 12.8 B159 phosphor-bronze

10–19 4.5 69.2 215.6 8.2 A232 chrome-vanadium
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Problem 10–23

Clamping fixture.

Workpiece

Slot

Pin

Spherical washer

Clamp screw

Clamp

Groove

10–23 A holding fixture for a workpiece 37.5 mm thick at the clamp locations is being designed. The
detail of one of the clamps is shown in the figure. A spring is required to drive the clamp
upward when removing the workpiece with a starting force of 45 N. The clamp screw has an
M10 × 1.25 thread. Allow a diametral clearance of 1.25 mm between it and the uncompressed
spring. It is further specified that the free length of the spring should be L0 ≤ 48 mm, the solid
height Ls ≤ 31.5 mm, and the safety factor when closed solid should be ns ≥ 1.2. Starting
with d = 2 mm, design a suitable helical coil compression spring for this fixture. Wire diameters
are available in 0.2-mm increments between 0.2 to 3.2 mm.

10–24 Solve Prob. 10–23 by iterating with an initial value of C = 8. If you have already solved
Prob. 10–23, compare the steps and the results.

10–25 Your instructor will provide you with a stock spring supplier’s catalog, or pages reproduced
from it. Accomplish the task of Prob. 10–23 by selecting an available stock spring. (This is
design by selection.)

10–26 A compression spring is needed to fit over a 0.5-in diameter rod. To allow for some clearance,
the inside diameter of the spring is to be 0.6 in. To ensure a reasonable coil, use a spring index
of 10. The spring is to be used in a machine by compressing it from a free length of 5 in
through a stroke of 3 in to its solid length. The spring should have squared and ground ends,
unpeened, and is to be made from cold-drawn wire.
(a) Determine a suitable wire diameter. 
(b) Determine a suitable total number of coils.
(c) Determine the spring constant.
(d) Determine the static factor of safety when compressed to solid length.
(e) Determine the fatigue factor of safety when repeatedly cycled from free length to solid

length.

10–27 A compression spring is needed to fit within a 1-in diameter hole. To allow for some clear-
ance, the outside diameter of the spring is to be no larger than 0.9 in. To ensure a reasonable
coil, use a spring index of 8. The spring is to be used in a machine by compressing it from a
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free length of 3 in to a solid length of 1 in. The spring should have squared ends, and is
unpeened, and is to be made from music wire.    
(a) Determine a suitable wire diameter. 
(b) Determine a suitable total number of coils.
(c) Determine the spring constant.
(d) Determine the static factor of safety when compressed to solid length.
(e) Determine the fatigue factor of safety when repeatedly cycled from free length to solid

length.

10–28 A helical compression spring is to be cycled between 150 lbf and 300 lbf with a 1-in stroke.
The number of cycles is low, so fatigue is not an issue. The coil must fit in a 2.1-in diameter
hole with a 0.1-in clearance all the way around the spring. Use unpeened music wire with
squared and ground ends. 
(a) Determine a suitable wire diameter, using a spring index of C = 7.

(b) Determine a suitable mean coil diameter.
(c) Determine the necessary spring constant.
(d) Determine a suitable total number of coils.
(e) Determine the necessary free length so that if the spring were compressed to its solid length,

there would be no yielding.

10–29 The figure shows a conical compression helical coil spring where R1 and R2 are the initial and
final coil radii, respectively, d is the diameter of the wire, and Na is the total number of active
coils. The wire cross section primarily transmits a torsional moment, which changes with the
coil radius. Let the coil radius be given by

R = R1 + R2 − R1

2π Na
θ

where θ is in radians. Use Castigliano’s method to estimate the spring rate as

k = d4G
16Na(R2 + R1)

(
R2

2 + R2
1

)

Problem 10–29

F

R1

R2

d

10–30 A helical coil compression spring is needed for food service machinery. The load varies from
a minimum of 4 lbf to a maximum of 18 lbf. The spring rate k is to be 9.5 lbf/in. The outside
diameter of the spring cannot exceed 2 1

2 in. The springmaker has available suitable dies for
drawing 0.080-, 0.0915-, 0.1055-, and 0.1205-in-diameter wire. Using a fatigue design factor
n f of 1.5, and the Gerber-Zimmerli fatigue-failure criterion, design a suitable spring. 
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Problem 10–36

0.162 in

1 1
2 in

1
4
- in R.

1
2
- in R.

10–31 Solve Prob. 10–30 using the Goodman-Zimmerli fatigue-failure criterion.

10–32 Solve Prob. 10–30 using the Sines-Zimmerli fatigue-failure criterion.

10–33 Design the spring of Ex. 10–5 using the Gerber fatigue-failure criterion.

10–34 Solve Prob. 10–33 using the Goodman-Zimmerli fatigue-failure criterion.

10–35 A hard-drawn spring steel extension spring is to be designed to carry a static load of 18 lbf
with an extension of 1

2 in using a design factor of ny = 1.5 in bending. Use full-coil end
hooks with the fullest bend radius of r = D/2 and r2 = 2d . The free length must be less
than 3 in, and the body turns must be fewer than 30. Integer and half-integer body turns
allow end hooks to be placed in the same plane. This adds extra cost and is done only when
necessary.

10–36 The extension spring shown in the figure has full-twisted loop ends. The material is AISI 1065
OQ&T wire. The spring has 84 coils and is close-wound with a preload of 16 lbf.
(a) Find the closed length of the spring.
(b) Find the torsional stress in the spring corresponding to the preload.
(c) Estimate the spring rate.
(d) What load would cause permanent deformation?
(e) What is the spring deflection corresponding to the load found in part d?

10–37 Design an infinite-life helical coil extension spring with full end loops and generous loop-bend
radii for a minimum load of 9 lbf and a maximum load of 18 lbf, with an accompanying stretch
of 1

4 in. The spring is for food-service equipment and must be stainless steel. The outside diam-
eter of the coil cannot exceed 1 in, and the free length cannot exceed 2 1

2 in. Using a fatigue
design factor of n f = 2, complete the design.

10–38 Prove Eq. (10–40). Hint: Using Castigliano’s theorem, determine the deflection due to bending
of an end hook alone as if the hook were fixed at the end connecting it to the body of the
spring. Consider the wire diameter d small as compared to the mean radius of the hook,
R = D/2. Add the deflections of the end hooks to the deflection of the main body to deter-
mine the final spring constant, then equate it to Eq. (10–9).

10–39 The figure shows a finger exerciser used by law-enforcement officers and athletes to strengthen
their grip. It is formed by winding A227 hard-drawn steel wire around a mandrel to obtain
2 1

2 turns when the grip is in the closed position. After winding, the wire is cut to leave the
two legs as handles. The plastic handles are then molded on, the grip is squeezed together,
and a wire clip is placed around the legs to obtain initial “tension” and to space the handles
for the best initial gripping position. The clip is formed like a figure 8 to prevent it from com-
ing off. When the grip is in the closed position, the stress in the spring should not exceed the
permissible stress.
(a) Determine the configuration of the spring before the grip is assembled.
(b) Find the force necessary to close the grip.
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10–40 The rat trap shown in the figure uses two opposite-image torsion springs. The wire has a diam-
eter of 0.081 in, and the outside diameter of the spring in the position shown is 1

2 in. Each
spring has 11 turns. Use of a fish scale revealed a force of about 8 lbf is needed to set the trap.
(a) Find the probabable configuration of the spring prior to assembly.
(b) Find the maximum stress in the spring when the trap is set.

566 Mechanical Engineering Design

Problem 10–39

Dimensions in millimeters.

+

4 dia

Wire clip

Molded
plastic
handle

75

16 R.

112.5
87.5

Problem 10–40

V
IC

T
O

R

A

3 5
16 in 1 1

2 in

10–41 Wire form springs can be made in a variety of shapes. The clip shown operates by applying a
force F. The wire diameter is d, the length of the straight section is l, and Young’s modulus is E.
Consider the effects of bending only, with d � R.
(a) Use Castigliano’s theorem to determine the spring rate k.
(b) Determine the spring rate if the clip is made from 2-mm diameter A227 hard-drawn steel wire

with R = 6 mm and l = 25 mm.
(c) Estimate the value of the load F, which will cause the wire to yield.

Problem 10–41

l

R

R

F F
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10–42 For the wire form shown, the wire diameter is d, the length of the straight section is l, and Young’s
modulus is E. Consider the effects of bending only, with d � R.
(a) Use Castigliano’s method to determine the spring rate k.
(b) Determine the spring rate if the form is made from 0.063-in diameter A313 stainless wire

with R = 5
8 in and l = 1

2 in.
(c) For part (b), estimate the value of the load F, which will cause the wire to yield.

Mechanical Springs 567

Problem 10–42

Problem 10–43

10–43 Figure 10–13b shows a spring of constant thickness and constant stress. A constant stress spring
can be designed where the width b is constant as shown. 
(a) Determine how h varies as a function of x.
(b) Given Young’s modulus E, determine the spring rate k in terms of E, l, b, and ho. Verify the

units of k.

10–44 Using the experience gained with Prob. 10–30, write a computer program that would help in
the design of helical coil compression springs.

10–45 Using the experience gained with Prob. 10–37, write a computer program that would help in
the design of a helical coil extension spring.

F

B
A

l

R

C

F

b

h

l

x

ho
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570 Mechanical Engineering Design

The terms rolling-contact bearing, antifriction bearing, and rolling bearing are all used to
describe that class of bearing in which the main load is transferred through elements in
rolling contact rather than in sliding contact. In a rolling bearing the starting friction is
about twice the running friction, but still it is negligible in comparison with the starting
friction of a sleeve bearing. Load, speed, and the operating viscosity of the lubricant do
affect the frictional characteristics of a rolling bearing. It is probably a mistake to describe
a rolling bearing as “antifriction,” but the term is used generally throughout the industry.

From the mechanical designer’s standpoint, the study of antifriction bearings
differs in several respects when compared with the study of other topics because the
bearings they specify have already been designed. The specialist in antifriction-bearing
design is confronted with the problem of designing a group of elements that compose
a rolling bearing: these elements must be designed to fit into a space whose dimen-
sions are specified; they must be designed to receive a load having certain character-
istics; and finally, these elements must be designed to have a satisfactory life when
operated under the specified conditions. Bearing specialists must therefore consider
such matters as fatigue loading, friction, heat, corrosion resistance, kinematic prob-
lems, material properties, lubrication, machining tolerances, assembly, use, and cost.
From a consideration of all these factors, bearing specialists arrive at a compromise
that, in their judgment, is a good solution to the problem as stated.

We begin with an overview of bearing types; then we note that bearing life cannot
be described in deterministic form. We introduce the invariant, the statistical distribution
of life, which is strongly Weibullian.1 There are some useful deterministic equations
addressing load versus life at constant reliability, and we introduce the catalog rating at
rating life.

The reliability-life relationship involves Weibullian statistics. The load-life-reliability
relationship, combines statistical and deterministic relationships giving the designer a way
to move from the desired load and life to the catalog rating in one equation.

Ball bearings also resist thrust, and a unit of thrust does different damage per rev-
olution than a unit of radial load, so we must find the equivalent pure radial load that
does the same damage as the existing radial and thrust loads. Next, variable loading,
stepwise and continuous, is approached, and the equivalent pure radial load doing the
same damage is quantified. Oscillatory loading is mentioned.

With this preparation we have the tools to consider the selection of ball and cylin-
drical roller bearings. The question of misalignment is quantitatively approached.

Tapered roller bearings have some complications, and our experience so far con-
tributes to understanding them.

Having the tools to find the proper catalog ratings, we make decisions (selec-
tions), we perform a design assessment, and the bearing reliability is quantified. Lubri-
cation and mounting conclude our introduction. Vendors’ manuals should be consulted
for specific details relating to bearings of their manufacture.

11–1 Bearing Types
Bearings are manufactured to take pure radial loads, pure thrust loads, or a combination
of the two kinds of loads. The nomenclature of a ball bearing is illustrated in Fig. 11–1,
which also shows the four essential parts of a bearing. These are the outer ring, the
inner ring, the balls or rolling elements, and the separator. In low-priced bearings, the

1To completely understand the statistical elements of this chapter, the reader is urged to review Chap. 20,
Secs. 20–1 through 20–3.
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Figure 11–1

Nomenclature of a ball bearing.
(General Motors Corp. Used
with permission, GM Media
Archives.)

separator is sometimes omitted, but it has the important function of separating the
elements so that rubbing contact will not occur.

In this section we include a selection from the many types of standardized bear-
ings that are manufactured. Most bearing manufacturers provide engineering manuals
and brochures containing lavish descriptions of the various types available. In the small
space available here, only a meager outline of some of the most common types can be
given. So you should include a survey of bearing manufacturers’ literature in your stud-
ies of this section.

Some of the various types of standardized bearings that are manufactured are
shown in Fig. 11–2. The single-row deep-groove bearing will take radial load as well
as some thrust load. The balls are inserted into the grooves by moving the inner ring

+

(a)
Deep groove

(b)
Filling notch

(c)
Angular contact

(d )
Shielded

( f )
External

self-aligning

(g)
Double row

(h)
Self-aligning

(i)
Thrust

( j )
Self-aligning thrust

+ + +

+
++

+
+

(e)
Sealed

+

Figure 11–2

Various types of ball bearings.
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(a)

(d ) (e) ( f )

(b) (c)

Figure 11–3

Types of roller bearings:
(a) straight roller; (b) spherical
roller, thrust; (c) tapered roller,
thrust; (d) needle; (e) tapered
roller; ( f ) steep-angle tapered
roller. (Courtesy of The Timken

Company.)

to an eccentric position. The balls are separated after loading, and the separator is then
inserted. The use of a filling notch (Fig. 11–2b) in the inner and outer rings enables
a greater number of balls to be inserted, thus increasing the load capacity. The thrust
capacity is decreased, however, because of the bumping of the balls against the edge
of the notch when thrust loads are present. The angular-contact bearing (Fig. 11–2c)
provides a greater thrust capacity.

All these bearings may be obtained with shields on one or both sides. The shields
are not a complete closure but do offer a measure of protection against dirt. A vari-
ety of bearings are manufactured with seals on one or both sides. When the seals are
on both sides, the bearings are lubricated at the factory. Although a sealed bearing is
supposed to be lubricated for life, a method of relubrication is sometimes provided.

Single-row bearings will withstand a small amount of shaft misalignment of deflec-
tion, but where this is severe, self-aligning bearings may be used. Double-row bear-
ings are made in a variety of types and sizes to carry heavier radial and thrust loads.
Sometimes two single-row bearings are used together for the same reason, although a
double-row bearing will generally require fewer parts and occupy less space. The one-
way ball thrust bearings (Fig. 11–2i) are made in many types and sizes.

Some of the large variety of standard roller bearings available are illustrated in
Fig. 11–3. Straight roller bearings (Fig. 11–3a) will carry a greater radial load than
ball bearings of the same size because of the greater contact area. However, they have
the disadvantage of requiring almost perfect geometry of the raceways and rollers. A
slight misalignment will cause the rollers to skew and get out of line. For this reason,
the retainer must be heavy. Straight roller bearings will not, of course, take thrust loads.

Helical rollers are made by winding rectangular material into rollers, after which
they are hardened and ground. Because of the inherent flexibility, they will take con-
siderable misalignment. If necessary, the shaft and housing can be used for raceways
instead of separate inner and outer races. This is especially important if radial space
is limited.
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The spherical-roller thrust bearing (Fig. 11–3b) is useful where heavy loads and
misalignment occur. The spherical elements have the advantage of increasing their
contact area as the load is increased.

Needle bearings (Fig. 11–3d) are very useful where radial space is limited. They
have a high load capacity when separators are used, but may be obtained without sep-
arators. They are furnished both with and without races.

Tapered roller bearings (Fig. 11–3e, f ) combine the advantages of ball and
straight roller bearings, since they can take either radial or thrust loads or any com-
bination of the two, and in addition, they have the high load-carrying capacity of
straight roller bearings. The tapered roller bearing is designed so that all elements in
the roller surface and the raceways intersect at a common point on the bearing axis.

The bearings described here represent only a small portion of the many available
for selection. Many special-purpose bearings are manufactured, and bearings are also
made for particular classes of machinery. Typical of these are:

• Instrument bearings, which are high-precision and are available in stainless steel and
high-temperature materials

• Nonprecision bearings, usually made with no separator and sometimes having split
or stamped sheet-metal races

• Ball bushings, which permit either rotation or sliding motion or both

• Bearings with flexible rollers

11–2 Bearing Life
When the ball or roller of rolling-contact bearings rolls, contact stresses occur on the
inner ring, the rolling element, and on the outer ring. Because the curvature of the
contacting elements in the axial direction is different from that in the radial direction,
the equations for these stresses are more involved than in the Hertz equations pre-
sented in Chap. 3. If a bearing is clean and properly lubricated, is mounted and sealed
against the entrance of dust and dirt, is maintained in this condition, and is operated at
reasonable temperatures, then metal fatigue will be the only cause of failure. Inasmuch
as metal fatigue implies many millions of stress applications successfully endured,
we need a quantitative life measure. Common life measures are

• Number of revolutions of the inner ring (outer ring stationary) until the first tangible
evidence of fatigue

• Number of hours of use at a standard angular speed until the first tangible evidence of
fatigue

The commonly used term is bearing life, which is applied to either of the measures just
mentioned. It is important to realize, as in all fatigue, life as defined above is a sto-
chastic variable and, as such, has both a distribution and associated statistical parame-
ters. The life measure of an individual bearing is defined as the total number of revo-
lutions (or hours at a constant speed) of bearing operation until the failure criterion is
developed. Under ideal conditions, the fatigue failure consists of spalling of the load-
carrying surfaces. The American Bearing Manufacturers Association (ABMA) standard
states that the failure criterion is the first evidence of fatigue. The fatigue criterion used
by the Timken Company laboratories is the spalling or pitting of an area of 0.01 in2.
Timken also observes that the useful life of the bearing may extend considerably beyond
this point. This is an operational definition of fatigue failure in rolling bearings.
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log L

log F

0

Figure 11–4

Typical bearing load-life
log-log curve.

The rating life is a term sanctioned by the ABMA and used by most manufactur-
ers. The rating life of a group of nominally identical ball or roller bearings is defined as
the number of revolutions (or hours at a constant speed) that 90 percent of a group of
bearings will achieve or exceed before the failure criterion develops. The terms minimum
life, L10 life, and B10 life are also used as synonyms for rating life. The rating life is the
10th percentile location of the bearing group’s revolutions-to-failure distribution.

Median life is the 50th percentile life of a group of bearings. The term average
life has been used as a synonym for median life, contributing to confusion. When many
groups of bearings are tested, the median life is between 4 and 5 times the L10 life.

Each bearing manufacturer will choose a specific rating life for which load ratings
of its bearings are reported. The most commonly used rating life is 106 revolutions.
The Timken Company is a well-known exception, rating its bearings at 3 000 hours
at 500 rev/min, which is 90(106) revolutions. These levels of rating life are actually
quite low for today’s bearings, but since rating life is an arbitrary reference point, the
traditional values have generally been maintained.

11–3 Bearing Load Life at Rated Reliability
When nominally identical groups are tested to the life-failure criterion at different
loads, the data are plotted on a graph as depicted in Fig. 11–4 using a log-log trans-
formation. To establish a single point, load F1 and the rating life of group one (L10)1

are the coordinates that are logarithmically transformed. The reliability associated with
this point, and all other points, is 0.90. Thus we gain a glimpse of the load-life func-
tion at 0.90 reliability. Using a regression equation of the form

F L1/a = constant (11–1)

the result of many tests for various kinds of bearings result in

• a = 3 for ball bearings

• a = 10/3 for roller bearings (cylindrical and tapered roller)

A catalog load rating is defined as the radial load that causes 10 percent of a group
of bearings to fail at the bearing manufacturer’s rating life. We shall denote the catalog
load rating as C10. The catalog load rating is often referred to as a Basic Dynamic Load
Rating, or sometimes just Basic Load Rating, if the manufacturer’s rating life is 106 rev-
olutions. The radial load that would be necessary to cause failure at such a low life
would be unrealistically high. Consequently, the Basic Load Rating should be viewed
as a reference value, and not as an actual load to be achieved by a bearing.
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Rolling-Contact Bearings 575

In selecting a bearing for a given application, it is necessary to relate the desired
load and life requirements to the published catalog load rating corresponding to the
catalog rating life. From Eq. (11–1) we can write 

F1L1/a
1 = F2L1/a

2 (11–2)

where the subscripts 1 and 2 can refer to any set of load and life conditions. Letting
F1 and L1 correlate with the catalog load rating and rating life, and F2 and L2 corre-
late with desired load and life for the application, we can express Eq. (11–2) as

FR L1/a
R = FD L1/a

D (a)

where the units of LR and LD are revolutions, and the subscripts R and D stand for
Rated and Desired.

It is sometimes convenient to express the life in hours at a given speed. Accord-
ingly, any life L in revolutions can be expressed as

L = 60 �n (b)

where � is in hours, n is in rev/min, and 60 min/h is the appropriate conversion factor.
Incorporating Eq. (b) into Eq. (a),

FR(�RnR60)1/a = FD(�DnD60)1/a (c)

catalog rating, lbf or kN desired speed, rev/min

rating life in hours desired life, hours

rating speed, rev/min desired radial load, lbf or kN

Solving Eq. (c) for FR, and noting that it is simply an alternate notation for the cat-
alog load rating C10, we obtain an expression for a catalog load rating as a function
of the desired load, desired life, and catalog rating life.

C10 = FR = FD

(
L D

L R

)1/a

= FD

(
�DnD60

�RnR60

)1/a

(11–3)

It is sometimes convenient to define xD = L D/L R as a dimensionless multiple of
rating life.

EXAMPLE 11–1 Consider SKF, which rates its bearings for 1 million revolutions. If you desire a life
of 5000 h at 1725 rev/min with a load of 400 lbf with a reliability of 90 percent, for
which catalog rating would you search in an SKF catalog?

Solution The rating life is L10 = L R = �RnR60 = 106 revolutions. From Eq. (11–3),

Answer C10 = FD

(
�DnD60

�RnR60

)1/a

= 400

[
5000(1725)60

106

]1/3

= 3211 lbf = 14.3 kN
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11–4 Bearing Survival: Reliability versus Life
At constant load, the life measure distribution is right skewed. Candidates for a 
distributional curve fit include lognormal and Weibull. The Weibull is by far the most
popular, largely because of its ability to adjust to varying amounts of skewness. If the
life measure is expressed in dimensionless form as x = L/L10, then the reliability can
be expressed as [see Eq. (20–24), p. 990]

R = exp

[
−

(
x − x0

θ − x0

)b
]

(11–4)

where R = reliability

x = life measure dimensionless variate, L/L10

x0 = guaranteed, or “minimum,’’ value of the variate

θ = characteristic parameter corresponding to the 63.2121 percentile
value of the variate

b = shape parameter that controls the skewness

Because there are three distributional parameters, x0, θ , and b, the Weibull has a robust
ability to conform to a data string. Also, in Eq. (11–4) an explicit expression for the
cumulative distribution function is possible:

F = 1 − R = 1 − exp

[
−

(
x − x0

θ − x0

)b
]

(11–5)

EXAMPLE 11–2 Construct the distributional properties of a 02-30 millimeter deep-groove ball bearing
if the Weibull parameters are x0 = 0.02, (θ − x0) = 4.439, and b = 1.483. Find the
mean, median, 10th percentile life, standard deviation, and coefficient of variation.

Solution From Eq. (20–28), p. 991, the mean dimensionless life μx is

Answer μx = x0 + (θ − x0)�

(
1 + 1

b

)
= 0.02 + 4.439�

(
1 + 1

1.483

)
= 4.033

The median dimensionless life is, from Eq. (20–26) where R = 0.5,

Answer x0.50 = x0 + (θ − x0)

(
ln

1

R

)1/b

= 0.02 + 4.439

(
ln

1

0.5

)1/1.483

= 3.487

The 10th percentile value of the dimensionless life x is

Answer x0.10 = 0.02 + 4.439

(
ln

1

0.90

)1/1.483
.= 1 (as it should be)
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The standard deviation of the dimensionless life is given by Eq. (20–29):

Answer σ̂x = (θ − x0)

[
�

(
1 + 2

b

)
− �2

(
1 + 1

b

)]1/2

= 4.439

[
�

(
1 + 2

1.483

)
− �2

(
1 + 1

1.483

)]1/2

= 2.753

The coefficient of variation of the dimensionless life is

Answer Cx = σ̂x

μx
= 2.753

4.033
= 0.683

11–5 Relating Load, Life, and Reliability
This is the designer’s problem. The desired load is not the manufacturer’s test load
or catalog entry. The desired speed is different from the vendor’s test speed, and the
reliability expectation is typically much higher than the 0.90 accompanying the catalog
entry. Figure 11–5 shows the situation. The catalog information is plotted as point A,
whose coordinates are (the logs of) C10 and x10 = L10/L10 = 1, a point on the 0.90
reliability contour. The design point is at D, with the coordinates (the logs of) FD

and xD , a point that is on the R = RD reliability contour. The designer must move
from point D to point A via point B as follows. Along a constant reliability contour
(B D), Eq. (11–2) applies:

FB x1/a
B = FDx1/a

D

from which

FB = FD

(
xD

xB

)1/a

(a)

Along a constant load line (AB), Eq. (11–4) applies:

RD = exp

[
−

(
xB − x0

θ − x0

)b
]

log x

log F

C10

FD

xDx10

Dimensionless life measure x

AB

Rated line

Design line

D

R = 0.90

R = R
D

Figure 11–5

Constant reliability contours.
Point A represents the catalog
rating C10 at x = L/L10 = 1.
Point B is on the target
reliability design line RD , 
with a load of C10. Point D is a
point on the desired reliability
contour exhibiting the design
life xD = L D/L10 at the
design load FD.
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Solving for xB gives

xB = x0 + (θ − x0)

(
ln

1

RD

)1/b

Now substitute this in Eq. (a) to obtain

FB = FD

(
xD

xB

)1/a

= FD

[
xD

x0 + (θ − x0)(ln 1/RD)1/b

]1/a

Noting that FB = C10, and including an application factor af with the design load,

C10 = af FD

[
xD

x0 + (θ − x0)(ln 1/RD)1/b

]1/a

(11–6)

The application factor serves as a factor of safety to increase the design load to take
into account overload, dynamic loading, and uncertainty. Typical load application fac-
tors for certain types of applications will be discussed shortly.

Eq. (11–6) can be simplified slightly for calculator entry by noting that

ln
1

RD
= ln

1

1 − pf
= ln(1 + pf + · · ·) .= pf = 1 − RD

where pf is the probability for failure. Equation (11–6) can be written as

C10
.= af FD

[
xD

x0 + (θ − x0)(1 − RD)1/b

]1/a

R ≥ 0.90 (11–7)

Either Eq. (11–6) or Eq. (11–7) may be used to convert from a design situation with
a desired load, life, and reliability to a catalog load rating based on a rating life at
90 percent reliability. Note that when RD = 0.90, the denominator is equal to one,
and the equation reduces to Eq. (11–3). The Weibull parameters are usually provided
in the manufacturer’s catalog. Typical values are given on p. 608 at the beginning of
the end-of-chapter problems.

EXAMPLE 11–3 The design load on a ball bearing is 413 lbf and an application factor of 1.2 is appro-
priate. The speed of the shaft is to be 300 rev/min, the life to be 30 kh with a reliability
of 0.99. What is the C10 catalog entry to be sought (or exceeded) when searching for a
deep-groove bearing in a manufacturer’s catalog on the basis of 106 revolutions for rat-
ing life? The Weibull parameters are x0 = 0.02, (θ − x0) = 4.439, and b = 1.483.

Solution xD = L D

L R
= 60�DnD

L10
= 60(30 000)300

106
= 540

Thus, the design life is 540 times the L10 life. For a ball bearing, a = 3. Then, from
Eq. (11–7),

Answer C10 = (1.2)(413)

[
540

0.02 + 4.439(1 − 0.99)1/1.483

]1/3

= 6696 lbf
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Shafts generally have two bearings. Often these bearings are different. If the bear-
ing reliability of the shaft with its pair of bearings is to be R, then R is related to the
individual bearing reliabilities RA and RB by

R = RA RB

First, we observe that if the product RA RB equals R, then, in general, RA and RB are
both greater than R. Since the failure of either or both of the bearings results in the
shutdown of the shaft, then A or B or both can create a failure. Second, in sizing bear-
ings one can begin by making RA and RB equal to the square root of the reliability
goal, 

√
R. In Ex. 11–3, if the bearing was one of a pair, the reliability goal would be√

0.99, or 0.995. The bearings selected are discrete in their reliability property in your
problem, so the selection procedure “rounds up,” and the overall reliability exceeds
the goal R. Third, it may be possible, if RA >

√
R, to round down on B yet have the

product RA RB still exceed the goal R.

11–6 Combined Radial and Thrust Loading
A ball bearing is capable of resisting radial loading and a thrust loading. Furthermore,
these can be combined. Consider Fa and Fr to be the axial thrust and radial loads,
respectively, and Fe to be the equivalent radial load that does the same damage as the
combined radial and thrust loads together. A rotation factor V is defined such
that V = 1 when the inner ring rotates and V = 1.2 when the outer ring rotates. Two
dimensionless groups can now be formed: Fe/V Fr and Fa/V Fr . When these
two dimensionless groups are plotted as in Fig. 11–6, the data fall in a gentle curve that
is well approximated by two straight-line segments. The abscissa e is defined by the
intersection of the two lines. The equations for the two lines shown in Fig. 11–6 are

Fe

V Fr
= 1 when

Fa

V Fr
≤ e (11–8a)

Fe

V Fr
= X + Y

Fa

V Fr
when

Fa

V Fr
> e (11–8b)

Fe

VFr

0 e

Fa

VFr

1

Slope Y

X

Figure 11–6

The relationship of
dimensionless group Fe/(VFr)
and Fa/(VFr) and the straight-
line segments representing
the data.
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Fa/(VFr) � e Fa/(VFr) � e

Fa/C0 e X1 Y1 X2 Y2

0.014* 0.19 1.00 0 0.56 2.30

0.021 0.21 1.00 0 0.56 2.15

0.028 0.22 1.00 0 0.56 1.99

0.042 0.24 1.00 0 0.56 1.85

0.056 0.26 1.00 0 0.56 1.71

0.070 0.27 1.00 0 0.56 1.63

0.084 0.28 1.00 0 0.56 1.55

0.110 0.30 1.00 0 0.56 1.45

0.17 0.34 1.00 0 0.56 1.31

0.28 0.38 1.00 0 0.56 1.15

0.42 0.42 1.00 0 0.56 1.04

0.56 0.44 1.00 0 0.56 1.00

∗Use 0.014 if Fa/C0 � 0.014.

Table 11–1

Equivalent Radial Load

Factors for Ball Bearings

where, as shown, X is the ordinate intercept and Y is the slope of the line for
Fa/V Fr > e. It is common to express Eqs. (11–8a) and (11–8b) as a single equation,

Fe = Xi V Fr + Yi Fa (11–9)

where i = 1 when Fa/V Fr ≤ e and i = 2 when Fa/V Fr > e. The X and Y factors
depend upon the geometry and construction of the specific bearing. Table 11–1 lists
representative values of X1, Y1, X2, and Y2 as a function of e, which in turn is a func-
tion of Fa/C0, where C0 is the basic static load rating. The basic static load rating
is the load that will produce a total permanent deformation in the raceway and rolling
element at any contact point of 0.0001 times the diameter of the rolling element. The
basic static load rating is typically tabulated, along with the basic dynamic load rat-
ing C10, in bearing manufacturers’ publications. See Table 11–2, for example.

In these equations, the rotation factor V is intended to correct for the rotating-
ring conditions. The factor of 1.2 for outer-ring rotation is simply an acknowledgment
that the fatigue life is reduced under these conditions. Self-aligning bearings are an
exception: they have V = 1 for rotation of either ring.

Since straight or cylindrical roller bearings will take no axial load, or very little,
the Y factor is always zero.

The ABMA has established standard boundary dimensions for bearings, which
define the bearing bore, the outside diameter (OD), the width, and the fillet sizes on
the shaft and housing shoulders. The basic plan covers all ball and straight roller bear-
ings in the metric sizes. The plan is quite flexible in that, for a given bore, there is
an assortment of widths and outside diameters. Furthermore, the outside diameters
selected are such that, for a particular outside diameter, one can usually find a variety
of bearings having different bores and widths.

This basic ABMA plan is illustrated in Fig. 11–7. The bearings are identified by a
two-digit number called the dimension-series code. The first number in the code is from
the width series, 0, 1, 2, 3, 4, 5, and 6. The second number is from the diameter series
(outside), 8, 9, 0, 1, 2, 3, and 4. Figure 11–7 shows the variety of bearings that may be
obtained with a particular bore. Since the dimension-series code does not reveal the
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Fillet Shoulder Load Ratings, kN
Bore, OD, Width, Radius, Diameter, mm Deep Groove Angular Contact
mm mm mm mm dS dH C10 C0 C10 C0

10 30 9 0.6 12.5 27 5.07 2.24 4.94 2.12

12 32 10 0.6 14.5 28 6.89 3.10 7.02 3.05

15 35 11 0.6 17.5 31 7.80 3.55 8.06 3.65

17 40 12 0.6 19.5 34 9.56 4.50 9.95 4.75

20 47 14 1.0 25 41 12.7 6.20 13.3 6.55

25 52 15 1.0 30 47 14.0 6.95 14.8 7.65

30 62 16 1.0 35 55 19.5 10.0 20.3 11.0

35 72 17 1.0 41 65 25.5 13.7 27.0 15.0

40 80 18 1.0 46 72 30.7 16.6 31.9 18.6

45 85 19 1.0 52 77 33.2 18.6 35.8 21.2

50 90 20 1.0 56 82 35.1 19.6 37.7 22.8

55 100 21 1.5 63 90 43.6 25.0 46.2 28.5

60 110 22 1.5 70 99 47.5 28.0 55.9 35.5

65 120 23 1.5 74 109 55.9 34.0 63.7 41.5

70 125 24 1.5 79 114 61.8 37.5 68.9 45.5

75 130 25 1.5 86 119 66.3 40.5 71.5 49.0

80 140 26 2.0 93 127 70.2 45.0 80.6 55.0

85 150 28 2.0 99 136 83.2 53.0 90.4 63.0

90 160 30 2.0 104 146 95.6 62.0 106 73.5

95 170 32 2.0 110 156 108 69.5 121 85.0

Table 11–2

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

dimensions directly, it is necessary to resort to tabulations. The 02 series is used here as
an example of what is available. See Table 11–2.

The housing and shaft shoulder diameters listed in the tables should be used
whenever possible to secure adequate support for the bearing and to resist the maximum
thrust loads (Fig. 11–8). Table 11–3 lists the dimensions and load ratings of some
straight roller bearings.

0
1
2

3

4

Diameter
series

Dimension
series

Width series

Bore

OD

0 1 2 3

00 10 12 13 20 30 31 32 3322 2302 03 04

r

r

Figure 11–7

The basic ABMA plan for
boundary dimensions. These
apply to ball bearings, straight
roller bearings, and spherical
roller bearings, but not to inch-
series ball bearings or tapered
roller bearings. The contour
of the corner is not specified.
It may be rounded or chamfered,
but it must be small enough to
clear the fillet radius specified
in the standards.
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02-Series 03-Series
Bore, OD, Width, Load Rating, kN OD, Width, Load Rating, kN
mm mm mm C10 C0 mm mm C10 C0

25 52 15 16.8 8.8 62 17 28.6 15.0

30 62 16 22.4 12.0 72 19 36.9 20.0

35 72 17 31.9 17.6 80 21 44.6 27.1

40 80 18 41.8 24.0 90 23 56.1 32.5

45 85 19 44.0 25.5 100 25 72.1 45.4

50 90 20 45.7 27.5 110 27 88.0 52.0

55 100 21 56.1 34.0 120 29 102 67.2

60 110 22 64.4 43.1 130 31 123 76.5

65 120 23 76.5 51.2 140 33 138 85.0

70 125 24 79.2 51.2 150 35 151 102

75 130 25 93.1 63.2 160 37 183 125

80 140 26 106 69.4 170 39 190 125

85 150 28 119 78.3 180 41 212 149

90 160 30 142 100 190 43 242 160

95 170 32 165 112 200 45 264 189

100 180 34 183 125 215 47 303 220

110 200 38 229 167 240 50 391 304

120 215 40 260 183 260 55 457 340

130 230 40 270 193 280 58 539 408

140 250 42 319 240 300 62 682 454

150 270 45 446 260 320 65 781 502

Table 11–3

Dimensions and Basic Load Ratings for Cylindrical Roller Bearings

dS
dH

Figure 11–8

Shaft and housing shoulder
diameters dS and dH should
be adequate to ensure good
bearing support.
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Type of Application Life, kh

Instruments and apparatus for infrequent use Up to 0.5

Aircraft engines 0.5–2

Machines for short or intermittent operation where service
interruption is of minor importance 4–8

Machines for intermittent service where reliable operation
is of great importance 8–14

Machines for 8-h service that are not always fully utilized 14–20

Machines for 8-h service that are fully utilized 20–30

Machines for continuous 24-h service 50–60

Machines for continuous 24-h service where reliability is
of extreme importance 100–200

Table 11–4

Bearing-Life

Recommendations

for Various Classes

of Machinery

To assist the designer in the selection of bearings, most of the manufacturers’
handbooks contain data on bearing life for many classes of machinery, as well as
information on load-application factors. Such information has been accumulated the
hard way, that is, by experience, and the beginner designer should utilize this
information until he or she gains enough experience to know when deviations are pos-
sible. Table 11–4 contains recommendations on bearing life for some classes of
machinery. The load-application factors in Table 11–5 serve the same purpose as fac-
tors of safety; use them to increase the equivalent load before selecting a bearing.

Type of Application Load Factor

Precision gearing 1.0–1.1

Commercial gearing 1.1–1.3

Applications with poor bearing seals 1.2

Machinery with no impact 1.0–1.2

Machinery with light impact 1.2–1.5

Machinery with moderate impact 1.5–3.0

Table 11–5

Load-Application Factors

EXAMPLE 11–4 An SKF 6210 angular-contact ball bearing has an axial load Fa of 400 lbf and a radial
load Fr of 500 lbf applied with the outer ring stationary. The basic static load rating
C0 is 4450 lbf and the basic load rating C10 is 7900 lbf. Estimate the �10 life at a
speed of 720 rev/min.

Solution V = 1 and Fa/C0 = 400/4450 = 0.090. Interpolate for e in Table 11–1:

Fa/C0 e

0.084 0.28

0.090 e from which e = 0.285

0.110 0.30
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We now know how to combine a steady radial load and a steady thrust load into
an equivalent steady radial load Fe that inflicts the same damage per revolution as the
radial–thrust combination.

11–7 Variable Loading
Bearing loads are frequently variable and occur in some identifiable patterns:

• Piecewise constant loading in a cyclic pattern

• Continuously variable loading in a repeatable cyclic pattern

• Random variation

Equation (11–1) can be written as

Fa L = constant = K (a)

Note that F may already be an equivalent steady radial load for a radial–thrust load
combination. Figure 11–9 is a plot of Fa as ordinate and L as abscissa for Eq. (a). If

Fa/(V Fr ) = 400/[(1)500] = 0.8 > 0.285. Thus, interpolate for Y2:

From Eq. (11–9),

Fe = X2V Fr + Y2 Fa = 0.56(1)500 + 1.527(400) = 890.8 lbf

With �D = �10 and FD = Fe, solving Eq. (11–3) for �10 gives

Answer �10 = 60�RnR

60nD

(
C10

Fe

)a

= 106

60(720)

(
7900

890.8

)3

= 16 150 h

Fa/C0 Y2

0.084 1.55

0.090 Y2 from which Y2 = 1.527

0.110 1.45

L1 L2 L0

F 2
a

F1
a

F a

A B

Figure 11–9

Plot of Fa as ordinate and L as
abscissa for Fa L = constant.
The linear damage hypothesis
says that in the case of load F1,
the area under the curve from
L = 0 to L = LA is a measure
of the damage D = Fa

1 LA . The
complete damage to failure is
measured by Ca

10 L B .
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a load level of F1 is selected and run to the failure criterion, then the area under the
F1-L1 trace is numerically equal to K. The same is true for a load level F2; that is,
the area under the F2-L2 trace is numerically equal to K. The linear damage theory
says that in the case of load level F1, the area from L = 0 to L = L A does damage
measured by Fa

1 L A = D.
Consider the piecewise continuous cycle depicted in Fig. 11–10. The loads Fei

are equivalent steady radial loads for combined radial–thrust loads. The damage done
by loads Fe1, Fe2, and Fe3 is

D = Fa
e1l1 + Fa

e2l2 + Fa
e3l3 (b)

where li is the number of revolutions at life Li . The equivalent steady load Feq when
run for l1 + l2 + l3 revolutions does the same damage D. Thus

D = Fa
eq(l1 + l2 + l3) (c)

Equating Eqs. (b) and (c), and solving for Feq, we get

Feq =
[

Fa
e1l1 + Fa

e2l2 + Fa
e3l3

l1 + l2 + l3

]1/a

=
[∑

fi Fa
ei

]1/a
(11–10)

where fi is the fraction of revolution run up under load Fei . Since li can be expressed
as ni ti , where ni is the rotational speed at load Fei and ti is the duration of that speed,
then it follows that

Feq =
[∑

ni ti Fa
ei∑

ni ti

]1/a

(11–11)

The character of the individual loads can change, so an application factor (af ) can be
prefixed to each Fei as (af i Fei )

a ; then Eq. (11–10) can be written

Feq =
[∑

fi (af i Fei )
a
]1/a

Leq = K

Fa
eq

(11–12)

Fa

Fe2
a

Fe1
a

l1 l2 l3

l

F a
eq

Fe3
a

Figure 11–10

A three-part piecewise-
continuous periodic loading
cycle involving loads Fe1, Fe2,
and Fe3. Feq is the equivalent
steady load inflicting the 
same damage when run for
l1 + l2 + l3 revolutions, doing
the same damage D per period.
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586 Mechanical Engineering Design

EXAMPLE 11–5 A ball bearing is run at four piecewise continuous steady loads as shown in the fol-
lowing table. Columns (1), (2), and (5) to (8) are given.

Columns 1 and 2 are multiplied to obtain column 3. The column 3 entry is divided
by the sum of column 3, 2600, to give column 4. Columns 5, 6, and 7 are the radial,
axial, and equivalent loads respectively. Column 8 is the appropriate application fac-
tor. Column 9 is the product of columns 7 and 8.

Solution From Eq. (11–10), with a = 3, the equivalent radial load Fe is

Answer Fe = [
0.077(873)3 + 0.115(795)3 + 0.346(966)3 + 0.462(835)3

]1/3 = 884 lbf

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Product, Turns

Time Speed, Column Fraction, Fri, Fai, Fei, afi Fei,

Fraction rev/min (1) � (2) (3)/
∑

(3) lbf lbf lbf afi lbf

0.1 2000 200 0.077 600 300 794 1.10 873

0.1 3000 300 0.115 300 300 626 1.25 795

0.3 3000 900 0.346 750 300 878 1.10 966

0.5 2400 1200 0.462 375 300 668 1.25 835

2600 1.000

Sometimes the question after several levels of loading is: How much life is left
if the next level of stress is held until failure? Failure occurs under the linear damage
hypothesis when the damage D equals the constant K = Fa L . Taking the first form
of Eq. (11–10), we write

Fa
eqLeq = Fa

e1l1 + Fa
e2l2 + Fa

e3l3

and note that

K = Fa
e1L1 = Fa

e2L2 = Fa
e3L3

and K also equals

K = Fa
e1l1 + Fa

e2l2 + Fa
e3l3 = K

L1
l1 + K

L2
l2 + K

L3
l3 = K

∑ li

Li

From the outer parts of the preceding equation we obtain∑ li

Li
= 1 (11–13)

This equation was advanced by Palmgren in 1924, and again by Miner in 1945. See
Eq. (6–58), p. 323.

The second kind of load variation mentioned is continuous, periodic variation,
depicted by Fig. 11–11. The differential damage done by Fa during rotation through
the angle dθ is

d D = Fadθ
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Fa

Fa

0 �

d�
�

Figure 11–11

A continuous load variation 
of a cyclic nature whose 
period is φ.

An example of this would be a cam whose bearings rotate with the cam through the
angle dθ . The total damage during a complete cam rotation is given by

D =
∫

d D =
∫ φ

0
Fadθ = Fa

eqφ

from which, solving for the equivalent load, we obtain

Feq =
[

1

φ

∫ φ

0
Fadθ

]1/a

Leq = K

Fa
eq

(11–14)

The value of φ is often 2π , although other values occur. Numerical integration is often
useful to carry out the indicated integration, particularly when a is not an integer and
trigonometric functions are involved. We have now learned how to find the steady
equivalent load that does the same damage as a continuously varying cyclic load.

EXAMPLE 11–6 The operation of a particular rotary pump involves a power demand of P = P̄ + A′

sin θ where P̄ is the average power. The bearings feel the same variation as F =
F̄ + A sin θ . Develop an application factor af for this application of ball bearings.

Solution From Eq. (11–14), with a = 3,

Feq =
(

1

2π

∫ 2π

0
Fadθ

)1/a

=
(

1

2π

∫ 2π

0
(F̄ + A sin θ)3dθ

)1/3

=
[

1

2π

(∫ 2π

0
F̄3dθ + 3F̄2 A

∫ 2π

0
sin θ dθ + 3F̄ A2

∫ 2π

0
sin2 θdθ

+ A3
∫ 2π

0
sin3 θ dθ

)]1/3

Feq =
[

1

2π
(2π F̄3 + 0 + 3π F̄ A2 + 0)

]1/3

= F̄

[
1 + 3

2

(
A

F̄

)2
]1/3

In terms of F̄ , the application factor is

Answer af =
[

1 + 3

2

(
A

F̄

)2
]1/3
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We can present the result in tabular form:

A/F
–

af

0 1

0.2 1.02

0.4 1.07

0.6 1.15

0.8 1.25

1.0 1.36 

EXAMPLE 11–7 The second shaft on a parallel-shaft 25-hp foundry crane speed reducer contains a
helical gear with a pitch diameter of 8.08 in. Helical gears transmit components of
force in the tangential, radial, and axial directions (see Chap. 13). The components of
the gear force transmitted to the second shaft are shown in Fig. 11–12, at point A.
The bearing reactions at C and D, assuming simple-supports, are also shown. A ball
bearing is to be selected for location C to accept the thrust, and a cylindrical roller
bearing is to be utilized at location D. The life goal of the speed reducer is 10 kh, with
a reliability factor for the ensemble of all four bearings (both shafts) to equal or exceed
0.96 for the Weibull parameters of Ex. 11–3. The application factor is to be 1.2.

11–8 Selection of Ball and Cylindrical Roller Bearings
We have enough information concerning the loading of rolling-contact ball and roller
bearings to develop the steady equivalent radial load that will do as much damage to
the bearing as the existing loading. Now let’s put it to work.

588 Mechanical Engineering Design

4.04 in

297.5

106.6

D

A

B

3 in

3 in
y

z

C

356.6

344

x

297.5

250

344

595

Figure 11–12

Forces in pounds applied to
the second shaft of the 
helical gear speed reducer 
of Ex. 11–7.
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Rolling-Contact Bearings 589

(a) Select the roller bearing for location D.
(b) Select the ball bearing (angular contact) for location C, assuming the inner ring
rotates.

Solution The torque transmitted is T = 595(4.04) = 2404 lbf · in. The speed at the rated horse-
power, given by Eq. (3–42), p. 102, is

nD = 63 025H

T
= 63 025(25)

2404
= 655.4 rev/min

The radial load at D is 
√

106.62 + 297.52 = 316.0 lbf, and the radial load at C is√
356.62 + 297.52 = 464.4 lbf. The individual bearing reliabilities, if equal, must be

at least 4
√

0.96 = 0.98985
.= 0.99. The dimensionless design life for both bearings is

xD = L D

L10
= 60�DnD

L10
= 60(10 000)655.4

106
= 393.2

(a) From Eq. (11–7), the Weibull parameters of Ex. 11–3, an application factor of 1.2,
and a = 10/3 for the roller bearing at D, the catalog rating should be equal to or
greater than

C10 = af FD

[
xD

x0 + (θ − x0)(1 − RD)1/b

]1/a

= 1.2(316.0)

[
393.2

0.02 + 4.439(1 − 0.99)1/1.483

]3/10

= 3591 lbf = 16.0 kN

Answer The absence of a thrust component makes the selection procedure simple. Choose a
02-25 mm series, or a 03-25 mm series cylindrical roller bearing from Table 11–3.

(b) The ball bearing at C involves a thrust component. This selection procedure
requires an iterative procedure. Assuming Fa/(V Fr ) > e, 

1 Choose Y2 from Table 11–1.
2 Find C10.
3 Tentatively identify a suitable bearing from Table 11–2, note C0.
4 Using Fa/C0 enter Table 11–1 to obtain a new value of Y2.
5 Find C10.
6 If the same bearing is obtained, stop.
7 If not, take next bearing and go to step 4.

As a first approximation, take the middle entry from Table 11–1:

X2 = 0.56 Y2 = 1.63.

From Eq. (11–9), with V = 1,

Fe = X V Fr + Y Fa = 0.56(1)(464.4) + 1.63(344) = 821 lbf = 3.65 kN

From Eq. (11–7), with a = 3,

C10 = 1.2(3.65)

[
393.2

0.02 + 4.439(1 − 0.99)1/1.483

]1/3

= 53.2 kN

From Table 11–2, angular-contact bearing 02-60 mm has C10 = 55.9 kN. C0 is 35.5 kN.
Step 4 becomes, with Fa in kN,

Fa

C0
= 344(4.45)10−3

35.5
= 0.0431
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590 Mechanical Engineering Design

which makes e from Table 11–1 approximately 0.24. Now Fa/[V Fr ] = 344/[(1)

464.4] = 0.74, which is greater than 0.24, so we find Y2 by interpolation:

From Eq. (11–9),

Fe = 0.56(1)(464.4) + 1.84(344) = 893 lbf = 3.97 kN

The prior calculation for C10 changes only in Fe, so

C10 = 3.97

3.65
53.2 = 57.9 kN

From Table 11–2 an angular contact bearing 02-65 mm has C10 = 63.7 kN and C0

of 41.5 kN. Again,
Fa

C0
= 344(4.45)10−3

41.5
= 0.0369

making e approximately 0.23. Now from before, Fa/V Fr = 0.74, which is greater
than 0.23. We find Y2 again by interpolation:

From Eq. (11–9),

Fe = 0.56(1)(464.4) + 1.90(344) = 914 lbf = 4.07 kN

The prior calculation for C10 changes only in Fe, so

C10 = 4.07

3.65
53.2 = 59.3 kN

Answer From Table 11–2 an angular-contact 02-65 mm is still selected, so the iteration is complete.

Fa/C0 Y2

0.028 1.99

0.0369 Y2 from which Y2 � 1.90

0.042 1.85

Fa/C0 Y2

0.042 1.85

0.043 Y2 from which Y2 � 1.84

0.056 1.71 

11–9 Selection of Tapered Roller Bearings
Tapered roller bearings have a number of features that make them complicated. As we
address the differences between tapered roller and ball and cylindrical roller bearings,
note that the underlying fundamentals are the same, but that there are differences in
detail. Moreover, bearing and cup combinations are not necessarily priced in propor-
tion to capacity. Any catalog displays a mix of high-production, low-production, and
successful special-order designs. Bearing suppliers have computer programs that will
take your problem descriptions, give intermediate design assessment information, and
list a number of satisfactory cup-and-cone combinations in order of decreasing cost.
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Rolling-Contact Bearings 591

Company sales offices provide access to comprehensive engineering services to help
designers select and apply their bearings. At a large original equipment manufacturer’s
plant, there may be a resident bearing company representative.

Bearing suppliers provide a wealth of engineering information and detail in their cat-
alogs and engineering guides, both in print and online. It is strongly recommended that
the designer become familiar with the specifics of the supplier. It will usually utilize a
similar approach as presented here, but may include various modifying factors for such
things as temperature and lubrication. Many of the suppliers will provide online software
tools to aid in bearing selection. The engineer will always benefit from a general under-
standing of the theory utilized in such software tools. Our goal here is to introduce the
vocabulary, show congruence to fundamentals that were learned earlier, offer examples,
and develop confidence. Finally, problems should reinforce the learning experience.

The four components of a tapered roller bearing assembly are the

• Cone (inner ring)

• Cup (outer ring)

• Tapered rollers

• Cage (spacer-retainer)

The assembled bearing consists of two separable parts: (1) the cone assembly: the cone,
the rollers, and the cage; and (2) the cup. Bearings can be made as single-row, two-
row, four-row, and thrust-bearing assemblies. Additionally, auxiliary components such
as spacers and closures can be used. Figure 11–13 shows the nomenclature of a tapered
roller bearing, and the point G through which radial and axial components of load act.

A tapered roller bearing can carry both radial and thrust (axial) loads, or any com-
bination of the two. However, even when an external thrust load is not present, the radial

C
up

 o
ut

si
de

 d
ia

m
et

er
 (

O
D

) 
D

C
on

e 
bo

re
 d

Cup back
face radius r

Cup back face

Cup front
face radius

Cup front face

Cage

Cone front face Cone back
face radius R

Standout F

Cone front
face rib

Cone front
face radius

Cone back face

Cone back face rib

Bearing width T

Cone length B

Cup
length C

G

a

Roller

Cup

Cone

Figure 11–13

Nomenclature of a tapered
roller bearing. Point G is the
location of the effective load
center; use this point to
estimate the radial bearing
load. (Courtesy of The Timken
Company.)
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Ac

Ao

Ac

a aae

ae

ag

ag

90°

Bearing A

Direct mounting

Indirect mounting

Bearing B

Bc

Bc

Bo

(a)

(b)

Figure 11–14

Comparison of mounting
stability between indirect and
direct mountings. (Courtesy of
The Timken Company.)

load will induce a thrust reaction within the bearing because of the taper. To avoid the
separation of the races and the rollers, this thrust must be resisted by an equal and oppo-
site force. One way of generating this force is to always use at least two tapered roller
bearings on a shaft. Two bearings can be mounted with the cone backs facing each other,
in a configuration called direct mounting, or with the cone fronts facing each other, in
what is called indirect mounting.

Figure 11–14 shows a pair of tapered roller bearings mounted directly (b) and
indirectly (a) with the bearing reaction locations A0 and B0 shown for the shaft. For
the shaft as a beam, the span is ae, the effective spread. It is through points A0 and
B0 that the radial loads act perpendicular to the shaft axis, and the thrust loads act
along the shaft axis. The geometric spread ag for the direct mounting is greater than
for the indirect mounting. With indirect mounting the bearings are closer together
compared to the direct mounting; however, the system stability is the same (ae is the
same in both cases). Thus direct and indirect mounting involve space and compact-
ness needed or desired, but with the same system stability.

In addition to the usual ratings and geometry information, catalog data for tapered
roller bearings will include the location of the effective force center. Two sample
pages from a Timken catalog are shown in Fig. 11–15.

A radial load on a tapered roller bearing will induce a thrust reaction. The load
zone includes about half the rollers and subtends an angle of approximately 180◦. Using
the symbol Fi for the induced thrust load from a radial load with a 180◦ load zone,
Timken provides the equation

Fi = 0.47Fr

K
(11–15)

where the K factor is geometry-specific, and is the ratio of the radial load rating to
the thrust load rating. The K factor can be first approximated with 1.5 for a radial
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SINGLE-ROW STRAIGHT BORE

T C B

D

Db

d
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Da
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2.0472 

52.000 
2.0472 

52.000 
2.0472 

62.000 
2.4409 

62.000 
2.4409 
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50.005 
1.9687 
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50.292 
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2.2500 
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2.3437 
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0.7500 
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0.04 
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0.04 
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0.06 
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0.04 
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14.260 
0.5614 

14.260 
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20.638 
0.8125 

20.638 
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34.0 
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1.28 
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2.0 
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15.000 
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20.000 
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0.3750 
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0.4200 
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12.700 
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0.6250 
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10900 
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25.400 
1.0000 
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Figure 11–15 (Continued on next page)

Catalog entry of single-row straight-bore Timken roller bearings, in part. (Courtesy of The Timken Company.)
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Figure 11–15
(Continued)
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Rolling-Contact Bearings 595

bearing and 0.75 for a steep angle bearing in the preliminary selection process. After
a possible bearing is identified, the exact value of K for each bearing can be found
in the bearing catalog.

A shaft supported by a pair of direct-mounted tapered roller bearings is shown
in Fig. 11–16. Force vectors are shown as applied to the shaft. Fr A and Fr B are the
radial loads carried by the bearings, applied at the effective force centers GA and GB.
The induced loads Fi A and Fi B due to the effect of the radial loads on the tapered
bearings are also shown. Additionally, there may be an externally applied thrust load
Fae on the shaft from some other source, such as the axial load on a helical gear.
Since the bearings experience both radial and thrust loads, it is necessary to determine
equivalent radial loads. Following the form of Eq. (11–9), where Fe = X V Fr + Y Fa ,
Timken recommends using X = 0.4 and V = 1 for all cases, and using the K factor
for the specific bearing for Y. This gives an equation of the form

Fe = 0.4Fr + K Fa (a)

The axial load Fa is the net axial load carried by the bearing due to the combi-
nation of the induced axial load from the other bearing and the external axial load.
However, only one of the bearings will carry the net axial load, and which one it is
depends on the direction the bearings are mounted, the relative magnitudes of the
induced loads, the direction of the external load, and whether the shaft or the housing
is the moving part. Timken handles it with a table containing each of the configurations
and a sign convention on the external loads. It further requires the application to be
oriented horizontally with left and right bearings that must match the left and right
sign conventions. Here, we will present a method that gives equivalent results, but
that is perhaps more conducive to visualizing and understanding the logic behind it.

First, determine visually which bearing is being “squeezed” by the external thrust
load, and label it as bearing A. Label the other bearing as bearing B. For example, in
Fig. 11–16, the external thrust Fae causes the shaft to push to the left against the cone
of the left bearing, squeezing it against the rollers and the cup. On the other hand, it
tends to pull apart the cup from the right bearing. The left bearing is therefore labeled
as bearing A. If the direction of Fae were reversed, then the right bearing would be
labeled as bearing A. This approach to labeling the bearing being squeezed by the

Figure 11–16

Direct-mounted tapered roller
bearings, showing radial,
induced thrust, and external
thrust loads.

Fae

B

FrA FrB

FiB
GBFiA

A

GA
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596 Mechanical Engineering Design

external thrust is applied similarly regardless of whether the bearings are mounted
directly or indirectly, regardless of whether the shaft or the housing carries the exter-
nal thrust, and regardless of the orientation of the assembly. To clarify by example,
consider the vertical shaft and cylinder in Fig. 11–17 with direct-mounted bearings.
In Fig. 11–17a, an external load is applied in the upward direction to a rotating shaft,
compressing the top bearing, which should be labeled as bearing A. On the other hand,
in Fig. 11–17b, an upward external load is applied to a rotating outer cylinder with a
stationary shaft. In this case, the lower bearing is being squeezed and should be
labeled as bearing A. If there is no external thrust, then either bearing can arbitrarily
be labeled as bearing A.

Second, determine which bearing actually carries the net axial load. Generally, it
would be expected that bearing A would carry the axial load, since the external thrust
Fae is directed toward A, along with the induced thrust Fi B from bearing B. However,
if the induced thrust Fi A from bearing A happens to be larger than the combination
of the external thrust and the thrust induced by bearing B, then bearing B will carry
the net thrust load. We will use Eq. (a) for the bearing carrying the thrust load.
Timken recommends leaving the other bearing at its original radial load, rather than
reducing it due to the negative net thrust load. The results are presented in equation
form below, where the induced thrusts are defined by Eq. (11–15).

If Fi A ≤ (Fi B + Fae)

{
FeA = 0.4Fr A + K A(Fi B + Fae)

FeB = Fr B

(11–16a)

(11–16b)

If Fi A > (Fi B + Fae)

{
FeB = 0.4Fr B + K B(Fi A − Fae)

FeA = Fr A

(11–17a)

(11–17b)

In any case, if the equivalent radial load is ever less than the original radial load,
then the original radial load should be used.

Bearing A

Bearing B

(a)

Fae 

Bearing B

Bearing A

(b)

Fae 

Figure 11–17

Examples of determining
which bearing carries the
external thrust load. In each
case, the compressed bearing 
is labeled as bearing A. 
(a) External thrust applied to
rotating shaft; (b) External
thrust applied to rotating
cylinder.
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Rolling-Contact Bearings 597

Once the equivalent radial loads are determined, they should be used to find the
catalog rating load using any of Eqs. (11–3), (11–6), or (11–7) as before. Timken uses
a two-parameter Weibell model with x0 = 0, θ = 4.48, and b = 3/2. Note that since
K A and K B are dependent on the specific bearing chosen, it may be necessary to iterate
the process.

EXAMPLE 11–8 The shaft depicted in Fig. 11–18a carries a helical gear with a tangential force of 3980 N,
a radial force of 1770 N, and a thrust force of 1690 N at the pitch cylinder with
directions shown. The pitch diameter of the gear is 200 mm. The shaft runs at a speed
of 800 rev/min, and the span (effective spread) between the direct-mount bearings is
150 mm. The design life is to be 5000 h and an application factor of 1 is appropriate.
If the reliability of the bearing set is to be 0.99, select suitable single-row tapered-
roller Timken bearings.

Solution The reactions in the xz plane from Fig. 11–18b are

Rz A = 3980(50)

150
= 1327 N

RzB = 3980(100)

150
= 2653 N

The reactions in the xy plane from Fig. 11–18c are

Ry A = 1770(50)

150
+ 169 000

150
= 1716.7 = 1717 N

Ry B = 1770(100)

150
− 169 000

150
= 53.3 N

100

50

20
0

150

y

z

x
3980

1770
1690

(a)

(b)

3980

z

RzA

A x

y

RzB

B

(c)

1770

RyA

A x

RyB

B

B

A

169 000 N • mm

Figure 11–18

Essential geometry of helical
gear and shaft. Length
dimensions in mm, loads in N,
couple in N · mm. (a) Sketch
(not to scale) showing thrust,
radial, and tangential forces.
(b) Forces in xz plane.
(c) Forces in xy plane.
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The radial loads Fr A and Fr B are the vector additions of Ry A and Rz A , and Ry B and
RzB , respectively:

Fr A = (
R2

z A + R2
y A

)1/2 = (13272 + 17172)1/2 = 2170 N

Fr B = (
R2

zB + R2
y B

)1/2 = (26532 + 53.32)1/2 = 2654 N

Trial 1: With direct mounting of the bearings and application of the external thrust
to the shaft, the squeezed bearing is bearing A as labeled in Fig. 11–18a. Using K of
1.5 as the initial guess for each bearing, the induced loads from the bearings are

Fi A = 0.47Fr A

K A
= 0.47(2170)

1.5
= 680 N

Fi B = 0.47Fr B

K B
= 0.47(2654)

1.5
= 832 N

Since Fi A is clearly less than Fi B + Fae, bearing A carries the net thrust load, and
Eq. (11–16) is applicable. Therefore, the dynamic equivalent loads are

FeA = 0.4Fr A + K A(Fi B + Fae) = 0.4(2170) + 1.5(832 + 1690) = 4651 N

FeB = Fr B = 2654 N

The multiple of rating life is

xD = L D

L R
= �DnD60

L R
= (5000)(800)(60)

90(106)
= 2.67

Estimate RD as 
√

0.99 = 0.995 for each bearing. For bearing A, from Eq. (11–7) the
catalog entry C10 should equal or exceed

C10 = (1)(4651)

[
2.67

(4.48)(1 − 0.995)2/3

]3/10

= 11 486 N

From Fig. 11–15, tentatively select type TS 15100 cone and 15245 cup, which will
work: K A = 1.67, C10 = 12 100 N.

For bearing B, from Eq. (11–7), the catalog entry C10 should equal or exceed

C10 = (1)2654

[
2.67

(4.48)(1 − 0.995)2/3

]3/10

= 6554 N

Tentatively select the bearing identical to bearing A, which will work: K B = 1.67,
C10 = 12 100 N.

Trial 2: Repeat the process with K A = K B = 1.67 from tentative bearing
selection.

Fi A = 0.47Fr A

K A
= 0.47(2170)

1.67
= 611 N

Fi B = 0.47Fr B

K B
= 0.47(2654)

1.67
= 747 N

598 Mechanical Engineering Design
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Rolling-Contact Bearings 599

Since Fi A is still less than Fi B + Fae, Eq. (11–16) is still applicable.

FeA = 0.4Fr A + K A(Fi B + Fae) = 0.4(2170) + 1.67(747 + 1690) = 4938 N

FeB = Fr B = 2654 N

For bearing A, from Eq. (11–7) the corrected catalog entry C10 should equal or
exceed

C10 = (1)(4938)

[
2.67

(4.48)(1 − 0.995)2/3

]3/10

= 12 195 N

Although this catalog entry exceeds slightly the tentative selection for bearing A, we
will keep it since the reliability of bearing B exceeds 0.995. In the next section we
will quantitatively show that the combined reliability of bearing A and B will exceed
the reliability goal of 0.99.

For bearing B, FeB = Fr B = 2654 N. From Eq. (11–7),

C10 = (1)2654

[
2.67

(4.48)(1 − 0.995)2/3

]3/10

= 6554 N

Select cone and cup 15100 and 15245, respectively, for both bearing A and B. Note
from Fig. 11–14 the effective load center is located at a = −5.8 mm, that is, 5.8 mm
into the cup from the back. Thus the shoulder-to-shoulder dimension should be
150 − 2(5.8) = 138.4 mm. Note that in each iteration of Eq. (11–7) to find the catalog
load rating, the bracketed portion of the equation is identical and need not be re-entered
on a calculator each time.

11–10 Design Assessment for Selected 
Rolling-Contact Bearings
In textbooks machine elements typically are treated singly. This can lead the reader
to the presumption that a design assessment involves only that element, in this case
a rolling-contact bearing. The immediately adjacent elements (the shaft journal and
the housing bore) have immediate influence on the performance. Other elements, fur-
ther removed (gears producing the bearing load), also have influence. Just as some
say, “If you pull on something in the environment, you find that it is attached to every-
thing else.” This should be intuitively obvious to those involved with machinery. How,
then, can one check shaft attributes that aren’t mentioned in a problem statement?
Possibly, because the bearing hasn’t been designed yet (in fine detail). All this points
out the necessary iterative nature of designing, say, a speed reducer. If power, speed,
and reduction are stipulated, then gear sets can be roughed in, their sizes, geometry,
and location estimated, shaft forces and moments identified, bearings tentatively
selected, seals identified; the bulk is beginning to make itself evident, the housing and
lubricating scheme as well as the cooling considerations become clearer, shaft over-
hangs and coupling accommodations appear. It is time to iterate, now addressing each
element again, knowing much more about all of the others. When you have completed
the necessary iterations, you will know what you need for the design assessment for
the bearings. In the meantime you do as much of the design assessment as you can,
avoiding bad selections, even if tentative. Always keep in mind that you eventually
have to do it all in order to pronounce your completed design satisfactory.
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600 Mechanical Engineering Design

An outline of a design assessment for a rolling contact bearing includes, at a
minimum,

• Bearing reliability for the load imposed and life expected

• Shouldering on shaft and housing satisfactory

• Journal finish, diameter and tolerance compatible

• Housing finish, diameter and tolerance compatible

• Lubricant type according to manufacturer’s recommendations; lubricant paths and
volume supplied to keep operating temperature satisfactory

• Preloads, if required, are supplied

Since we are focusing on rolling-contact bearings, we can address bearing reliability
quantitatively, as well as shouldering. Other quantitative treatment will have to wait
until the materials for shaft and housing, surface quality, and diameters and tolerances
are known.

Bearing Reliability

Equation (11–6) can be solved for the reliability RD in terms of C10, the basic load
rating of the selected bearing: 

R = exp

⎛⎜⎜⎜⎝−

⎧⎪⎪⎨⎪⎪⎩
xD

(
af FD

C10

)a

− x0

θ − x0

⎫⎪⎪⎬⎪⎪⎭
b⎞⎟⎟⎟⎠ (11–18)

Equation (11–7) can likewise be solved for RD :

R
.= 1 −

⎧⎪⎪⎨⎪⎪⎩
xD

(
af FD

C10

)a

− x0

θ − x0

⎫⎪⎪⎬⎪⎪⎭
b

R ≥ 0.90 (11–19)

EXAMPLE 11–9 In Ex. 11–3, the minimum required load rating for 99 percent reliability, at xD =
L D/L10 = 540, is C10 = 6696 lbf = 29.8 kN. From Table 11–2 a 02-40 mm deep-
groove ball bearing would satisfy the requirement. If the bore in the application had
to be 70 mm or larger (selecting a 02-70 mm deep-groove ball bearing), what is the
resulting reliability?

Solution From Table 11–2, for a 02-70 mm deep-groove ball bearing, C10 = 61.8 kN =
13 888 lbf. Using Eq. (11–19), recalling from Ex. 11–3 that af = 1.2, FD = 413 lbf,
x0 = 0.02, (θ − x0) = 4.439, and b = 1.483, we can write

Answer R
.= 1 −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

540

[
1.2(413)

13 888

]3

− 0.02

]
4.439

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1.483

= 0.999 963

which, as expected, is much higher than 0.99 from Ex. 11–3.
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Rolling-Contact Bearings 601

In tapered roller bearings, or other bearings for a two-parameter Weibull distri-
bution, Eq. (11–18) becomes, for x0 = 0, θ = 4.48, b = 3

2 ,

R = exp

{
−

[
xD

θ[C10/(af FD)]a

]b }

= exp

{
−

[
xD

4.48[C10/(af FD)]10/3

]3/2 }
(11–20)

and Eq. (11–19) becomes

R
.= 1 −

{
xD

θ[C10/(af FD)]a

}b

= 1 −
{

xD

4.48[C10/(af FD)]10/3

}3/2

(11–21)

EXAMPLE 11–10 In Ex. 11–8 bearings A and B (cone 15100 and cup 15245) have C10 = 12 100 N.
What is the reliability of the pair of bearings A and B?

Solution The desired life xD was 5000(800)60/[90(106)] = 2.67 rating lives. Using Eq. (11–21)
for bearing A, where from Ex. 11–8, FD = FeA = 4938 N, and af = 1, gives

RA
.= 1 −

{
2.67

4.48 [12 100/(1 × 4938)]10/3

}3/2

= 0.994 791

which is less than 0.995, as expected. Using Eq. (11–21) for bearing B with FD =
FeB = 2654 N gives

RB
.= 1 −

{
2.67

4.48 [12 100/(1 × 2654)]10/3

}3/2

= 0.999 766

Answer The reliability of the bearing pair is

R = RA RB = 0.994 791(0.999 766) = 0.994 558

which is greater than the overall reliability goal of 0.99. When two bearings are made
identical for simplicity, or reducing the number of spares, or other stipulation, and the
loading is not the same, both can be made smaller and still meet a reliability goal. If
the loading is disparate, then the more heavily loaded bearing can be chosen for a
reliability goal just slightly larger than the overall goal.

An additional example is useful to show what happens in cases of pure thrust
loading.
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602 Mechanical Engineering Design

EXAMPLE 11–11 Consider a constrained housing as depicted in Fig. 11–19 with two direct-mount tapered
roller bearings resisting an external thrust Fae of 8000 N. The shaft speed is 950 rev/min,
the desired life is 10 000 h, the expected shaft diameter is approximately 1 in. The reli-
ability goal is 0.95. The application factor is appropriately af = 1.
(a) Choose a suitable tapered roller bearing for A.
(b) Choose a suitable tapered roller bearing for B.
(c) Find the reliabilities RA , RB , and R.

Solution (a) By inspection, note that the left bearing carries the axial load and is properly
labeled as bearing A. The bearing reactions at A are

Fr A = Fr B = 0

Fa A = Fae = 8000 N

Since bearing B is unloaded, we will start with R = RA = 0.95.
With no radial loads, there are no induced thrust loads. Eq. (11–16) is applicable.

FeA = 0.4Fr A + K A(Fi B + Fae) = K A Fae

If we set K A = 1, we can find C10 in the thrust column and avoid iteration:

FeA = (1)8000 = 8000 N

FeB = Fr B = 0

The multiple of rating life is

xD = L D

L R
= �DnD60

L R
= (10 000)(950)(60)

90(106)
= 6.333

Then, from Eq. (11–7), for bearing A

C10 = af FeA

[
xD

4.48(1 − RD)2/3

]3/10

= (1)8000

[
6.33

4.48(1 − 0.95)2/3

]3/10

= 16 159 N

Answer Figure 11–15 presents one possibility in the 1-in bore (25.4-mm) size: cone,
HM88630, cup HM88610 with a thrust rating (C10)a = 17 200 N.

Bearing A Bearing B

Fae = 8000 N

Figure 11–19

The constrained housing of 
Ex. 11–11.
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Answer (b) Bearing B experiences no load, and the cheapest bearing of this bore size will do,
including a ball or roller bearing.
(c) The actual reliability of bearing A, from Eq. (11–21), is

Answer RA
.= 1 −

{
xD

4.48[C10/(af FD)]10/3

}3/2

.= 1 −
{

6.333

4.48 [17 200/(1 × 8000)]10/3

}3/2

= 0.963

which is greater than 0.95, as one would expect. For bearing B,

Answer FD = FeB = 0

RB
.= 1 −

[
6.333

0.85(17 200/0)10/3

]3/2

= 1 − 0 = 1

as one would expect. The combined reliability of bearings A and B as a pair is

Answer R = RA RB = 0.963(1) = 0.963

which is greater than the reliability goal of 0.95, as one would expect.

Matters of Fit

Table 11–2 (and Fig. 11–8), which shows the rating of single-row, 02-series, deep-
groove and angular-contact ball bearings, includes shoulder diameters recommended
for the shaft seat of the inner ring and the shoulder diameter of the outer ring, denoted
dS and dH , respectively. The shaft shoulder can be greater than dS but not enough to
obstruct the annulus. It is important to maintain concentricity and perpendicularity
with the shaft centerline, and to that end the shoulder diameter should equal or exceed
dS . The housing shoulder diameter dH is to be equal to or less than dH to maintain
concentricity and perpendicularity with the housing bore axis. Neither the shaft shoul-
der nor the housing shoulder features should allow interference with the free move-
ment of lubricant through the bearing annulus.

In a tapered roller bearing (Fig. 11–15), the cup housing shoulder diameter should
be equal to or less than Db . The shaft shoulder for the cone should be equal to or
greater than db. Additionally, free lubricant flow is not to be impeded by obstructing
any of the annulus. In splash lubrication, common in speed reducers, the lubricant is
thrown to the housing cover (ceiling) and is directed in its draining by ribs to a bear-
ing. In direct mounting, a tapered roller bearing pumps oil from outboard to inboard.
An oil passageway to the outboard side of the bearing needs to be provided. The oil
returns to the sump as a consequence of bearing pump action. With an indirect mount,
the oil is directed to the inboard annulus, the bearing pumping it to the outboard side.
An oil passage from the outboard side to the sump has to be provided.

11–11 Lubrication
The contacting surfaces in rolling bearings have a relative motion that is both rolling
and sliding, and so it is difficult to understand exactly what happens. If the relative
velocity of the sliding surfaces is high enough, then the lubricant action is
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604 Mechanical Engineering Design

hydrodynamic (see Chap. 12). Elastohydrodynamic lubrication (EHD) is the phe-
nomenon that occurs when a lubricant is introduced between surfaces that are in pure
rolling contact. The contact of gear teeth and that found in rolling bearings and in
cam-and-follower surfaces are typical examples. When a lubricant is trapped between
two surfaces in rolling contact, a tremendous increase in the pressure within the lubri-
cant film occurs. But viscosity is exponentially related to pressure, and so a very large
increase in viscosity occurs in the lubricant that is trapped between the surfaces.
Leibensperger2 observes that the change in viscosity in and out of contact pressure is
equivalent to the difference between cold asphalt and light sewing machine oil.

The purposes of an antifriction-bearing lubricant may be summarized as follows:

1 To provide a film of lubricant between the sliding and rolling surfaces
2 To help distribute and dissipate heat
3 To prevent corrosion of the bearing surfaces
4 To protect the parts from the entrance of foreign matter

Either oil or grease may be employed as a lubricant. The following rules may help
in deciding between them.

11–12 Mounting and Enclosure
There are so many methods of mounting antifriction bearings that each new design
is a real challenge to the ingenuity of the designer. The housing bore and shaft out-
side diameter must be held to very close limits, which of course is expensive. There
are usually one or more counterboring operations, several facing operations and
drilling, tapping, and threading operations, all of which must be performed on the
shaft, housing, or cover plate. Each of these operations contributes to the cost of pro-
duction, so that the designer, in ferreting out a trouble-free and low-cost mounting, is
faced with a difficult and important problem. The various bearing manufacturers’
handbooks give many mounting details in almost every design area. In a text of this
nature, however, it is possible to give only the barest details.

The most frequently encountered mounting problem is that which requires one
bearing at each end of a shaft. Such a design might use one ball bearing at each end,
one tapered roller bearing at each end, or a ball bearing at one end and a straight
roller bearing at the other. One of the bearings usually has the added function of

Use Grease When Use Oil When

1. The temperature is not over 200°F.

2. The speed is low.

3. Unusual protection is required from
the entrance of foreign matter.

4. Simple bearing enclosures are desired.

5. Operation for long periods without
attention is desired.

1. Speeds are high.

2. Temperatures are high.

3. Oiltight seals are readily employed.

4. Bearing type is not suitable for grease
lubrication.

5. The bearing is lubricated from a
central supply which is also used
for other machine parts.

2R. L. Leibensperger, “When Selecting a Bearing,” Machine Design, vol. 47, no. 8, April 3, 1975,
pp. 142–147.
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Rolling-Contact Bearings 605

positioning or axially locating the shaft. Figure 11–20 shows a very common solution
to this problem. The inner rings are backed up against the shaft shoulders and are
held in position by round nuts threaded onto the shaft. The outer ring of the left-hand
bearing is backed up against a housing shoulder and is held in position by a device
that is not shown. The outer ring of the right-hand bearing floats in the housing.

There are many variations possible on the method shown in Fig. 11–20. For exam-
ple, the function of the shaft shoulder may be performed by retaining rings, by the
hub of a gear or pulley, or by spacing tubes or rings. The round nuts may be replaced
by retaining rings or by washers locked in position by screws, cotters, or taper pins.
The housing shoulder may be replaced by a retaining ring; the outer ring of the bear-
ing may be grooved for a retaining ring, or a flanged outer ring may be used. The
force against the outer ring of the left-hand bearing is usually applied by the cover
plate, but if no thrust is present, the ring may be held in place by retaining rings.

Figure 11–21 shows an alternative method of mounting in which the inner races
are backed up against the shaft shoulders as before but no retaining devices are required.
With this method the outer races are completely retained. This eliminates the grooves
or threads, which cause stress concentration on the overhanging end, but it requires accu-
rate dimensions in an axial direction or the employment of adjusting means. This method
has the disadvantage that if the distance between the bearings is great, the temperature
rise during operation may expand the shaft enough to destroy the bearings.

It is frequently necessary to use two or more bearings at one end of a shaft. For
example, two bearings could be used to obtain additional rigidity or increased load
capacity or to cantilever a shaft. Several two-bearing mountings are shown in Fig. 11–22.
These may be used with tapered roller bearings, as shown, or with ball bearings.
In either case it should be noted that the effect of the mounting is to preload the bear-
ings in an axial direction.

Figure 11–20

A common bearing mounting.

Figure 11–21

An alternative bearing
mounting to that in Fig. 11–20. 
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Figure 11–23 shows another two-bearing mounting. Note the use of washers
against the cone backs.

When maximum stiffness and resistance to shaft misalignment is desired, pairs
of angular-contact ball bearings (Fig. 11–2) are often used in an arrangement called
duplexing. Bearings manufactured for duplex mounting have their rings ground with
an offset, so that when a pair of bearings is tightly clamped together, a preload is
automatically established. As shown in Fig. 11–24, three mounting arrangements are
used. The face-to-face mounting, called DF, will take heavy radial loads and thrust
loads from either direction. The DB mounting (back to back) has the greatest align-
ing stiffness and is also good for heavy radial loads and thrust loads from either direc-
tion. The tandem arrangement, called the DT mounting, is used where the thrust is
always in the same direction; since the two bearings have their thrust functions in the
same direction, a preload, if required, must be obtained in some other manner.

Bearings are usually mounted with the rotating ring a press fit, whether it be the
inner or outer ring. The stationary ring is then mounted with a push fit. This permits
the stationary ring to creep in its mounting slightly, bringing new portions of the ring
into the load-bearing zone to equalize wear.

(a) (b)

Figure 11–22

Two-bearing mountings.
(Courtesy of The Timken
Company.)

Figure 11–23

Mounting for a washing-
machine spindle. (Courtesy 
of The Timken Company.)

(a) (b) (c)

Figure 11–24

Arrangements of angular ball
bearings. (a) DF mounting;
(b) DB mounting; (c) DT
mounting. (Courtesy of The
Timken Company.)
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Preloading

The object of preloading is to remove the internal clearance usually found in bearings,
to increase the fatigue life, and to decrease the shaft slope at the bearing. Figure 11–25
shows a typical bearing in which the clearance is exaggerated for clarity.

Preloading of straight roller bearings may be obtained by:

1 Mounting the bearing on a tapered shaft or sleeve to expand the inner ring
2 Using an interference fit for the outer ring
3 Purchasing a bearing with the outer ring preshrunk over the rollers

Ball bearings are usually preloaded by the axial load built in during assembly.
However, the bearings of Fig. 11–24a and b are preloaded in assembly because of the
differences in widths of the inner and outer rings.

It is always good practice to follow manufacturers’ recommendations in deter-
mining preload, since too much will lead to early failure.

Alignment

The permissible misalignment in bearings depends on the type of bearing and the geo-
metric and material properties of the specific bearing. Manufacturers’ catalogs should
be referenced for detailed specifications on a given bearing. In general, cylindrical
and tapered roller bearings require alignments that are closer than deep-groove ball
bearings. Spherical ball bearings and self-aligning bearings are the most forgiving.
Table 7–2, p. 379, gives typical maximum ranges for each type of bearing. The life of
the bearing decreases significantly when the misalignment exceeds the allowable limits.

Additional protection against misalignment is obtained by providing the full
shoulders (see Fig. 11–8) recommended by the manufacturer. Also, if there is any mis-
alignment at all, it is good practice to provide a safety factor of around 2 to account
for possible increases during assembly.

Enclosures

To exclude dirt and foreign matter and to retain the lubricant, the bearing mountings
must include a seal. The three principal methods of sealings are the felt seal, the com-
mercial seal, and the labyrinth seal (Fig. 11–26).

Felt seals may be used with grease lubrication when the speeds are low. The rub-
bing surfaces should have a high polish. Felt seals should be protected from dirt by
placing them in machined grooves or by using metal stampings as shields.

The commercial seal is an assembly consisting of the rubbing element and, gen-
erally, a spring backing, which are retained in a sheet-metal jacket. These seals are
usually made by press fitting them into a counterbored hole in the bearing cover. Since
they obtain the sealing action by rubbing, they should not be used for high speeds.

Clearance

Figure 11–25

Clearance in an off-the-shelf
bearing, exaggerated for
clarity.

(a) Felt seal (b) Commercial seal (c) Labyrinth seal

Figure 11–26

Typical sealing methods.
(General Motors Corp. Used
with permission, GM Media
Archives.)
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The labyrinth seal is especially effective for high-speed installations and may be used
with either oil or grease. It is sometimes used with flingers. At least three grooves should
be used, and they may be cut on either the bore or the outside diameter. The clearance
may vary from 0.010 to 0.040 in, depending upon the speed and temperature.

PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized
in Table 1–1 of Sec. 1–16, p. 24.

Since each bearing manufacturer makes individual decisions with respect to materials,
treatments, and manufacturing processes, manufacturers’ experiences with bearing life distrib-
ution differ. In solving the following problems, we will use the experience of two manufacturers,
tabulated as follows: 

Tables 11–2 and 11–3 are based on manufacturer 2.

11–1 A certain application requires a ball bearing with the inner ring rotating, with a design life of
25 kh at a speed of 350 rev/min. The radial load is 2.5 kN and an application factor of 1.2 is
appropriate. The reliability goal is 0.90. Find the multiple of rating life required, xD , and the
catalog rating C10 with which to enter a bearing table. Choose a 02-series deep-groove ball
bearing from Table 11–2, and estimate the reliability in use.

11–2 An angular-contact, inner ring rotating, 02-series ball bearing is required for an application in
which the life requirement is 40 kh at 520 rev/min. The design radial load is 725 lbf. The appli-
cation factor is 1.4. The reliability goal is 0.90. Find the multiple of rating life xD required and
the catalog rating C10 with which to enter Table 11–2. Choose a bearing and estimate the exist-
ing reliability in service.

11–3 The other bearing on the shaft of Prob. 11–2 is to be a 03-series cylindrical roller bearing with
inner ring rotating. For a 2235-lbf radial load, find the catalog rating C10 with which to enter
Table 11–3. The reliability goal is 0.90. Choose a bearing and estimate its reliability in use.

11–4 Problems 11–2 and 11–3 raise the question of the reliability of the bearing pair on the shaft.
Since the combined reliabilities R is R1 R2 , what is the reliability of the two bearings (proba-
bility that either or both will not fail) as a result of your decisions in Probs. 11–2 and 11–3?
What does this mean in setting reliability goals for each of the bearings of the pair on the shaft?

11–5 Combine Probs. 11–2 and 11–3 for an overall reliability of R = 0.90. Reconsider your selec-
tions, and meet this overall reliability goal.

11–6 A straight (cylindrical) roller bearing is subjected to a radial load of 20 kN. The life is to be
8000 h at a speed of 950 rev/min and exhibit a reliability of 0.95. What basic load rating should
be used in selecting the bearing from a catalog of manufacturer 2?

11–7 Two ball bearings from different manufacturers are being considered for a certain application.
Bearing A has a catalog rating of 2.0 kN based on a catalog rating system of 3 000 hours

Weibull Parameters
Rating Life, Rating Lives

Manufacturer Revolutions x0 � b

1 90(106) 0 4.48 1.5

2 1(106) 0.02 4.459 1.483
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at 500 rev/min. Bearing B has a catalog rating of 7.0 kN based on a catalog that rates at
106 cycles. For a given application, determine which bearing can carry the larger load.

For the bearing application specifications given in the table for the assigned problem, deter-
mine the Basic Load Rating for a ball bearing with which to enter a bearing catalog.

11–8 to
11–13

Problem Desired
Number Radial Load Design Life Reliability

11–8 2 kN 109 rev 90%

11–9 800 lbf 12 kh, 350 rev/min 90%

11–10 4 kN 8 kh, 500 rev/min 90%

11–11 650 lbf 5 yrs, 40 h/week, 400 rev/min 95%

11–12 9 kN 108 rev 99%

11–13 11 kips 20 kh, 200 rev/min 99%

Problem Number Original Problem, Page Number

11–14* 3–68, 137

11–15* 3–69, 137

11–16* 3–70, 137

11–17* 3–71, 137

For the problem specified in the table, build upon the results of the original problem to obtain
a Basic Load Rating for a ball bearing at C with a 95 percent reliability. The shaft rotates at
1200 rev/min, and the desired bearing life is 15 kh. Use an application factor of 1.2.

11–14* to
11–17*

11–18* For the shaft application defined in Prob. 3–77, p. 139, the input shaft EG is driven at a con-
stant speed of 191 rev/min. Obtain a Basic Load Rating for a ball bearing at A for a life of
12 kh with a 95 percent reliability.

11–19* For the shaft application defined in Prob. 3–79, p. 139, the input shaft EG is driven at a con-
stant speed of 280 rev/min. Obtain a Basic Load Rating for a cylindrical roller bearing at A for
a life of 14 kh with a 98 percent reliability.

11–20 An 02-series single-row deep-groove ball bearing with a 65-mm bore (see Tables 11–1 and 11–2
for specifications) is loaded with a 3-kN axial load and a 7-kN radial load. The outer ring
rotates at 500 rev/min.
(a) Determine the equivalent radial load that will be experienced by this particular bearing.
(b) Determine whether this bearing should be expected to carry this load with a 95 percent reli-

ability for 10 kh.

11–21 An 02-series single-row deep-groove ball bearing with a 30-mm bore (see Tables 11–1 and 11–2
for specifications) is loaded with a 2-kN axial load and a 5-kN radial load. The inner ring
rotates at 400 rev/min.
(a) Determine the equivalent radial load that will be experienced by this particular bearing.
(b) Determine the predicted life (in revolutions) that this bearing could be expected to give in

this application with a 99 percent reliability.
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11–27* The shaft shown in the figure is proposed as a preliminary design for the application defined
in Prob. 3–72, p. 138. The effective centers of the gears for force transmission are shown. The
dimensions for the bearing surfaces (indicated with cross markings) have been estimated. The
shaft rotates at 1200 rev/min, and the desired bearing life is 15 kh with a 95 percent reliability.
Use an application factor of 1.2. 
(a) Obtain a Basic Load Rating for a ball bearing at the right end.
(b) Use an online bearing catalog to find a specific bearing that satisfies the needed Basic Load

Rating and the geometry requirements. If necessary, indicate appropriate adjustments to the
dimensions of the bearing surface.

Problem Radial Axial Design Ring Desired
Number Load Load Life Rotating Reliability

11–22 8 kN 0 kN 109 rev Inner 90%

11–23 8 kN 2 kN 10 kh, 400 rev/min Inner 99%

11–24 8 kN 3 kN 108 rev Outer 90%

11–25 10 kN 5 kN 12 kh, 300 rev/min Inner 95%

11–26 9 kN 3 kN 109 rev Outer 99%

11–28* Repeat the requirements of Prob. 11–27 for the bearing at the left end of the shaft.

11–29* The shaft shown in the figure is proposed as a preliminary design for the application defined
in Prob. 3–73, p. 138. The effective centers of the gears for force transmission are shown. The
dimensions for the bearing surfaces (indicated with cross markings) have been estimated. The
shaft rotates at 900 rev/min, and the desired bearing life is 12 kh with a 98 percent reliability.
Use an application factor of 1.2.
(a) Obtain a Basic Load Rating for a ball bearing at the right end.
(b) Use an online bearing catalog to find a specific bearing that satisfies the needed Basic Load

Rating and the geometry requirements. If necessary, indicate appropriate adjustments to the
dimensions of the bearing surface.

Problem 11–27*

All fillets 1
16 in. Dimensions

in inches.

An 02-series single-row deep-groove ball bearing is to be selected from Table 11–2 for the
application conditions specified in the table. Assume Table 11–1 is applicable if needed. Spec-
ify the smallest bore size from Table 11–2 that can satisfy these conditions.  

11–22 to
11–26

17

15

41

16 14 9

11

10

2

1.001.75

Gear center Gear center

0.5

1.00

1

1.3 1.3
2.5 1.75
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11–30* Repeat the requirements of Prob. 11–29 for the bearing at the left end of the shaft.

11–31 Shown in the figure is a gear-driven squeeze roll that mates with an idler roll. The roll is designed
to exert a normal force of 35 lbf/in of roll length and a pull of 28 lbf/in on the material being
processed. The roll speed is 350 rev/min, and a design life of 35 kh is desired. Use an application
factor of 1.2, and select a pair of angular-contact 02-series ball bearings from Table 11–2 to be
mounted at 0 and A. Use the same size bearings at both locations and a combined reliability of at
least 0.92.

Gear 4
3 dia.

x

F

B

A

y

O

z 20°

4 dia.

1

8

2

3

2

3
4

1 3
4

3
4

Problem 11–31

Dimensions in inches.

Problem 11–29*

All fillets 2 mm. Dimensions in
millimeters.

11–32 The figure shown is a geared countershaft with an overhanging pinion at C. Select an angular-
contact ball bearing from Table 11–2 for mounting at O and a straight roller bearing from
Table 11–3 for mounting at B. The force on gear A is FA = 600 lbf, and the shaft is to run
at a speed of 420 rev/min. Solution of the statics problem gives force of bearings against
the shaft at O as RO = −387j + 467k lbf, and at B as RB = 316j − 1615k lbf. Specify the
bearings required, using an application factor of 1.2, a desired life of 40 kh, and a combined
reliability goal of 0.95.

425

385

1080

325

285

Gear center Gear center

30 30

50 50 42 3040

400 350 30015

30
75

bud29281_ch11_569-616.qxd  12/17/09  6:43 PM  Page 611 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



612 Mechanical Engineering Design

11–33 The figure is a schematic drawing of a countershaft that supports two V-belt pulleys. The coun-
tershaft runs at 1500 rev/min and the bearings are to have a life of 60 kh at a combined reli-
ability of 0.98. The belt tension on the loose side of pulley A is 15 percent of the tension on
the tight side. Select deep-groove bearings from Table 11–2 for use at O and E, using an appli-
cation factor of unity.

270 N

z

300

400

150

O

y

250 dia.

A

B

45°

P2 P1

50 N

4

C

D

E

300 dia.

x

3

2Problem 11–33

Dimensions in millimeters.

11–34 A gear-reduction unit uses the countershaft depicted in the figure. Find the two bearing reac-
tions. The bearings are to be angular-contact ball bearings, having a desired life of 50 kh when
used at 300 rev/min. Use 1.2 for the application factor and a reliability goal for the bearing
pair of 0.96. Select the bearings from Table 11–2.

z

20

16

10

20°

O FC

FA

A
A

y

x

Gear 3
24 dia.

Gear 4
10 dia.

20°

B

C 2C

Problem 11–32

Dimensions in inches.

bud29281_ch11_569-616.qxd  12/16/09  9:02 PM  Page 612 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Rolling-Contact Bearings 613

z

A

y
B

z

x

A

T555

36
212

145

67

36

y

x

B

72

555

Worm pitch cylinder

Gear pitch cylinder

(a)

(b)

Problem 11–35

(a) Worm and worm gear; 
(b) force analysis of worm shaft,

forces in pounds.

11–36 In bearings tested at 2000 rev/min with a steady radial load of 18 kN, a set of bearings showed
an L10 life of 115 h and an L80 life of 600 h. The basic load rating of this bearing is 39.6 kN.
Estimate the Weibull shape factor b and the characteristic life θ for a two-parameter model.
This manufacturer rates ball bearings at 1 million revolutions.

11–37 A 16-tooth pinion drives the double-reduction spur-gear train in the figure. All gears have 25◦

pressure angles. The pinion rotates ccw at 1200 rev/min and transmits power to the gear train.
The shaft has not yet been designed, but the free bodies have been generated. The shaft speeds
are 1200 rev/min, 240 rev/min, and 80 rev/min. A bearing study is commencing with a 10-kh

z

16

14

O

B C

y

20°
240 lbf

Gear 3, 24 dia.

x

2

12

F

25°

Gear 4, 12 dia.

A

Problem 11–34

Dimensions in inches.

11–35 The worm shaft shown in part a of the figure transmits 1.2 hp at 500 rev/min. A static force
analysis gave the results shown in part b of the figure. Bearing A is to be an angular-contact
ball bearing mounted to take the 555-lbf thrust load. The bearing at B is to take only the radial
load, so a straight roller bearing will be employed. Use an application factor of 1.2, a desired
life of 30 kh, and a reliability goal, combined, of 0.99. Specify each bearing.
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11–38 Estimate the remaining life in revolutions of an 02-30 mm angular-contact ball bearing already
subjected to 200 000 revolutions with a radial load of 18 kN, if it is now to be subjected to a
change in load to 30 kN.

11–39 The same 02-30 angular-contact ball bearing as in Prob. 11–38 is to be subjected to a two-step
loading cycle of 4 min with a loading of 18 kN, and one of 6 min with a loading of 30 kN. This
cycle is to be repeated until failure. Estimate the total life in revolutions, hours, and loading
cycles.

11–40 A countershaft is supported by two tapered roller bearings using an indirect mounting. The
radial bearing loads are 560 lbf for the left-hand bearing and 1095 for the right-hand bearing.
An axial load of 200 lbf is carried by the left bearing. The shaft rotates at 400 rev/min and is
to have a desired life of 40 kh. Use an application factor of 1.4 and a combined reliability goal
of 0.90. Using an initial K = 1.5, find the required radial rating for each bearing. Select the
bearings from Fig. 11–15.

11–41* For the shaft application defined in Prob. 3–74, p. 138, perform a preliminary specification for
tapered roller bearings at C and D. A bearing life of 108 revolutions is desired with a 90 per-
cent combined reliability for the bearing set. Should the bearings be oriented with direct mount-
ing or indirect mounting for the axial thrust to be carried by the bearing at C ? Assuming bear-
ings are available with K = 1.5, find the required radial rating for each bearing. For this
preliminary design, assume an application factor of one.

614 Mechanical Engineering Design

(a)
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16 T 80 T
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Developed view

Problem 11–37

(a) Drive detail; (b) force analysis on shafts. Forces in pounds; linear dimensions in inches.

(b) Developed view
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111
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2
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502

B
a

life and a gearbox bearing ensemble reliability of 0.99. An application factor of 1.2 is appro-
priate. Specify the six bearings.
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Problem 11–44

(Courtesy of The Timken Company.)

A B

T

11–42* For the shaft application defined in Prob. 3–76, p. 139, perform a preliminary specification for
tapered roller bearings at A and B. A bearing life of 500 million revolutions is desired with a
90 percent combined reliability for the bearing set. Should the bearings be oriented with direct
mounting or indirect mounting for the axial thrust to be carried by the bearing at A? Assum-
ing bearings are available with K = 1.5, find the required radial rating for each bearing. For
this preliminary design, assume an application factor of one. 

11–43 An outer hub rotates around a stationary shaft, supported by two tapered roller bearings as
shown in Fig. 11–23. The device is to operate at 250 rev/min, 8 hours per day, 5 days per week,
for 5 years, before bearing replacement is necessary. A reliability of 90 percent on each bear-
ing is acceptable. A free body analysis determines the radial force carried by the upper bear-
ing to be 12 kN and the radial force at the lower bearing to be 25 kN. In addition, the outer
hub applies a downward force of 5 kN. Assuming bearings are available with K = 1.5, find
the required radial rating for each bearing. Assume an application factor of 1.2.

11–44 The gear-reduction unit shown has a gear that is press fit onto a cylindrical sleeve that rotates
around a stationary shaft. The helical gear transmits an axial thrust load T of 250 lbf as shown
in the figure. Tangential and radial loads (not shown) are also transmitted through the gear, pro-
ducing radial ground reaction forces at the bearings of 875 lbf for bearing A and 625 lbf for
bearing B. The desired life for each bearing is 90 kh at a speed of 150 rev/min with a 90 per-
cent reliability. The first iteration of the shaft design indicates approximate diameters of 1 1

8 in
at A and 1 in at B. Select suitable tapered roller bearings from Fig. 11–15.

Rolling-Contact Bearings 615
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618 Mechanical Engineering Design

The object of lubrication is to reduce friction, wear, and heating of machine parts that
move relative to each other. A lubricant is any substance that, when inserted between
the moving surfaces, accomplishes these purposes. In a sleeve bearing, a shaft, or jour-
nal, rotates or oscillates within a sleeve, or bushing, and the relative motion is sliding.
In an antifriction bearing, the main relative motion is rolling. A follower may either roll
or slide on the cam. Gear teeth mate with each other by a combination of rolling and
sliding. Pistons slide within their cylinders. All these applications require lubrication to
reduce friction, wear, and heating.

The field of application for journal bearings is immense. The crankshaft and
connecting-rod bearings of an automotive engine must operate for thousands of miles at
high temperatures and under varying load conditions. The journal bearings used in the
steam turbines of power-generating stations are said to have reliabilities approaching
100 percent. At the other extreme there are thousands of applications in which the
loads are light and the service relatively unimportant; a simple, easily installed bearing
is required, using little or no lubrication. In such cases an antifriction bearing might be a
poor answer because of the cost, the elaborate enclosures, the close tolerances, the radial
space required, the high speeds, or the increased inertial effects. Instead, a nylon bearing
requiring no lubrication, a powder-metallurgy bearing with the lubrication “built in,” or
a bronze bearing with ring oiling, wick feeding, or solid-lubricant film or grease lubri-
cation might be a very satisfactory solution. Recent metallurgy developments in bearing
materials, combined with increased knowledge of the lubrication process, now make it
possible to design journal bearings with satisfactory lives and very good reliabilities.

Much of the material we have studied thus far in this book has been based on fun-
damental engineering studies, such as statics, dynamics, the mechanics of solids, metal
processing, mathematics, and metallurgy. In the study of lubrication and journal bear-
ings, additional fundamental studies, such as chemistry, fluid mechanics, thermody-
namics, and heat transfer, must be utilized in developing the material. While we shall
not utilize all of them in the material to be included here, you can now begin to appre-
ciate better how the study of mechanical engineering design is really an integration
of most of your previous studies and a directing of this total background toward the
resolution of a single objective.

12–1 Types of Lubrication
Five distinct forms of lubrication may be identified:

1 Hydrodynamic
2 Hydrostatic
3 Elastohydrodynamic
4 Boundary
5 Solid film

Hydrodynamic lubrication means that the load-carrying surfaces of the bearing are
separated by a relatively thick film of lubricant, so as to prevent metal-to-metal contact,
and that the stability thus obtained can be explained by the laws of fluid mechanics.
Hydrodynamic lubrication does not depend upon the introduction of the lubricant under
pressure, though that may occur; but it does require the existence of an adequate sup-
ply at all times. The film pressure is created by the moving surface itself pulling the
lubricant into a wedge-shaped zone at a velocity sufficiently high to create the pressure
necessary to separate the surfaces against the load on the bearing. Hydrodynamic lubri-
cation is also called full-film, or fluid, lubrication.
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Figure 12–1
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Hydrostatic lubrication is obtained by introducing the lubricant, which is some-
times air or water, into the load-bearing area at a pressure high enough to separate the
surfaces with a relatively thick film of lubricant. So, unlike hydrodynamic lubrication,
this kind of lubrication does not require motion of one surface relative to another. We
shall not deal with hydrostatic lubrication in this book, but the subject should be con-
sidered in designing bearings where the velocities are small or zero and where the
frictional resistance is to be an absolute minimum.

Elastohydrodynamic lubrication is the phenomenon that occurs when a lubricant is
introduced between surfaces that are in rolling contact, such as mating gears or rolling
bearings. The mathematical explanation requires the Hertzian theory of contact stress
and fluid mechanics.

Insufficient surface area, a drop in the velocity of the moving surface, a lessening
in the quantity of lubricant delivered to a bearing, an increase in the bearing load, or an
increase in lubricant temperature resulting in a decrease in viscosity—any one of
these—may prevent the buildup of a film thick enough for full-film lubrication. When
this happens, the highest asperities may be separated by lubricant films only several
molecular dimensions in thickness. This is called boundary lubrication. The change
from hydrodynamic to boundary lubrication is not at all a sudden or abrupt one. It is
probable that a mixed hydrodynamic- and boundary-type lubrication occurs first, and as
the surfaces move closer together, the boundary-type lubrication becomes predominant.
The viscosity of the lubricant is not of as much importance with boundary lubrication
as is the chemical composition.

When bearings must be operated at extreme temperatures, a solid-film lubricant
such as graphite or molybdenum disulfide must be used because the ordinary mineral
oils are not satisfactory. Much research is currently being carried out in an effort, too,
to find composite bearing materials with low wear rates as well as small frictional
coefficients.

12–2 Viscosity
In Fig. 12–1 let plate A be moving with a velocity U on a film of lubricant of thickness h.
We imagine the film as composed of a series of horizontal layers and the force F causing
these layers to deform or slide on one another just like a deck of cards. The layers in con-
tact with the moving plate are assumed to have a velocity U; those in contact with the
stationary surface are assumed to have a zero velocity. Intermediate layers have velocities
that depend upon their distances y from the stationary surface. Newton’s viscous effect
states that the shear stress in the fluid is proportional to the rate of change of velocity with
respect to y. Thus

τ = F

A
= μ

du

dy
(12–1)
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620 Mechanical Engineering Design

where μ is the constant of proportionality and defines absolute viscosity, also called
dynamic viscosity. The derivative du/dy is the rate of change of velocity with distance
and may be called the rate of shear, or the velocity gradient. The viscosity μ is thus a
measure of the internal frictional resistance of the fluid. For most lubricating fluids, the
rate of shear is constant, and du/dy = U/h . Thus, from Eq. (12–1),

τ = F

A
= μ

U

h
(12–2)

Fluids exhibiting this characteristic are said to be Newtonian fluids. The unit of vis-
cosity in the ips system is seen to be the pound-force-second per square inch; this is the
same as stress or pressure multiplied by time. The ips unit is called the reyn, in honor
of Sir Osborne Reynolds.

The absolute viscosity is measured by the pascal-second (Pa · s) in SI; this is the
same as a Newton-second per square meter. The conversion from ips units to SI is the
same as for stress. For example, multiply the absolute viscosity in reyns by 6890 to
convert to units of Pa · s.

The American Society of Mechanical Engineers (ASME) has published a list of
cgs units that are not to be used in ASME documents.1 This list results from a recom-
mendation by the International Committee of Weights and Measures (CIPM) that the
use of cgs units with special names be discouraged. Included in this list is a unit of force
called the dyne (dyn), a unit of dynamic viscosity called the poise (P), and a unit of
kinematic viscosity called the stoke (St). All of these units have been, and still are, used
extensively in lubrication studies.

The poise is the cgs unit of dynamic or absolute viscosity, and its unit is the dyne-
second per square centimeter (dyn · s/cm2). It has been customary to use the centipoise
(cP) in analysis, because its value is more convenient. When the viscosity is expressed in
centipoises, it is designated by Z. The conversion from cgs units to SI and ips units is as
follows:

μ(Pa · s) = (10)−3 Z (cP)

μ(reyn) = Z (cP)

6.89(10)6

μ(mPa · s) = 6.89 μ′(μreyn)

In using ips units, the microreyn (μreyn) is often more convenient. The symbol μ′ will
be used to designate viscosity in μreyn such that μ = μ′/(106).

The ASTM standard method for determining viscosity uses an instrument called the
Saybolt Universal Viscosimeter. The method consists of measuring the time in seconds
for 60 mL of lubricant at a specified temperature to run through a tube 17.6 mm in
diameter and 12.25 mm long. The result is called the kinematic viscosity, and in the past
the unit of the square centimeter per second has been used. One square centimeter per sec-
ond is defined as a stoke. By the use of the Hagen-Poiseuille law, the kinematic viscosity
based upon seconds Saybolt, also called Saybolt Universal viscosity (SUV) in seconds, is

Zk =
(

0.22t − 180

t

)
(12–3)

where Zk is in centistokes (cSt) and t is the number of seconds Saybolt.

1ASME Orientation and Guide for Use of Metric Units, 2nd ed., American Society of Mechanical Engineers,
1972, p. 13.
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Figure 12–2

A comparison of the viscosities
of various fluids.
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In SI, the kinematic viscosity ν has the unit of the square meter per second (m2/s),
and the conversion is

ν(m2/s) = 10−6 Zk (cSt)

Thus, Eq. (12–3) becomes

ν =
(

0.22t − 180

t

)
(10−6) (12–4)

To convert to dynamic viscosity, we multiply ν by the density in SI units. Designating
the density as ρ with the unit of the kilogram per cubic meter, we have

μ = ρ

(
0.22t − 180

t

)
(10−6) (12–5)

where μ is in pascal-seconds.
Figure 12–2 shows the absolute viscosity in the ips system of a number of fluids

often used for lubrication purposes and their variation with temperature.

12–3 Petroff’s Equation
The phenomenon of bearing friction was first explained by Petroff on the assumption
that the shaft is concentric. Though we shall seldom make use of Petroff’s method of
analysis in the material to follow, it is important because it defines groups of dimen-
sionless parameters and because the coefficient of friction predicted by this law turns
out to be quite good even when the shaft is not concentric.

Let us now consider a vertical shaft rotating in a guide bearing. It is assumed that
the bearing carries a very small load, that the clearance space is completely filled with
oil, and that leakage is negligible (Fig. 12–3). We denote the radius of the shaft by r,
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Figure 12–3

Petroff’s lightly loaded journal
bearing consisting of a shaft
journal and a bushing with an
axial-groove internal lubricant
reservoir. The linear velocity
gradient is shown in the end
view. The clearance c is several
thousandths of an inch and is
grossly exaggerated for
presentation purposes.
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the radial clearance by c, and the length of the bearing by l, all dimensions being in
inches. If the shaft rotates at N rev/s, then its surface velocity is U = 2πr N in/s. Since
the shearing stress in the lubricant is equal to the velocity gradient times the viscosity,
from Eq. (12–2) we have

τ = μ
U

h
= 2πrμN

c
(a)

where the radial clearance c has been substituted for the distance h. The force required
to shear the film is the stress times the area. The torque is the force times the lever arm r.
Thus

T = (τ A)(r) =
(

2πrμN

c

)
(2πrl)(r) = 4π2r3lμN

c
(b)

If we now designate a small force on the bearing by W, in pounds-force, then the pres-
sure P, in pounds-force per square inch of projected area, is P = W/2rl . The frictional
force is f W , where f is the coefficient of friction, and so the frictional torque is

T = f Wr = ( f )(2rl P)(r) = 2r2 f l P (c)

Substituting the value of the torque from Eq. (c) in Eq. (b) and solving for the coeffi-
cient of friction, we find

f = 2π2 μN

P

r

c
(12–6)

Equation (12–6) is called Petroff’s equation and was first published in 1883. The
two quantities μN/P and r/c are very important parameters in lubrication. Substitution
of the appropriate dimensions in each parameter will show that they are dimensionless.

The bearing characteristic number, or the Sommerfeld number, is defined by the
equation

S =
(

r

c

)2
μN

P
(12–7)

The Sommerfeld number is very important in lubrication analysis because it contains
many of the parameters that are specified by the designer. Note that it is also dimen-
sionless. The quantity r/c is called the radial clearance ratio. If we multiply both sides
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of Eq. (12–6) by this ratio, we obtain the interesting relation

f
r

c
= 2π2 μN

P

(
r

c

)2

= 2π2S (12–8)

12–4 Stable Lubrication
The difference between boundary and hydrodynamic lubrication can be explained by
reference to Fig. 12–4. This plot of the change in the coefficient of friction versus the
bearing characteristic μN/P was obtained by the McKee brothers in an actual test of
friction.2 The plot is important because it defines stability of lubrication and helps us to
understand hydrodynamic and boundary, or thin-film, lubrication.

Recall Petroff’s bearing model in the form of Eq. (12–6) predicts that f is pro-
portional to μN/P , that is, a straight line from the origin in the first quadrant. On the
coordinates of Fig. 12–4 the locus to the right of point C is an example. Petroff’s model
presumes thick-film lubrication, that is, no metal-to-metal contact, the surfaces being
completely separated by a lubricant film.

The McKee abscissa was Z N/P (centipoise × rev/min/psi) and the value of
abscissa B in Fig. 12–4 was 30. The corresponding μN/P (reyn × rev/s/psi) is
0.33(10−6). Designers keep μN/P ≥ 1.7(10−6), which corresponds to Z N/P ≥ 150.
A design constraint to keep thick-film lubrication is to be sure that

μN

P
≥ 1.7(10−6) (a)

Suppose we are operating to the right of line B A and something happens, say, an
increase in lubricant temperature. This results in a lower viscosity and hence a smaller
value of μN/P. The coefficient of friction decreases, not as much heat is generated in
shearing the lubricant, and consequently the lubricant temperature drops. Thus the region
to the right of line B A defines stable lubrication because variations are self-correcting.

To the left of line B A, a decrease in viscosity would increase the friction. A
temperature rise would ensue, and the viscosity would be reduced still more. The
result would be compounded. Thus the region to the left of line B A represents unstable
lubrication.

It is also helpful to see that a small viscosity, and hence a small μN/P, means
that the lubricant film is very thin and that there will be a greater possibility of some

Figure 12–4

The variation of the coefficient
of friction f with μN�P.
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2S. A. McKee and T. R. McKee, “Journal Bearing Friction in the Region of Thin Film Lubrication,”
SAE J., vol. 31, 1932, pp. (T)371–377.
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Figure 12–5

Formation of a film.
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metal-to-metal contact, and hence of more friction. Thus, point C represents what is
probably the beginning of metal-to-metal contact as μN/P becomes smaller.

12–5 Thick-Film Lubrication
Let us now examine the formation of a lubricant film in a journal bearing. Figure 12–5a
shows a journal that is just beginning to rotate in a clockwise direction. Under starting
conditions, the bearing will be dry, or at least partly dry, and hence the journal will
climb or roll up the right side of the bearing as shown in Fig. 12–5a.

Now suppose a lubricant is introduced into the top of the bearing as shown in
Fig. 12–5b. The action of the rotating journal is to pump the lubricant around the bear-
ing in a clockwise direction. The lubricant is pumped into a wedge-shaped space and
forces the journal over to the other side. A minimum film thickness h0 occurs, not at the
bottom of the journal, but displaced clockwise from the bottom as in Fig. 12–5b. This is
explained by the fact that a film pressure in the converging half of the film reaches a
maximum somewhere to the left of the bearing center.

Figure 12–5 shows how to decide whether the journal, under hydrodynamic lubrica-
tion, is eccentrically located on the right or on the left side of the bearing.Visualize the jour-
nal beginning to rotate. Find the side of the bearing upon which the journal tends to roll.
Then, if the lubrication is hydrodynamic, mentally place the journal on the opposite side.

The nomenclature of a journal bearing is shown in Fig. 12–6. The dimension c is
the radial clearance and is the difference in the radii of the bushing and journal. In

Figure 12–6

Nomenclature of a partial
journal bearing.
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3Beauchamp Tower, “First Report on Friction Experiments,” Proc. Inst. Mech. Eng., November 1883,
pp. 632–666; “Second Report,” ibid., 1885, pp. 58–70; “Third Report,” ibid., 1888, pp. 173–205;
“Fourth Report,” ibid., 1891, pp. 111–140.

Fig. 12–6 the center of the journal is at O and the center of the bearing at O ′. The dis-
tance between these centers is the eccentricity and is denoted by e. The minimum film
thickness is designated by h0, and it occurs at the line of centers. The film thickness at
any other point is designated by h. We also define an eccentricity ratio ε as

ε = e

c
The bearing shown in the figure is known as a partial bearing. If the radius of the

bushing is the same as the radius of the journal, it is known as a fitted bearing. If the
bushing encloses the journal, as indicated by the dashed lines, it becomes a full bearing.
The angle β describes the angular length of a partial bearing. For example, a 120◦ partial
bearing has the angle β equal to 120◦.

12–6 Hydrodynamic Theory
The present theory of hydrodynamic lubrication originated in the laboratory of
Beauchamp Tower in the early 1880s in England. Tower had been employed to study
the friction in railroad journal bearings and learn the best methods of lubricating them.
It was an accident or error, during the course of this investigation, that prompted Tower
to look at the problem in more detail and that resulted in a discovery that eventually led
to the development of the theory.

Figure 12–7 is a schematic drawing of the journal bearing that Tower investigated.
It is a partial bearing, having a diameter of 4 in, a length of 6 in, and a bearing arc of
157◦, and having bath-type lubrication, as shown. The coefficients of friction obtained
by Tower in his investigations on this bearing were quite low, which is now not
surprising. After testing this bearing, Tower later drilled a 1

2 -in-diameter lubricator hole
through the top. But when the apparatus was set in motion, oil flowed out of this hole.
In an effort to prevent this, a cork stopper was used, but this popped out, and so it was
necessary to drive a wooden plug into the hole. When the wooden plug was pushed out
too, Tower, at this point, undoubtedly realized that he was on the verge of discovery. A
pressure gauge connected to the hole indicated a pressure of more than twice the unit
bearing load. Finally, he investigated the bearing film pressures in detail throughout the
bearing width and length and reported a distribution similar to that of Fig. 12–8.3

The results obtained by Tower had such regularity that Osborne Reynolds con-
cluded that there must be a definite equation relating the friction, the pressure, and the

Figure 12–7

Schematic representation of the
partial bearing used by Tower.

N

Journal

Lubricant
level

Lubricator hole Partial bronze
bearingW
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Figure 12–8

Approximate pressure-
distribution curves obtained
by Tower.

pmax

p = 0

N

l = 6 in

d = 4 in

velocity. The present mathematical theory of lubrication is based upon Reynolds’ work
following the experiment by Tower.4 The original differential equation, developed by
Reynolds, was used by him to explain Tower’s results. The solution is a challenging
problem that has interested many investigators ever since then, and it is still the starting
point for lubrication studies.

Reynolds pictured the lubricant as adhering to both surfaces and being pulled by
the moving surface into a narrowing, wedge-shaped space so as to create a fluid or film
pressure of sufficient intensity to support the bearing load. One of the important sim-
plifying assumptions resulted from Reynolds’ realization that the fluid films were so
thin in comparison with the bearing radius that the curvature could be neglected. This
enabled him to replace the curved partial bearing with a flat bearing, called a plane slider
bearing. Other assumptions made were:

1 The lubricant obeys Newton’s viscous effect, Eq. (12–1).
2 The forces due to the inertia of the lubricant are neglected.
3 The lubricant is assumed to be incompressible.
4 The viscosity is assumed to be constant throughout the film.
5 The pressure does not vary in the axial direction.

Figure 12–9a shows a journal rotating in the clockwise direction supported by a
film of lubricant of variable thickness h on a partial bearing, which is fixed. We specify
that the journal has a constant surface velocity U. Using Reynolds’ assumption that
curvature can be neglected, we fix a right-handed xyz reference system to the stationary
bearing. We now make the following additional assumptions:

6 The bushing and journal extend infinitely in the z direction; this means there can
be no lubricant flow in the z direction.

7 The film pressure is constant in the y direction. Thus the pressure depends only on
the coordinate x.

8 The velocity of any particle of lubricant in the film depends only on the co-
ordinates x and y.

We now select an element of lubricant in the film (Fig. 12–9a) of dimensions dx ,
dy, and dz, and compute the forces that act on the sides of this element. As shown in
Fig. 12–9b, normal forces, due to the pressure, act upon the right and left sides of the

4Osborne Reynolds, “Theory of Lubrication, Part I,” Phil. Trans. Roy. Soc. London, 1886.
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dx

h

U

dy

Journal

(a) (b)

Partial bushing

dy

h

z

x

y

dx

� dx dz

p dy dz

∂y
(� + dy) dx dz∂�

dx
(p + dx) dy dz

dp

u = U

Flow of
lubricant

Stationary partial bushing

Rotating journal

element, and shear forces, due to the viscosity and to the velocity, act upon the top and
bottom sides. Summing the forces in the x direction gives∑

Fx = p dy dz −
(

p + dp

dx
dx

)
dy dz − τ dx dz +

(
τ + ∂τ

∂y
dy

)
dx dz = 0 (a)

This reduces to

dp

dx
= ∂τ

∂y
(b)

From Eq. (12–1), we have

τ = μ
∂u

∂y
(c)

where the partial derivative is used because the velocity u depends upon both x and y.
Substituting Eq. (c) in Eq. (b), we obtain

dp

dx
= μ

∂2u

∂y2
(d)

Holding x constant, we now integrate this expression twice with respect to y. This gives

∂u

∂y
= 1

μ

dp

dx
y + C1

u = 1

2μ

dp

dx
y2 + C1 y + C2

(e)

Note that the act of holding x constant means that C1 and C2 can be functions of x. We
now assume that there is no slip between the lubricant and the boundary surfaces. This
gives two sets of boundary conditions for evaluating the constants C1 and C2:

At y = 0, u = 0

At y = h, u = U
(f )

Figure 12–9
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Notice, in the second condition, that h is a function of x. Substituting these conditions
in Eq. (e) and solving for the constants gives

C1 = U

h
− h

2μ

dp

dx
C2 = 0

or

u = 1

2μ

dp

dx
(y2 − hy) + U

h
y (12–9)

This equation gives the velocity distribution of the lubricant in the film as a function of
the coordinate y and the pressure gradient dp/dx . The equation shows that the velocity
distribution across the film (from y = 0 to y = h) is obtained by superposing a para-
bolic distribution onto a linear distribution. Figure 12–10 shows the superposition of
these distributions to obtain the velocity for particular values of x and dp/dx . In general,
the parabolic term may be additive or subtractive to the linear term, depending upon the
sign of the pressure gradient. When the pressure is maximum, dp/dx = 0 and the
velocity is

u = U

h
y (g)

which is a linear relation.
We next define Q as the volume of lubricant flowing in the x direction per unit

time. By using a width of unity in the z direction, the volume may be obtained by the
expression

Q =
∫ h

0
u dy (h)

Substituting the value of u from Eq. (12–9) and integrating gives

Q = Uh

2
− h3

12μ

dp

dx
(i )

The next step uses the assumption of an incompressible lubricant and states that the
flow is the same for any cross section. Thus

d Q

dx
= 0

h

y

U

u

x

y

Flow of
lubricant

Stationary bushing

Rotating journal

dp
dx

> 0

dp
dx

= 0

dp
dx

< 0

Figure 12–10

Velocity of the lubricant.
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From Eq. (i),

d Q

dx
= U

2

dh

dx
− d

dx

(
h3

12μ

dp

dx

)
= 0

or

d

dx

(
h3

μ

dp

dx

)
= 6U

dh

dx
(12–10)

which is the classical Reynolds equation for one-dimensional flow. It neglects side leak-
age, that is, flow in the z direction. A similar development is used when side leakage is
not neglected. The resulting equation is

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)
= 6U

∂h

∂x
(12–11)

There is no general analytical solution to Eq. (12–11); approximate solutions have been
obtained by using electrical analogies, mathematical summations, relaxation methods,
and numerical and graphical methods. One of the important solutions is due to
Sommerfeld5 and may be expressed in the form

r

c
f = φ

[(
r

c

)2
μN

P

]
(12–12)

where φ indicates a functional relationship. Sommerfeld found the functions for half-
bearings and full bearings by using the assumption of no side leakage.

12–7 Design Considerations
We may distinguish between two groups of variables in the design of sliding bearings.
In the first group are those whose values either are given or are under the control of the
designer. These are:

1 The viscosity μ
2 The load per unit of projected bearing area, P
3 The speed N
4 The bearing dimensions r, c, β , and l

Of these four variables, the designer usually has no control over the speed, because it is
specified by the overall design of the machine. Sometimes the viscosity is specified in
advance, as, for example, when the oil is stored in a sump and is used for lubricating
and cooling a variety of bearings. The remaining variables, and sometimes the viscosity,
may be controlled by the designer and are therefore the decisions the designer makes.
In other words, when these four decisions are made, the design is complete.

In the second group are the dependent variables. The designer cannot control these
except indirectly by changing one or more of the first group. These are:

1 The coefficient of friction f
2 The temperature rise 
T
3 The volume flow rate of oil Q
4 The minimum film thickness h0

5A. Sommerfeld, “Zur Hydrodynamischen Theorie der Schmiermittel-Reibung” (“On the Hydrodynamic
Theory of Lubrication”), Z. Math. Physik, vol. 50, 1904, pp. 97–155.
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Figure 12–11

How the significant speed varies. (a) Common bearing case. (b) Load vector moves at the same speed as the journal. (c) Load 
vector moves at half journal speed, no load can be carried. (d) Journal and bushing move at same speed, load vector stationary,
capacity halved.
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This group of variables tells us how well the bearing is performing, and hence we may
regard them as performance factors. Certain limitations on their values must be imposed by
the designer to ensure satisfactory performance. These limitations are specified by the char-
acteristics of the bearing materials and of the lubricant. The fundamental problem in bear-
ing design, therefore, is to define satisfactory limits for the second group of variables and
then to decide upon values for the first group such that these limitations are not exceeded.

Significant Angular Speed

In the next section we will examine several important charts relating key variables to
the Sommerfeld number. To this point we have assumed that only the journal rotates
and it is the journal rotational speed that is used in the Sommerfeld number. It has been
discovered that the angular speed N that is significant to hydrodynamic film bearing
performance is6

N = |Nj + Nb − 2Nf | (12–13)

where Nj = journal angular speed, rev/s

Nb = bearing angular speed, rev/s

Nf = load vector angular speed, rev/s

When determining the Sommerfeld number for a general bearing, use Eq. (12–13)
when entering N. Figure 12–11 shows several situations for determining N.

Trumpler’s Design Criteria for Journal Bearings

Because the bearing assembly creates the lubricant pressure to carry a load, it reacts to
loading by changing its eccentricity, which reduces the minimum film thickness h0 until
the load is carried. What is the limit of smallness of h0? Close examination reveals that
the moving adjacent surfaces of the journal and bushing are not smooth but consist of
a series of asperities that pass one another, separated by a lubricant film. In starting a

6Paul Robert Trumpler, Design of Film Bearings, Macmillan, New York, 1966, pp. 103–119.
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bearing under load from rest there is metal-to-metal contact and surface asperities are
broken off, free to move and circulate with the oil. Unless a filter is provided, this debris
accumulates. Such particles have to be free to tumble at the section containing the min-
imum film thickness without snagging in a togglelike configuration, creating additional
damage and debris. Trumpler, an accomplished bearing designer, provides a throat of at
least 200 μ in to pass particles from ground surfaces.7 He also provides for the influence
of size (tolerances tend to increase with size) by stipulating

h0 ≥ 0.0002 + 0.000 04d in (a)

where d is the journal diameter in inches.
A lubricant is a mixture of hydrocarbons that reacts to increasing temperature by

vaporizing the lighter components, leaving behind the heavier. This process (bearings
have lots of time) slowly increases the viscosity of the remaining lubricant, which
increases heat generation rate and elevates lubricant temperatures. This sets the stage
for future failure. For light oils, Trumpler limits the maximum film temperature Tmax to

Tmax ≤ 250◦F (b)

Some oils can operate at slightly higher temperatures. Always check with the lubricant
manufacturer.

A journal bearing often consists of a ground steel journal working against a softer,
usually nonferrous, bushing. In starting under load there is metal-to-metal contact,
abrasion, and the generation of wear particles, which, over time, can change the geo-
metry of the bushing. The starting load divided by the projected area is limited to

Wst

l D
≤ 300 psi (c)

If the load on a journal bearing is suddenly increased, the increase in film temper-
ature in the annulus is immediate. Since ground vibration due to passing trucks, trains,
and earth tremors is often present, Trumpler used a design factor of 2 or more on the
running load, but not on the starting load of Eq. (c):

nd ≥ 2 (d )

Many of Trumpler’s designs are operating today, long after his consulting career is
over; clearly they constitute good advice to the beginning designer.

12–8 The Relations of the Variables
Before proceeding to the problem of design, it is necessary to establish the relationships
between the variables. Albert A. Raimondi and John Boyd, of Westinghouse Research
Laboratories, used an iteration technique to solve Reynolds’ equation on the digital
computer.8 This is the first time such extensive data have been available for use by
designers, and consequently we shall employ them in this book.9

7Op. cit., pp. 192–194.
8A. A. Raimondi and John Boyd, “A Solution for the Finite Journal Bearing and Its Application to Analysis
and Design, Parts I, II, and III,” Trans. ASLE, vol. 1, no. 1, in Lubrication Science and Technology,
Pergamon, New York, 1958, pp. 159–209.
9See also the earlier companion paper, John Boyd and Albert A. Raimondi, “Applying Bearing Theory to the
Analysis and Design of Journal Bearings, Part I and II,” J. Appl. Mechanics, vol. 73, 1951, pp. 298–316.
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The Raimondi and Boyd papers were published in three parts and contain 45
detailed charts and 6 tables of numerical information. In all three parts, charts are used
to define the variables for length-diameter (l/d) ratios of 1:4, 1:2, and 1 and for beta
angles of 60 to 360◦. Under certain conditions the solution to the Reynolds equation
gives negative pressures in the diverging portion of the oil film. Since a lubricant can-
not usually support a tensile stress, Part III of the Raimondi-Boyd papers assumes that
the oil film is ruptured when the film pressure becomes zero. Part III also contains data
for the infinitely long bearing; since it has no ends, this means that there is no side leak-
age. The charts appearing in this book are from Part III of the papers, and are for full
journal bearings (β = 360◦) only. Space does not permit the inclusion of charts for par-
tial bearings. This means that you must refer to the charts in the original papers when
beta angles of less than 360◦ are desired. The notation is very nearly the same as in this
book, and so no problems should arise.

Viscosity Charts (Figs. 12–12 to 12–14)

One of the most important assumptions made in the Raimondi-Boyd analysis is that
viscosity of the lubricant is constant as it passes through the bearing. But since work is
done on the lubricant during this flow, the temperature of the oil is higher when it leaves
the loading zone than it was on entry. And the viscosity charts clearly indicate that the
viscosity drops off significantly with a rise in temperature. Since the analysis is based
on a constant viscosity, our problem now is to determine the value of viscosity to be
used in the analysis.

Some of the lubricant that enters the bearing emerges as a side flow, which carries
away some of the heat. The balance of the lubricant flows through the load-bearing zone
and carries away the balance of the heat generated. In determining the viscosity to be
used we shall employ a temperature that is the average of the inlet and outlet tempera-
tures, or

Tav = T1 + 
T

2
(12–14)

where T1 is the inlet temperature and 
T is the temperature rise of the lubricant
from inlet to outlet. Of course, the viscosity used in the analysis must correspond
to Tav.

Viscosity varies considerably with temperature in a nonlinear fashion. The ordi-
nates in Figs. 12–12 to 12–14 are not logarithmic, as the decades are of differing vertical
length. These graphs represent the temperature versus viscosity functions for common
grades of lubricating oils in both customary engineering and SI units. We have the
temperature versus viscosity function only in graphical form, unless curve fits are devel-
oped. See Table 12–1.

One of the objectives of lubrication analysis is to determine the oil outlet temper-
ature when the oil and its inlet temperature are specified. This is a trial-and-error type
of problem. In an analysis, the temperature rise will first be estimated. This allows
for the viscosity to be determined from the chart. With the value of the viscosity, the
analysis is performed where the temperature rise is then computed. With this, a new
estimate of the temperature rise is established. This process is continued until the
estimated and computed temperatures agree.

To illustrate, suppose we have decided to use SAE 30 oil in an application in which
the oil inlet temperature is T1 = 180◦F. We begin by estimating that the temperature rise
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Figure 12–12

Viscosity–temperature chart 
in U.S. customary units.
(Raimondi and Boyd.)
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will be 
T = 30◦F. Then, from Eq. (12–14),

Tav = T1 + 
T

2
= 180 + 30

2
= 195◦F

From Fig. 12–12 we follow the SAE 30 line and find that μ = 1.40 μreyn at 195◦F. So
we use this viscosity (in an analysis to be explained in detail later) and find that the
temperature rise is actually 
T = 54◦F. Thus Eq. (12–14) gives

Tav = 180 + 54

2
= 207◦F
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Figure 12–13

Viscosity–temperature chart 
in SI units. (Adapted from
Fig. 12–12.)

This corresponds to point A on Fig. 12–12, which is above the SAE 30 line and indi-
cates that the viscosity used in the analysis was too high.

For a second guess, try μ = 1.00 μreyn. Again we run through an analysis and this
time find that 
T = 30◦F. This gives an average temperature of

Tav = 180 + 30

2
= 195◦F

and locates point B on Fig. 12–12.
If points A and B are fairly close to each other and on opposite sides of the SAE 30

line, a straight line can be drawn between them with the intersection locating the cor-
rect values of viscosity and average temperature to be used in the analysis. For this illus-
tration, we see from the viscosity chart that they are Tav = 203◦F and μ = 1.20 μreyn.
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Figure 12–14

Chart for multiviscosity
lubricants. This chart was
derived from known viscosities
at two points, 100 and 210°F,
and the results are believed 
to be correct for other
temperatures.
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Viscosity Constant
Oil Grade, SAE �0, reyn b, °F

10 0.0158(10−6) 1157.5

20 0.0136(10−6) 1271.6

30 0.0141(10−6) 1360.0

40 0.0121(10−6) 1474.4

50 0.0170(10−6) 1509.6

60 0.0187(10−6) 1564.0

*� � �0 exp [b/(T � 95)], T in °F.

Table 12–1

Curve Fits* to Approxi-

mate the Viscosity versus

Temperature Functions

for SAE Grades 10 to 60

Source: A. S. Seireg and 
S. Dandage, “Empirical Design
Procedure for the Thermody-
namic Behavior of Journal
Bearings,” J. Lubrication
Technology, vol. 104, 
April 1982, pp. 135–148.
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Figure 12–16

Chart for minimum film thickness variable and eccentricity ratio. The left boundary of the zone defines the optimal h0 for minimum friction;
the right boundary is optimum h0 for load. (Raimondi and Boyd.)
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Figure 12–15

Polar diagram of the
film–pressure distribution
showing the notation used.
(Raimondi and Boyd.)
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Figure 12–17

Chart for determining the
position of the minimum film
thickness h0. (Raimondi and
Boyd.)
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The remaining charts from Raimondi and Boyd relate several variables to the
Sommerfeld number. These variables are

Minimum film thickness (Figs. 12–16 and 12–17)
Coefficient of friction (Fig. 12–18)
Lubricant flow (Figs. 12–19 and 12–20)
Film pressure (Figs. 12–21 and 12–22)

Figure 12–15 shows the notation used for the variables. We will describe the use of
these curves in a series of four examples using the same set of given parameters.

Minimum Film Thickness

In Fig. 12–16, the minimum film thickness variable h0/c and eccentricity ratio ε = e/c
are plotted against the Sommerfeld number S with contours for various values of l/d. The
corresponding angular position of the minimum film thickness is found in Fig. 12–17.

EXAMPLE 12–1 Determine h0 and e using the following given parameters: μ = 4 μreyn, N = 30 rev/s,
W = 500 lbf (bearing load), r = 0.75 in, c = 0.0015 in, and l = 1.5 in.

Solution The nominal bearing pressure (in projected area of the journal) is

P = W

2rl
= 500

2(0.75)1.5
= 222 psi

The Sommerfeld number is, from Eq. (12–7), where N = Nj = 30 rev/s,

S =
(

r

c

)2(
μN

P

)
=

(
0.75

0.0015

)2[4(10−6)30

222

]
= 0.135

Also, l/d = 1.50/[2(0.75)] = 1. Entering Fig. 12–16 with S = 0.135 and l/d = 1
gives h0/c = 0.42 and ε = 0.58. The quantity h0/c is called the minimum film thickness
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variable. Since c = 0.0015 in, the minimum film thickness h0 is

h0 = 0.42(0.0015) = 0.000 63 in

We can find the angular location φ of the minimum film thickness from the chart of
Fig. 12–17. Entering with S = 0.135 and l/d = 1 gives φ = 53◦.

The eccentricity ratio is ε = e/c = 0.58. This means the eccentricity e is

e = 0.58(0.0015) = 0.000 87 in

Note that if the journal is centered in the bushing, e = 0 and h0 = c, correspond-
ing to a very light (zero) load. Since e = 0, ε = 0. As the load is increased the journal
displaces downward; the limiting position is reached when h0 = 0 and e = c, that is,
when the journal touches the bushing. For this condition the eccentricity ratio is unity.
Since h0 = c − e, dividing both sides by c, we have

h0

c
= 1 − ε

Design optima are sometimes maximum load, which is a load-carrying character-
istic of the bearing, and sometimes minimum parasitic power loss or minimum coeffi-
cient of friction. Dashed lines appear on Fig. 12–16 for maximum load and minimum
coefficient of friction, so you can easily favor one of maximum load or minimum coef-
ficient of friction, but not both. The zone between the two dashed-line contours might
be considered a desirable location for a design point.

Coefficient of Friction

The friction chart, Fig. 12–18, has the friction variable (r/c) f plotted against
Sommerfeld number S with contours for various values of the l/d ratio.

EXAMPLE 12–2 Using the parameters given in Ex. 12–1, determine the coefficient of friction, the torque
to overcome friction, and the power loss to friction.

Solution We enter Fig. 12–18 with S = 0.135 and l/d = 1 and find (r/c) f = 3.50. The coeffi-
cient of friction f is

f = 3.50 c/r = 3.50(0.0015/0.75) = 0.0070

The friction torque on the journal is

T = f Wr = 0.007(500)0.75 = 2.62 lbf · in

The power loss in horsepower is

(hp)loss = T N

1050
= 2.62(30)

1050
= 0.075 hp

or, expressed in Btu/s,

H = 2πT N

778(12)
= 2π(2.62)30

778(12)
= 0.0529 Btu/s
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Lubricant Flow

Figures 12–19 and 12–20 are used to determine the lubricant flow and side flow.

EXAMPLE 12–3 Continuing with the parameters of Ex. 12–1, determine the total volumetric flow rate Q
and the side flow rate Qs .

Solution To estimate the lubricant flow, enter Fig. 12–19 with S = 0.135 and l/d = 1 to obtain
Q/(rcNl) = 4.28. The total volumetric flow rate is

Q = 4.28rcNl = 4.28(0.75)0.0015(30)1.5 = 0.217 in3/s

From Fig. 12–20 we find the flow ratio Qs/Q = 0.655 and Qs is

Qs = 0.655Q = 0.655(0.217) = 0.142 in3/s

Figure 12–18

Chart for coefficient-of-friction variable; note that Petroff’s equation is the asymptote. (Raimondi and Boyd.)
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Figure 12–19

Chart for flow variable. 
Note: Not for pressure-fed
bearings. (Raimondi and Boyd.)

Figure 12–20

Chart for determining the ratio
of side flow to total flow.
(Raimondi and Boyd.)

0 0.01 0.02 0.04 0.06 0.1 0.2 0.4 0.6 1.0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Bearing characteristic number, S = (   )2
 

r
c

�N
P

Fl
ow

 r
at

io
Q

s

Q

l ⁄ d = 1 ⁄ 4

1 ⁄ 2

1

l ⁄d = ∞

bud29281_ch12_617-672.qxd  12/16/09  9:51 PM  Page 640 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Lubrication and Journal Bearings 641

Figure 12–21

Chart for determining the
maximum film pressure. 
Note: Not for pressure-fed
bearings. (Raimondi and Boyd.)
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The side leakage Qs is from the lower part of the bearing, where the internal pressure
is above atmospheric pressure. The leakage forms a fillet at the journal-bushing exter-
nal junction, and it is carried by journal motion to the top of the bushing, where the
internal pressure is below atmospheric pressure and the gap is much larger, to be
“sucked in” and returned to the lubricant sump. That portion of side leakage that leaks
away from the bearing has to be made up by adding oil to the bearing sump periodically
by maintenance personnel.

Film Pressure

The maximum pressure developed in the film can be estimated by finding the pressure
ratio P/pmax from the chart in Fig. 12–21. The locations where the terminating and
maximum pressures occur, as defined in Fig 12–15, are determined from Fig. 12–22.

EXAMPLE 12–4 Using the parameters given in Ex. 12–1, determine the maximum film pressure and the
locations of the maximum and terminating pressures.

Solution Entering Fig. 12–21 with S = 0.135 and l/d = 1, we find P/pmax = 0.42. The maxi-
mum pressure pmax is therefore

pmax = P

0.42
= 222

0.42
= 529 psi

With S = 0.135 and l/d = 1, from Fig. 12–22, θpmax = 18.5◦ and the terminating posi-
tion θp0 is 75◦.
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Examples 12–1 to 12–4 demonstrate how the Raimondi and Boyd charts are used.
It should be clear that we do not have journal-bearing parametric relations as equations,
but in the form of charts. Moreover, the examples were simple because the steady-state
equivalent viscosity was given. We will now show how the average film temperature
(and the corresponding viscosity) is found from energy considerations.

Lubricant Temperature Rise

The temperature of the lubricant rises until the rate at which work is done by the jour-
nal on the film through fluid shear is the same as the rate at which heat is transferred to
the greater surroundings. The specific arrangement of the bearing plumbing affects the
quantitative relationships. See Fig. 12–23. A lubricant sump (internal or external to the
bearing housing) supplies lubricant at sump temperature Ts to the bearing annulus at
temperature Ts = T1. The lubricant passes once around the bushing and is delivered at
a higher lubricant temperature T1 + 
T to the sump. Some of the lubricant leaks out of
the bearing at a mixing-cup temperature of T1 + 
T/2 and is returned to the sump. The
sump may be a keyway-like groove in the bearing cap or a larger chamber up to half the
bearing circumference. It can occupy “all” of the bearing cap of a split bearing. In such
a bearing the side leakage occurs from the lower portion and is sucked back in, into the
ruptured film arc. The sump could be well removed from the journal-bushing interface.
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Figure 12–22

Chart for finding the terminating position of the lubricant film and the position of maximum film pressure. (Raimondi and Boyd.)
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Let

Q = volumetric oil-flow rate into the bearing, in3/s

Qs = volumetric side-flow leakage rate out of the bearing and to the sump, in3/s

Q − Qs = volumetric oil-flow discharge from annulus to sump, in3/s

T1 = oil inlet temperature (equal to sump temperature Ts ), ◦F


T = temperature rise in oil between inlet and outlet, ◦F

ρ = lubricant density, lbm/in3

Cp = specific heat capacity of lubricant, Btu/(lbm · ◦F)

J = Joulean heat equivalent, in · lbf/Btu

H = heat rate, Btu/s

Using the sump as a control region, we can write an enthalpy balance. Using T1 as the
datum temperature gives

Hloss = ρCp Qs
T/2 + ρCp(Q − Qs)
T = ρCp Q
T

(
1 − 1

2

Qs

Q

)
(a)

The thermal energy loss at steady state Hloss is equal to the rate the journal does work
on the film is Hloss = Ẇ = 2πT N/J . The torque T = f Wr , the load in terms of pres-
sure is W = 2Prl , and multiplying numerator and denominator by the clearance c gives

Hloss = 4π Prl Nc

J

r f

c
(b)

Equating Eqs. (a) and (b) and rearranging results in

JρCp 
T

4π P
= r f/c

(1 − 0.5Qs/Q) [Q/(rcNl)]
(c)

For common petroleum lubricants ρ = 0.0311 lbm/in3, Cp = 0.42 Btu/(lbm · ◦F), and
J = 778(12) = 9336 in · lbf/Btu; therefore the left term of Eq. (c) is

JρCp 
T

4π P
= 9336(0.0311)0.42
TF

4π Ppsi
= 9.70


TF

Ppsi

thus

9.70
TF

Ppsi
= r f/c(

1 − 1
2 Qs/Q

)
[Q/(rcNjl)]

(12–15)

Figure 12–23

Schematic of a journal bearing
with an external sump with
cooling; lubricant makes one
pass before returning to the
sump.

Supply
Q, T1

Return
Q – Qs
T1 + ΔT

End leakage

Qs, T1 +
ΔT
2

T1 +T1
ΔT
2

T1 + ΔT

Q Qs

Q – Qs
Sump

T1

Heat loss rate
Hloss

Control
surface

(a) (b)
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Figure 12–24

Figures 12–18, 12–19, and 12–20 combined to reduce iterative table look-up. (Source: Chart based on work of
Raimondi and Boyd boundary condition (2), i.e., no negative lubricant pressure developed. Chart is for full
journal bearing using single lubricant pass, side flow emerges with temperature rise �T/2, thru flow emerges
with temperature rise �T, and entire flow is supplied at datum sump temperature.)
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where �TF is the temperature rise in ◦F and Ppsi is the bearing pressure in psi. The right
side of Eq. (12–15) can be evaluated from Figs. 12–18, 12–19, and 12–20 for various
Sommerfeld numbers and l/d ratios to give Fig. 12–24. It is easy to show that the left
side of Eq. (12–15) can be expressed as 0.120�TC/PMPa where �TC is expressed in ◦C
and the pressure PMPa is expressed in MPa. The ordinate in Fig. 12–24 is either
9.70 �TF/Ppsi or 0.120�TC/PMPa, which is not surprising since both are dimension-
less in proper units and identical in magnitude. Since solutions to bearing problems
involve iteration and reading many graphs can introduce errors, Fig. 12–24 reduces
three graphs to one, a step in the proper direction.

Interpolation

For l/d ratios other than the ones given in the charts, Raimondi and Boyd have provided
the following interpolation equation

y = 1

(l/d)3

[
−1

8

(
1 − l

d

)(
1 − 2

l

d

)(
1 − 4

l

d

)
y∞ + 1

3

(
1 − 2

l

d

)(
1 − 4

l

d

)
y1

− 1

4

(
1 − l

d

)(
1 − 4

l

d

)
y1/2 + 1

24

(
1 − l

d

)(
1 − 2

l

d

)
y1/4

]
(12–16)
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where y is the desired variable within the interval ∞ > l/d > 1
4 and y∞, y1, y1/2, and

y1/4 are the variables corresponding to l/d ratios of ∞, 1, 1
2 , and 1

4 , respectively.

12–9 Steady-State Conditions in Self-Contained Bearings
The case in which the lubricant carries away all of the enthalpy increase from the
journal-bushing pair has already been discussed. Bearings in which the warm lubricant
stays within the bearing housing will now be addressed. These bearings are called self-
contained bearings because the lubricant sump is within the bearing housing and the
lubricant is cooled within the housing. These bearings are described as pillow-block or
pedestal bearings. They find use on fans, blowers, pumps, and motors, for example.
Integral to design considerations for these bearings is dissipating heat from the bearing
housing to the surroundings at the same rate that enthalpy is being generated within the
fluid film.

In a self-contained bearing the sump can be positioned as a keywaylike cavity in the
bushing, the ends of the cavity not penetrating the end planes of the bushing. Film oil
exits the annulus at about one-half of the relative peripheral speeds of the journal and
bushing and slowly tumbles the sump lubricant, mixing with the sump contents. Since
the film in the top “half” of the cap has cavitated, it contributes essentially nothing to the
support of the load, but it does contribute friction. Bearing caps are in use in which
the “keyway” sump is expanded peripherally to encompass the top half of the bearing.
This reduces friction for the same load, but the included angle β of the bearing has been
reduced to 180◦. Charts for this case were included in the Raimondi and Boyd paper. 

The heat given up by the bearing housing may be estimated from the equation

Hloss = h̄CR A(Tb − T∞) (12–17)

where Hloss = heat dissipated, Btu/h

h̄CR = combined overall coefficient of radiation and convection heat 
transfer, Btu/(h · ft2 · ◦F)

A = surface area of bearing housing, ft2

Tb = surface temperature of the housing, ◦F

T∞ = ambient temperature, ◦F

The overall coefficient ̄hCR depends on the material, surface coating, geometry, even the
roughness, the temperature difference between the housing and surrounding objects,
and air velocity. After Karelitz,10 and others, in ordinary industrial environments, the
overall coefficient h̄CR can be treated as a constant. Some representative values are

h̄CR =

⎧⎪⎨⎪⎩
2 Btu/(h · ft2 · ◦F) for still air

2.7 Btu/(h · ft2 · ◦F) for shaft-stirred air

5.9 Btu/(h · ft2 · ◦F) for air moving at 500 ft/min

(12–18)

An expression similar to Eq. (12–17) can be written for the temperature difference
Tf − Tb between the lubricant film and the housing surface. This is possible because
the bushing and housing are metal and very nearly isothermal. If one defines T̄f as
the average film temperature (halfway between the lubricant inlet temperature Ts and

10G. B. Karelitz, “Heat Dissipation in Self-Contained Bearings,” Trans. ASME, Vol. 64, 1942, p. 463; 
D. C. Lemmon and E. R. Booser, “Bearing Oil-Ring Performance,” Trans. ASME, J. Bas. Engin., Vol. 88,
1960, p. 327.
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the outlet temperature Ts + 
T ), then the following proportionality has been observed
between T̄f − Tb and the difference between the housing surface temperature and the
ambient temperature, Tb − T∞:

T̄f − Tb = α(Tb − T∞) (a)

where T̄f is the average film temperature and α is a constant depending on the lubrica-
tion scheme and the bearing housing geometry. Equation (a) may be used to estimate
the bearing housing temperature. Table 12–2 provides some guidance concerning suit-
able values of α. The work of Karelitz allows the broadening of the application of the
charts of Raimondi and Boyd, to be applied to a variety of bearings beyond the natural
circulation pillow-block bearing.

Solving Eq. (a) for Tb and substituting into Eq. (12–17) gives the bearing heat loss
rate to the surroundings as

Hloss = h̄CR A

1 + α
(T̄f − T∞) (12–19a)

and rewriting Eq. (a) gives

Tb = T̄f + αT∞
1 + α

(12–19b)

In beginning a steady-state analysis the average film temperature is unknown, hence the
viscosity of the lubricant in a self-contained bearing is unknown. Finding the equilibrium
temperatures is an iterative process wherein a trial average film temperature (and the
corresponding viscosity) is used to compare the heat generation rate and the heat loss
rate. An adjustment is made to bring these two heat rates into agreement. This can be
done on paper with a tabular array to help adjust T̄f to achieve equality between heat
generation and loss rates. A root-finding algorithm can be used. Even a simple one can
be programmed for a digital computer.

Because of the shearing action there is a uniformly distributed energy release in the
lubricant that heats the lubricant as it works its way around the bearing. The tempera-
ture is uniform in the radial direction but increases from the sump temperature Ts by
an amount 
T during the lubricant pass. The exiting lubricant mixes with the sump
contents, being cooled to sump temperature. The lubricant in the sump is cooled
because the bushing and housing metal are at a nearly uniform lower temperature
because of heat losses by convection and radiation to the surroundings at ambient tem-
perature T∞. In the usual configurations of such bearings, the bushing and housing
metal temperature is approximately midway between the average film temperature
T̄f = Ts + 
T/2 and the ambient temperature T∞. The heat generation rate Hgen, at
steady state, is equal to the work rate from the frictional torque T. Expressing this in
Btu/h requires the conversion constants 2545 Btu/(hp · h) and 1050 (lbf · in)(rev/s)/hp
results in Hgen = 2545 T N/1050. Then from Eq. (b), Sec. 12–3, the torque is

Lubrication System Conditions Range of �

Oil ring Moving air 1–2

Still air 1
2 –1

Oil bath Moving air 1
2 –1

Still air 1
5 – 2

5

Table 12–2
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T = 4π2r3lμ/c, resulting in

Hgen = 2545

1050

4π2r3lμN

c
N = 95.69μN 2lr3

c
(b)

Equating this to Eq. (12–19a) and solving for T̄f gives

T̄f = T∞ + 95.69(1 + α)
μN 2lr3

h̄CR Ac
(12–20)

EXAMPLE 12–5 Consider a pillow-block bearing with a keyway sump, whose journal rotates at
900 rev/min in shaft-stirred air at 70◦F with α = 1. The lateral area of the bearing is
40 in2. The lubricant is SAE grade 20 oil. The gravity radial load is 100 lbf and the l/d
ratio is unity. The bearing has a journal diameter of 2.000 + 0.000/−0.002 in, a bush-
ing bore of 2.002 + 0.004/−0.000 in. For a minimum clearance assembly estimate the
steady-state temperatures as well as the minimum film thickness and coefficient of
friction.

Solution The minimum radial clearance, cmin, is

cmin = 2.002 − 2.000

2
= 0.001 in

P = W

ld
= 100

(2)2
= 25 psi

S =
(

r

c

)2
μN

P
=

(
1

0.001

)2
μ′(15)

106(25)
= 0.6 μ′

where μ′ is viscosity in μreyn. The friction horsepower loss, (hp) f , is found as follows:

(hp) f = f Wr N

1050
= W Nc

1050

f r

c
= 100(900/60)0.001

1050

f r

c
= 0.001 429

f r

c
hp

The heat generation rate Hgen, in Btu/h, is

Hgen = 2545(hp) f = 2545(0.001 429) f r/c = 3.637 f r/c Btu/h

From Eq. (12–19a) with h̄CR = 2.7 Btu/(h · ft2 · °F), the rate of heat loss to the envi-
ronment Hloss is

Hloss = h̄CR A

α + 1
(T̄f − 70) = 2.7(40/144)

(1 + 1)
(T̄f − 70) = 0.375(T̄f − 70) Btu/h

Build a table as follows for trial values of T̄f of 190 and 195°F:

Trial Tf �� S fr/c Hgen Hloss

190 1.15 0.69 13.6 49.5 45.0

195 1.03 0.62 12.2 44.4 46.9
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The temperature at which Hgen = Hloss = 46.3 Btu/h is 193.4◦F. Rounding T̄f to
193◦F we find μ′ = 1.08 μreyn and S = 0.6(1.08) = 0.65. From Fig. 12–24,
9.70
 TF/P = 4.25°F/psi and thus


TF = 4.25P/9.70 = 4.25(25)/9.70 = 11.0◦F

T1 = Ts = T̄f − 
T/2 = 193 − 11/2 = 187.5◦F

Tmax = T1 + 
TF = 187.5 + 11 = 198.5◦F

From Eq. (12–19b)

Tb = Tf + αT∞
1 + α

= 193 + (1)70

1 + 1
= 131.5◦F

with S = 0.65, the minimum film thickness from Fig. 12–16 is

h0 = h0

c
c = 0.79(0.001) = 0.000 79 in

The coefficient of friction from Fig. 12–18 is

f = f r

c

c

r
= 12.8

0.001

1
= 0.012 8

The parasitic friction torque T is

T = f Wr = 0.012 8(100)(1) = 1.28 lbf · in

12–10 Clearance
In designing a journal bearing for thick-film lubrication, the engineer must select the
grade of oil to be used, together with suitable values for P, N, r, c, and l. A poor selec-
tion of these or inadequate control of them during manufacture or in use may result in
a film that is too thin, so that the oil flow is insufficient, causing the bearing to overheat
and, eventually, fail. Furthermore, the radial clearance c is difficult to hold accurate dur-
ing manufacture, and it may increase because of wear. What is the effect of an entire
range of radial clearances, expected in manufacture, and what will happen to the bear-
ing performance if c increases because of wear? Most of these questions can be
answered and the design optimized by plotting curves of the performance as functions
of the quantities over which the designer has control.

Figure 12–25 shows the results obtained when the performance of a particular bear-
ing is calculated for a whole range of radial clearances and is plotted with clearance as
the independent variable. The bearing used for this graph is the one of Examples 12–1
to 12–4 with SAE 20 oil at an inlet temperature of 100◦F. The graph shows that if
the clearance is too tight, the temperature will be too high and the minimum film thick-
ness too low. High temperatures may cause the bearing to fail by fatigue. If the oil film
is too thin, dirt particles may be unable to pass without scoring or may embed them-
selves in the bearing. In either event, there will be excessive wear and friction, result-
ing in high temperatures and possible seizing.

To investigate the problem in more detail, Table 12–3 was prepared using the two
types of preferred running fits that seem to be most useful for journal-bearing design
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Table 12–3

Maximum, Minimum,

and Average Clearances

for 1.5-in-Diameter

Journal Bearings Based

on Type of Fit

Clearance c, in
Type of Fit Symbol Maximum Average Minimum

Close-running H8/f7 0.001 75 0.001 125 0.000 5

Free-running H9/d9 0.003 95 0.002 75 0.001 55

Table 12–4

Performance of 

1.5-in-Diameter Journal

Bearing with Various

Clearances. (SAE 20

Lubricant, T1 = 100°F, 

N = 30 r/s, W = 500 lbf,

L = 1.5 in)

c, in T2, °F h0, in f Q, in3/s H, Btu/s

0.000 5 226 0.000 38 0.011 3 0.061 0.086

0.001 125 142 0.000 65 0.009 0 0.153 0.068

0.001 55 133 0.000 77 0.008 7 0.218 0.066

0.001 75 128 0.000 76 0.008 4 0.252 0.064

0.002 75 118 0.000 73 0.007 9 0.419 0.060

0.003 95 113 0.000 69 0.007 7 0.617 0.059

(see Table 7–9), p. 397. The results shown in Table 12–3 were obtained by using
Eqs. (7–36) and (7–37) of Sec. 7–8. Notice that there is a slight overlap, but the range
of clearances for the free-running fit is about twice that of the close-running fit.

The six clearances of Table 12–3 were used in a computer program to obtain the
numerical results shown in Table 12–4. These conform to the results of Fig. 12–25, too.
Both the table and the figure show that a tight clearance results in a high temperature.
Figure 12–26 can be used to estimate an upper temperature limit when the characteris-
tics of the application are known.

It would seem that a large clearance will permit the dirt particles to pass through
and also will permit a large flow of oil, as indicated in Table 12–4. This lowers the tem-
perature and increases the life of the bearing. However, if the clearance becomes too

Figure 12–25

A plot of some performance
characteristics of the bearing 
of Exs. 12–1 to 12–4 for 
radial clearances of 0.0005 to
0.003 in. The bearing outlet
temperature is designated T2.
New bearings should be
designed for the shaded zone,
because wear will move the
operating point to the right.

0.0005 in

Q

Q

T2

T2

H

H

h0

h0

0 0.5 1.0 1.5 2.0 2.5 3.0
0

Radial clearance c (10−3 in)
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650 Mechanical Engineering Design

large, the bearing becomes noisy and the minimum film thickness begins to decrease
again.

In between these two limitations there exists a rather large range of clearances that
will result in satisfactory bearing performance.

When both the production tolerance and the future wear on the bearing are consid-
ered, it is seen, from Fig. 12–25, that the best compromise is a clearance range slightly
to the left of the top of the minimum-film-thickness curve. In this way, future wear will
move the operating point to the right and increase the film thickness and decrease the
operating temperature.

12–11 Pressure-Fed Bearings
The load-carrying capacity of self-contained natural-circulating journal bearings is
quite restricted. The factor limiting better performance is the heat-dissipation capability
of the bearing. A first thought of a way to increase heat dissipation is to cool the sump
with an external fluid such as water. The high-temperature problem is in the film where
the heat is generated but cooling is not possible in the film until later. This does not pro-
tect against exceeding the maximum allowable temperature of the lubricant. A second
alternative is to reduce the temperature rise in the film by dramatically increasing the
rate of lubricant flow. The lubricant itself is reducing the temperature rise. A water-
cooled sump may still be in the picture. To increase lubricant flow, an external pump
must be used with lubricant supplied at pressures of tens of pounds per square inch
gage. Because the lubricant is supplied to the bearing under pressure, such bearings are
called pressure-fed bearings.

To force a greater flow through the bearing and thus obtain an increased cooling
effect, a common practice is to use a circumferential groove at the center of the bearing,
with an oil-supply hole located opposite the load-bearing zone. Such a bearing is shown
in Fig. 12–27. The effect of the groove is to create two half-bearings, each having a
smaller l/d ratio than the original. The groove divides the pressure-distribution curve
into two lobes and reduces the minimum film thickness, but it has wide acceptance
among lubrication engineers because such bearings carry more load without overheating.

To set up a method of solution for oil flow, we shall assume a groove ample enough
that the pressure drop in the groove itself is small. Initially we will neglect eccentricity
and then apply a correction factor for this condition. The oil flow, then, is the amount
that flows out of the two halves of the bearing in the direction of the concentric shaft.
If we neglect the rotation of the shaft, the flow of the lubricant is caused by the supply

Figure 12–26

Temperature limits for mineral
oils. The lower limit is for oils
containing antioxidants and
applies when oxygen supply is
unlimited. The upper limit
applies when insignificant
oxygen is present. The life in
the shaded zone depends on the
amount of oxygen and catalysts
present. 
(Source: M. J. Neale (ed.),
Tribology Handbook, Section B1,
Newnes-Butterworth, 
London, 1975.)
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pressure ps , shown in Fig. 12–28. Laminar flow is assumed, with the pressure varying
linearly from p = ps at x = 0, to p = 0 at x = l ′. Consider the static equilibrium of an
element of thickness dx , height 2y, and unit depth. Note particularly that the origin of
the reference system has been chosen at the midpoint of the clearance space and sym-
metry about the x axis is implied with the shear stresses τ being equal on the top and
bottom surfaces. The equilibrium equation in the x direction is

−2y(p + dp) + 2yp + 2τ dx = 0 (a)

Expanding and canceling terms, we find that

τ = y
dp

dx
(b)

Newton’s equation for viscous flow [Eq. (12–1)] is

τ = μ
du

dy
(c)

Now eliminating τ from Eqs. (b) and (c) gives

du

dy
= 1

μ

dp

dx
y (d)

Treating dp/dx as a constant and integrating with respect to y gives

u = 1

2μ

dp

dx
y2 + C1 (e)

Bearing

Journal

Groove

ps

c

y

l'

x

dx

2yp

� dx

� dx y

y

2y(p + dp)

Figure 12–28

Flow of lubricant from a
pressure-fed bearing having
a central annular groove.

E

E

Section E-E

chamfer

0.020
0.025

1
64

- in radius1
64 in × 45°

1
4 in

Figure 12–27

Centrally located full annular
groove. (Courtesy of the
Cleveland Graphite Bronze
Company, Division of Clevite
Corporation.)
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At the boundaries, where y = ±c/2, the velocity u is zero. Using one of these condi-
tions in Eq. (e) gives

0 = 1

2μ

dp

dx

(
c

2

)2

+ C1

or

C1 = − c2

8μ

dp

dx

Substituting this constant in Eq. (e) yields

u = 1

8μ

dp

dx
(4y2 − c2) (f )

Assuming the pressure varies linearly from ps to 0 at x = 0 to l ′, respectively, the
pressure can be written as

p = ps − ps

l ′
x (g)

and therefore the pressure gradient is given by

dp

dx
= − ps

l ′
(h)

We can now substitute Eq. (h) in Eq. ( f ) to get the relationship between the oil velocity
and the coordinate y:

u = ps

8μl ′
(c2 − 4y2) (12–21)

Figure 12–29 shows a graph of this relation fitted into the clearance space c so that you
can see how the velocity of the lubricant varies from the journal surface to the bearing
surface. The distribution is parabolic, as shown, with the maximum velocity occurring
at the center, where y = 0. The magnitude is, from Eq. (12–21),

umax = psc2

8μl ′
(i)

To consider eccentricity, as shown in Fig. 12–30, the film thickness is h =
c − e cos θ. Substituting h for c in Eq. (i), with the average ordinate of a parabola being
two-thirds the maximum, the average velocity at any angular position θ is

uav = 2

3

psh2

8μl ′
= ps

12μl ′
(c − e cos θ)2 (j)

We still have a little further to go in this analysis; so please be patient. Now that we
have an expression for the lubricant velocity, we can compute the amount of lubricant

Bearing surface

Journal surface

y

y

u

umax
x

c ⁄ 2

c ⁄ 2

Figure 12–29

Parabolic distribution of the
lubricant velocity.

bud29281_ch12_617-672.qxd  12/16/09  9:51 PM  Page 652 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Lubrication and Journal Bearings 653

e

r

(r + c)

h = c – e cos �

h0 = c – e

�

hmax = c + e
Figure 12–30

that flows out both ends; the elemental side flow at any position θ (Fig. 12–30) is

d Qs = 2uav d A = 2uav(rh dθ) (k)

where d A is the elemental area. Substituting uav from Eq. ( j) and (h) from Fig. 12–30
gives

d Qs = psr

6μl ′
(c − e cos θ)3 dθ (l )

Integrating around the bearing gives the total side flow as

Qs =
∫

d Qs = psr

6μl ′

∫ 2π

0
(c − e cos θ)3 dθ = psr

6μl ′
(2πc3 + 3π ce2)

Rearranging, with ε = e/c, gives

Qs = πpsrc3

3μl ′
(1 + 1.5ε2) (12–22)

In analyzing the performance of pressure-fed bearings, the bearing length should be
taken as l ′, as defined in Fig. 12–28. The characteristic pressure in each of the two bear-
ings that constitute the pressure-fed bearing assembly P is given by

P = W/2

2rl ′
= W

4rl ′
(12–23)

The charts for flow variable and flow ratio (Figs. 12–19 and 12–20) do not apply
to pressure-fed bearings. Also, the maximum film pressure given by Fig. 12–21 must be
increased by the oil supply pressure ps to obtain the total film pressure.

Since the oil flow has been increased by forced feed, Eq. (12–14) will give a tem-
perature rise that is too high because the side flow carries away all the heat generated.
The plumbing in a pressure-fed bearing is depicted schematically in Fig. 12–31. The oil
leaves the sump at the externally maintained temperature Ts at the volumetric rate Qs .

The heat gain of the fluid passing through the bearing is

Hgain = 2 ρCp(Qs/2)
T = ρCp Qs
T (m)

At steady state, the rate at which the journal does frictional work on the fluid film is

Hf = 2πT N

J
= 2π f Wr N

J
= 2π W Nc

J

f r

c
(n)

bud29281_ch12_617-672.qxd  12/16/09  9:51 PM  Page 653 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



654 Mechanical Engineering Design

Equating the heat gain to the frictional work and solving for 
T gives


T = 2πW Nc

JρCp Qs

f r

c
(o)

Substituting Eq. (12–22) for Qs in the equation for 
T gives


T = 2π

JρCp
WNc

f r

c

3μl ′

(1 + 1.5ε2)πpsrc3

The Sommerfeld number may be expressed as

S =
(

r

c

)2
μN

P
=

(
r

c

)2 4rl ′μN

W

Solving for μNl ′ in the Sommerfeld expression; substituting in the 
T expression; and
using J = 9336 lbf · in/Btu, ρ = 0.0311 lbm/in3, and Cp = 0.42 Btu/(lbm · ◦F), we find


TF = 3( f r/c)SW 2

2JρCp psr4

1

(1 + 1.5ε2)
= 0.0123( f r/c)SW 2

(1 + 1.5ε2)psr4
(12–24)

where 
TF is 
T in ◦F. The corresponding equation in SI units uses the bearing load
W in kN, lubricant supply pressure ps in kPa, and the journal radius r in mm:


TC = 978(106)

1 + 1.5ε2

( f r/c)SW 2

psr4
(12–25)

An analysis example of a pressure-fed bearing will be useful.

EXAMPLE 12–6 A circumferential-groove pressure-fed bearing is lubricated with SAE grade 20 oil sup-
plied at a gauge pressure of 30 psi. The journal diameter dj is 1.750 in, with a unilateral
tolerance of −0.002 in. The central circumferential bushing has a diameter db of
1.753 in, with a unilateral tolerance of +0.004 in. The l ′/d ratio of the two “half-bearings”
that constitute the complete pressure-fed bearing is 1/2. The journal angular speed

Oil
pump

Tp
Pump
torque

Friction
torque T

Sump

Ts

Ts + ΔT Ts + ΔT

Qs ⁄ 2 Qs ⁄ 2

Hloss

Ts

Qs

Figure 12–31

Pressure-fed centrally located
full annular-groove journal
bearing with external, coiled
lubricant sump.
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is 3000 rev/min, or 50 rev/s, and the radial steady load is 900 lbf. The external sump is
maintained at 120◦F as long as the necessary heat transfer does not exceed 800 Btu/h.
(a) Find the steady-state average film temperature.
(b) Compare h0, Tmax, and Pst with the Trumpler criteria.
(c) Estimate the volumetric side flow Qs, the heat loss rate Hloss, and the parasitic friction
torque.

Solution (a)

r = dj

2
= 1.750

2
= 0.875 in

cmin = (db)min − (dj )max

2
= 1.753 − 1.750

2
= 0.0015 in

Since l ′/d = 1/2, l ′ = d/2 = r = 0.875 in. Then the pressure due to the load is

P = W

4rl ′
= 900

4(0.875)0.875
= 294 psi

The Sommerfeld number S can be expressed as

S =
(

r

c

)2
μN

P
=

(
0.875

0.0015

)2
μ′

(106)

50

294
= 0.0579μ′ (1)

We will use a tabulation method to find the average film temperature. The first trial
average film temperature T̄f will be 170◦F. Using the Seireg curve fit of Table 12–1, we
obtain

μ′ = 0.0136 exp[1271.6/(170 + 95)] = 1.650 μreyn

From Eq. (1)

S = 0.0579μ′ = 0.0579(1.650) = 0.0955

From Fig. (12–18), f r/c = 3.3, and from Fig. (12–16), ε = 0.80. From Eq. (12–24),


TF = 0.0123(3.3)0.0955(9002)

[1 + 1.5(0.80)2]30(0.8754)
= 91.1◦F

Tav = Ts + 
T

2
= 120 + 91.1

2
= 165.6◦F

We form a table, adding a second line with T̄f = 168.5◦F:

If the iteration had not closed, one could plot trial T̄f against resulting Tav and draw a
straight line between them, the intersection with a T̄f = Tav line defining the new trial T̄f .

Trial Tf �� S fr/c � �

170 1.65 0.0955 3.3 0.800 91.1 165.6

168.5 1.693 0.0980 3.39 0.792 97.1 168.5

TF Tav
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Answer The result of this tabulation is T̄f = 168.5, 
TF = 97.1◦F, and Tmax = 120 + 97.1 =
217.1◦F

(b) Since h0 = (1 − ε)c,

h0 = (1 − 0.792)0.0015 = 0.000 312 in

The required four Trumpler criteria, from “Significant Angular Speed” in Sec. 12–7 are

h0 ≥ 0.0002 + 0.000 04(1.750) = 0.000 270 in (OK)

Answer Tmax = Ts + 
T = 120 + 97.1 = 217.1◦F (OK)

Pst = Wst

4rl ′
= 900

4(0.875)0.875
= 294 psi (OK)

The factor of safety on the load is approximately unity. (Not OK.)
(c) From Eq. (12–22),

Answer Qs = π(30)0.875(0.0015)3

3(1.693)10−6(0.875)
[1 + 1.5(0.80)2] = 0.123 in3/s

Hloss = ρCp Qs
T = 0.0311(0.42)0.123(97.1) = 0.156 Btu/s

or 562 Btu/h or 0.221 hp. The parasitic friction torque T is

Answer T = f Wr = f r

c
Wc = 3.39(900)0.0015 = 4.58 lbf · in

12–12 Loads and Materials
Some help in choosing unit loads and bearing materials is afforded by Tables 12–5 and
12–6. Since the diameter and length of a bearing depend upon the unit load, these tables
will help the designer to establish a starting point in the design.

Unit Load
Application psi MPa

Diesel engines:
Main bearings 900–1700 6–12
Crankpin 1150–2300 8–15
Wristpin 2000–2300 14–15

Electric motors 120–250 0.8–1.5

Steam turbines 120–250 0.8–1.5

Gear reducers 120–250 0.8–1.5

Automotive engines:
Main bearings 600–750 4–5
Crankpin 1700–2300 10–15

Air compressors:
Main bearings 140–280 1–2
Crankpin 280–500 2–4

Centrifugal pumps 100–180 0.6–1.2

Table 12–5

Range of Unit Loads in

Current Use for Sleeve

Bearings
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Thickness, SAE Clearance Load Corrosion
Alloy Name in Number Ratio r/c Capacity Resistance

Tin-base babbitt 0.022 12 600–1000 1.0 Excellent

Lead-base babbitt 0.022 15 600–1000 1.2 Very good

Tin-base babbitt 0.004 12 600–1000 1.5 Excellent

Lead-base babbitt 0.004 15 600–1000 1.5 Very good

Leaded bronze Solid 792 500–1000 3.3 Very good

Copper-lead 0.022 480 500–1000 1.9 Good

Aluminum alloy Solid 400–500 3.0 Excellent

Silver plus overlay 0.013 17P 600–1000 4.1 Excellent

Cadmium (1.5% Ni) 0.022 18 400–500 1.3 Good

Trimetal 88* 4.1 Excellent

Trimetal 77† 4.1 Very good

*This is a 0.008-in layer of copper-lead on a steel back plus 0.001 in of tin-base babbitt.
†This is a 0.013-in layer of copper-lead on a steel back plus 0.001 in of lead-base babbitt.

Table 12–6

Some Characteristics

of Bearing Alloys

The length-diameter ratio l/d of a bearing depends upon whether it is expected to
run under thin-film-lubrication conditions. A long bearing (large l/d ratio) reduces the
coefficient of friction and the side flow of oil and therefore is desirable where thin-film
or boundary-value lubrication is present. On the other hand, where forced-feed or pos-
itive lubrication is present, the l/d ratio should be relatively small. The short bearing
length results in a greater flow of oil out of the ends, thus keeping the bearing cooler.
Current practice is to use an l/d ratio of about unity, in general, and then to increase
this ratio if thin-film lubrication is likely to occur and to decrease it for thick-film lubri-
cation or high temperatures. If shaft deflection is likely to be severe, a short bearing
should be used to prevent metal-to-metal contact at the ends of the bearings.

You should always consider the use of a partial bearing if high temperatures are a
problem, because relieving the non-load-bearing area of a bearing can very substantially
reduce the heat generated.

The two conflicting requirements of a good bearing material are that it must have a
satisfactory compressive and fatigue strength to resist the externally applied loads and
that it must be soft and have a low melting point and a low modulus of elasticity. The
second set of requirements is necessary to permit the material to wear or break in, since
the material can then conform to slight irregularities and absorb and release foreign par-
ticles. The resistance to wear and the coefficient of friction are also important because all
bearings must operate, at least for part of the time, with thin-film or boundary lubrication.

Additional considerations in the selection of a good bearing material are its ability
to resist corrosion and, of course, the cost of producing the bearing. Some of the com-
monly used materials are listed in Table 12–6, together with their composition and
characteristics.

Bearing life can be increased very substantially by depositing a layer of babbitt, or
other white metal, in thicknesses from 0.001 to 0.014 in over steel backup material. In
fact, a copper-lead layer on steel to provide strength, combined with a babbitt overlay to
enhance surface conformability and corrosion resistance, makes an excellent bearing.

Small bushings and thrust collars are often expected to run with thin-film or bound-
ary lubrication. When this is the case, improvements over a solid bearing material can
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be made to add significantly to the life. A powder-metallurgy bushing is porous and per-
mits the oil to penetrate into the bushing material. Sometimes such a bushing may be
enclosed by oil-soaked material to provide additional storage space. Bearings are fre-
quently ball-indented to provide small basins for the storage of lubricant while the jour-
nal is at rest. This supplies some lubrication during starting. Another method of reducing
friction is to indent the bearing wall and to fill the indentations with graphite.

With all these tentative decisions made, a lubricant can be selected and the hydro-
dynamic analysis made as already presented. The values of the various performance
parameters, if plotted as in Fig. 12–25, for example, will then indicate whether a satis-
factory design has been achieved or additional iterations are necessary.

12–13 Bearing Types
A bearing may be as simple as a hole machined into a cast-iron machine member. It
may still be simple yet require detailed design procedures, as, for example, the two-
piece grooved pressure-fed connecting-rod bearing in an automotive engine. Or it may
be as elaborate as the large water-cooled, ring-oiled bearings with built-in reservoirs
used on heavy machinery.

Figure 12–32 shows two types of bushings. The solid bushing is made by casting,
by drawing and machining, or by using a powder-metallurgy process. The lined bushing
is usually a split type. In one method of manufacture the molten lining material is cast
continuously on thin strip steel. The babbitted strip is then processed through presses,
shavers, and broaches, resulting in a lined bushing. Any type of grooving may be cut
into the bushings. Bushings are assembled as a press fit and finished by boring, reaming,
or burnishing.

Flanged and straight two-piece bearings are shown in Fig. 12–33. These are avail-
able in many sizes in both thick- and thin-wall types, with or without lining material. A
locking lug positions the bearing and effectively prevents axial or rotational movement
of the bearing in the housing.

Some typical groove patterns are shown in Fig. 12–34. In general, the lubricant
may be brought in from the end of the bushing, through the shaft, or through the bush-
ing. The flow may be intermittent or continuous. The preferred practice is to bring the

(a) Solid bushing (b) Lined bushing

Figure 12–32

Sleeve bushings.

(a) Flanged (b) Straight

Figure 12–33

Two-piece bushings.
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Pads

Runner

R2
NR1

Figure 12–35

Fixed-pad thrust bearing.
(Courtesy of Westinghouse
Electric Corporation.)

oil in at the center of the bushing so that it will flow out both ends, thus increasing the
flow and cooling action.

12–14 Thrust Bearings
This chapter is devoted to the study of the mechanics of lubrication and its application
to the design and analysis of journal bearings. The design and analysis of thrust bear-
ings is an important application of lubrication theory, too. A detailed study of thrust
bearings is not included here, because it would not contribute anything significantly
different and because of space limitations. Having studied this chapter, you should
experience no difficulty in reading the literature on thrust bearings and applying that
knowledge to actual design situations.11

Figure 12–35 shows a fixed-pad thrust bearing consisting essentially of a runner slid-
ing over a fixed pad. The lubricant is brought into the radial grooves and pumped into the
wedge-shaped space by the motion of the runner. Full-film, or hydrodynamic, lubrication
is obtained if the speed of the runner is continuous and sufficiently high, if the lubricant
has the correct viscosity, and if it is supplied in sufficient quantity. Figure 12–36 provides
a picture of the pressure distribution under conditions of full-film lubrication.

We should note that bearings are frequently made with a flange, as shown in
Fig. 12–37. The flange positions the bearing in the housing and also takes a thrust load.
Even when it is grooved, however, and has adequate lubrication, such an arrangement
is not theoretically a hydrodynamically lubricated thrust bearing. The reason for this is
that the clearance space is not wedge-shaped but has a uniform thickness. Similar rea-
soning would apply to various designs of thrust washers.

(a)

(e)

(b)

( f )

(c)

(g)

(d )

(h)

Figure 12–34

Developed views of typical
groove patterns. (Courtesy of
the Cleveland Graphite Bronze
Company, Division of Clevite
Corporation.)

11Harry C. Rippel, Cast Bronze Thrust Bearing Design Manual, International Copper Research
Association, Inc., 825 Third Ave., New York, NY 10022, 1967. CBBI, 14600 Detroit Ave., Cleveland,
OH, 44107, 1967. 
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660 Mechanical Engineering Design

12–15 Boundary-Lubricated Bearings
When two surfaces slide relative to each other with only a partial lubricant film between
them, boundary lubrication is said to exist. Boundary- or thin-film lubrication occurs in
hydrodynamically lubricated bearings when they are starting or stopping, when the load
increases, when the supply of lubricant decreases, or whenever other operating changes
happen to occur. There are, of course, a very large number of cases in design in which
boundary-lubricated bearings must be used because of the type of application or the
competitive situation.

The coefficient of friction for boundary-lubricated surfaces may be greatly
decreased by the use of animal or vegetable oils mixed with the mineral oil or grease.
Fatty acids, such as stearic acid, palmitic acid, or oleic acid, or several of these, which
occur in animal and vegetable fats, are called oiliness agents. These acids appear to
reduce friction, either because of their strong affinity for certain metallic surfaces or
because they form a soap film that binds itself to the metallic surfaces by a chemical
reaction. Thus the fatty-acid molecules bind themselves to the journal and bearing sur-
faces with such great strength that the metallic asperities of the rubbing metals do not
weld or shear.

Fatty acids will break down at temperatures of 250◦F or more, causing increased
friction and wear in thin-film-lubricated bearings. In such cases the extreme-pressure,
or EP, lubricants may be mixed with the fatty-acid lubricant. These are composed of
chemicals such as chlorinated esters or tricresyl phosphate, which form an organic film
between the rubbing surfaces. Though the EP lubricants make it possible to operate at
higher temperatures, there is the added possibility of excessive chemical corrosion of
the sliding surfaces.

When a bearing operates partly under hydrodynamic conditions and partly under
dry or thin-film conditions, a mixed-film lubrication exists. If the lubricant is supplied by
hand oiling, by drop or mechanical feed, or by wick feed, for example, the bearing is

U

h

Runner

Thrust
bearing
pad

Pressure distributionFigure 12–36

Pressure distribution of
lubricant in a thrust bearing.
(Courtesy of Copper Research
Corporation.)

Figure 12–37

Flanged sleeve bearing takes
both radial and thrust loads.
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Maximum Maximum Maximum Maximum
Load, Temperature, Speed, PV

Material psi °F fpm Value*

Cast bronze 4 500 325 1 500 50 000

Porous bronze 4 500 150 1 500 50 000

Porous iron 8 000 150 800 50 000

Phenolics 6 000 200 2 500 15 000

Nylon 1 000 200 1 000 3 000

Teflon 500 500 100 1 000

Reinforced Teflon 2 500 500 1 000 10 000

Teflon fabric 60 000 500 50 25 000

Delrin 1 000 180 1 000 3 000

Carbon-graphite 600 750 2 500 15 000

Rubber 50 150 4 000

Wood 2 000 150 2 000 15 000

*P � load, psi; V � speed, fpm.

Table 12–7

Some Materials for

Boundary-Lubricated

Bearings and Their

Operating Limits

operating under mixed-film conditions. In addition to occurring with a scarcity of lubri-
cant, mixed-film conditions may be present when

• The viscosity is too low.

• The bearing speed is too low.

• The bearing is overloaded.

• The clearance is too tight.

• Journal and bearing are not properly aligned.

Relative motion between surfaces in contact in the presence of a lubricant is called
boundary lubrication. This condition is present in hydrodynamic film bearings during
starting, stopping, overloading, or lubricant deficiency. Some bearings are boundary
lubricated (or dry) at all times. To signal this an adjective is placed before the word
“bearing.” Commonly applied adjectives (to name a few) are thin-film, boundary fric-
tion, Oilite, Oiles, and bushed-pin. The applications include situations in which thick
film will not develop and there are low journal speed, oscillating journal, padded slides,
light loads, and lifetime lubrication. The characteristics include considerable friction,
ability to tolerate expected wear without losing function, and light loading. Such bear-
ings are limited by lubricant temperature, speed, pressure, galling, and cumulative wear.
Table 12–7 gives some properties of a range of bushing materials.

Linear Sliding Wear

Consider the sliding block depicted in Fig. 12–38, moving along a plate with contact
pressure P ′ acting over area A, in the presence of a coefficient of sliding friction fs . The
linear measure of wear w is expressed in inches or millimeters. The work done by force
fs P A during displacement S is fs P AS or fs P AV t , where V is the sliding velocity and
t is time. The material volume removed due to wear is wA and is proportional to the
work done, that is, wA ∝ fs P AV t , or

wA = K P AV t

bud29281_ch12_617-672.qxd  12/16/09  9:51 PM  Page 661 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



662 Mechanical Engineering Design

where K is the proportionality factor, which includes fs , and is determined from labo-
ratory testing. The linear wear is then expressed as

w = K PV t (12–26)

In US customary units, P is expressed in psi, V in fpm (i.e., ft/min), and t in hours.
This makes the units of K in3 · min/(lbf · ft · h). SI units commonly used for K are
cm3 · min/(kgf · m · h), where 1 kgf = 9.806 N. Tables 12–8 and 12–9 give some wear
factors and coefficients of friction from one manufacturer.

F F

w

PA
PA

fsPAfsPA

S

A �A�A

Figure 12–38

Sliding block subjected
to wear.

Table 12–8

Wear Factors in U.S.

Customary Units*

Source: Oiles America Corp.,
Plymouth, MI 48170.

Bushing Wear Factor Limiting
Material K PV

Oiles 800 3(10−10) 18 000

Oiles 500 0.6(10−10) 46 700

Polyactal copolymer 50(10−10) 5 000

Polyactal homopolymer 60(10−10) 3 000

66 nylon 200(10−10) 2 000

66 nylon + 15% PTFE 13(10−10) 7 000

+ 15% PTFE + 30% glass 16(10−10) 10 000

+ 2.5% MoS2 200(10−10) 2 000

6 nylon 200(10−10) 2 000

Polycarbonate + 15% PTFE 75(10−10) 7 000

Sintered bronze 102(10−10) 8 500

Phenol + 25% glass fiber 8(10−10) 11 500

*dim[K ] � in3 · min/(lbf · ft · h), dim [PV] � psi · ft/min.

Type Bearing fs

Placetic Oiles 80 0.05

Composite Drymet ST 0.03
Toughmet 0.05

Met Cermet M 0.05
Oiles 2000 0.03
Oiles 300 0.03
Oiles 500SP 0.03

Table 12–9

Coefficients of Friction

Source: Oiles America Corp.,
Plymouth, MI 48170.
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Characteristic Velocity V,
Mode of Motion Pressure P, psi ft/min f1*

Rotary 720 or less 3.3 or less 1.0
3.3–33 1.0–1.3
33–100 1.3–1.8

720–3600 3.3 or less 1.5
3.3–33 1.5–2.0
33–100 2.0–2.7

Oscillatory 720 or less >30◦ 3.3 or less 1.3
3.3–100 1.3–2.4

<30◦ 3.3 or less 2.0
3.3–100 2.0–3.6

720–3600 >30◦ 3.3 or less 2.0
3.3–100 2.0–3.2

<30◦ 3.3 or less 3.0
3.3–100 3.0–4.8

Reciprocating 720 or less 33 or less 1.5
33–100 1.5–3.8

720–3600 33 or less 2.0
33–100 2.0–7.5

*Values of f1 based on results over an extended period of time on automotive manufacturing machinery.

Table 12–10

Motion-Related Factor f1

Ambient Temperature, °F Foreign Matter f2

140 or lower No 1.0

140 or lower Yes 3.0–6.0

140–210 No 3.0–6.0

140–210 Yes 6.0–12.0

Table 12–11

Environmental Factor f2
Source: Oiles America Corp.,
Plymouth, MI 48170.

It is useful to include a modifying factor f1 depending on motion type, load, and
speed and an environment factor f2 to account for temperature and cleanliness conditions
(see Tables 12–10 and 12–11). These factors account for departures from the laboratory
conditions under which K was measured. Equation (12–26) can now be written as

w = f1 f2 K PV t (12–27)

Wear, then, is proportional to PV , material property K, operating conditions f1 and f2,
and time t.

Bushing Wear

Consider a pin of diameter D, rotating at speed N, in a bushing of length L, and sup-
porting a stationary radial load F. The nominal pressure P is given by

P = F

DL
(12–28)
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and if N is in rev/min and D is in inches, velocity in ft/min is given by

V = π DN

12
(12–29)

Thus PV , in psi · ft/min, is

PV = F

DL

π DN

12
= π

12

FN

L
(12–30)

Note the independence of PV from the journal diameter D.
A time-wear equation similar to Eq. (12–27) can be written. However, before

doing so, it is important to note that Eq. (12–28) provides the nominal value of P.
Figure 12–39 provides a more accurate representation of the pressure distribution,
which can be written as

p = Pmax cos θ −π

2
≤ θ ≤ π

2

The vertical component of p d A is p d A cos θ = [pL(D/2) dθ] cos θ = Pmax(DL/2)

cos2 θ dθ . Integrating this from θ = −π/2 to π/2 yields F. Thus,∫ π/2

−π/2
Pmax

(
DL

2

)
cos2 θ dθ = π

4
Pmax DL = F

or

Pmax = 4

π

F

DL
(12–31)

Substituting V from Eq. (12–29) and Pmax for P from Eq. (12–31) into Eq. (12–27) gives

w = f1 f2 K
4

π

F

DL

π DN t

12
= f1 f2 K F N t

3L
(12–32)

In designing a bushing, because of various trade-offs it is recommended that the
length/diameter ratio be in the range

0.5 ≤ L/D ≤ 2 (12–33)

F

Pmax

P

D�2

�

Figure 12–39

Pressure distribution on a
boundary-lubricated bushing.
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1 in

1 in

700 lbf

Figure 12–40

Journal/bushing for Ex. 12–7.

Service Range Units Allowable

Characteristic pressure Pmax psi <3560

Velocity Vmax ft/min <100

PV product (psi)(ft/min) <46 700

Temperature T °F <300

Properties Test Method, Units Value

Tensile strength (ASTM E8) psi >110 000

Elongation (ASTM E8) % >12

Compressive strength (ASTM E9) psi 49 770

Brinell hardness (ASTM E10) HB >210

Coefficient of thermal (10−5) °C >1.6
expansion

Specific gravity 8.2

Table 12–12

Oiles 500 SP (SPBN ·

SPWN) Service Range

and Properties 

Source: Oiles America Corp.,
Plymouth, MI 48170.

EXAMPLE 12–7 An Oiles SP 500 alloy brass bushing is 1 in long with a 1-in bore and operates in a clean
environment at 70◦F. The allowable wear without loss of function is 0.005 in. The radial
load is 700 lbf. The peripheral velocity is 33 ft/min. Estimate the number of revolutions
for radial wear to be 0.005 in. See Fig. 12–40 and Table 12–12 from the manufacturer.

Solution From Table 12–8, K = 0.6(10−10) in3 · min/(lbf · ft · h); Tables 12–10 and 12–11, 
f1 = 1.3, f2 = 1; and Table 12–12, PV = 46 700 psi · ft/min, Pmax = 3560 psi,
Vmax = 100 ft/min. From Eqs. (12–31), (12–29), and (12–30),

Pmax = 4

π

F

DL
= 4

π

700

(1)(1)
= 891 psi < 3560 psi (OK)

P = F

DL
= 700

(1)(1)
= 700 psi

V = 33 ft/min < 100 ft/min (OK)

PV = 700(33) = 23 100 psi · ft/min < 46 700 psi · ft/min (OK)

Equation (12–32) with Eq. (12–29) is

w = f1 f2 K
4

π

F

DL

π DN t

12
= f1 f2 K

4

π

F

DL
V t
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Solving for t gives

t = π DLw

4 f1 f2 K V F
= π(1)(1)0.005

4(1.3)(1)0.6(10−10)33(700)
= 2180 h = 130 770 min

The rotational speed is

N = 12V

π D
= 12(33)

π(1)
= 126 r/min

Answer Cycles = Nt = 126(130 770) = 16.5(106) rev

Temperature Rise

At steady state, the rate at which work is done against bearing friction equals the rate
at which heat is transferred from the bearing housing to the surroundings by convection
and radiation. The rate of heat generation in Btu/h is given by fs FV /J , or

Hgen = fs F(π D)(60N )

12J
= 5π fs F DN

J
(12–34)

where N is journal speed in rev/min and J = 778 ft · lbf/Btu. The rate at which heat is
transferred to the surroundings, in Btu/h, is

Hloss = h̄CR A
T = h̄CR A(Tb − T∞) = h̄CR A

2
(Tf − T∞) (12–35)

where A = housing surface area, ft2

h̄CR = overall combined coefficient of heat transfer, Btu/(h · ft2 · ◦F)

Tb = housing metal temperature, ◦F

Tf = lubricant temperature, ◦F

The empirical observation that Tb is about midway between Tf and T∞ has been incor-
porated in Eq. (12–35). Equating Eqs. (12–34) and (12–35) gives

Tf = T∞ + 10π fs F DN

Jh̄CR A
(12–36)

Although this equation seems to indicate the temperature rise Tf − T∞ is independent
of length L, the housing surface area generally is a function of L. The housing surface
area can be initially estimated, and as tuning of the design proceeds, improved results
will converge. If the bushing is to be housed in a pillow block, the surface area can be
roughly estimated from

A
.= 2π DL

144
(12–37)

Substituting Eq. (12–37) into Eq. (12–36) gives

Tf
.= T∞ + 10π fs F DN

Jh̄CR(2π DL/144)
= T∞ + 720 fs F N

Jh̄CRL
(12–38)
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L

ID OD 1 1 1 1 2 2 3 3 4 5

1
2

3
4 • • • • •

5
8

7
8 • • • •

3
4 1 1

8 • • • •

7
8 1 1

4 • • • •

1 1 3
8 • • • • • •

1 1 1
2 • • • •

1 1
4 1 5

8 • • • • •

1 1
2 2 • • • • •

1 3
4 2 1

4 • • • • • • • •

2 2 1
2 • • • •

2 1
4 2 3

4 • • • •

2 1
2 3 • • •

2 3
4 3 3

8 • • • •

3 3 5
8 • • • •

3 1
2 4 1

8 • • •

4 4 3
4 • • •

4 1
2 5 3

8 • • •

5 6 • • •

*In a display such as this a manufacturer is likely to show catolog numbers where the • appears.

1
2

1
2

3
4

1
2

1
4

7
8

3
4

5
8

1
2

Table 12–13

Available Bushing Sizes

(in inches) of One

Manufacturer*

EXAMPLE 12–8 Choose an Oiles 500 bushing to give a maximum wear of 0.001 in for 800 h of use with
a 300 rev/min journal and 50 lbf radial load. Use h̄CR = 2.7 Btu/(h · ft2 · ◦F), Tmax =
300◦F, fs = 0.03, and a design factor nd = 2. Table 12–13 lists the available bushing
sizes from the manufacturer.

Solution With a design factor nd , substitute nd F for F. First, estimate the bushing length using
Eq. (12–32) with f1 = f2 = 1, and K = 0.6(10−10) from Table 12–8:

L = f1 f2 K nd F Nt

3w
= 1(1)0.6(10−10)2(50)300(800)

3(0.001)
= 0.48 in (1)

From Eq. (12–38) with fs = 0.03 from Table 12–9, h̄CR = 2.7 Btu/(h · ft2 · ◦F), and
nd F for F,

L
.= 720 fsnd F N

Jh̄CR(Tf − T∞)
= 720(0.03)2(50)300

778(2.7)(300 − 70)
= 1.34 in

The two results bracket L such that 0.48 ≤ L ≤ 1.34 in. As a start let L = 1 in. From
Table 12–13, we select D = 1 in from the midrange of available bushings.
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Trial 1: D = L = 1 in.

Eq. (12–31): Pmax = 4

π

nd F

DL
= 4

π

2(50)

1(1)
= 127 psi < 3560 psi (OK)

P = nd F

DL
= 2(50)

1(1)
= 100 psi

Eq. (12–29): V = π DN

12
= π(1)300

12
= 78.5 ft/min < 100 ft/min (OK)

PV = 100(78.5) = 7850 psi · ft/min < 46 700 psi · ft/min (OK)

From Table 12–9,

Our second estimate is L ≥ 0.48(1.64) = 0.787 in. From Table 12–13, there is not
much available for L = 7

8 in. So staying with L = 1 in, try D = 1
2 in.

Trial 2: D = 0.5 in, L = 1 in.

Pmax = 4

π

nd F

DL
= 4

π

2(50)

0.5(1)
= 255 psi < 3560 psi (OK)

P = nd F

DL
= 2(50)

0.5(1)
= 200 psi

V = π DN

12
= π(0.5)300

12
= 39.3 ft /min < 100 ft /min (OK)

Note that PV is not a function of D, and since we did not change L, PV will remain
the same:

PV = 200(39.3) = 7860 psi · ft/min < 46 700 psi · ft/min (OK)

From Table 12–9, f1 = 1.34, L ≥ 1.34(0.48) = 0.643 in. There are many 3
4 -in bush-

ings to select from. The smallest diameter in Table 12–13 is D = 1
2 in. This gives an

L/D ratio of 1.5, which is acceptable according to Eq. (12–33).

Trial 3: D = 0.5 in, L = 0.75 in. From trial 2, V = 39.3 ft/min does not change.

Pmax = 4

π

nd F

DL
= 4

π

2(50)

0.5(0.75)
= 340 psi < 3560 psi (OK)

P = nd F

DL
= 2(50)

0.5(0.75)
= 267 psi

PV = 267(39.3) = 10 490 psi · ft /min < 46 700 psi · ft /min (OK)

Answer Select any of the bushings from the trials, where the optimum, from trial 3, is D = 1
2 in

and L = 3
4 in. Other factors may enter in the overall design that make the other bushings

more appropriate.

V f1

33 1.3

78.5 f1 �� f1 � 1.64

100 1.8
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PROBLEMS
12–1 A full journal bearing has a journal diameter of 25 mm, with a unilateral tolerance of −0.03 mm.

The bushing bore has a diameter of 25.03 mm and a unilateral tolerance of 0.04 mm. The l/d ratio is
1�2. The load is 1.2 kN and the journal runs at 1100 rev/min. If the average viscosity is 55 mPa � s,
find the minimum film thickness, the power loss, and the side flow for the minimum clearance
assembly.

12–2 A full journal bearing has a journal diameter of 32 mm, with a unilateral tolerance of −0.012 mm.
The bushing bore has a diameter of 32.05 mm and a unilateral tolerance of 0.032 mm. The bear-
ing is 64 mm long. The journal load is 1.75 kN and it runs at a speed of 900 rev/min. Using an
average viscosity of 55 mPa � s find the minimum film thickness, the maximum film pressure, and
the total oil-flow rate for the minimum clearance assembly.

12–3 A journal bearing has a journal diameter of 3.000 in, with a unilateral tolerance of −0.001 in. The
bushing bore has a diameter of 3.005 in and a unilateral tolerance of 0.004 in. The bushing is 1.5 in
long. The journal speed is 600 rev/min and the load is 800 lbf. For both SAE 10 and SAE 40,
lubricants, find the minimum film thickness and the maximum film pressure for an operating
temperature of 150◦F for the minimum clearance assembly.

12–4 A journal bearing has a journal diameter of 3.250 in with a unilateral tolerance of −0.003 in. The
bushing bore has a diameter of 3.256 in and a unilateral tolerance of 0.004 in. The bushing is 3 in
long and supports a 800-lbf load. The journal speed is 1000 rev/min. Find the minimum oil film
thickness and the maximum film pressure for both SAE 20 and SAE 20W-40 lubricants, for the
tightest assembly if the operating film temperature is 150◦F.

12–5 A full journal bearing has a journal with a diameter of 2.000 in and a unilateral tolerance of
−0.0012 in. The bushing has a bore with a diameter of 2.0024 and a unilateral tolerance of 0.002 in.
The bushing is 1 in long and supports a load of 600 lbf at a speed of 800 rev/min. Find the mini-
mum film thickness, the power loss, and the total lubricant flow if the average film temperature is
130◦F and SAE 20 lubricant is used. The tightest assembly is to be analyzed.

12–6 A full journal bearing has a shaft journal diameter of 25 mm with a unilateral tolerance of
−0.01 mm. The bushing bore has a diameter of 25.04 mm with a unilateral tolerance of 0.03 mm.
The l/d ratio is unity. The bushing load is 1.25 kN, and the journal rotates at 1200 rev/min.
Analyze the minimum clearance assembly if the average viscosity is 50 mPa · s to find the min-
imum oil film thickness, the power loss, and the percentage of side flow.

12–7 A full journal bearing has a shaft journal with a diameter of 1.25 in and a unilateral tolerance of
−0.0006 in. The bushing bore has a diameter of 1.252 in with a unilateral tolerance of 0.0014 in.
The bushing bore is 2 in in length. The bearing load is 620 lbf and the journal rotates at
1120 rev/min. Analyze the minimum clearance assembly and find the minimum film thickness,
the coefficient of friction, and the total oil flow if the average viscosity is 8.5 μreyn.

12–8 A journal bearing has a shaft diameter of 75.00 mm with a unilateral tolerance of −0.02 mm. The
bushing bore has a diameter of 75.10 mm with a unilateral tolerance of 0.06 mm. The bushing is
36 mm long and supports a load of 2 kN. The journal speed is 720 rev/min. For the minimum clear-
ance assembly find the minimum film thickness, the heat loss rate, and the maximum lubricant
pressure for SAE 20 and SAE 40 lubricants operating at an average film temperature of 60◦C.

12–9 A full journal bearing is 28 mm long. The shaft journal has a diameter of 56 mm with a unilat-
eral tolerance of −0.012 mm. The bushing bore has a diameter of 56.05 mm with a unilateral tol-
erance of 0.012 mm. The load is 2.4 kN and the journal speed is 900 rev/min. For the minimum
clearance assembly find the minimum oil-film thickness, the power loss, and the side flow if the
operating temperature is 65◦C and SAE 40 lubricating oil is used.
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12–10 A 1 1
4 - × 1 1

4 -in sleeve bearing supports a load of 700 lbf and has a journal speed of 3600 rev/min.
An SAE 10 oil is used having an average temperature of 160◦F. Using Fig. 12–16, estimate
the radial clearance for minimum coefficient of friction f and for maximum load-carrying
capacity W. The difference between these two clearances is called the clearance range. Is the
resulting range attainable in manufacture?

12–11 A full journal bearing has a shaft diameter of 3.000 in with a unilateral tolerance of −0.0004 in.
The l/d ratio is unity. The bushing has a bore diameter of 3.003 in with a unilateral tolerance of
0.0012 in. The SAE 40 oil supply is in an axial-groove sump with a steady-state temperature of
140◦F. The radial load is 675 lbf. Estimate the average film temperature, the minimum film thick-
ness, the heat loss rate, and the lubricant side-flow rate for the minimum clearance assembly, if the
journal speed is 10 rev/s.

12–12 A 2 1
2 × 2 1

2 -in sleeve bearing uses grade 20 lubricant. The axial-groove sump has a steady-state
temperature of 110◦F. The shaft journal has a diameter of 2.500 in with a unilateral tolerance of
−0.001 in. The bushing bore has a diameter of 2.504 in with a unilateral tolerance of 0.001 in.
The journal speed is 1120 rev/min and the radial load is 1200 lbf. Estimate
(a) The magnitude and location of the minimum oil-film thickness.
(b) The eccentricity.
(c) The coefficient of friction.
(d) The power loss rate.
(e) Both the total and side oil-flow rates.
( f ) The maximum oil-film pressure and its angular location.
(g) The terminating position of the oil film.
(h) The average temperature of the side flow.
(i) The oil temperature at the terminating position of the oil film.

12–13 A set of sleeve bearings has a specification of shaft journal diameter of 1.250 in with a unilateral
tolerance of −0.001 in. The bushing bore has a diameter of 1.252 in with a unilateral tolerance
of 0.003 in. The bushing is 1 1

4 in long. The radial load is 250 lbf and the shaft rotational speed
is 1750 rev/min. The lubricant is SAE 10 oil and the axial-groove sump temperature at steady
state Ts is 120◦F. For the cmin, cmedian, and cmax assemblies analyze the bearings and observe the
changes in S, ε, f, Q, Qs , �T , Tmax , T̄f , and hp.

12–14 An interpolation equation was given by Raimondi and Boyd, and it is displayed as Eq. (12–16).
This equation is a good candidate for a computer program. Write such a program for interactive
use. Once ready for service it can save time and reduce errors. Another version of this program can
be used with a subprogram that contains curve fits to Raimondi and Boyd charts for computer use.

12–15 A natural-circulation pillow-block bearing has a journal diameter D of 2.500 in with a unilateral
tolerance of −0.001 in. The bushing bore diameter B is 2.504 in with a unilateral tolerance of
0.004 in. The shaft runs at an angular speed of 1120 rev/min; the bearing uses SAE grade 20 oil
and carries a steady load of 300 lbf in shaft-stirred air at 70◦F. The lateral area of the pillow-block
housing is 60 in2. Perform a design assessment using minimum radial clearance for a load of
600 lbf and 300 lbf. Use Trumpler’s criteria.

12–16 An eight-cylinder diesel engine has a front main bearing with a journal diameter of 3.500 in and
a unilateral tolerance of −0.003 in. The bushing bore diameter is 3.505 in with a unilateral tol-
erance of +0.005 in. The bushing length is 2 in. The pressure-fed bearing has a central annular
groove 0.250 in wide. The SAE 30 oil comes from a sump at 120◦F using a supply pressure of
50 psig. The sump’s heat-dissipation capacity is 5000 Btu/h per bearing. For a minimum radial
clearance, a speed of 2000 rev/min, and a radial load of 4600 lbf, find the average film tempera-
ture and apply Trumpler’s criteria in your design assessment.
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12–17 A pressure-fed bearing has a journal diameter of 50.00 mm with a unilateral tolerance of
−0.05 mm. The bushing bore diameter is 50.084 mm with a unilateral tolerance of 0.10 mm. The
length of the bushing is 55 mm. Its central annular groove is 5 mm wide and is fed by SAE 30 oil
is 55◦C at 200 kPa supply gauge pressure. The journal speed is 2880 rev/min carrying a load of
10 kN. The sump can dissipate 300 watts per bearing if necessary. For minimum radial clearances,
perform a design assessment using Trumpler’s criteria.

12–18 Design a central annular-groove pressure-fed bearing with an l ′/d ratio of 0.5, using SAE grade
20 oil, the lubricant supplied at 30 psig. The exterior oil cooler can maintain the sump tempera-
ture at 120◦F for heat dissipation rates up to 1500 Btu/h. The load to be carried is 900 lbf at
3000 rev/min. The groove width is 1

4 in. Use nominal journal diameter d as one design variable
and c as the other. Use Trumpler’s criteria for your adequacy assessment.

12–19 Repeat design problem Prob. 12–18 using the nominal bushing bore B as one decision variable
and the radial clearance c as the other. Again, Trumpler’s criteria to be used.

12–20 Table 12–1 gives the Seireg and Dandage curve fit approximation for the absolute viscosity
in customary U.S. engineering units. Show that in SI units of mPa � s and a temperature of
C degrees Celsius, the viscosity can be expressed as 

μ = 6.89(106)μ0 exp[(b/(1.8C + 127))]

where μ0 and b are from Table 12–1. If the viscosity μ′
0 is expressed in μreyn, then

μ = 6.89μ′
0 exp[(b/(1.8C + 127))]

What is the viscosity of a grade 50 oil at 70◦C? Compare your results with Fig. 12–13.

12–21 For Prob. 12–18 a satisfactory design is

d = 2.000+0
−0.001 in b = 2.005+0.003

−0 in

Double the size of the bearing dimensions and quadruple the load to 3600 lbf.
(a) Analyze the scaled-up bearing for median assembly.
(b) Compare the results of a similar analysis for the 2-in bearing, median assembly.

12–22 An Oiles SP 500 alloy brass bushing is 0.75 in long with a 0.75-in dia bore and operates in a clean
environment at 70◦F. The allowable wear without loss of function is 0.004 in. The radial load is
400 lbf. The shaft speed is 250 rev/min. Estimate the number of revolutions for radial wear to be
0.004 in.

12–23 Choose an Oiles SP 500 alloy brass bushing to give a maximum wear of 0.002 in for 1000 h
of use with a 400 rev/min journal and 100 lbf radial load. Use h̄CR = 2.7 Btu/(h · ft2 · ◦F), 
Tmax = 300◦F, fs = 0.03, and a design factor nd = 2. Table 12–13 lists the bushing sizes avail-
able from the manufacturer.
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674 Mechanical Engineering Design

Figure 13–1

Spur gears are used to transmit
rotary motion between parallel
shafts.

Figure 13–2

Helical gears are used to
transmit motion between
parallel or nonparallel shafts.

This chapter addresses gear geometry, the kinematic relations, and the forces transmit-
ted by the four principal types of gears: spur, helical, bevel, and worm gears. The forces
transmitted between meshing gears supply torsional moments to shafts for motion and
power transmission and create forces and moments that affect the shaft and its bearings.
The next two chapters will address stress, strength, safety, and reliability of the four
types of gears.

13–1 Types of Gears
Spur gears, illustrated in Fig. 13–1, have teeth parallel to the axis of rotation and are
used to transmit motion from one shaft to another, parallel, shaft. Of all types, the spur
gear is the simplest and, for this reason, will be used to develop the primary kinematic
relationships of the tooth form.

Helical gears, shown in Fig. 13–2, have teeth inclined to the axis of rotation. Helical
gears can be used for the same applications as spur gears and, when so used, are not as
noisy, because of the more gradual engagement of the teeth during meshing. The inclined
tooth also develops thrust loads and bending couples, which are not present with spur
gearing. Sometimes helical gears are used to transmit motion between nonparallel shafts.

Bevel gears, shown in Fig. 13–3, have teeth formed on conical surfaces and are
used mostly for transmitting motion between intersecting shafts. The figure actually
illustrates straight-tooth bevel gears. Spiral bevel gears are cut so the tooth is no longer
straight, but forms a circular arc. Hypoid gears are quite similar to spiral bevel gears
except that the shafts are offset and nonintersecting.
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Figure 13–3

Bevel gears are used to
transmit rotary motion
between intersecting shafts.

Worms and worm gears, shown in Fig. 13–4, represent the fourth basic gear type.
As shown, the worm resembles a screw. The direction of rotation of the worm gear, also
called the worm wheel, depends upon the direction of rotation of the worm and upon
whether the worm teeth are cut right-hand or left-hand. Worm gearsets are also made so
that the teeth of one or both wrap partly around the other. Such sets are called single-
enveloping and double-enveloping worm gearsets. Worm gearsets are mostly used when
the speed ratios of the two shafts are quite high, say, 3 or more.

13–2 Nomenclature
The terminology of spur-gear teeth is illustrated in Fig. 13–5. The pitch circle is a the-
oretical circle upon which all calculations are usually based; its diameter is the pitch
diameter. The pitch circles of a pair of mating gears are tangent to each other. A pinion
is the smaller of two mating gears. The larger is often called the gear.

The circular pitch p is the distance, measured on the pitch circle, from a point on
one tooth to a corresponding point on an adjacent tooth. Thus the circular pitch is equal
to the sum of the tooth thickness and the width of space.

Figure 13–4

Worm gearsets are used
to transmit rotary motion
between nonparallel and
nonintersecting shafts.
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Figure 13–5

Nomenclature of spur-gear
teeth.

The module m is the ratio of the pitch diameter to the number of teeth. The cus-
tomary unit of length used is the millimeter. The module is the index of tooth size in SI.

The diametral pitch P is the ratio of the number of teeth on the gear to the pitch
diameter. Thus, it is the reciprocal of the module. Since diametral pitch is used only
with U.S. units, it is expressed as teeth per inch.

The addendum a is the radial distance between the top land and the pitch circle.
The dedendum b is the radial distance from the bottom land to the pitch circle. The
whole depth ht is the sum of the addendum and the dedendum.

The clearance circle is a circle that is tangent to the addendum circle of the mat-
ing gear. The clearance c is the amount by which the dedendum in a given gear exceeds
the addendum of its mating gear. The backlash is the amount by which the width of a
tooth space exceeds the thickness of the engaging tooth measured on the pitch circles.

You should prove for yourself the validity of the following useful relations:

P = N

d
(13–1)

m = d

N
(13–2)

p = πd

N
= πm (13–3)

pP = π (13–4)

where P = diametral pitch, teeth per inch

N = number of teeth 

d = pitch diameter, in

m = module, mm

d = pitch diameter, mm

p = circular pitch
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Figure 13–6

Cam A and follower B in
contact. When the contacting
surfaces are involute profiles,
the ensuing conjugate action
produces a constant
angular-velocity ratio.

13–3 Conjugate Action
The following discussion assumes the teeth to be perfectly formed, perfectly smooth,
and absolutely rigid. Such an assumption is, of course, unrealistic, because the applica-
tion of forces will cause deflections.

Mating gear teeth acting against each other to produce rotary motion are similar to
cams. When the tooth profiles, or cams, are designed so as to produce a constant angular-
velocity ratio during meshing, these are said to have conjugate action. In theory, at least,
it is possible arbitrarily to select any profile for one tooth and then to find a profile for the
meshing tooth that will give conjugate action. One of these solutions is the involute profile,
which, with few exceptions, is in universal use for gear teeth and is the only one with which
we should be concerned.

When one curved surface pushes against another (Fig. 13–6), the point of contact
occurs where the two surfaces are tangent to each other (point c), and the forces at any
instant are directed along the common normal ab to the two curves. The line ab, rep-
resenting the direction of action of the forces, is called the line of action. The line of
action will intersect the line of centers O-O at some point P . The angular-velocity ratio
between the two arms is inversely proportional to their radii to the point P . Circles
drawn through point P from each center are called pitch circles, and the radius of each
circle is called the pitch radius. Point P is called the pitch point.

Figure 13–6 is useful in making another observation. A pair of gears is really
pairs of cams that act through a small arc and, before running off the involute contour,
are replaced by another identical pair of cams. The cams can run in either direction and
are configured to transmit a constant angular-velocity ratio. If involute curves are used,
the gears tolerate changes in center-to-center distance with no variation in constant
angular-velocity ratio. Furthermore, the rack profiles are straight-flanked, making pri-
mary tooling simpler.

To transmit motion at a constant angular-velocity ratio, the pitch point must remain
fixed; that is, all the lines of action for every instantaneous point of contact must pass
through the same point P . In the case of the involute profile, it will be shown that all
points of contact occur on the same straight line ab, that all normals to the tooth profiles
at the point of contact coincide with the line ab, and, thus, that these profiles transmit
uniform rotary motion.

bud29281_ch13_673-732.qxd  12/17/09  4:54 PM  Page 677 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



678 Mechanical Engineering Design

+

+

+

Base circle

Pitch circle

O1

O2

c a

P

e d

g

f

b

d

B

b

c

e

a

A

O

f

Pitch
circle

Gear 1

Gear 2

Base
circle

(a) (b)

Figure 13–7

(a) Generation of an involute;
(b) involute action.

13–4 Involute Properties
An involute curve may be generated as shown in Fig. 13–7a. A partial flange B is
attached to the cylinder A, around which is wrapped a cord def, which is held tight. Point b
on the cord represents the tracing point, and as the cord is wrapped and unwrapped about
the cylinder, point b will trace out the involute curve ac. The radius of the curvature
of the involute varies continuously, being zero at point a and a maximum at point c. At
point b the radius is equal to the distance be, since point b is instantaneously rotating
about point e. Thus the generating line de is normal to the involute at all points of inter-
section and, at the same time, is always tangent to the cylinder A. The circle on which
the involute is generated is called the base circle.

Let us now examine the involute profile to see how it satisfies the requirement for
the transmission of uniform motion. In Fig. 13–7b, two gear blanks with fixed centers
at O1 and O2 are shown having base circles whose respective radii are O1a and O2b.
We now imagine that a cord is wound clockwise around the base circle of gear 1, pulled
tight between points a and b, and wound counterclockwise around the base circle of
gear 2. If, now, the base circles are rotated in different directions so as to keep the cord
tight, a point g on the cord will trace out the involutes cd on gear 1 and ef on gear 2.
The involutes are thus generated simultaneously by the tracing point. The tracing point,
therefore, represents the point of contact, while the portion of the cord ab is the gener-
ating line. The point of contact moves along the generating line; the generating line
does not change position, because it is always tangent to the base circles; and since the
generating line is always normal to the involutes at the point of contact, the requirement
for uniform motion is satisfied.

13–5 Fundamentals
Among other things, it is necessary that you actually be able to draw the teeth on a pair
of meshing gears. You should understand, however, that you are not doing this for man-
ufacturing or shop purposes. Rather, we make drawings of gear teeth to obtain an under-
standing of the problems involved in the meshing of the mating teeth.
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Construction of an involute
curve. 

First, it is necessary to learn how to construct an involute curve. As shown in
Fig. 13–8, divide the base circle into a number of equal parts, and construct radial lines
O A0, O A1, O A2, etc. Beginning at A1, construct perpendiculars A1B1, A2 B2, A3 B3,
etc. Then along A1B1 lay off the distance A1A0, along A2 B2 lay off twice the distance
A1A0, etc., producing points through which the involute curve can be constructed.

To investigate the fundamentals of tooth action, let us proceed step by step through
the process of constructing the teeth on a pair of gears.

When two gears are in mesh, their pitch circles roll on one another without slip-
ping. Designate the pitch radii as r1 and r2 and the angular velocities as ω1 and ω2,
respectively. Then the pitch-line velocity is

V = |r1ω1| = |r2ω2|
Thus the relation between the radii on the angular velocities is∣∣∣∣ω1

ω2

∣∣∣∣ = r2

r1
(13–5)

Suppose now we wish to design a speed reducer such that the input speed is 1800
rev/min and the output speed is 1200 rev/min. This is a ratio of 3:2; the gear pitch diam-
eters would be in the same ratio, for example, a 4-in pinion driving a 6-in gear. The
various dimensions found in gearing are always based on the pitch circles.

Suppose we specify that an 18-tooth pinion is to mesh with a 30-tooth gear and that
the diametral pitch of the gearset is to be 2 teeth per inch. Then, from Eq. (13–1), the
pitch diameters of the pinion and gear are, respectively,

d1 = N1

P
= 18

2
= 9 in d2 = N2

P
= 30

2
= 15 in

The first step in drawing teeth on a pair of mating gears is shown in Fig. 13–9. The cen-
ter distance is the sum of the pitch radii, in this case 12 in. So locate the pinion and gear
centers O1 and O2, 12 in apart. Then construct the pitch circles of radii r1 and r2. These
are tangent at P , the pitch point. Next draw line ab, the common tangent, through the
pitch point. We now designate gear 1 as the driver, and since it is rotating counter-
clockwise, we draw a line cd through point P at an angle φ to the common tangent ab.
The line cd has three names, all of which are in general use. It is called the pressure
line, the generating line, and the line of action. It represents the direction in which the
resultant force acts between the gears. The angle φ is called the pressure angle, and it
usually has values of 20 or 25◦, though 14 1

2
◦

was once used.
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Figure 13–10

Base circle radius can be
related to the pressure angle φ
and the pitch circle radius by
rb = r cos φ.

Next, on each gear draw a circle tangent to the pressure line. These circles are the
base circles. Since they are tangent to the pressure line, the pressure angle determines
their size. As shown in Fig. 13–10, the radius of the base circle is

rb = r cos φ (13–6)

where r is the pitch radius.
Now generate an involute on each base circle as previously described and as shown

in Fig. 13–9. This involute is to be used for one side of a gear tooth. It is not necessary
to draw another curve in the reverse direction for the other side of the tooth, because we
are going to use a template which can be turned over to obtain the other side.

The addendum and dedendum distances for standard interchangeable teeth are, as
we shall learn later, 1/P and 1.25/P , respectively. Therefore, for the pair of gears we are
constructing, 

a = 1

P
= 1

2
= 0.500 in b = 1.25

P
= 1.25

2
= 0.625 in

Using these distances, draw the addendum and dedendum circles on the pinion and on
the gear as shown in Fig. 13–9.

Next, using heavy drawing paper, or preferably, a sheet of 0.015- to 0.020-in clear
plastic, cut a template for each involute, being careful to locate the gear centers prop-
erly with respect to each involute. Figure 13–11 is a reproduction of the template used
to create some of the illustrations for this book. Note that only one side of the tooth pro-
file is formed on the template. To get the other side, turn the template over. For some
problems you might wish to construct a template for the entire tooth.
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Figure 13–9

Circles of a gear layout. 
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A template for drawing gear
teeth. 
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Tooth action.

To draw a tooth, we must know the tooth thickness. From Eq. (13–4), the circular
pitch is 

p = π

P
= π

2
= 1.57 in

Therefore, the tooth thickness is

t = p

2
= 1.57

2
= 0.785 in

measured on the pitch circle. Using this distance for the tooth thickness as well as the
tooth space, draw as many teeth as desired, using the template, after the points have
been marked on the pitch circle. In Fig. 13–12 only one tooth has been drawn on each
gear. You may run into trouble in drawing these teeth if one of the base circles happens
to be larger than the dedendum circle. The reason for this is that the involute begins at
the base circle and is undefined below this circle. So, in drawing gear teeth, we usually
draw a radial line for the profile below the base circle. The actual shape, however, will
depend upon the kind of machine tool used to form the teeth in manufacture, that is,
how the profile is generated.

The portion of the tooth between the clearance circle and the dedendum circle
includes the fillet. In this instance the clearance is

c = b − a = 0.625 − 0.500 = 0.125 in

The construction is finished when these fillets have been drawn.
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Figure 13–13

Involute-toothed pinion
and rack.

Referring again to Fig. 13–12, the pinion with center at O1 is the driver and turns
counterclockwise. The pressure, or generating, line is the same as the cord used in
Fig. 13–7a to generate the involute, and contact occurs along this line. The initial con-
tact will take place when the flank of the driver comes into contact with the tip of the
driven tooth. This occurs at point a in Fig. 13–12, where the addendum circle of the dri-
ven gear crosses the pressure line. If we now construct tooth profiles through point a
and draw radial lines from the intersections of these profiles with the pitch circles to the
gear centers, we obtain the angle of approach for each gear.

As the teeth go into mesh, the point of contact will slide up the side of the driving
tooth so that the tip of the driver will be in contact just before contact ends. The final
point of contact will therefore be where the addendum circle of the driver crosses the
pressure line. This is point b in Fig. 13–12. By drawing another set of tooth profiles
through b, we obtain the angle of recess for each gear in a manner similar to that of find-
ing the angles of approach. The sum of the angle of approach and the angle of recess
for either gear is called the angle of action. The line ab is called the line of action.

We may imagine a rack as a spur gear having an infinitely large pitch diameter.
Therefore, the rack has an infinite number of teeth and a base circle which is an infinite
distance from the pitch point. The sides of involute teeth on a rack are straight lines
making an angle to the line of centers equal to the pressure angle. Figure 13–13 shows
an involute rack in mesh with a pinion. Corresponding sides on involute teeth are par-
allel curves; the base pitch is the constant and fundamental distance between them
along a common normal as shown in Fig. 13–13. The base pitch is related to the circu-
lar pitch by the equation

pb = pc cos φ (13–7)

where pb is the base pitch.
Figure 13–14 shows a pinion in mesh with an internal, or ring, gear. Note that both

of the gears now have their centers of rotation on the same side of the pitch point. Thus
the positions of the addendum and dedendum circles with respect to the pitch circle are
reversed; the addendum circle of the internal gear lies inside the pitch circle. Note, too,
from Fig. 13–14, that the base circle of the internal gear lies inside the pitch circle near
the addendum circle.

Another interesting observation concerns the fact that the operating diameters of
the pitch circles of a pair of meshing gears need not be the same as the respective design
pitch diameters of the gears, though this is the way they have been constructed in
Fig. 13–12. If we increase the center distance, we create two new operating pitch circles
having larger diameters because they must be tangent to each other at the pitch point.
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Thus the pitch circles of gears really do not come into existence until a pair of gears are
brought into mesh.

Changing the center distance has no effect on the base circles, because these were
used to generate the tooth profiles. Thus the base circle is basic to a gear. Increasing the
center distance increases the pressure angle and decreases the length of the line of
action, but the teeth are still conjugate, the requirement for uniform motion transmis-
sion is still satisfied, and the angular-velocity ratio has not changed.

EXAMPLE 13–1 A gearset consists of a 16-tooth pinion driving a 40-tooth gear. The diametral pitch is 2,
and the addendum and dedendum are 1/P and 1.25/P , respectively. The gears are cut
using a pressure angle of 20◦.
(a) Compute the circular pitch, the center distance, and the radii of the base circles.
(b) In mounting these gears, the center distance was incorrectly made 1

4 in larger.
Compute the new values of the pressure angle and the pitch-circle diameters.

Solution

Answer (a) p = π

P
= π

2
= 1.57 in

The pitch diameters of the pinion and gear are, respectively,

dP = 16

2
= 8 in dG = 40

2
= 20 in

Therefore the center distance is

Answer
dP + dG

2
= 8 + 20

2
= 14 in

Since the teeth were cut on the 20◦ pressure angle, the base-circle radii are found to be,
using rb = r cos φ ,

Answer rb (pinion) = 8

2
cos 20◦ = 3.76 in

Answer rb (gear) = 20

2
cos 20◦ = 9.40 in

Pitch circle

Base circle

�2
Base
circle

Pitch circle

Pressure line

Dedendum
circle

Addendum
circle

3

2

�3

O2

Figure 13–14

Internal gear and pinion.
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Lab

Motion

A

a

b

B

Addendum
circle

Pressure line

Pitch circle
Addendum circle

Arc of
approach qa

Arc of
recess qr

P

�

Figure 13–15

Definition of contact ratio.

(b) Designating d ′
P and d ′

G as the new pitch-circle diameters, the 1
4 -in increase in the

center distance requires that

d ′
P + d ′

G

2
= 14.250 (1)

Also, the velocity ratio does not change, and hence

d ′
P

d ′
G

= 16

40
(2)

Solving Eqs. (1) and (2) simultaneously yields

Answer d ′
P = 8.143 in d ′

G = 20.357 in

Since rb = r cos φ , the new pressure angle is

Answer φ′ = cos−1 rb (pinion)

d ′
P/2

= cos−1 3.76

8.143/2
= 22.56◦

13–6 Contact Ratio
The zone of action of meshing gear teeth is shown in Fig. 13–15. We recall that tooth
contact begins and ends at the intersections of the two addendum circles with the pressure
line. In Fig. 13–15 initial contact occurs at a and final contact at b. Tooth profiles drawn
through these points intersect the pitch circle at A and B, respectively. As shown, the dis-
tance AP is called the arc of approach qa , and the distance P B, the arc of recess qr . The
sum of these is the arc of action qt .

Now, consider a situation in which the arc of action is exactly equal to the circular
pitch, that is, qt = p. This means that one tooth and its space will occupy the entire arc
AB. In other words, when a tooth is just beginning contact at a, the previous tooth is
simultaneously ending its contact at b. Therefore, during the tooth action from a to b,
there will be exactly one pair of teeth in contact.

Next, consider a situation in which the arc of action is greater than the circular
pitch, but not very much greater, say, qt

.= 1.2p. This means that when one pair of teeth
is just entering contact at a, another pair, already in contact, will not yet have reached b.
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Thus, for a short period of time, there will be two teeth in contact, one in the vicinity
of A and another near B. As the meshing proceeds, the pair near B must cease contact,
leaving only a single pair of contacting teeth, until the procedure repeats itself.

Because of the nature of this tooth action, either one or two pairs of teeth in con-
tact, it is convenient to define the term contact ratio mc as

mc = qt

p
(13–8)

a number that indicates the average number of pairs of teeth in contact. Note that this
ratio is also equal to the length of the path of contact divided by the base pitch. Gears
should not generally be designed having contact ratios less than about 1.20, because
inaccuracies in mounting might reduce the contact ratio even more, increasing the pos-
sibility of impact between the teeth as well as an increase in the noise level.

An easier way to obtain the contact ratio is to measure the line of action ab instead
of the arc distance AB. Since ab in Fig. 13–15 is tangent to the base circle when
extended, the base pitch pb must be used to calculate mc instead of the circular pitch as
in Eq. (13–8). If the length of the line of action is Lab , the contact ratio is

mc = Lab

p cos φ
(13–9)

in which Eq. (13–7) was used for the base pitch.

13–7 Interference
The contact of portions of tooth profiles that are not conjugate is called interference.
Consider Fig. 13–16. Illustrated are two 16-tooth gears that have been cut to the now
obsolete 14 1

2
◦

pressure angle. The driver, gear 2, turns clockwise. The initial and final
points of contact are designated A and B, respectively, and are located on the pressure
line. Now notice that the points of tangency of the pressure line with the base circles C
and D are located inside of points A and B. Interference is present.

The interference is explained as follows. Contact begins when the tip of the driven
tooth contacts the flank of the driving tooth. In this case the flank of the driving tooth
first makes contact with the driven tooth at point A, and this occurs before the involute
portion of the driving tooth comes within range. In other words, contact is occurring
below the base circle of gear 2 on the noninvolute portion of the flank. The actual effect
is that the involute tip or face of the driven gear tends to dig out the noninvolute flank
of the driver.

In this example the same effect occurs again as the teeth leave contact. Contact
should end at point D or before. Since it does not end until point B, the effect is for the
tip of the driving tooth to dig out, or interfere with, the flank of the driven tooth.

When gear teeth are produced by a generation process, interference is automati-
cally eliminated because the cutting tool removes the interfering portion of the flank.
This effect is called undercutting; if undercutting is at all pronounced, the undercut
tooth is considerably weakened. Thus the effect of eliminating interference by a gener-
ation process is merely to substitute another problem for the original one.

The smallest number of teeth on a spur pinion and gear,1 one-to-one gear ratio,
which can exist without interference is NP . This number of teeth for spur gears is

1Robert Lipp, “Avoiding Tooth Interference in Gears,” Machine Design, Vol. 54, No. 1, 1982, pp. 122–124.
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given by

NP = 2k

3 sin2 φ

(
1 +

√
1 + 3 sin2 φ

)
(13–10)

where k = 1 for full-depth teeth, 0.8 for stub teeth and φ = pressure angle.
For a 20◦ pressure angle, with k = 1,

NP = 2(1)

3 sin2 20◦

(
1 +

√
1 + 3 sin2 20◦

)
= 12.3 = 13 teeth

Thus 13 teeth on pinion and gear are interference-free. Realize that 12.3 teeth is possi-
ble in meshing arcs, but for fully rotating gears, 13 teeth represents the least number.
For a 14 1

2
◦

pressure angle, NP = 23 teeth, so one can appreciate why few 14 1
2

◦
-tooth

systems are used, as the higher pressure angles can produce a smaller pinion with
accompanying smaller center-to-center distances.

If the mating gear has more teeth than the pinion, that is, mG = NG/NP = m is
more than one, then the smallest number of teeth on the pinion without interference is
given by

NP = 2k

(1 + 2m) sin2 φ

(
m +

√
m2 + (1 + 2m) sin2 φ

)
(13–11)

Driving gear 2

Driven gear 3

Base circle

Base circle

O2

O3

�2

�3

Interference is on flank
of driver during approach

This portion of profile
is not an involute

This portion of profile
is not an involute

Addendum
circlesPressure line

A

C

D
B

Figure 13–16

Interference in the action 
of gear teeth.
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For example, if m = 4, φ = 20◦ ,

NP = 2(1)

[1 + 2(4)] sin2 20◦

[
4 +

√
42 + [1 + 2(4)] sin2 20◦

]
= 15.4 = 16 teeth

Thus a 16-tooth pinion will mesh with a 64-tooth gear without interference.
The largest gear with a specified pinion that is interference-free is

NG = N 2
P sin2 φ − 4k2

4k − 2NP sin2 φ
(13–12)

For example, for a 13-tooth pinion with a pressure angle φ of 20◦,

NG = 132 sin2 20◦ − 4(1)2

4(1) − 2(13) sin2 20◦ = 16.45 = 16 teeth

For a 13-tooth spur pinion, the maximum number of gear teeth possible without inter-
ference is 16.

The smallest spur pinion that will operate with a rack without interference is

NP = 2(k)

sin2 φ
(13–13)

For a 20◦ pressure angle full-depth tooth the smallest number of pinion teeth to mesh
with a rack is

NP = 2(1)

sin2 20◦ = 17.1 = 18 teeth

Since gear-shaping tools amount to contact with a rack, and the gear-hobbing
process is similar, the minimum number of teeth to prevent interference to prevent under-
cutting by the hobbing process is equal to the value of NP when NG is infinite.

The importance of the problem of teeth that have been weakened by undercutting
cannot be overemphasized. Of course, interference can be eliminated by using more
teeth on the pinion. However, if the pinion is to transmit a given amount of power, more
teeth can be used only by increasing the pitch diameter.

Interference can also be reduced by using a larger pressure angle. This results in a
smaller base circle, so that more of the tooth profile becomes involute. The demand for
smaller pinions with fewer teeth thus favors the use of a 25◦ pressure angle even though
the frictional forces and bearing loads are increased and the contact ratio decreased.

13–8 The Forming of Gear Teeth
There are a large number of ways of forming the teeth of gears, such as sand casting,
shell molding, investment casting, permanent-mold casting, die casting, and centrifugal
casting. Teeth can also be formed by using the powder-metallurgy process; or, by using
extrusion, a single bar of aluminum may be formed and then sliced into gears. Gears
that carry large loads in comparison with their size are usually made of steel and are cut
with either form cutters or generating cutters. In form cutting, the tooth space takes the
exact form of the cutter. In generating, a tool having a shape different from the tooth
profile is moved relative to the gear blank so as to obtain the proper tooth shape. One
of the newest and most promising of the methods of forming teeth is called cold form-
ing, or cold rolling, in which dies are rolled against steel blanks to form the teeth. The
mechanical properties of the metal are greatly improved by the rolling process, and a
high-quality generated profile is obtained at the same time.
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Figure 13–17

Generating a spur gear with a
pinion cutter. (Courtesy of
Boston Gear Works, Inc.)

Gear teeth may be machined by milling, shaping, or hobbing. They may be finished
by shaving, burnishing, grinding, or lapping.

Gears made of thermoplastics such as nylon, polycarbonate, acetal are quite popular
and are easily manufactured by injection molding. These gears are of low to moderate
precision, low in cost for high production quantities, and capable of light loads, and can
run without lubrication.

Milling

Gear teeth may be cut with a form milling cutter shaped to conform to the tooth space.
With this method it is theoretically necessary to use a different cutter for each gear,
because a gear having 25 teeth, for example, will have a different-shaped tooth space
from one having, say, 24 teeth. Actually, the change in space is not too great, and it has
been found that eight cutters may be used to cut with reasonable accuracy any gear in the
range of 12 teeth to a rack. A separate set of cutters is, of course, required for each pitch.

Shaping

Teeth may be generated with either a pinion cutter or a rack cutter. The pinion cutter
(Fig. 13–17) reciprocates along the vertical axis and is slowly fed into the gear blank to
the required depth. When the pitch circles are tangent, both the cutter and the blank
rotate slightly after each cutting stroke. Since each tooth of the cutter is a cutting tool,
the teeth are all cut after the blank has completed one rotation. The sides of an involute
rack tooth are straight. For this reason, a rack-generating tool provides an accurate
method of cutting gear teeth. This is also a shaping operation and is illustrated by the
drawing of Fig. 13–18. In operation, the cutter reciprocates and is first fed into the gear
blank until the pitch circles are tangent. Then, after each cutting stroke, the gear blank
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Figure 13–19

Hobbing a worm gear.
(Courtesy of Boston Gear
Works, Inc.)

and cutter roll slightly on their pitch circles. When the blank and cutter have rolled a
distance equal to the circular pitch, the cutter is returned to the starting point, and the
process is continued until all the teeth have been cut.

Hobbing

The hobbing process is illustrated in Fig. 13–19. The hob is simply a cutting tool that
is shaped like a worm. The teeth have straight sides, as in a rack, but the hob axis must
be turned through the lead angle in order to cut spur-gear teeth. For this reason, the teeth
generated by a hob have a slightly different shape from those generated by a rack cutter.
Both the hob and the blank must be rotated at the proper angular-velocity ratio. The hob
is then fed slowly across the face of the blank until all the teeth have been cut.

Gear blank rotates
in this direction

Rack cutter reciprocates in a direction
perpendicular to this page

Figure 13–18

Shaping teeth with a rack.
(This is a drawing-board figure
that J. E. Shigley executed over
35 years ago in response to a
question from a student at the
University of Michigan.)
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Figure 13–20

Terminology of bevel gears.

Finishing

Gears that run at high speeds and transmit large forces may be subjected to additional
dynamic forces if there are errors in tooth profiles. Errors may be diminished somewhat
by finishing the tooth profiles. The teeth may be finished, after cutting, by either shav-
ing or burnishing. Several shaving machines are available that cut off a minute amount
of metal, bringing the accuracy of the tooth profile within the limits of 250 μin.

Burnishing, like shaving, is used with gears that have been cut but not heat-treated.
In burnishing, hardened gears with slightly oversize teeth are run in mesh with the gear
until the surfaces become smooth.

Grinding and lapping are used for hardened gear teeth after heat treatment. The
grinding operation employs the generating principle and produces very accurate teeth.
In lapping, the teeth of the gear and lap slide axially so that the whole surface of the
teeth is abraded equally.

13–9 Straight Bevel Gears
When gears are used to transmit motion between intersecting shafts, some form of bevel
gear is required. A bevel gearset is shown in Fig. 13–20. Although bevel gears are usu-
ally made for a shaft angle of 90◦, they may be produced for almost any angle. The teeth
may be cast, milled, or generated. Only the generated teeth may be classed as accurate.

The terminology of bevel gears is illustrated in Fig. 13–20. The pitch of bevel gears
is measured at the large end of the tooth, and both the circular pitch and the pitch diam-
eter are calculated in the same manner as for spur gears. It should be noted that the clear-
ance is uniform. The pitch angles are defined by the pitch cones meeting at the apex, as
shown in the figure. They are related to the tooth numbers as follows:

tan γ = NP

NG
tan � = NG

NP
(13–14)
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Involute

Base cylinder

Edge of paper

Base helix
angle

Figure 13–21

An involute helicoid.

where the subscripts P and G refer to the pinion and gear, respectively, and where γ and
� are, respectively, the pitch angles of the pinion and gear.

Figure 13–20 shows that the shape of the teeth, when projected on the back cone,
is the same as in a spur gear having a radius equal to the back-cone distance rb. This is
called Tredgold’s approximation. The number of teeth in this imaginary gear is

N ′ = 2πrb

p
(13–15)

where N ′ is the virtual number of teeth and p is the circular pitch measured at the large
end of the teeth. Standard straight-tooth bevel gears are cut by using a 20◦ pressure
angle, unequal addenda and dedenda, and full-depth teeth. This increases the contact
ratio, avoids undercut, and increases the strength of the pinion.

13–10 Parallel Helical Gears
Helical gears, used to transmit motion between parallel shafts, are shown in Fig. 13–2.
The helix angle is the same on each gear, but one gear must have a right-hand helix and
the other a left-hand helix. The shape of the tooth is an involute helicoid and is illus-
trated in Fig. 13–21. If a piece of paper cut in the shape of a parallelogram is wrapped
around a cylinder, the angular edge of the paper becomes a helix. If we unwind this
paper, each point on the angular edge generates an involute curve. This surface obtained
when every point on the edge generates an involute is called an involute helicoid.

The initial contact of spur-gear teeth is a line extending all the way across the face
of the tooth. The initial contact of helical-gear teeth is a point that extends into a line as
the teeth come into more engagement. In spur gears the line of contact is parallel to the
axis of rotation; in helical gears the line is diagonal across the face of the tooth. It is this
gradual engagement of the teeth and the smooth transfer of load from one tooth to
another that gives helical gears the ability to transmit heavy loads at high speeds.
Because of the nature of contact between helical gears, the contact ratio is of only minor
importance, and it is the contact area, which is proportional to the face width of the
gear, that becomes significant.

Helical gears subject the shaft bearings to both radial and thrust loads. When the
thrust loads become high or are objectionable for other reasons, it may be desirable to
use double helical gears. A double helical gear (herringbone) is equivalent to two helical
gears of opposite hand, mounted side by side on the same shaft. They develop opposite
thrust reactions and thus cancel out the thrust load.

When two or more single helical gears are mounted on the same shaft, the hand of
the gears should be selected so as to produce the minimum thrust load.
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Figure 13–22

Nomenclature of helical gears.

Figure 13–22 represents a portion of the top view of a helical rack. Lines ab and cd
are the centerlines of two adjacent helical teeth taken on the same pitch plane. The angle
ψ is the helix angle. The distance ac is the transverse circular pitch pt in the plane of
rotation (usually called the circular pitch). The distance ae is the normal circular pitch
pn and is related to the transverse circular pitch as follows:

pn = pt cos ψ (13–16)

The distance ad is called the axial pitch px and is related by the expression

px = pt

tan ψ
(13–17)

Since pn Pn = π , the normal diametral pitch is

Pn = Pt

cos ψ
(13–18)

The pressure angle φn in the normal direction is different from the pressure angle φt in
the direction of rotation, because of the angularity of the teeth. These angles are related
by the equation

cos ψ = tan φn

tan φt
(13–19)

Figure 13–23 illustrates a cylinder cut by an oblique plane ab at an angle ψ to a
right section. The oblique plane cuts out an arc having a radius of curvature of R. For the
condition that ψ = 0, the radius of curvature is R = D/2. If we imagine the angle ψ
to be slowly increased from zero to 90◦, we see that R begins at a value of D/2 and
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Figure 13–23

A cylinder cut by an oblique
plane.

increases until, when ψ = 90◦, R = ∞. The radius R is the apparent pitch radius of a
helical-gear tooth when viewed in the direction of the tooth elements. A gear of the
same pitch and with the radius R will have a greater number of teeth, because of the
increased radius. In helical-gear terminology this is called the virtual number of teeth.
It can be shown by analytical geometry that the virtual number of teeth is related to the
actual number by the equation

N ′ = N

cos3 ψ
(13–20)

where N ′ is the virtual number of teeth and N is the actual number of teeth. It is neces-
sary to know the virtual number of teeth in design for strength and also, sometimes, in
cutting helical teeth. This apparently larger radius of curvature means that few teeth
may be used on helical gears, because there will be less undercutting.

EXAMPLE 13–2 A stock helical gear has a normal pressure angle of 20◦, a helix angle of 25◦, and a
transverse diametral pitch of 6 teeth/in, and has 18 teeth. Find:
(a) The pitch diameter
(b) The transverse, the normal, and the axial pitches
(c) The normal diametral pitch
(d) The transverse pressure angle

Solution

Answer (a) d = N

Pt
= 18

6
= 3 in

Answer (b) pt = π

Pt
= π

6
= 0.5236 in
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2Op. cit., Robert Lipp, Machine Design, pp. 122–124.

Answer pn = pt cos ψ = 0.5236 cos 25◦ = 0.4745 in

Answer px = pt

tan ψ
= 0.5236

tan 45◦ = 1.123 in

Answer (c) Pn = Pt

cos ψ
= 6

cos 25◦ = 6.620 teeth/in

Answer (d) φt = tan−1

(
tan φn

cos ψ

)
= tan−1

(
tan 20◦

cos 25◦

)
= 21.88◦

Just like teeth on spur gears, helical-gear teeth can interfere. Equation (13–19) can
be solved for the pressure angle φt in the tangential (rotation) direction to give

φt = tan−1

(
tan φn

cos ψ

)
The smallest tooth number NP of a helical-spur pinion that will run without interfer-
ence2 with a gear with the same number of teeth is

NP = 2k cos ψ

3 sin2 φt

(
1 +

√
1 + 3 sin2 φt

)
(13–21)

For example, if the normal pressure angle φn is 20◦, the helix angle ψ is 30◦, then φt is

φt = tan−1

(
tan 20◦

cos 30◦

)
= 22.80◦

NP = 2(1) cos 30◦

3 sin2 22.80◦

(
1 +

√
1 + 3 sin2 22.80◦

)
= 8.48 = 9 teeth

For a given gear ratio mG = NG/NP = m , the smallest pinion tooth count is

NP = 2k cos ψ

(1 + 2m) sin2 φt

[
m +

√
m2 + (1 + 2m) sin2 φt

]
(13–22)

The largest gear with a specified pinion is given by

NG = N 2
P sin2 φt − 4k2 cos2 ψ

4k cos ψ − 2NP sin2 φt
(13–23)

For example, for a nine-tooth pinion with a pressure angle φn of 20◦, a helix angle ψ
of 30◦, and recalling that the tangential pressure angle φt is 22.80◦,

NG = 92 sin2 22.80◦ − 4(1)2 cos2 30◦

4(1) cos 30◦ − 2(9) sin2 22.80◦ = 12.02 = 12

The smallest pinion that can be run with a rack is

NP = 2k cos ψ

sin2 φt
(13–24)
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Figure 13–24

Nomenclature of a single-
enveloping worm gearset.

For a normal pressure angle φn of 20◦ and a helix angle ψ of 30◦, and φt = 22.80◦ ,

NP = 2(1) cos 30◦

sin2 22.80◦ = 11.5 = 12 teeth

For helical-gear teeth the number of teeth in mesh across the width of the gear will
be greater than unity and a term called face-contact ratio is used to describe it. This
increase of contact ratio, and the gradual sliding engagement of each tooth, results in
quieter gears.

13–11 Worm Gears
The nomenclature of a worm gearset is shown in Fig. 13–24. The worm and worm gear
of a set have the same hand of helix as for crossed helical gears, but the helix angles
are usually quite different. The helix angle on the worm is generally quite large, and
that on the gear very small. Because of this, it is usual to specify the lead angle λ on
the worm and helix angle ψG on the gear; the two angles are equal for a 90◦ shaft
angle. The worm lead angle is the complement of the worm helix angle, as shown in
Fig. 13–24.

In specifying the pitch of worm gearsets, it is customary to state the axial pitch px

of the worm and the transverse circular pitch pt , often simply called the circular pitch,
of the mating gear. These are equal if the shaft angle is 90◦. The pitch diameter of the
gear is the diameter measured on a plane containing the worm axis, as shown in
Fig. 13–24; it is the same as for spur gears and is

dG = NG pt

π
(13–25)
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Since it is not related to the number of teeth, the worm may have any pitch diame-
ter; this diameter should, however, be the same as the pitch diameter of the hob used to
cut the worm-gear teeth. Generally, the pitch diameter of the worm should be selected so
as to fall into the range

C0.875

3.0
≤ dW ≤ C0.875

1.7
(13–26)

where C is the center distance. These proportions appear to result in optimum horse-
power capacity of the gearset.

The lead L and the lead angle λ of the worm have the following relations:

L = px NW (13–27)

tan λ = L

πdW
(13–28)

13–12 Tooth Systems3

A tooth system is a standard that specifies the relationships involving addendum, deden-
dum, working depth, tooth thickness, and pressure angle. The standards were originally
planned to attain interchangeability of gears of all tooth numbers, but of the same pressure
angle and pitch.

Table 13–1 contains the standards most used for spur gears. A 14 1
2

◦
pressure angle

was once used for these but is now obsolete; the resulting gears had to be comparatively
larger to avoid interference problems.

Table 13–2 is particularly useful in selecting the pitch or module of a gear. Cutters
are generally available for the sizes shown in this table.

Table 13–3 lists the standard tooth proportions for straight bevel gears. These sizes
apply to the large end of the teeth. The nomenclature is defined in Fig. 13–20.

Standard tooth proportions for helical gears are listed in Table 13–4. Tooth pro-
portions are based on the normal pressure angle; these angles are standardized the same

Tooth System Pressure Angle �, deg Addendum a Dedendum b

Full depth 20 1/Pd or 1m 1.25/Pd or 1.25m

1.35/Pd or 1.35m

22 1
2 1/Pd or 1m 1.25/Pd or 1.25m

1.35/Pd or 1.35m

25 1/Pd or 1m 1.25/Pd or 1.25m

1.35/Pd or 1.35m

Stub 20 0.8/Pd or 0.8m 1/Pd or 1m

Table 13–1

Standard and

Commonly Used Tooth

Systems for Spur Gears

3Standardized by the American Gear Manufacturers Association (AGMA). Write AGMA for a complete list
of standards, because changes are made from time to time. The address is: 1500 King Street, Suite 201,
Alexandria, VA 22314; or, www.agma.org.
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Item Formula

Working depth hk = 2.0/P

Clearance c = (0.188/P) + 0.002 in

Addendum of gear aG = 0.54

P
+ 0.460

P(m90)2

Gear ratio mG = NG/NP

Equivalent 90◦ ratio m90 = mG when � = 90◦

m90 =
√

mG
cos γ

cos �
when � �= 90◦

Face width F = 0.3A0 or F = 10

P
, whichever is smaller

Minimum number of teeth
Pinion 16 15 14 13

Gear  16 17 20 30

Table 13–3

Tooth Proportions for

20° Straight Bevel-Gear

Teeth

Quantity* Formula Quantity* Formula

Addendum
1.00

Pn
External gears:

Dedendum
1.25

Pn
Standard center distance

D + d

2

Pinion pitch diameter
NP

Pn cos ψ
Gear outside diameter D + 2a

Gear pitch diameter
NG

Pn cos ψ
Pinion outside diameter d + 2a

Normal arc tooth thickness† π

Pn
− Bn

2
Gear root diameter D − 2b

Pinion base diameter d cos φt Pinion root diameter d − 2b

Internal gears:

Gear base diameter D cos φt Center distance
D − d

2
Base helix angle tan−1 ( tan ψ cos φt ) Inside diameter D − 2a

Root diameter D + 2b

*All dimensions are in inches, and angles are in degrees.
†Bn is the normal backlash.

Table 13–4

Standard Tooth

Proportions for Helical

Gears

Diametral Pitch

Coarse 2, 2 1
4 , 2 1

2 , 3, 4, 6, 8, 10, 12, 16

Fine 20, 24, 32, 40, 48, 64, 80, 96, 120, 150, 200

Modules

Preferred 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50

Next Choice 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18,
22, 28, 36, 45

Table 13–2

Tooth Sizes in General

Uses

697
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Lead Angle �, Pressure Angle Addendum Dedendum
deg �n, deg a bG

0–15 14 1
2 0.3683px 0.3683px

15–30 20 0.3683px 0.3683px

30–35 25 0.2865px 0.3314px

35–40 25 0.2546px 0.2947px

40–45 30 0.2228px 0.2578px

Table 13–5

Recommended Pressure

Angles and Tooth

Depths for Worm

Gearing

as for spur gears. Though there will be exceptions, the face width of helical gears should
be at least 2 times the axial pitch to obtain good helical-gear action.

Tooth forms for worm gearing have not been highly standardized, perhaps because
there has been less need for it. The pressure angles used depend upon the lead angles
and must be large enough to avoid undercutting of the worm-gear tooth on the side at
which contact ends. A satisfactory tooth depth, which remains in about the right pro-
portion to the lead angle, may be obtained by making the depth a proportion of the axial
circular pitch. Table 13–5 summarizes what may be regarded as good practice for pres-
sure angle and tooth depth.

The face width FG of the worm gear should be made equal to the length of a tangent
to the worm pitch circle between its points of intersection with the addendum circle, as
shown in Fig. 13–25.

13–13 Gear Trains
Consider a pinion 2 driving a gear 3. The speed of the driven gear is

n3 =
∣∣∣∣ N2

N3
n2

∣∣∣∣ =
∣∣∣∣d2

d3
n2

∣∣∣∣ (13–29)

where n = revolutions or rev/min

N = number of teeth

d = pitch diameter

Equation (13–29) applies to any gearset no matter whether the gears are spur, helical,
bevel, or worm. The absolute-value signs are used to permit complete freedom in choos-
ing positive and negative directions. In the case of spur and parallel helical gears, the
directions ordinarily correspond to the right-hand rule and are positive for counter-
clockwise rotation.

Rotational directions are somewhat more difficult to deduce for worm and crossed
helical gearsets. Figure 13–26 will be of help in these situations.

The gear train shown in Fig. 13–27 is made up of five gears. The speed of gear 6 is

n6 = − N2

N3

N3

N4

N5

N6
n2 (a)

Hence we notice that gear 3 is an idler, that its tooth numbers cancel in Eq. (a), and
hence that it affects only the direction of rotation of gear 6. We notice, furthermore, that

FG

Figure 13–25

A graphical depiction of the
face width of the worm of a
worm gearset.
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Driver

(a) (b)

Thrust
bearing

Right hand

(c) (d)
Left hand

Thrust
bearing

Driver

Driver Driver

Figure 13–26

Thrust, rotation, and hand
relations for crossed helical
gears. Note that each pair of
drawings refers to a single
gearset. These relations also
apply to worm gearsets.
(Reproduced by permission,
Boston Gear Division, Colfax
Corp.)

+ + + +

n2

N2

N4 N5
N6

n6

N3

2 3 4

5
6

Figure 13–27

A gear train.

gears 2, 3, and 5 are drivers, while 3, 4, and 6 are driven members. We define the train
value e as

e = product of driving tooth numbers

product of driven tooth numbers
(13–30)

Note that pitch diameters can be used in Eq. (13–30) as well. When Eq. (13–30) is used
for spur gears, e is positive if the last gear rotates in the same sense as the first, and
negative if the last rotates in the opposite sense.

Now we can write

nL = enF (13–31)

where nL is the speed of the last gear in the train and nF is the speed of the first.
As a rough guideline, a train value of up to 10 to 1 can be obtained with one pair

of gears. Greater ratios can be obtained in less space and with fewer dynamic problems
by compounding additional pairs of gears. A two-stage compound gear train, such as
shown in Fig. 13–28, can obtain a train value of up to 100 to 1.

The design of gear trains to accomplish a specific train value is straightforward.
Since numbers of teeth on gears must be integers, it is better to determine them first, and
then obtain pitch diameters second. Determine the number of stages necessary to obtain
the overall ratio, then divide the overall ratio into portions to be accomplished in each
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700 Mechanical Engineering Design

stage. To minimize package size, keep the portions as evenly divided between the stages
as possible. In cases where the overall train value need only be approximated, each stage
can be identical. For example, in a two-stage compound gear train, assign the square
root of the overall train value to each stage. If an exact train value is needed, attempt
to factor the overall train value into integer components for each stage. Then assign
the smallest gear(s) to the minimum number of teeth allowed for the specific ratio of
each stage, in order to avoid interference (see Sec. 13–7). Finally, applying the ratio
for each stage, determine the necessary number of teeth for the mating gears. Round
to the nearest integer and check that the resulting overall ratio is within acceptable
tolerance.

Figure 13–28

A two-stage compound gear
train.

EXAMPLE 13–3 A gearbox is needed to provide a 30:1 (± 1 percent) increase in speed, while minimiz-
ing the overall gearbox size. Specify appropriate teeth numbers.

Solution Since the ratio is greater than 10:1, but less than 100:1, a two-stage compound gear
train, such as in Figure 13–28, is needed. The portion to be accomplished in each stage
is 

√
30 = 5.4772. For this ratio, assuming a typical 20° pressure angle, the minimum

number of teeth to avoid interference is 16, according to Eq. (13–11). The number of
teeth necessary for the mating gears is

Answer 16
√

30 = 87.64 =̇ 88

From Eq. (13–30), the overall train value is 

e = (88/16)(88/16) = 30.25

This is within the 1 percent tolerance. If a closer tolerance is desired, then increase the
pinion size to the next integer and try again.
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EXAMPLE 13–4 A gearbox is needed to provide an exact 30:1 increase in speed, while minimizing the
overall gearbox size. Specify appropriate teeth numbers.

Solution The previous example demonstrated the difficulty with finding integer numbers of teeth
to provide an exact ratio. In order to obtain integers, factor the overall ratio into two
integer stages.

e = 30 = (6)(5)

N2/N3 = 6 and N4/N5 = 5

With two equations and four unknown numbers of teeth, two free choices are avail-
able. Choose N3 and N5 to be as small as possible without interference. Assuming a 20°
pressure angle, Eq. (13–11) gives the minimum as 16.

Then

N2 = 6 N3 = 6 (16) = 96

N4 = 5 N5 = 5 (16) = 80

The overall train value is then exact.

e = (96/16)(80/16) = (6)(5) = 30

It is sometimes desirable for the input shaft and the output shaft of a two-stage
compound gear train to be in-line, as shown in Fig. 13–29. This configuration is called
a compound reverted gear train. This requires the distances between the shafts to be the
same for both stages of the train, which adds to the complexity of the design task. The
distance constraint is

d2/2 + d3/2 = d4/2 + d5/2

Figure 13–29

A compound reverted gear
train. 5

2 2

3

4

5

4

3
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EXAMPLE 13–5 A gearbox is needed to provide an exact 30:1 increase in speed, while minimizing the
overall gearbox size. The input and output shafts should be in-line. Specify appropriate
teeth numbers. 

Solution The governing equations are

N2/N3 = 6

N4/N5 = 5

N2 + N3 = N4 + N5

With three equations and four unknown numbers of teeth, only one free choice is
available. Of the two smaller gears, N3 and N5, the free choice should be used to mini-
mize N3 since a greater gear ratio is to be achieved in this stage. To avoid interference,
the minimum for N3 is 16.

Applying the governing equations yields

N2 = 6N3 = 6(16) = 96

N2 + N3 = 96 + 16 = 112 = N4 + N5

Substituting N4 = 5N5 gives

112 = 5N5 + N5 = 6N5

N5 = 112/6 = 18.67

If the train value need only be approximated, then this can be rounded to the nearest
integer. But for an exact solution, it is necessary to choose the initial free choice for
N3 such that solution of the rest of the teeth numbers results exactly in integers. This
can be done by trial and error, letting N3 = 17, then 18, etc., until it works. Or, the
problem can be normalized to quickly determine the minimum free choice. Beginning
again, let the free choice be N3 = 1. Applying the governing equations gives

N2 = 6N3 = 6(1) = 6

N2 + N3 = 6 + 1 = 7 = N4 + N5

The diametral pitch relates the diameters and the numbers of teeth, P � N/d. Replacing
all the diameters gives 

N2/(2P) + N3/(2P) = N4/(2P) + N5/(2P)

Assuming a constant diametral pitch in both stages, we have the geometry condition
stated in terms of numbers of teeth:

N2 + N3 = N4 + N5

This condition must be exactly satisfied, in addition to the previous ratio equations, to
provide for the in-line condition on the input and output shafts.
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Substituting N4 = 5N5, we find

7 = 5N5 + N5 = 6N5

N5 = 7/6

This fraction could be eliminated if it were multiplied by a multiple of 6. The free
choice for the smallest gear N3 should be selected as a multiple of 6 that is greater than
the minimum allowed to avoid interference. This would indicate that N3 = 18.
Repeating the application of the governing equations for the final time yields 

N2 = 6N3 = 6(18) = 108

N2 + N3 = 108 + 18 = 126 = N4 + N5

126 = 5N5 + N5 = 6N5

N5 = 126/6 = 21

N4 = 5N5 = 5(21) = 105

Thus, 

Answer N2 = 108

N3 = 18

N4 = 105

N5 = 21

Checking, we calculate e = (108/18)(105/21) = (6)(5) = 30.
And checking the geometry constraint for the in-line requirement, we calculate

N2 + N3 = N4 + N5

108 + 18 = 105 + 21

126 = 126

Unusual effects can be obtained in a gear train by permitting some of the gear
axes to rotate about others. Such trains are called planetary, or epicyclic, gear trains.
Planetary trains always include a sun gear, a planet carrier or arm, and one or more
planet gears, as shown in Fig. 13–30. Planetary gear trains are unusual mechanisms
because they have two degrees of freedom; that is, for constrained motion, a planetary
train must have two inputs. For example, in Fig. 13–30 these two inputs could be the
motion of any two of the elements of the train. We might, say, specify that the sun gear
rotates at 100 rev/min clockwise and that the ring gear rotates at 50 rev/min counter-
clockwise; these are the inputs. The output would be the motion of the arm. In most
planetary trains one of the elements is attached to the frame and has no motion.
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Figure 13–31 shows a planetary train composed of a sun gear 2, an arm or carrier 3, and
planet gears 4 and 5. The angular velocity of gear 2 relative to the arm in rev/min is

n23 = n2 − n3 (b)

Also, the velocity of gear 5 relative to the arm is

n53 = n5 − n3 (c)

Dividing Eq. (c) by Eq. (b) gives

n53

n23
= n5 − n3

n2 − n3
(d )

Equation (d ) expresses the ratio of gear 5 to that of gear 2, and both velocities are
taken relative to the arm. Now this ratio is the same and is proportional to the tooth
numbers, whether the arm is rotating or not. It is the train value. Therefore, we may
write

e = n5 − n3

n2 − n3
(e)

This equation can be used to solve for the output motion of any planetary train. It is
more conveniently written in the form

e = nL − n A

nF − n A
(13–32)

Sun gear Arm

2 4

5

30T

80T

20T

Planet gear

Ring gear

3

Figure 13–30

A planetary gear train.

2

3

4

5

ArmFigure 13–31

A gear train on the arm of a
planetary gear train.
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where nF = rev/min of first gear in planetary train

nL = rev/min of last gear in planetary train

n A = rev/min of arm

EXAMPLE 13–6 In Fig. 13–30 the sun gear is the input, and it is driven clockwise at 100 rev/min. The
ring gear is held stationary by being fastened to the frame. Find the rev/min and direc-
tion of rotation of the arm and gear 4.

Solution Designate nF = n2 = −100 rev/min, and nL = n5 = 0. Unlocking gear 5 and holding
the arm stationary, in our imagination, we find

e = −
(

20

30

)(
30

80

)
= −0.25

Substituting this value in Eq. (13–32) gives

−0.25 = 0 − n A

(−100) − n A

or

Answer n A = −20 rev/min

To obtain the speed of gear 4, we follow the procedure outlined by Eqs. (b), (c),
and (d). Thus

n43 = n4 − n3 n23 = n2 − n3

and so
n43

n23
= n4 − n3

n2 − n3
(1)

But

n43

n23
= −20

30
= −2

3
(2)

Substituting the known values in Eq. (1) gives

−2

3
= n4 − (−20)

(−100) − (−20)

Solving gives

Answer n4 = 33 1
3 rev/min

13–14 Force Analysis—Spur Gearing
Before beginning the force analysis of gear trains, let us agree on the notation to be
used. Beginning with the numeral 1 for the frame of the machine, we shall designate
the input gear as gear 2, and then number the gears successively 3, 4, etc., until we
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arrive at the last gear in the train. Next, there may be several shafts involved, and usu-
ally one or two gears are mounted on each shaft as well as other elements. We shall des-
ignate the shafts, using lowercase letters of the alphabet, a, b, c, etc.

With this notation we can now speak of the force exerted by gear 2 against gear
3 as F23. The force of gear 2 against a shaft a is F2a . We can also write Fa2 to mean
the force of a shaft a against gear 2. Unfortunately, it is also necessary to use super-
scripts to indicate directions. The coordinate directions will usually be indicated by
the x , y, and z coordinates, and the radial and tangential directions by superscripts r
and t . With this notation, Ft

43 is the tangential component of the force of gear 4 acting
against gear 3.

Figure 13–32a shows a pinion mounted on shaft a rotating clockwise at n2 rev/min
and driving a gear on shaft b at n3 rev/min. The reactions between the mating teeth
occur along the pressure line. In Fig. 13–32b the pinion has been separated from the
gear and the shaft, and their effects have been replaced by forces. Fa2 and Ta2 are the
force and torque, respectively, exerted by shaft a against pinion 2. F32 is the force
exerted by gear 3 against the pinion. Using a similar approach, we obtain the free-body
diagram of the gear shown in Fig. 13–32c.

In Fig. 13–33, the free-body diagram of the pinion has been redrawn and the forces
have been resolved into tangential and radial components. We now define

Wt = Ft
32 (a)

as the transmitted load. This tangential load is really the useful component, because the
radial component Fr

32 serves no useful purpose. It does not transmit power. The applied
torque and the transmitted load are seen to be related by the equation

T = d

2
Wt (b)

where we have used T = Ta2 and d = d2 to obtain a general relation.
The power H transmitted through a rotating gear can be obtained from the standard

relationship of the product of torque T and angular velocity �.

H = T ω = (Wt d/2) ω (13–33)

Gear

3

2

Pinion

a

b

n2

n3

�

�

�

�

Fb3

F23

Tb3

Ta2

Fa2

F32

2

3
b

a

(a)

(c)

(b)

Figure 13–32

Free-body diagrams of the
forces and moments acting
upon two gears of a simple
gear train.

bud29281_ch13_673-732.qxd  12/17/09  4:54 PM  Page 706 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Gears—General 707

While any units can be used in this equation, the units of the resulting power will
obviously be dependent on the units of the other parameters. It will often be desirable
to work with the power in either horsepower or kilowatts, and appropriate conversion
factors should be used.

Since meshed gears are reasonably efficient, with losses of less than 2 percent, the
power is generally treated as constant through the mesh. Consequently, with a pair of
meshed gears, Eq. (13–33) will give the same power regardless of which gear is used
for d and �.

Gear data is often tabulated using pitch-line velocity, which is the linear velocity of
a point on the gear at the radius of the pitch circle; thus V = (d/2) ω. Converting this
to customary units gives 

V = πdn/12 (13–34)

where V � pitch-line velocity, ft/min

d � gear diameter, in

n � gear speed, rev/min 

Many gear design problems will specify the power and speed, so it is convenient
to solve Eq. (13–33) for Wt. With the pitch-line velocity and appropriate conversion factors
incorporated, Eq. (13–33) can be rearranged and expressed in customary units as 

Wt = 33 000
H

V
(13–35)

where Wt � transmitted load, lbf

H � power, hp

V � pitch-line velocity, ft/min

The corresponding equation in SI is

Wt = 60 000H

πdn
(13–36)

where Wt = transmitted load, kN

H = power, kW

d = gear diameter, mm 

n = speed, rev/min

Fa2

F t
a2

F r
32

F t
32

F r
a2

F32

n2

Ta2

d2

a

2

Figure 13–33

Resolution of gear forces.
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EXAMPLE 13–7 Pinion 2 in Fig. 13–34a runs at 1750 rev/min and transmits 2.5 kW to idler gear 3. The
teeth are cut on the 20◦ full-depth system and have a module of m = 2.5 mm. Draw a
free-body diagram of gear 3 and show all the forces that act upon it.

Solution The pitch diameters of gears 2 and 3 are

d2 = N2m � 20(2.5) � 50 mm

d3 = N3m � 50(2.5) � 125 mm

From Eq. (13–36) we find the transmitted load to be

Wt = 60 000H

πd2n
= 60 000(2.5)

π(50)(1750)
= 0.546 kN

Thus, the tangential force of gear 2 on gear 3 is Ft
23 = 0.546 kN, as shown in Fig. 13–34b.

Therefore

Fr
23 = Ft

23 tan 20◦ = (0.546) tan 20◦ = 0.199 kN
and so

F23 = Ft
23

cos 20◦ = 0.546

cos 20◦ = 0.581 kN

Since gear 3 is an idler, it transmits no power (torque) to its shaft, and so the
tangential reaction of gear 4 on gear 3 is also equal to Wt. Therefore

Ft
43 = 0.546 kN Fr

43 = 0.199 kN F43 = 0.581 kN

and the directions are shown in Fig. 13–34b. 
The shaft reactions in the x and y directions are

F x
b3 = −(

Ft
23 + Fr

43

) = −(−0.546 + 0.199) = 0.347 kN

F y
b3 = −(

Fr
23 + Ft

43

) = −(0.199 − 0.546) = 0.347 kN

c
b

a

y

x

2

4

3

50T

20T30T

3

x
b

F t
23

F23

F r
23

Fb3

F y
b3

F x
b3

F r
43

F t
43F43

y

20°

20°

(a) (b)

Figure 13–34

A gear train containing an 
idler gear. (a) The gear train.
(b) Free-body of the idler gear.
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The resultant shaft reaction is

Fb3 =
√

(0.347)2 + (0.347)2 = 0.491 kN

These are shown on the figure.

13–15 Force Analysis—Bevel Gearing
In determining shaft and bearing loads for bevel-gear applications, the usual practice is
to use the tangential or transmitted load that would occur if all the forces were concen-
trated at the midpoint of the tooth. While the actual resultant occurs somewhere
between the midpoint and the large end of the tooth, there is only a small error in mak-
ing this assumption. For the transmitted load, this gives

Wt = T

rav
(13–37)

where T is the torque and rav is the pitch radius at the midpoint of the tooth for the gear
under consideration.

The forces acting at the center of the tooth are shown in Fig. 13–35. The resultant
force W has three components: a tangential force Wt, a radial force Wr, and an axial
force Wa. From the trigonometry of the figure,

Wr = Wt tan φ cos γ

Wa = Wt tan φ sin γ (13–38)

�

� rav

Wt

x

WrWa

z

W

yFigure 13–35

Bevel-gear tooth forces.
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The three forces Wt, Wr, and Wa are at right angles to each other and can be used to
determine the bearing loads by using the methods of statics.

EXAMPLE 13–8 The bevel pinion in Fig. 13–36a rotates at 600 rev/min in the direction shown and trans-
mits 5 hp to the gear. The mounting distances, the location of all bearings, and the aver-
age pitch radii of the pinion and gear are shown in the figure. For simplicity, the teeth
have been replaced by pitch cones. Bearings A and C should take the thrust loads. Find
the bearing forces on the gearshaft.

2 1
2

6 3

3

3.88

1
2

1 5
16

3 5

1.293

9

C

D

A B

x

y

8 15-tooth pinion
P = 5 teeth /in

45-tooth gear

�

Γ

(a)

(b)

T

F y
C

F z
C Wt

C

F x
C

5
8

3   

1
2

2   
1.293

3.88

D

y F z
D

F x
D

z

x

G

Wa

Wr

Figure 13–36

(a) Bevel gearset of Ex. 13–8.
(b) Free-body diagram of shaft
CD. Dimensions in inches.
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Solution The pitch angles are

γ = tan−1

(
3

9

)
= 18.4◦ � = tan−1

(
9

3

)
= 71.6◦

The pitch-line velocity corresponding to the average pitch radius is

V = 2πrPn

12
= 2π(1.293)(600)

12
= 406 ft/min

Therefore the transmitted load is

Wt = 33 000H

V
= (33 000)(5)

406
= 406 lbf

which acts in the positive z direction, as shown in Fig. 13–36b. We next have

Wr = Wt tan φ cos � = 406 tan 20◦ cos 71.6◦ = 46.6 lbf

Wa = Wt tan φ sin � = 406 tan 20◦ sin 71.6◦ = 140 lbf

where Wr is in the −x direction and Wa is in the −y direction, as illustrated in the
isometric sketch of Fig. 13–36b.

In preparing to take a sum of the moments about bearing D, define the position
vector from D to G as

RG = 3.88i − (2.5 + 1.293)j = 3.88i − 3.793j

We shall also require a vector from D to C:

RC = −(2.5 + 3.625)j = −6.125j

Then, summing moments about D gives

RG × W + RC × FC + T = 0 (1)

When we place the details in Eq. (1), we get

(3.88i − 3.793j) × (−46.6i − 140j + 406k)

+ (−6.125j) × (
F x

C i + F y
C j + Fz

C k
) + T j = 0

(2)

After the two cross products are taken, the equation becomes

(−1540i − 1575j − 720k) + (−6.125Fz
C i + 6.125F x

C k
) + T j = 0

from which

T = 1575j lbf · in F x
C = 118 lbf Fz

C = −251 lbf (3)

Now sum the forces to zero. Thus

FD + FC + W = 0 (4)

When the details are inserted, Eq. (4) becomes(
F x

Di + Fz
Dk

) + (
118i + F y

C j − 251k
) + (−46.6i − 140j + 406k) = 0 (5)
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712 Mechanical Engineering Design

First we see that F y
C = 140 lbf, and so

Answer FC = 118i + 140j − 251k lbf

Then, from Eq. (5),

Answer FD = −71.4i − 155k lbf

These are all shown in Fig. 13–36b in the proper directions. The analysis for the pinion
shaft is quite similar.

13–16 Force Analysis—Helical Gearing
Figure 13–37 is a three-dimensional view of the forces acting against a helical-gear
tooth. The point of application of the forces is in the pitch plane and in the center of the
gear face. From the geometry of the figure, the three components of the total (normal)
tooth force W are

Wr = W sin φn

Wt = W cos φn cos ψ

Wa = W cos φn sin ψ

(13–39)

where W = total force 

Wr = radial component

Wt = tangential component, also called transmitted load

Wa = axial component, also called thrust load

W

z

y

x

Wa

Wr

Wt

�n

�t
�

�

Tooth element

Pitch
cylinder

Figure 13–37

Tooth forces acting on a 
right-hand helical gear.
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Gears—General 713

Usually Wt is given and the other forces are desired. In this case, it is not difficult to
discover that

Wr = Wt tan φt

Wa = Wt tan ψ

W = Wt

cos φn cos ψ

(13–40)

EXAMPLE 13–9 In Fig. 13–38 a 1-hp electric motor runs at 1800 rev/min in the clockwise direction, as
viewed from the positive x axis. Keyed to the motor shaft is an 18-tooth helical pinion
having a normal pressure angle of 20◦, a helix angle of 30◦, and a normal diametral pitch
of 12 teeth/in. The hand of the helix is shown in the figure. Make a three-dimensional
sketch of the motor shaft and pinion, and show the forces acting on the pinion and the
bearing reactions at A and B. The thrust should be taken out at A.

Solution From Eq. (13–19) we find

φt = tan−1 tan φn

cos ψ
= tan−1 tan 20◦

cos 30◦ = 22.8◦

Also, Pt = Pn cos ψ = 12 cos 30◦ = 10.39 teeth/in. Therefore the pitch diameter of the
pinion is dp = 18/10.39 = 1.732 in. The pitch-line velocity is

V = πdn

12
= π(1.732)(1800)

12
= 816 ft/min

The transmitted load is

Wt = 33 000H

V
= (33 000)(1)

816
= 40.4 lbf

From Eq. (13–40) we find

Wr = Wt tan φt = (40.4) tan 22.8◦ = 17.0 lbf

Wa = Wt tan ψ = (40.4) tan 30◦ = 23.3 lbf

W = Wt

cos φn cos ψ
= 40.4

cos 20◦ cos 30◦ = 49.6 lbf

10 in 3 in

BA

y

x

36T

18T

Figure 13–38

The motor and gear train of
Ex. 13–9.

bud29281_ch13_673-732.qxd  12/17/09  4:54 PM  Page 713 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



714 Mechanical Engineering Design

These three forces, Wr in the −y direction, Wa in the −x direction, and Wt in the +z
direction, are shown acting at point C in Fig. 13–39. We assume bearing reactions at A
and B as shown. Then F x

A = Wa = 23.3 lbf. Taking moments about the z axis,

−(17.0)(13) + (23.3)

(
1.732

2

)
+ 10F y

B = 0

or F y
B = 20.1 lbf. Summing forces in the y direction then gives F y

A = 3.1 lbf. Taking
moments about the y axis, next

10Fz
B − (40.4)(13) = 0

or Fz
B = 52.5 lbf. Summing forces in the z direction and solving gives Fz

A = 12.1 lbf.
Also, the torque is T = Wt dp/2 = (40.4)(1.732/2) = 35 lbf · in.

For comparison, solve the problem again using vectors. The force at C is

W = −23.3i − 17.0j + 40.4k lbf

Position vectors to B and C from origin A are

RB = 10 i RC = 13i + 0.866j

Taking moments about A, we have

RB × FB + T + RC × W = 0

Using the directions assumed in Fig. 13–39 and substituting values gives

10 i × (
F y

Bj − Fz
Bk

) − T i + (13i + 0.866j) × (−23.3i − 17.0j + 40.4k) = 0

When the cross products are formed, we get(
10F y

Bk + 10Fz
Bj

) − T i + (35i − 525j − 201k) = 0

whence T = 35 lbf · in, F y
B = 20.1 lbf, and Fz

B = 52.5 lbf.
Next,

FA = −FB − W, and so FA = 23.3i − 3.1j + 12.1k lbf.

z

y

A

F z
A

F y
A

F z
B

F y
B

B x

C

Wr Wt

Wa

F x
A

T

10 in 3 in dp�2

Figure 13–39

Free-body diagram of motor
shaft of Ex. 13–9.

13–17 Force Analysis—Worm Gearing
If friction is neglected, then the only force exerted by the gear will be the force W,
shown in Fig. 13–40, having the three orthogonal components W x , W y , and W z . From
the geometry of the figure, we see that
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W x = W cos φn sin λ

W y = W sin φn

W z = W cos φn cos λ

(13–41)

We now use the subscripts W and G to indicate forces acting against the worm and
gear, respectively. We note that W y is the separating, or radial, force for both the
worm and the gear. The tangential force on the worm is W x and is W z on the gear,
assuming a 90◦ shaft angle. The axial force on the worm is W z , and on the gear, W x .
Since the gear forces are opposite to the worm forces, we can summarize these rela-
tions by writing

WWt = −WGa = W x

WWr = −WGr = W y

WWa = −WGt = W z

(13–42)

It is helpful in using Eq. (13–41) and also Eq. (13–42) to observe that the gear axis is
parallel to the x direction and the worm axis is parallel to the z direction and that we
are employing a right-handed coordinate system.

In our study of spur-gear teeth we have learned that the motion of one tooth rela-
tive to the mating tooth is primarily a rolling motion; in fact, when contact occurs at the
pitch point, the motion is pure rolling. In contrast, the relative motion between worm
and worm-gear teeth is pure sliding, and so we must expect that friction plays an impor-
tant role in the performance of worm gearing. By introducing a coefficient of friction f,
we can develop another set of relations similar to those of Eq. (13–41). In Fig. 13–40
we see that the force W acting normal to the worm-tooth profile produces a frictional
force Wf = f W , having a component f W cos λ in the negative x direction and another
component f W sin λ in the positive z direction. Equation (13–41) therefore becomes

W x = W (cos φn sin λ + f cos λ)

W y = W sin φn

W z = W (cos φn cos λ − f sin λ)

(13–43)

f W sin �

f W cos �
�

�n

Wf  = f W

�

y

Wy

W

Wx

x
Wz

nW

z

�t

Pitch helix

Pitch cylinder

Figure 13–40

Drawing of the pitch cylinder
of a worm, showing the forces
exerted upon it by the worm
gear.
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716 Mechanical Engineering Design

Equation (13–42), of course, still applies.
Inserting −WGt from Eq. (13–42) for Wz in Eq. (13–43) and multiplying both sides

by f, we find the frictional force Wf to be

Wf = f W = f WGt

f sin λ − cos φn cos λ
(13–44)

A useful relation between the two tangential forces, WWt and WGt , can be obtained
by equating the first and third parts of Eqs. (13–42) and (13–43) and eliminating W. The
result is

WWt = WGt
cos φn sin λ + f cos λ

f sin λ − cos φn cos λ
(13–45)

Efficiency η can be defined by using the equation

η = WWt(without friction)

WWt(with friction)
(a)

Substitute Eq. (13–45) with f = 0 in the numerator of Eq. (a) and the same equation
in the denominator. After some rearranging, you will find the efficiency to be

η = cos φn − f tan λ

cos φn + f cot λ
(13–46)

Selecting a typical value of the coefficient of friction, say f = 0.05, and the pressure
angles shown in Table 13–6, we can use Eq. (13–46) to get some useful design infor-
mation. Solving this equation for helix angles from 1 to 30◦ gives the interesting results
shown in Table 13–6.

Many experiments have shown that the coefficient of friction is dependent on the
relative or sliding velocity. In Fig. 13–41, VG is the pitch-line velocity of the gear and
VW the pitch-line velocity of the worm. Vectorially, VW = VG + VS ; consequently, the
sliding velocity is

VS = VW

cos λ
(13–47)

Helix Angle �, Efficiency �,
deg %

1.0 25.2

2.5 45.7

5.0 62.0

7.5 71.3

10.0 76.6

15.0 82.7

20.0 85.9

30.0 89.1

Table 13–6

Efficiency of Worm

Gearsets for f = 0.05
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Published values of the coefficient of friction vary as much as 20 percent, undoubtedly
because of the differences in surface finish, materials, and lubrication. The values on the
chart of Fig. 13–42 are representative and indicate the general trend.

+

Gear

Worm
above

Gear axis

Worm axis

VS

VG

VW

�

Figure 13–41

Velocity components in worm
gearing.
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Figure 13–42

Representative values of the
coefficient of friction for worm
gearing. These values are based
on good lubrication. Use curve
B for high-quality materials,
such as a case-hardened steel
worm mating with a phosphor-
bronze gear. Use curve A when
more friction is expected, as
with a cast-iron worm mating
with a cast-iron worm gear.

EXAMPLE 13–10 A 2-tooth right-hand worm transmits 1 hp at 1200 rev/min to a 30-tooth worm gear. The
gear has a transverse diametral pitch of 6 teeth/in and a face width of 1 in. The worm
has a pitch diameter of 2 in and a face width of 2 1

2 in. The normal pressure angle is
14 1

2
◦
. The materials and quality of work needed are such that curve B of Fig. 13–42

should be used to obtain the coefficient of friction.
(a) Find the axial pitch, the center distance, the lead, and the lead angle.
(b) Figure 13–43 is a drawing of the worm gear oriented with respect to the coordinate
system described earlier in this section; the gear is supported by bearings A and B.
Find the forces exerted by the bearings against the worm-gear shaft, and the output
torque.
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Solution (a) The axial pitch is the same as the transverse circular pitch of the gear, which is

Answer px = pt = π

P
= π

6
= 0.5236 in

The pitch diameter of the gear is dG = NG/P = 30/6 = 5 in. Therefore, the center
distance is

Answer C = dW + dG

2
= 2 + 5

2
= 3.5 in

From Eq. (13–27), the lead is

L = px NW = (0.5236)(2) = 1.0472 in

Answer Also using Eq. (13–28), find

Answer λ = tan−1 L

πdW
= tan−1 1.0472

π(2)
= 9.46◦

(b) Using the right-hand rule for the rotation of the worm, you will see that your thumb
points in the positive z direction. Now use the bolt-and-nut analogy (the worm is right-
handed, as is the screw thread of a bolt), and turn the bolt clockwise with the right hand
while preventing nut rotation with the left. The nut will move axially along the bolt
toward your right hand. Therefore the surface of the gear (Fig. 13–43) in contact with
the worm will move in the negative z direction. Thus, the gear rotates clockwise about x,
with your right thumb pointing in the negative x direction. 

The pitch-line velocity of the worm is

VW = πdW nW

12
= π(2)(1200)

12
= 628 ft/min

1 in2
1

2 in2
1

y

A

z

1200 rev/min

Gear pitch
cylinder

Worm pitch
cylinder

B

x

Figure 13–43

The pitch cylinders of
the worm gear train of
Ex. 13–10.
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The speed of the gear is nG = ( 2
30 )(1200) = 80 rev/min. Therefore the pitch-line velo-

city of the gear is

VG = πdGnG

12
= π(5)(80)

12
= 105 ft/min

Then, from Eq. (13–47), the sliding velocity VS is found to be

VS = VW

cos λ
= 628

cos 9.46◦ = 637 ft/min

Getting to the forces now, we begin with the horsepower formula

WWt = 33 000H

VW
= (33 000)(1)

628
= 52.5 lbf

This force acts in the negative x direction, the same as in Fig. 13–40. Using Fig. 13–42,
we find f = 0.03. Then, the first equation of group (13–42) and (13–43) gives

W = W x

cos φn sin λ + f cos λ

= 52.5

cos 14.5◦ sin 9.46◦ + 0.03 cos 9.46◦ = 278 lbf

Also, from Eq. (13–43),

W y = W sin φn = 278 sin 14.5◦ = 69.6 lbf

W z = W (cos φn cos λ − f sin λ)

= 278(cos 14.5◦ cos 9.46◦ − 0.03 sin 9.46◦) = 264 lbf

We now identify the components acting on the gear as

WGa = −W x = 52.5 lbf

WGr = −W y = −69.6 lbf

WGt = −W z = −264 lbf

At this point a three-dimensional line drawing should be made in order to simplify the
work to follow. An isometric sketch, such as the one of Fig. 13–44, is easy to make and
will help you to avoid errors.

We shall make B a thrust bearing in order to place the gearshaft in compression.
Thus, summing forces in the x direction gives

Answer F x
B = −52.5 lbf

Taking moments about the z axis, we have

Answer −(52.5)(2.5) − (69.6)(1.5) + 4F y
B = 0 F y

B = 58.9 lbf

Taking moments about the y axis,

Answer (264)(1.5) − 4Fz
B = 0 Fz

B = 99 lbf
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Figure 13–44

An isometric sketch used in
Ex. 13–10.

PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1–1 of Sec. 1–16, p. 24.

13–1 A 17-tooth spur pinion has a diametral pitch of 8 teeth/in, runs at 1120 rev/min, and drives a gear
at a speed of 544 rev/min. Find the number of teeth on the gear and the theoretical center-to-center
distance.

13–2 A 15-tooth spur pinion has a module of 3 mm and runs at a speed of 1600 rev/min. The driven
gear has 60 teeth. Find the speed of the driven gear, the circular pitch, and the theoretical center-
to-center distance.

These three components are now inserted on the sketch as shown at B in Fig. 13–44.
Summing forces in the y direction,

Answer −69.6 + 58.9 + F y
A = 0 F y

A = 10.7 lbf

Similarly, summing forces in the z direction,

Answer −264 + 99 + Fz
A = 0 Fz

A = 165 lbf

These two components can now be placed at A on the sketch. We still have one more
equation to write. Summing moments about x,

Answer −(264)(2.5) + T = 0 T = 660 lbf · in

It is because of the frictional loss that this output torque is less than the product of the
gear ratio and the input torque.

720 Mechanical Engineering Design
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13–3 A spur gearset has a module of 6 mm and a velocity ratio of 4. The pinion has 16 teeth. Find the
number of teeth on the driven gear, the pitch diameters, and the theoretical center-to-center distance.

13–4 A 21-tooth spur pinion mates with a 28-tooth gear. The diametral pitch is 3 teeth/in and the pres-
sure angle is 20◦ . Make a drawing of the gears showing one tooth on each gear. Find and tabu-
late the following results: the addendum, dedendum, clearance, circular pitch, tooth thickness,
and base-circle diameters; the lengths of the arc of approach, recess, and action; and the base
pitch and contact ratio.

13–5 A 20◦ straight-tooth bevel pinion having 14 teeth and a diametral pitch of 6 teeth/in drives a
32-tooth gear. The two shafts are at right angles and in the same plane. Find:
(a) The cone distance
(b) The pitch angles
(c) The pitch diameters
(d ) The face width

13–6 A parallel helical gearset uses a 20-tooth pinion driving a 36-tooth gear. The pinion has a right-hand
helix angle of 30◦ , a normal pressure angle of 25◦ , and a normal diametral pitch of 4 teeth/in. Find:
(a) The normal, transverse, and axial circular pitches
(b) The normal base circular pitch
(c) The transverse diametral pitch and the transverse pressure angle
(d) The addendum, dedendum, and pitch diameter of each gear

13–7 A parallel helical gearset consists of a 19-tooth pinion driving a 57-tooth gear. The pinion has a
left-hand helix angle of 30◦ , a normal pressure angle of 20◦, and a normal module of 2.5 mm.
Find:
(a) The normal, transverse, and axial circular pitches
(b) The transverse diametral pitch and the transverse pressure angle
(c) The addendum, dedendum, and pitch diameter of each gear

13–8 To avoid the problem of interference in a pair of spur gears using a 20◦ pressure angle, specify
the minimum number of teeth allowed on the pinion for each of the following gear ratios.
(a) 2 to 1
(b) 3 to 1
(c) 4 to 1
(d) 5 to 1

13–9 Repeat Prob. 13–8 with a 25◦ pressure angle.

13–10 For a spur gearset with φ = 20◦, while avoiding interference, find: 
(a) The smallest pinion tooth count that will run with itself
(b) The smallest pinion tooth count at a ratio mG = 2.5, and the largest gear tooth count possi-

ble with this pinion
(c) The smallest pinion that will run with a rack

13–11 Repeat problem 13–10 for a helical gearset with φn = 20◦ and ψ = 30◦.

13–12 The decision has been made to use φn = 20◦, Pt = 6 teeth/in, and ψ = 30◦ for a 2 :1 reduction.
Choose a suitable pinion and gear tooth count to avoid interference.

13–13 Repeat Problem 13–12 with ψ = 45◦.

13–14 By employing a pressure angle larger than standard, it is possible to use fewer pinion teeth, and
hence obtain smaller gears without undercutting during machining. If the gears are spur gears,
what is the smallest possible pressure angle φt that can be obtained without undercutting for a
9-tooth pinion to mesh with a rack?

Gears—General 721
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2

3
5

6 7

a

40T

20T, � = 30° RH

17T, � = 30° RH 20T
60T

c d

8T, � = 60° RH

b
Problem 13–17

13–15 A parallel-shaft gearset consists of an 18-tooth helical pinion driving a 32-tooth gear. The pinion has
a left-hand helix angle of 25◦, a normal pressure angle of 20◦, and a normal module of 3 mm. Find:
(a) The normal, transverse, and axial circular pitches
(b) The transverse module and the transverse pressure angle
(c) The pitch diameters of the two gears

13–16 The double-reduction helical gearset shown in the figure is driven through shaft a at a speed of
700 rev/min. Gears 2 and 3 have a normal diametral pitch of 12 teeth/in, a 30◦ helix angle, and a
normal pressure angle of 20◦. The second pair of gears in the train, gears 4 and 5, have a normal
diametral pitch of 8 teeth/in, a 25◦ helix angle, and a normal pressure angle of 20◦. The tooth
numbers are: N2 = 12, N3 = 48, N4 = 16, N5 = 36. Find:
(a) The directions of the thrust force exerted by each gear upon its shaft
(b) The speed and direction of shaft c
(c) The center distance between shafts

13–18 The mechanism train shown consists of an assortment of gears and pulleys to drive gear 9. Pulley
2 rotates at 1200 rev/min in the direction shown. Determine the speed and direction of rotation
of gear 9.

y

x z

E

C

A B

D

F

y

5

5

4 3

2

2

3

1 1
4

3
4

2
1

1 1
42 1

2

c

b
a

3
4

3
4

4

Problem 13–16

Dimensions in inches.

13–17 Shaft a in the figure rotates at 600 rev/min in the direction shown. Find the speed and direction
of rotation of shaft d.
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Problem 13–19

Dimensions in inches.
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13–19 The figure shows a gear train consisting of a pair of helical gears and a pair of miter gears. The
helical gears have a 17 1

2
◦

normal pressure angle and a helix angle as shown. Find:
(a) The speed of shaft c
(b) The distance between shafts a and b
(c) The diameter of the miter gears

2

3

6-in dia.

10-in dia.
18T

38T

20T

36T

48T

4

5

6

9

8

7

Worm
3T • R.H.

Problem 13–18

13–20 A compound reverted gear train is to be designed as a speed increaser to provide a total increase
of speed of exactly 45 to 1. With a 20◦ pressure angle, specify appropriate numbers of teeth to
minimize the gearbox size while avoiding the interference problem in the teeth.

13–21 Repeat Prob. 13–20  with a 25◦ pressure angle.

13–22 Repeat Prob. 13–20 for a gear ratio of exactly 30 to 1.

13–23 Repeat Prob. 13–20 for a gear ratio of approximately 45 to 1.

13–24 A gearbox is to be designed with a compound reverted gear train that transmits 25 horsepower
with an input speed of 2500 rev/min. The output should deliver the power at a rotational speed in
the range of 280 to 300 rev/min. Spur gears with 20◦ pressure angle are to be used. Determine
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724 Mechanical Engineering Design724 Mechanical Engineering Design

suitable numbers of teeth for each gear, to minimize the gearbox size while providing an output
speed within the specified range. Be sure to avoid an interference problem in the teeth.

13–25 The tooth numbers for the automotive differential shown in the figure are N2 = 16, N3 = 48,
N4 = 14, N5 = N6 = 20. The drive shaft turns at 900 rev/min.
(a) What are the wheel speeds if the car is traveling in a straight line on a good road surface?
(b) Suppose the right wheel is jacked up and the left wheel resting on a good road surface. What

is the speed of the right wheel?
(c) Suppose, with a rear-wheel drive vehicle, the auto is parked with the right wheel resting on a

wet icy surface. Does the answer to part (b) give you any hint as to what would happen if you
started the car and attempted to drive on?

Front differential

Center differential

Rear differential

Driveshaft

Problem 13–26

The Audi “Quattro concept,” 
showing the three differentials that
provide permanent all-wheel drive.

(Reprinted by permission of
Audi of America, Inc.)

13–26 The figure illustrates an all-wheel drive concept using three differentials, one for the front axle,
another for the rear, and the third connected to the drive shaft.
(a) Explain why this concept may allow greater acceleration.
(b) Suppose either the center of the rear differential, or both, can be locked for certain road

conditions. Would either or both of these actions provide greater traction? Why?

To rear
wheel

To rear
wheel

Planet gears

6

5

4

2
3

Drive shaft

Ring gear

Problem 13–25
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13–28 In the gear train of Prob. 13–27, let gear 6 be driven at 85 rev/min counterclockwise while gear
2 is held stationary. What is the speed and direction of rotation of the arm?

13–29 Tooth numbers for the gear train shown in the figure are N2 = 12, N3 = 16, and N4 = 12. How
many teeth must internal gear 5 have? Suppose gear 5 is fixed. What is the speed of the arm if
shaft a rotates counterclockwise at 320 rev/min?

13–27 In the reverted planetary train illustrated, find the speed and direction of rotation of the arm if
gear 2 is unable to rotate and gear 6 is driven at 12 rev/min in the clockwise direction.

20T 30T 

16T

2

6

3

4

5

Problem 13–27

a b

5

6

4

3

2Problem 13–29

13–30 The tooth numbers for the gear train illustrated are N2 = 20, N3 = 16, N4 = 30, N6 = 36, and
N7 = 46. Gear 7 is fixed. If shaft a is turned through 10 revolutions, how many turns will shaft b
make?

a b

5

64

3

2 7

Problem 13–30
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Problem 13–31

2 4

3
5

6

Fixed

x

y

+ + +Problem 13–32

13–31 Shaft a in the figure has a power input of 75 kW at a speed of 1000 rev/min in the counter-
clockwise direction. The gears have a module of 5 mm and a 20◦ pressure angle. Gear 3 is
an idler.
(a) Find the force F3b that gear 3 exerts against shaft b.
(b) Find the torque T4c that gear 4 exerts on shaft c.

13–32 The 24T 6-pitch 20◦ pinion 2 shown in the figure rotates clockwise at 1000 rev/min and is
driven at a power of 25 hp. Gears 4, 5, and 6 have 24, 36, and 144 teeth, respectively. What torque
can arm 3 deliver to its output shaft? Draw free-body diagrams of the arm and of each gear and
show all forces that act upon them.

y

c

b

a x

51T

34T

17T

2

3

4

726 Mechanical Engineering Design

13–33 The gears shown in the figure have a module of 12 mm and a 20◦ pressure angle. The pinion
rotates at 1800 rev/min clockwise and transmits 150 kW through the idler pair to gear 5 on shaft c.
What forces do gears 3 and 4 transmit to the idler shaft?
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a x

cb

y

32T

18T

18T

48T

3

2

4

5

Problem 13–33

3 in 3 in

2

3

x

y

a

b

TinAB

CD

Problem 13–34

13–34 The figure shows a pair of shaft-mounted spur gears having a diametral pitch of 5 teeth/in with an
18-tooth 20◦ pinion driving a 45-tooth gear. The horsepower input is 32 maximum at 1800 rev/min.
Find the direction and magnitude of the maximum forces acting on bearings A, B, C, and D.

9

5 5
8 5 5

8

5 5
8

1 7
8

x

y

z

5
8

15 1
4

11 1
2

Key 4× 5
8

× 1
4

3
4

Problem 13–35

NEMA No. 364 frame; dimensions 
in inches. The z axis is directed out 

of the paper. 

13–35 The figure shows the electric-motor frame dimensions for a 30-hp 900 rev/min motor. The frame
is bolted to its support using four 3

4 -in bolts spaced 11 1
4 in apart in the view shown and 14 in apart

when viewed from the end of the motor. A 4 diametral pitch 20◦ spur pinion having 20 teeth and
a face width of 2 in is keyed to the motor shaft. This pinion drives another gear whose axis is in
the same xz plane. Determine the maximum shear and tensile forces on the mounting bolts based
on 200 percent overload torque. Does the direction of rotation matter?
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13–36 Continue Prob. 13–24 by finding the following information, assuming a diametral pitch of
6 teeth/in.
(a) Determine pitch diameters for each of the gears.
(b) Determine the pitch line velocities (in ft/min) for each set of gears.
(c) Determine the magnitudes of the tangential, radial, and total forces transmitted between each

set of gears. 
(d) Determine the input torque.
(e) Determine the output torque, neglecting frictional losses.

13–37 A speed-reducer gearbox containing a compound reverted gear train transmits 35 horsepower with an
input speed of 1200 rev/min. Spur gears with 20◦ pressure angle are used, with 16 teeth on each of
the small gears and 48 teeth on each of the larger gears. A diametral pitch of 10 teeth/in is proposed.
(a) Determine the speeds of the intermediate and output shafts.
(b) Determine the pitch line velocities (in ft/min) for each set of gears.
(c) Determine the magnitudes of the tangential, radial, and total forces transmitted between each

set of gears.
(d) Determine the input torque.
(e) Determine the output torque, neglecting frictional losses.

13–38* For the countershaft in Prob. 3–72, p. 138, assume the gear ratio from gear B to its mating gear
is 2 to 1.
(a) Determine the minimum number of teeth that can be used on gear B without an interference

problem in the teeth.
(b) Using the number of teeth from part (a), what diametral pitch is required to also achieve the

given 8-in pitch diameter?
(c) Suppose the 20◦ pressure angle gears are exchanged for gears with 25◦ pressure angle, while

maintaining the same pitch diameters and diametral pitch. Determine the new forces FA and
FB if the same power is to be transmitted. 

13–39* For the countershaft in Prob. 3–73, p. 138, assume the gear ratio from gear B to its mating gear
is 5 to 1.
(a) Determine the minimum number of teeth that can be used on gear B without an interference

problem in the teeth.
(b) Using the number of teeth from part (a), what module is required to also achieve the given

300-mm pitch diameter?
(c) Suppose the 20◦ pressure angle for gear A is exchanged for a gear with 25◦ pressure angle,

while maintaining the same pitch diameters and module. Determine the new forces FA and FB

if the same power is to be transmitted. 

13–40* For the gear and sprocket assembly analyzed in Prob. 3–77, p. 139, information for the gear sizes
and the forces transmitted through the gears was provided in the problem statement. In this prob-
lem, we will perform the preceding design steps necessary to acquire the information for the
analysis. A motor providing 2 kW is to operate at 191 rev/min. A gear unit is needed to reduce
the motor speed by half to drive a chain sprocket.
(a) Specify appropriate numbers of teeth on gears F and C to minimize the size while avoiding

the interference problem in the teeth.  
(b) Assuming an initial guess of 125-mm pitch diameter for gear F, what is the module that

should be used for the stress analysis of the gear teeth?
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(c) Calculate the input torque applied to shaft EFG.
(d) Calculate the magnitudes of the radial, tangential, and total forces transmitted between

gears F and C.

13–41* For the gear and sprocket assembly analyzed in Prob. 3–79, p. 139, information for the gear sizes
and the forces transmitted through the gears was provided in the problem statement. In this prob-
lem, we will perform the preceding design steps necessary to acquire the information for the
analysis. A motor providing 1 hp is to operate at 70 rev/min. A gear unit is needed to double the
motor speed to drive a chain sprocket.
(a) Specify appropriate numbers of teeth on gears F and C to minimize the size while avoiding

the interference problem in the teeth.  
(b) Assuming an initial guess of 10-in pitch diameter for gear F, what is the diametral pitch that

should be used for the stress analysis of the gear teeth?
(c) Calculate the input torque applied to shaft EFG.
(d) Calculate the magnitudes of the radial, tangential, and total forces transmitted between gears

F and C.

13–42* For the bevel gearset in Probs. 3–74 and 3–76, pp. 138 and 139 respectively, shaft AB is rotating
at 600 rev/min and transmits 10 hp. The gears have a 20◦ pressure angle.
(a) Determine the bevel angle γ for the gear on shaft AB.
(b) Determine the pitch-line velocity.
(c) Determine the tangential, radial, and axial forces transmitted through the gears. Were the

forces given in Prob. 3–74 correct?

13–43 The figure shows a 16T 20◦ straight bevel pinion driving a 32T gear, and the location of the bear-
ing centerlines. Pinion shaft a receives 2.5 hp at 240 rev/min. Determine the bearing reactions at
A and B if A is to take both radial and thrust loads.

y

2

3

2

2
1
2 3

1
2

1
1
2

2
1
2

2

4

b

a

x

D

B

A

C

O
Problem 13–43

Dimensions in inches. 

13–44 The figure shows a 10 diametral pitch 18-tooth 20◦ straight bevel pinion driving a 30-tooth gear.
The transmitted load is 25 lbf. Find the bearing reactions at C and D on the output shaft if D is
to take both radial and thrust loads.
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y

x

(a) (b)

Problem 13–45

730 Mechanical Engineering Design730 Mechanical Engineering Design

13–46 This is a continuation of Prob. 13–45. Here, you are asked to find the forces exerted by gears 2
and 3 on their shafts as shown in part b. Gear 2 rotates clockwise about the y axis. Gear 3 is an
idler.

13–47 A gear train is composed of four helical gears with the three shaft axes in a single plane, as shown
in the figure. The gears have a normal pressure angle of 20◦ and a 30◦ helix angle. Shaft b is an
idler and the transmitted load acting on gear 3 is 500 lbf. The gears on shaft b both have a nor-
mal diametral pitch of 7 teeth/in and have 54 and 14 teeth, respectively. Find the forces exerted
by gears 3 and 4 on shaft b.

B

b

D

C

A

a x

y

2

3

1
2

5
8

5
8

5
8

9
16

Problem 13–44

Dimensions in inches. 

13–45 The gears in the two trains shown in the figure have a normal diametral pitch of 5 teeth/in, a normal
pressure angle of 20◦, and a 30◦ helix angle. For both gear trains the transmitted load is 800 lbf. In
part a the pinion rotates counterclockwise about the y axis. Find the force exerted by each gear in
part a on its shaft.

2 3

4
5

RH LH

LH RH

a b c

Problem 13–47
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LH

RH

RH

a

b c

4
3

2

90°

Problem 13–49

13–48 In the figure for Prob. 13–34, pinion 2 is to be a right-hand helical gear having a helix angle of 30◦,
a normal pressure angle of 20◦ , 16 teeth, and a normal diametral pitch of 6 teeth/in. A 25-hp
motor drives shaft a at a speed of 1720 rev/min clockwise about the x axis. Gear 3 has 42 teeth.
Find the reaction exerted by bearings C and D on shaft b. One of these bearings is to take both
radial and thrust loads. This bearing should be selected so as to place the shaft in compression.

13–49 Gear 2, in the figure, has 16 teeth, a 20◦ transverse angle, a 15◦ helix angle, and a module of 4 mm.
Gear 2 drives the idler on shaft b, which has 36 teeth. The driven gear on shaft c has 28 teeth.
If the driver rotates at 1600 rev/min and transmits 6 kW, find the radial and thrust load on each
shaft.

13–50 The figure shows a double-reduction helical gearset. Pinion 2 is the driver, and it receives a torque
of 1200 lbf · in from its shaft in the direction shown. Pinion 2 has a normal diametral pitch of
8 teeth/in, 14 teeth, and a normal pressure angle of 20◦ and is cut right-handed with a helix angle
of 30◦ . The mating gear 3 on shaft b has 36 teeth. Gear 4, which is the driver for the second pair
of gears in the train, has a normal diametral pitch of 5 teeth/in, 15 teeth, and a normal pressure
angle of 20◦ and is cut left-handed with a helix angle of 15◦ . Mating gear 5 has 45 teeth. Find the
magnitude and direction of the force exerted by the bearings C and D on shaft b if bearing C can
take only radial load while bearing D is mounted to take both radial and thrust load.

y

y

c

b

a

5

5

3

4

3
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2

3

2
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x
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z

F

c

b

Problem 13–50

Dimensions in inches. 
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z

A

y
B

50

50

100

x

Worm pitch cylinder

Gear pitch cylinder

Problem 13–51

Dimensions in millimeters. 

13–51 A right-hand single-tooth hardened-steel (hardness not specified) worm has a catalog rating of
2000 W at 600 rev/min when meshed with a 48-tooth cast-iron gear. The axial pitch of the worm
is 25 mm, the normal pressure angle is 14 1

2
◦
, the pitch diameter of the worm is 100 mm, and the

face widths of the worm and gear are, respectively, 100 mm and 50 mm. The figure shows bear-
ings A and B on the worm shaft symmetrically located with respect to the worm and 200 mm
apart. Determine which should be the thrust bearing, and find the magnitudes and directions of
the forces exerted by both bearings.

13–52 The hub diameter and projection for the gear of Prob. 13–51 are 100 and 37.5 mm, respectively.
The face width of the gear is 50 mm. Locate bearings C and D on opposite sides, spacing C 10 mm
from the gear on the hidden face (see figure) and D 10 mm from the hub face. Find the output
torque and the magnitudes and directions of the forces exerted by the bearings on the gearshaft.

13–53 A 2-tooth left-hand worm transmits 3
4 hp at 600 rev/min to a 36-tooth gear having a transverse

diametral pitch of 8 teeth/in. The worm has a normal pressure angle of 20◦, a pitch diameter of
1 1

2 in, and a face width of 1 1
2 in. Use a coefficient of friction of 0.05 and find the force exerted

by the gear on the worm and the torque input. For the same geometry as shown for Prob. 13–51,
the worm velocity is clockwise about the z axis.

13–54 Write a computer program that will analyze a spur gear or helical-mesh gear, accepting φn , ψ ,
Pt , NP , and NG ; compute mG , dP , dG , pt , pn , px , and φt ; and give advice as to the smallest tooth
count that will allow a pinion to run with itself without interference, run with its gear, and run
with a rack. Also have it give the largest tooth count possible with the intended pinion.
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734 Mechanical Engineering Design

1500 Montgomery Street, Suite 350, Alexandria, VA 22314-1560.
2The standards ANSI/AGMA 2001-D04 (revised AGMA 2001-C95) and ANSI/AGMA 2101-D04 (metric
edition of ANSI/AGMA 2001-D04), Fundamental Rating Factors and Calculation Methods for Involute
Spur and Helical Gear Teeth, are used in this chapter. The use of American National Standards is
completely voluntary; their existence does not in any respect preclude people, whether they have approved
the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or
procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances
give an interpretation of any American National Standard. Requests for interpretation of these standards
should be addressed to the American Gear Manufacturers Association. [Tables or other self-supporting
sections may be quoted or extracted in their entirety. Credit line should read: “Extracted from ANSI/AGMA
Standard 2001-D04 or 2101-D04 Fundamental Rating Factors and Calculation Methods for Involute Spur
and Helical Gear Teeth” with the permission of the publisher, American Gear Manufacturers Association,
500 Montgomery Street, Suite 350, Alexandria, Virginia 22314-1560.] The foregoing is adapted in part from
the ANSI foreword to these standards.

This chapter is devoted primarily to analysis and design of spur and helical gears to resist
bending failure of the teeth as well as pitting failure of tooth surfaces. Failure by bend-
ing will occur when the significant tooth stress equals or exceeds either the yield strength
or the bending endurance strength. A surface failure occurs when the significant contact
stress equals or exceeds the surface endurance strength. The first two sections present a
little of the history of the analyses from which current methodology developed.

The American Gear Manufacturers Association1 (AGMA) has for many years been
the responsible authority for the dissemination of knowledge pertaining to the design
and analysis of gearing. The methods this organization presents are in general use in the
United States when strength and wear are primary considerations. In view of this fact it
is important that the AGMA approach to the subject be presented here.

The general AGMA approach requires a great many charts and graphs—too many
for a single chapter in this book. We have omitted many of these here by choosing a
single pressure angle and by using only full-depth teeth. This simplification reduces
the complexity but does not prevent the development of a basic understanding of the
approach. Furthermore, the simplification makes possible a better development of the
fundamentals and hence should constitute an ideal introduction to the use of the general
AGMA method.2 Sections 14–1 and 14–2 are elementary and serve as an examination of
the foundations of the AGMA method. Table 14–1 is largely AGMA nomenclature.

14–1 The Lewis Bending Equation
Wilfred Lewis introduced an equation for estimating the bending stress in gear teeth in
which the tooth form entered into the formulation. The equation, announced in 1892,
still remains the basis for most gear design today.

To derive the basic Lewis equation, refer to Fig. 14–1a, which shows a cantilever
of cross-sectional dimensions F and t, having a length l and a load Wt, uniformly dis-
tributed across the face width F. The section modulus I/c is Ft2/6, and therefore the
bending stress is

σ = M

I/c
= 6W tl

Ft2
(a)

Gear designers denote the components of gear-tooth forces as Wt , Wr , Wa or W t , W r ,
W a interchangeably. The latter notation leaves room for post-subscripts essential to free-
body diagrams. For instance, for gears 2 and 3 in mesh, W t

23 is the transmitted force of
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Symbol Name Where Found

b Net width of face of narrowest member Eq. (14–16)

Ce Mesh alignment correction factor Eq. (14–35)

Cf Surface condition factor Eq. (14–16)

CH Hardness-ratio factor Eq. (14–18)

Cma Mesh alignment factor Eq. (14–34)

Cmc Load correction factor Eq. (14–31)

Cmf Face load-distribution factor Eq. (14–30)

Cp Elastic coefficient Eq. (14–13)

Cpf Pinion proportion factor Eq. (14–32)

Cpm Pinion proportion modifier Eq. (14–33)

d Operating pitch diameter of pinion Ex. (14–1)

dP Pitch diameter, pinion Eq. (14–22)

dG Pitch diameter, gear Eq. (14–22)

E Modulus of elasticity Eq. (14–10)

F Net face width of narrowest member Eq. (14–15)

fP Pinion surface finish Fig. 14–13

H Power Fig. 14–17

HB Brinell hardness Ex. 14–3

HBG Brinell hardness of gear Sec. 14–12

HBP Brinell hardness of pinion Sec. 14–12

hp Horsepower Ex. 14–1

ht Gear-tooth whole depth Sec. 14–16

I Geometry factor of pitting resistance Eq. (14–16)

J Geometry factor for bending strength Eq. (14–15)

K Contact load factor for pitting resistance Eq. (6–65)

KB Rim-thickness factor Eq. (14–40)

Kf Fatigue stress-concentration factor Eq. (14–9)

Km Load-distribution factor Eq. (14–30)

Ko Overload factor Eq. (14–15)

KR Reliability factor Eq. (14–17)

Ks Size factor Sec. 14–10

KT Temperature factor Eq. (14–17)

Kv Dynamic factor Eq. (14–27)

m Metric module Eq. (14–15)

mB Backup ratio Eq. (14–39)

mG Gear ratio (never less than 1) Eq. (14–22)

mN Load-sharing ratio Eq. (14–21)

N Number of stress cycles Fig. 14–14

NG Number of teeth on gear Eq. (14–22)

NP Number of teeth on pinion Eq. (14–22)

n Speed Ex. 14–1

Table 14–1

Symbols, Their Names,

and Locations∗

(Continued)

bud29281_ch14_733-784.qxd  12/18/09  3:25 PM  Page 735 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



736 Mechanical Engineering Design

Symbol Name Where Found

nP Pinion speed Ex. 14–4

P Diametral pitch Eq. (14–2)

Pd Diametral pitch of pinion Eq. (14–15)

pN Normal base pitch Eq. (14–24)

pn Normal circular pitch Eq. (14–24)

px Axial pitch Eq. (14–19)

Qv Transmission accuracy level number Eq. (14–29)

R Reliability Eq. (14–38)

Ra Root-mean-squared roughness Fig. 14–13

rf Tooth fillet radius Fig. 14–1

rG Pitch-circle radius, gear In standard

rP Pitch-circle radius, pinion In standard

rbP Pinion base-circle radius Eq. (14–25)

rbG Gear base-circle radius Eq. (14–25)

SC Buckingham surface endurance strength Ex. 14–3

Sc AGMA surface endurance strength Eq. (14–18)

St AGMA bending strength Eq. (14–17)

S Bearing span Fig. 14–10

S1 Pinion offset from center span Fig. 14–10

SF Safety factor—bending Eq. (14–41)

SH Safety factor—pitting Eq. (14–42)

Wt or W†
t Transmitted load Fig. 14–1

YN Stress cycle factor for bending strength Fig. 14–14

ZN Stress cycle factor for pitting resistance Fig. 14–15

β Exponent Eq. (14–44)

σ Bending stress Eq. (14–2)

σC Contact stress from Hertzian relationships Eq. (14–14)

σc Contact stress from AGMA relationships Eq. (14–16)

σall Allowable bending stress Eq. (14–17)

σc,all Allowable contact stress, AGMA Eq. (14–18)

φ Pressure angle Eq. (14–12)

φt Transverse pressure angle Eq. (14–23)
ψ Helix angle at standard pitch diameter Ex. 14–5

*Because ANSI/AGMA 2001-C95 introduced a significant amount of new nomenclature, and continued in
ANSI/AGMA 2001-D04, this summary and references are provided for use until the reader’s vocabulary 
has grown.
†See preference rationale following Eq. (a), Sec. 14–1.

Table 14–1

Symbols, Their Names,

and Locations∗

(Continued)

body 2 on body 3, and W t
32 is the transmitted force of body 3 on body 2. When working

with double- or triple-reduction speed reducers, this notation is compact and essential to
clear thinking. Since gear-force components rarely take exponents, this causes no com-
plication. Pythagorean combinations, if necessary, can be treated with parentheses or
avoided by expressing the relations trigonometrically.
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Figure 14–1
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(a) (b)

Referring now to Fig. 14–1b, we assume that the maximum stress in a gear tooth
occurs at point a. By similar triangles, you can write

t/2

x
= l

t/2
or x = t2

4l
(b)

By rearranging Eq. (a),

σ = 6W tl

Ft2
= W t

F

1

t2/6l
= W t

F

1

t2/4l

1
4
6

(c)

If we now substitute the value of x from Eq. (b) in Eq. (c) and multiply the numerator
and denominator by the circular pitch p, we find

σ = W t p

F
(

2
3

)
xp

(d )

Letting y = 2x/3p, we have

σ = W t

Fpy
(14–1)

This completes the development of the original Lewis equation. The factor y is called
the Lewis form factor, and it may be obtained by a graphical layout of the gear tooth or
by digital computation.

In using this equation, most engineers prefer to employ the diametral pitch in
determining the stresses. This is done by substituting P = π/p and Y = πy in
Eq. (14–1). This gives

σ = W t P

FY
(14–2)

where

Y = 2x P

3
(14–3)

The use of this equation for Y means that only the bending of the tooth is considered
and that the compression due to the radial component of the force is neglected. Values
of Y obtained from this equation are tabulated in Table 14–2.
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Number of Number of
Teeth Y Teeth Y

12 0.245 28 0.353

13 0.261 30 0.359

14 0.277 34 0.371

15 0.290 38 0.384

16 0.296 43 0.397

17 0.303 50 0.409

18 0.309 60 0.422

19 0.314 75 0.435

20 0.322 100 0.447

21 0.328 150 0.460

22 0.331 300 0.472

24 0.337 400 0.480

26 0.346 Rack 0.485

Table 14–2

Values of the Lewis

Form Factor Y (These

Values Are for a Normal

Pressure Angle of 20°,

Full-Depth Teeth, and a

Diametral Pitch of Unity

in the Plane of Rotation)

The use of Eq. (14–3) also implies that the teeth do not share the load and that the
greatest force is exerted at the tip of the tooth. But we have already learned that the con-
tact ratio should be somewhat greater than unity, say about 1.5, to achieve a quality
gearset. If, in fact, the gears are cut with sufficient accuracy, the tip-load condition is
not the worst, because another pair of teeth will be in contact when this condition
occurs. Examination of run-in teeth will show that the heaviest loads occur near the
middle of the tooth. Therefore the maximum stress probably occurs while a single pair
of teeth is carrying the full load, at a point where another pair of teeth is just on the
verge of coming into contact.

Dynamic Effects

When a pair of gears is driven at moderate or high speed and noise is generated, it is
certain that dynamic effects are present. One of the earliest efforts to account for an
increase in the load due to velocity employed a number of gears of the same size, mate-
rial, and strength. Several of these gears were tested to destruction by meshing and
loading them at zero velocity. The remaining gears were tested to destruction at various
pitch-line velocities. For example, if a pair of gears failed at 500 lbf tangential load at
zero velocity and at 250 lbf at velocity V1, then a velocity factor, designated Kv , of 2
was specified for the gears at velocity V1. Then another, identical, pair of gears running
at a pitch-line velocity V1 could be assumed to have a load equal to twice the tangen-
tial or transmitted load.

Note that the definition of dynamic factor Kv has been altered. AGMA standards
ANSI/AGMA 2001-D04 and 2101-D04 contain this caution:

Dynamic factor Kv has been redefined as the reciprocal of that used in previous AGMA
standards. It is now greater than 1.0. In earlier AGMA standards it was less than 1.0.

Care must be taken in referring to work done prior to this change in the standards.
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In the nineteenth century, Carl G. Barth first expressed the velocity factor, and in
terms of the current AGMA standards, they are represented as

Kv = 600 + V

600
(cast iron, cast profile) (14–4a)

Kv = 1200 + V

1200
(cut or milled profile) (14–4b)

where V is the pitch-line velocity in feet per minute. It is also quite probable, because
of the date that the tests were made, that the tests were conducted on teeth having a
cycloidal profile instead of an involute profile. Cycloidal teeth were in general use in the
nineteenth century because they were easier to cast than involute teeth. Equation (14–4a)
is called the Barth equation. The Barth equation is often modified into Eq. (14–4b), for
cut or milled teeth. Later AGMA added

Kv = 50 + √
V

50
(hobbed or shaped profile) (14–5a)

Kv =
√

78 + √
V

78
(shaved or ground profile) (14–5b)

In SI units, Eqs. (14–4a) through (14–5b) become

Kv = 3.05 + V

3.05
(cast iron, cast profile) (14–6a)

Kv = 6.1 + V

6.1
(cut or milled profile) (14–6b)

Kv = 3.56 + √
V

3.56
(hobbed or shaped profile) (14–6c)

Kv =
√

5.56 + √
V

5.56
(shaved or ground profile) (14–6d)

where V is in meters per second (m/s).
Introducing the velocity factor into Eq. (14–2) gives

σ = KvW t P

FY
(14–7)

The metric version of this equation is

σ = KvW t

FmY
(14–8)

where the face width F and the module m are both in millimeters (mm). Expressing
the tangential component of load W t in newtons (N) then results in stress units of
megapascals (MPa).

As a general rule, spur gears should have a face width F from 3 to 5 times the
circular pitch p.

Equations (14–7) and (14–8) are important because they form the basis for the
AGMA approach to the bending strength of gear teeth. They are in general use for
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EXAMPLE 14–1 A stock spur gear is available having a diametral pitch of 8 teeth/in, a 1 1
2 -in face, 16 teeth,

and a pressure angle of 20◦ with full-depth teeth. The material is AISI 1020 steel in as-
rolled condition. Use a design factor of nd = 3 to rate the horsepower output of the gear
corresponding to a speed of 1200 rev/m and moderate applications.

Solution The term moderate applications seems to imply that the gear can be rated by using the
yield strength as a criterion of failure. From Table A–20, we find Sut = 55 kpsi and
Sy = 30 kpsi. A design factor of 3 means that the allowable bending stress is 30/3 =
10 kpsi. The pitch diameter is N/P = 16/8 = 2 in, so the pitch-line velocity is

V = πdn

12
= π(2)1200

12
= 628 ft/min

The velocity factor from Eq. (14–4b) is found to be

Kv = 1200 + V

1200
= 1200 + 628

1200
= 1.52

Table 14–2 gives the form factor as Y = 0.296 for 16 teeth. We now arrange and sub-
stitute in Eq. (14–7) as follows:

W t = FYσall

Kv P
= 1.5(0.296)10 000

1.52(8)
= 365 lbf

The horsepower that can be transmitted is

Answer hp = W t V

33 000
= 365(628)

33 000
= 6.95 hp

It is important to emphasize that this is a rough estimate, and that this approach
must not be used for important applications. The example is intended to help you under-
stand some of the fundamentals that will be involved in the AGMA approach.

estimating the capacity of gear drives when life and reliability are not important con-
siderations. The equations can be useful in obtaining a preliminary estimate of gear
sizes needed for various applications.

EXAMPLE 14–2 Estimate the horsepower rating of the gear in the previous example based on obtaining
an infinite life in bending.

Solution The rotating-beam endurance limit is estimated from Eq. (6–8)

S′
e = 0.5Sut = 0.5(55) = 27.5 kpsi

To obtain the surface finish Marin factor ka we refer to Table 6–3 for machined surface,
finding a = 2.70 and b = −0.265. Then Eq. (6–19) gives the surface finish Marin
factor ka as

ka = aSb
ut = 2.70(55)−0.265 = 0.934
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The next step is to estimate the size factor kb. From Table 13–1, the sum of the adden-
dum and dedendum is

l = 1

P
+ 1.25

P
= 1

8
+ 1.25

8
= 0.281 in

The tooth thickness t in Fig. 14–1b is given in Sec. 14–1 [Eq. (b)] as t = (4lx)1/2

when x = 3Y/(2P) from Eq. (14–3). Therefore, since from Ex. 14–1 Y = 0.296 and
P = 8,

x = 3Y

2P
= 3(0.296)

2(8)
= 0.0555 in

then

t = (4lx)1/2 = [4(0.281)0.0555]1/2 = 0.250 in

We have recognized the tooth as a cantilever beam of rectangular cross section, so the
equivalent rotating-beam diameter must be obtained from Eq. (6–25):

de = 0.808(hb)1/2 = 0.808(Ft)1/2 = 0.808[1.5(0.250)]1/2 = 0.495 in

Then, Eq. (6–20) gives kb as

kb =
(

de

0.30

)−0.107

=
(

0.495

0.30

)−0.107

= 0.948

The load factor kc from Eq. (6–26) is unity. With no information given concerning
temperature and reliability we will set kd = ke = 1.

In general, a gear tooth is subjected only to one-way bending. Exceptions include
idler gears and gears used in reversing mechanisms. We will account for one-way
bending by establishing a miscellaneous-effects Marin factor kf .

For one-way bending the steady and alternating stress components are σa = σm =
σ/2 where σ is the largest repeatedly applied bending stress as given in Eq. (14–7). If
a material exhibited a Goodman failure locus,

Sa

S′
e

+ Sm

Sut
= 1

Since Sa and Sm are equal for one-way bending, we substitute Sa for Sm and solve the
preceding equation for Sa , giving

Sa = S′
e Sut

S′
e + Sut

Now replace Sa with σ/2, and in the denominator replace S′
e with 0.5Sut to obtain

σ = 2S′
e Sut

0.5Sut + Sut
= 2S′

e

0.5 + 1
= 1.33S′

e

Now kf = σ/S′
e = 1.33S′

e/S′
e = 1.33. However, a Gerber fatigue locus gives mean

values of

Sa

S′
e

+
(

Sm

Sut

)2

= 1
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Setting Sa = Sm and solving the quadratic in Sa gives

Sa = S2
ut

2S′
e

(
−1 +

√
1 + 4S′2

e

S2
ut

)
Setting Sa = σ/2, Sut = S′

e/0.5 gives

σ = S′
e

0.52

[
−1 +

√
1 + 4(0.5)2

]
= 1.66S′

e

and kf = σ/S′
e = 1.66. Since a Gerber locus runs in and among fatigue data and

Goodman does not, we will use kf = 1.66. The Marin equation for the fully corrected
endurance strength is

Se = kakbkckdkek f S′
e

= 0.934(0.948)(1)(1)(1)1.66(27.5) = 40.4 kpsi

For stress, we will first determine the fatigue stress-concentration factor Kf. For a 20◦

full-depth tooth the radius of the root fillet is denoted r f , where

r f = 0.300

P
= 0.300

8
= 0.0375 in

From Fig. A–15–6

r

d
= r f

t
= 0.0375

0.250
= 0.15

Since D/d = ∞, we approximate with D/d = 3, giving Kt = 1.68. From Fig. 6–20,
q = 0.62. From Eq. (6–32)

K f = 1 + (0.62)(1.68 − 1) = 1.42

For a design factor of nd = 3, as used in Ex. 14–1, applied to the load or strength, the
maximum bending stress is

σmax = K f σall = Se

nd

σall = Se

K f nd
= 40.4

1.42(3)
= 9.5 kpsi

The transmitted load W t is

W t = FYσall

Kv P
= 1.5(0.296)9 500

1.52(8)
= 347 lbf

and the power is, with V = 628 ft /min from Ex. 14–1,

hp = W t V

33 000
= 347(628)

33 000
= 6.6 hp

Again, it should be emphasized that these results should be accepted only as prelimi-
nary estimates to alert you to the nature of bending in gear teeth. 
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3T. J. Dolan and E. I. Broghamer, A Photoelastic Study of the Stresses in Gear Tooth Fillets, Bulletin 335,
Univ. Ill. Exp. Sta., March 1942, See also W. D. Pilkey, Peterson’s Stress-Concentration Factors, 2nd ed.,
John Wiley & Sons, New York, 1997, pp. 383–385, 412–415.
4R. G. Mitchiner and H. H. Mabie, “Determination of the Lewis Form Factor and the AGMA Geometry
Factor J of External Spur Gear Teeth,” J. Mech. Des., Vol. 104, No. 1, Jan. 1982, pp. 148–158.

In Ex. 14–2 our resources (Fig. A–15–6) did not directly address stress concentra-
tion in gear teeth. A photoelastic investigation by Dolan and Broghamer reported in
1942 constitutes a primary source of information on stress concentration.3 Mitchiner
and Mabie4 interpret the results in term of fatigue stress-concentration factor K f as

K f = H +
(

t

r

)L (
t

l

)M

(14–9)

where H = 0.34 − 0.458 366 2φ

L = 0.316 − 0.458 366 2φ

M = 0.290 + 0.458 366 2φ

r = (b − r f )
2

(d/2) + b − r f

In these equations l and t are from the layout in Fig. 14–1, φ is the pressure angle, r f is
the fillet radius, b is the dedendum, and d is the pitch diameter. It is left as an exercise
for the reader to compare K f from Eq. (14–9) with the results of using the approxima-
tion of Fig. A–15–6 in Ex. 14–2.

14–2 Surface Durability
In this section we are interested in the failure of the surfaces of gear teeth, which is
generally called wear. Pitting, as explained in Sec. 6–16, is a surface fatigue failure due to
many repetitions of high contact stresses. Other surface failures are scoring, which is a lubri-
cation failure, and abrasion, which is wear due to the presence of foreign material.

To obtain an expression for the surface-contact stress, we shall employ the Hertz
theory. In Eq. (3–74) it was shown that the contact stress between two cylinders may be
computed from the equation

pmax = 2F

πbl
(a)

where pmax = largest surface pressure

F = force pressing the two cylinders together

l = length of cylinders

and half-width b is obtained from Eq. (3–73):

b =
{

2F

πl

[(
1 − ν2

1

) /
E1

] + [(
1 − ν2

2

) /
E2

]
(1/d1) + (1/d2)

}1/2

(14–10)

where ν1, ν2, E1, and E2 are the elastic constants and d1 and d2 are the diameters,
respectively, of the two contacting cylinders.

To adapt these relations to the notation used in gearing, we replace F by W t/cos φ,
d by 2r, and l by the face width F. With these changes, we can substitute the value of b
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as given by Eq. (14–10) in Eq. (a). Replacing pmax by σC , the surface compressive
stress (Hertzian stress) is found from the equation

σ 2
C = W t

π F cos φ

(1/r1) + (1/r2)[(
1 − ν2

1

) /
E1

] + [(
1 − ν2

2

) /
E2

] (14–11)

where r1 and r2 are the instantaneous values of the radii of curvature on the pinion- and
gear-tooth profiles, respectively, at the point of contact. By accounting for load sharing
in the value of W t used, Eq. (14–11) can be solved for the Hertzian stress for any or
all points from the beginning to the end of tooth contact. Of course, pure rolling exists
only at the pitch point. Elsewhere the motion is a mixture of rolling and sliding.
Equation (14–11) does not account for any sliding action in the evaluation of stress. We
note that AGMA uses μ for Poisson’s ratio instead of ν as is used here.

We have already noted that the first evidence of wear occurs near the pitch line. The
radii of curvature of the tooth profiles at the pitch point are

r1 = dP sin φ

2
r2 = dG sin φ

2
(14–12)

where φ is the pressure angle and dP and dG are the pitch diameters of the pinion and
gear, respectively.

Note, in Eq. (14–11), that the denominator of the second group of terms contains
four elastic constants, two for the pinion and two for the gear. As a simple means of com-
bining and tabulating the results for various combinations of pinion and gear materials,
AGMA defines an elastic coefficient Cp by the equation

Cp =

⎡⎢⎢⎢⎣ 1

π

(
1 − ν2

P

EP
+ 1 − ν2

G

EG

)
⎤⎥⎥⎥⎦

1/2

(14–13)

With this simplification, and the addition of a velocity factor Kv , Eq. (14–11) can be
written as

σC = −Cp

[
KvW t

F cos φ

(
1

r1
+ 1

r2

)]1/2

(14–14)

where the sign is negative because σC is a compressive stress.

EXAMPLE 14–3 The pinion of Examples 14–1 and 14–2 is to be mated with a 50-tooth gear manufac-
tured of ASTM No. 50 cast iron. Using the tangential load of 382 lbf, estimate the factor
of safety of the drive based on the possibility of a surface fatigue failure.

Solution From Table A–5 we find the elastic constants to be EP = 30 Mpsi, νP = 0.292, EG =
14.5 Mpsi, νG = 0.211. We substitute these in Eq. (14–13) to get the elastic coefficient as

Cp =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

π

[
1 − (0.292)2

30(106)
+ 1 − (0.211)2

14.5(106)

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2

= 1817
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From Example 14–1, the pinion pitch diameter is dP = 2 in. The value for the gear is
dG = 50/8 = 6.25 in. Then Eq. (14–12) is used to obtain the radii of curvature at the
pitch points. Thus 

r1 = 2 sin 20◦

2
= 0.342 in r2 = 6.25 sin 20◦

2
= 1.069 in

The face width is given as F = 1.5 in. Use Kv = 1.52 from Example 14–1. Substituting
all these values in Eq. (14–14) with φ = 20◦ gives the contact stress as

σC = −1817

[
1.52(380)

1.5 cos 20◦

(
1

0.342
+ 1

1.069

)]1/2

= −72 400 psi

The surface endurance strength of cast iron can be estimated from

SC = 0.32HB kpsi

for 108 cycles, where SC is in kpsi. Table A–24 gives HB = 262 for ASTM No. 50 cast
iron. Therefore SC = 0.32(262) = 83.8 kpsi. Contact stress is not linear with transmit-
ted load [see Eq. (14–14)]. If the factor of safety is defined as the loss-of-function load
divided by the imposed load, then the ratio of loads is the ratio of stresses squared. In
other words,

n = loss-of-function load

imposed load
= S2

C

σ 2
C

=
(

83.8

72.4

)2

= 1.34

One is free to define factor of safety as SC/σC . Awkwardness comes when one compares
the factor of safety in bending fatigue with the factor of safety in surface fatigue for a
particular gear. Suppose the factor of safety of this gear in bending fatigue is 1.20 and
the factor of safety in surface fatigue is 1.34 as above. The threat, since 1.34 is greater
than 1.20, is in bending fatigue since both numbers are based on load ratios. If the fac-
tor of safety in surface fatigue is based on SC/σC = √

1.34 = 1.16, then 1.20 is greater
than 1.16, but the threat is not from surface fatigue. The surface fatigue factor of safety
can be defined either way. One way has the burden of requiring a squared number
before numbers that instinctively seem comparable can be compared.

In addition to the dynamic factor Kv already introduced, there are transmitted load
excursions, nonuniform distribution of the transmitted load over the tooth contact, and the
influence of rim thickness on bending stress. Tabulated strength values can be means,
ASTM minimums, or of unknown heritage. In surface fatigue there are no endurance lim-
its. Endurance strengths have to be qualified as to corresponding cycle count, and the slope
of the S-N curve needs to be known. In bending fatigue there is a definite change in slope
of the S-N curve near 106 cycles, but some evidence indicates that an endurance limit does
not exist. Gearing experience leads to cycle counts of 1011 or more. Evidence of dimin-
ishing endurance strengths in bending have been included in AGMA methodology.

14–3 AGMA Stress Equations
Two fundamental stress equations are used in the AGMA methodology, one for bend-
ing stress and another for pitting resistance (contact stress). In AGMA terminology,
these are called stress numbers, as contrasted with actual applied stresses, and are
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designated by a lowercase letter s instead of the Greek lower case σ we have used in
this book (and shall continue to use). The fundamental equations are

σ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W t Ko Kv Ks

Pd

F

Km K B

J
(U.S. customary units)

W t Ko Kv Ks
1

bmt

K H K B

YJ
(SI units)

(14–15)

where for U.S. customary units (SI units),

W t is the tangential transmitted load, lbf (N)
Ko is the overload factor
Kv is the dynamic factor
Ks is the size factor
Pd is the transverse diametral pitch
F (b) is the face width of the narrower member, in (mm)
Km (KH) is the load-distribution factor
K B is the rim-thickness factor
J (YJ ) is the geometry factor for bending strength (which includes root fillet
stress-concentration factor K f )
(mt) is the transverse metric module

Before you try to digest the meaning of all these terms in Eq. (14–15), view them as
advice concerning items the designer should consider whether he or she follows the
voluntary standard or not. These items include issues such as

• Transmitted load magnitude

• Overload

• Dynamic augmentation of transmitted load

• Size

• Geometry: pitch and face width

• Distribution of load across the teeth

• Rim support of the tooth

• Lewis form factor and root fillet stress concentration

The fundamental equation for pitting resistance (contact stress) is

σc =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cp

√
W t Ko Kv Ks

Km

dP F

Cf

I
(U.S. customary units)

Z E

√
W t Ko Kv Ks

K H

dw1b

Z R

Z I
(SI units)

(14–16)

where Wt, Ko, Kv , Ks, Km, F, and b are the same terms as defined for Eq. (14–15). For
U.S. customary units (SI units), the additional terms are

Cp (Z E) is an elastic coefficient, 
√

lbf/in2 (
√

N/mm2)

Cf (Z R) is the surface condition factor
dP (dw1) is the pitch diameter of the pinion, in (mm)
I (Z I ) is the geometry factor for pitting resistance

The evaluation of all these factors is explained in the sections that follow. The devel-
opment of Eq. (14–16) is clarified in the second part of Sec. 14–5.
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14–4 AGMA Strength Equations
Instead of using the term strength, AGMA uses data termed allowable stress numbers
and designates these by the symbols sat and sac . It will be less confusing here if we con-
tinue the practice in this book of using the uppercase letter S to designate strength and
the lowercase Greek letters σ and τ for stress. To make it perfectly clear we shall use the
term gear strength as a replacement for the phrase allowable stress numbers as used by
AGMA.

Following this convention, values for gear bending strength, designated here as St ,
are to be found in Figs. 14–2, 14–3, and 14–4, and in Tables 14–3 and 14–4. Since gear
strengths are not identified with other strengths such as Sut , Se, or Sy as used elsewhere
in this book, their use should be restricted to gear problems.

In this approach the strengths are modified by various factors that produce limiting
values of the bending stress and the contact stress. 

Spur and Helical Gears 747Spur and Helical Gears 747

Figure 14–2

Allowable bending stress
number for through-hardened
steels. The SI equations are 
St = 0.533HB + 88.3 MPa,
grade 1, and St = 0.703HB +
113 MPa, grade 2. 
(Source: ANSI/AGMA 
2001-D04 and 2101-D04.)
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Figure 14–3

Allowable bending stress
number for nitrided through-
hardened steel gears (i.e., 
AISI 4140, 4340), St . The SI
equations are St = 0.568HB +
83.8 MPa, grade 1, and St =
0.749HB + 110 MPa, grade 2.
(Source: ANSI/AGMA 
2001-D04 and 2101-D04.)
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748 Mechanical Engineering Design

Table 14–3

Repeatedly Applied Bending Strength St at 107 Cycles and 0.99 Reliability for Steel Gears 

Source: ANSI/AGMA 2001-D04.

Minimum Allowable Bending Stress Number St,
2

Material Heat Surface psi
Designation Treatment Hardness1 Grade 1 Grade 2 Grade 3

Steel3 Through-hardened See Fig. 14–2 See Fig. 14–2 See Fig. 14–2 —
Flame4 or induction See Table 8* 45 000 55 000 —
hardened4 with type
A pattern5

Flame4 or induction See Table 8* 22 000 22 000 —
hardened4 with type
B pattern5

Carburized and See Table 9* 55 000 65 000 or 75 000
hardened 70 0006

Nitrided4,7 (through- 83.5 HR15N See Fig. 14–3 See Fig. 14–3 —
hardened steels)

Nitralloy 135M, Nitrided4,7 87.5 HR15N See Fig. 14–4 See Fig. 14–4 See Fig. 14–4
Nitralloy N, and 2.5%
chrome (no aluminum)

Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–7.
1Hardness to be equivalent to that at the root diameter in the center of the tooth space and face width.
2See tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3The steel selected must be compatible with the heat treatment process selected and hardness required.
4The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
5See figure 12 for type A and type B hardness patterns.
6If bainite and microcracks are limited to grade 3 levels, 70 000 psi may be used.
7The overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be investigated
before proceeding with the design. [7]

*Tables 8 and 9 of ANSI/AGMA 2001-D04 are comprehensive tabulations of the major metallurgical factors affecting St and Sc of flame-hardened
and induction-hardened (Table 8) and carburized and hardened (Table 9) steel gears.

Figure 14–4

Allowable bending stress
numbers for nitriding steel
gears St . The SI equations are
St = 0.594HB + 87.76 MPa
Nitralloy grade 1
St = 0.784HB + 114.81 MPa
Nitralloy grade 2
St = 0.7255HB + 63.89 MPa
2.5% chrome, grade 1
St = 0.7255HB + 153.63 MPa
2.5% chrome, grade 2
St = 0.7255HB + 201.91 MPa
2.5% chrome, grade 3 
(Source: ANSI/AGMA 
2001-D04, 2101-D04.) 250 275 300 325 350
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Metallurgical and quality control procedures required

Grade 1 − Nitralloy
St = 86.2HB + 12 730 psi

Grade 1 − 2.5% Chrome
St = 105.2HB + 9280 psi

Grade 2 − Nitralloy
St = 113.8HB + 16 650 psi

Grade 2 − 2.5% Chrome
St = 105.2HB + 22 280 psi

Grade 3 − 2.5% Chrome
St = 105.2HB + 29 280 psi
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The equation for the allowable bending stress is

σall =

⎧⎪⎪⎨⎪⎪⎩
St

SF

YN

KT K R
(U.S. customary units)

St

SF

YN

YθYZ
(SI units)

(14–17)

where for U.S. customary units (SI units),

St is the allowable bending stress, lbf/in2 (N/mm2)
YN is the stress cycle factor for bending stress
KT (Yθ ) are the temperature factors
K R (YZ ) are the reliability factors
SF is the AGMA factor of safety, a stress ratio

Allowable Bending
Material Heat Typical Minimum Stress Number, St,3

Material Designation1 Treatment Surface Hardness2 psi

ASTM A48 gray Class 20 As cast — 5000
cast iron Class 30 As cast 174 HB 8500

Class 40 As cast 201 HB 13 000

ASTM A536 ductile Grade 60–40–18 Annealed 140 HB 22 000–33 000
(nodular) Iron Grade 80–55–06 Quenched and 179 HB 22 000–33 000

tempered

Grade 100–70–03 Quenched and 229 HB 27 000–40 000
tempered

Grade 120–90–02 Quenched and 269 HB 31 000–44 000
tempered

Bronze Sand cast Minimum tensile strength 5700
40 000 psi

ASTM B–148 Heat treated Minimum tensile strength 23 600
Alloy 954 90 000 psi

Notes:
1See ANSI/AGMA 2004-B89, Gear Materials and Heat Treatment Manual.
2Measured hardness to be equivalent to that which would be measured at the root diameter in the center of the tooth space and face width.
3The lower values should be used for general design purposes. The upper values may be used when:

High quality material is used.
Section size and design allow maximum response to heat treatment.
Proper quality control is effected by adequate inspection.
Operating experience justifies their use.

Table 14–4

Repeatedly Applied Bending Strength St for Iron and Bronze Gears at 107 Cycles and 0.99 Reliability

Source: ANSI/AGMA 2001-D04.
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750 Mechanical Engineering Design

Figure 14–5

Contact-fatigue strength Sc at
107 cycles and 0.99 reliability
for through-hardened steel
gears. The SI equations are 
Sc = 2.22HB + 200 MPa,
grade 1, and
Sc = 2.41HB + 237 MPa,
grade 2. (Source: ANSI/AGMA
2001-D04 and 2101-D04.)
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Grade 1
Sc = 322 HB + 29 100psi

Grade 2
Sc = 349 HB + 34 300psi

Metallurgical and quality control procedures required

10
00

 lb
⁄i

n2

Hardness,
Temperature Nitriding, Rockwell C Scale

Steel Before Nitriding, °F °F Case Core

Nitralloy 135* 1150 975 62–65 30–35

Nitralloy 135M 1150 975 62–65 32–36

Nitralloy N 1000 975 62–65 40–44

AISI 4340 1100 975 48–53 27–35

AISI 4140 1100 975 49–54 27–35

31 Cr Mo V 9 1100 975 58–62 27–33

∗Nitralloy is a trademark of the Nitralloy Corp., New York.

Table 14–5

Nominal Temperature

Used in Nitriding and

Hardnesses Obtained

Source: Darle W. Dudley,
Handbook of Practical Gear
Design, rev. ed., McGraw-Hill,
New York, 1984.

The equation for the allowable contact stress σc,all is

σc,all =

⎧⎪⎪⎨⎪⎪⎩
Sc

SH

Z N CH

KT K R
(U.S. customary units)

Sc

SH

Z N ZW

YθYZ
(SI units)

(14–18)

where the upper equation is in U.S. customary units and the lower equation is in SI units,
Also,

Sc is the allowable contact stress, lbf/in2 (N/mm2)
Z N is the stress cycle life factor
CH (ZW ) are the hardness ratio factors for pitting resistance
KT (Yθ ) are the temperature factors
K R (YZ ) are the reliability factors
SH is the AGMA factor of safety, a stress ratio

The values for the allowable contact stress, designated here as Sc, are to be found in 
Fig. 14–5 and Tables 14–5, 14–6, and 14–7.

AGMA allowable stress numbers (strengths) for bending and contact stress are for

• Unidirectional loading

• 10 million stress cycles

• 99 percent reliability
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5A useful reference is AGMA 908-B89, Geometry Factors for Determining Pitting Resistance and Bending
Strength of Spur, Helical and Herringbone Gear Teeth.

Minimum
Allowable Contact Stress Number,2 Sc, psiMaterial Heat Surface

Designation Treatment Hardness1 Grade 1 Grade 2 Grade 3

Steel3 Through hardened4 See Fig. 14–5 See Fig. 14–5 See Fig. 14–5 —

Flame5 or induction 50 HRC 170 000 190 000 —
hardened5

54 HRC 175 000 195 000 —

Carburized and See Table 9∗ 180 000 225 000 275 000
hardened5

Nitrided5 (through 83.5 HR15N 150 000 163 000 175 000
hardened steels) 84.5 HR15N 155 000 168 000 180 000

2.5% chrome Nitrided5 87.5 HR15N 155 000 172 000 189 000 
(no aluminum)

Nitralloy 135M Nitrided5 90.0 HR15N 170 000 183 000 195 000 

Nitralloy N Nitrided5 90.0 HR15N 172 000 188 000 205 000

2.5% chrome Nitrided5 90.0 HR15N 176 000 196 000 216 000
(no aluminum)

Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–5.
1Hardness to be equivalent to that at the start of active profile in the center of the face width.
2See Tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3The steel selected must be compatible with the heat treatment process selected and hardness required.
4These materials must be annealed or normalized as a minimum.
5The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.

*Table 9 of ANSI/AGMA 2001-D04 is a comprehensive tabulation of the major metallurgical factors affecting St and Sc of carburized
and hardened steel gears.

Table 14–6

Repeatedly Applied Contact Strength Sc at 107 Cycles and 0.99 Reliability for Steel Gears

Source: ANSI/AGMA 2001-D04.

The factors in this section, too, will be evaluated in subsequent sections.
When two-way (reversed) loading occurs, as with idler gears, AGMA recommends

using 70 percent of St values. This is equivalent to 1/0.70 = 1.43 as a value of ke in
Ex. 14–2. The recommendation falls between the value of ke = 1.33 for a Goodman
failure locus and ke = 1.66 for a Gerber failure locus.

14–5 Geometry Factors I and J (ZI and YJ)
We have seen how the factor Y is used in the Lewis equation to introduce the effect of
tooth form into the stress equation. The AGMA factors5 I and J are intended to accom-
plish the same purpose in a more involved manner.

The determination of I and J depends upon the face-contact ratio mF . This is
defined as

mF = F

px
(14–19)

where px is the axial pitch and F is the face width. For spur gears, mF = 0.
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Allowable Contact
Material Heat Typical Minimum Stress Number,3 Sc,

Material Designation1 Treatment Surface Hardness2 psi

ASTM A48 gray Class 20 As cast — 50 000–60 000
cast iron Class 30 As cast 174 HB 65 000–75 000

Class 40 As cast 201 HB 75 000–85 000

ASTM A536 ductile Grade 60–40–18 Annealed 140 HB 77 000–92 000
(nodular) iron Grade 80–55–06 Quenched and 179 HB 77 000–92 000

tempered

Grade 100–70–03 Quenched and 229 HB 92 000–112 000
tempered

Grade 120–90–02 Quenched and 269 HB 103 000–126 000
tempered

Bronze — Sand cast Minimum tensile 30 000
strength 40 000 psi

ASTM B-148 Heat treated Minimum tensile 65 000
Alloy 954 strength 90 000 psi

Notes:
1See ANSI/AGMA 2004-B89, Gear Materials and Heat Treatment Manual.
2Hardness to be equivalent to that at the start of active profile in the center of the face width.
3The lower values should be used for general design purposes. The upper values may be used when:

High-quality material is used.
Section size and design allow maximum response to heat treatment.
Proper quality control is effected by adequate inspection.
Operating experience justifies their use.

Table 14–7

Repeatedly Applied Contact Strength Sc 107 Cycles and 0.99 Reliability for Iron and Bronze Gears 

Source: ANSI/AGMA 2001-D04.

Low-contact-ratio (LCR) helical gears having a small helix angle or a thin face
width, or both, have face-contact ratios less than unity (mF ≤ 1), and will not be con-
sidered here. Such gears have a noise level not too different from that for spur gears.
Consequently we shall consider here only spur gears with mF = 0 and conventional
helical gears with mF > 1.

Bending-Strength Geometry Factor J (YJ)
The AGMA factor J employs a modified value of the Lewis form factor, also denoted
by Y; a fatigue stress-concentration factor K f ; and a tooth load-sharing ratio mN . The
resulting equation for J for spur and helical gears is

J = Y

K f mN
(14–20)

It is important to note that the form factor Y in Eq. (14–20) is not the Lewis factor at
all. The value of Y here is obtained from calculations within AGMA 908-B89, and is
often based on the highest point of single-tooth contact.
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The factor K f in Eq. (14–20) is called a stress-correction factor by AGMA. It is
based on a formula deduced from a photoelastic investigation of stress concentration in
gear teeth over 50 years ago.

The load-sharing ratio mN is equal to the face width divided by the minimum total
length of the lines of contact. This factor depends on the transverse contact ratio mp ,
the face-contact ratio mF , the effects of any profile modifications, and the tooth deflec-
tion. For spur gears, mN = 1.0. For helical gears having a face-contact ratio mF > 2.0,
a conservative approximation is given by the equation

mN = pN

0.95Z
(14–21)

where pN is the normal base pitch and Z is the length of the line of action in the trans-
verse plane (distance Lab in Fig. 13–15).

Use Fig. 14–6 to obtain the geometry factor J for spur gears having a 20◦ pressure
angle and full-depth teeth. Use Figs. 14–7 and 14–8 for helical gears having a 20◦ normal
pressure angle and face-contact ratios of mF = 2 or greater. For other gears, consult
the AGMA standard.

Figure 14–6

Spur-gear geometry factors J. Source: The graph is from AGMA 218.01, which is consistent with tabular data from the current 
AGMA 908-B89. The graph is convenient for design purposes.
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Value for Z is for an element of indicated
numbers of teeth and a 75-tooth mate

Normal tooth thickness of pinion and gear
tooth each reduced 0.024 in to provide 0.048 in
total backlash for one normal diametral pitch

Factors are for
teeth cut with
a full fillet hob
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Figure 14–7

Helical-gear geometry factors J ′. Source: The graph is from AGMA 218.01, which is consistent with tabular data from
the current AGMA 908-B89. The graph is convenient for design purposes.

Surface-Strength Geometry Factor I (ZI)
The factor I is also called the pitting-resistance geometry factor by AGMA. We will
develop an expression for I by noting that the sum of the reciprocals of Eq. (14–14),
from Eq. (14–12), can be expressed as

1

r1
+ 1

r2
= 2

sin φt

(
1

dP
+ 1

dG

)
(a)

where we have replaced φ by φt , the transverse pressure angle, so that the relation will
apply to helical gears too. Now define speed ratio mG as

mG = NG

NP
= dG

dP
(14–22)
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Figure 14–8

J ′-factor multipliers for use
with Fig. 14–7 to find J.
Source: The graph is from
AGMA 218.01, which is
consistent with tabular data
from the current AGMA 
908-B89. The graph is
convenient for design purposes.
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Equation (a) can now be written

1

r1
+ 1

r2
= 2

dP sin φt

mG + 1

mG
(b)

Now substitute Eq. (b) for the sum of the reciprocals in Eq. (14–14). The result is found
to be

σc = −σC = Cp

⎡⎢⎢⎣ KV W t

dP F

1
cos φt sin φt

2

mG

mG + 1

⎤⎥⎥⎦
1/2

(c)

The geometry factor I for external spur and helical gears is the denominator of the sec-
ond term in the brackets in Eq. (c). By adding the load-sharing ratio mN , we obtain a
factor valid for both spur and helical gears. The equation is then written as

I =

⎧⎪⎪⎨⎪⎪⎩
cos φt sin φt

2mN

mG

mG + 1
external gears

cos φt sin φt

2mN

mG

mG − 1
internal gears

(14–23)

where mN = 1 for spur gears. In solving Eq. (14–21) for mN , note that

pN = pn cos φn (14–24)

where pn is the normal circular pitch. The quantity Z, for use in Eq. (14–21), can be
obtained from the equation

Z = [
(rP + a)2 − r2

bP

]1/2 + [
(rG + a)2 − r2

bG

]1/2 − (rP + rG) sin φt (14–25)

where rP and rG are the pitch radii and rbP and rbG the base-circle radii of the pinion
and gear, respectively.6 Recall from Eq. (13–6), the radius of the base circle is

rb = r cos φt (14–26)

6For a development, see Joseph E. Shigley and John J. Uicker Jr., Theory of Machines and Mechanisms,
McGraw-Hill, New York, 1980, p. 262.
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7AGMA 2000-A88. ANSI/AGMA 2001-D04, adopted in 2004, replaced Qv with Av and incorporated
ANSI/AGMA 2015-1-A01. Av ranges from 6 to 12, with lower numbers representing greater accuracy. The
Qv approach was maintained as an alternate approach, and resulting Kv values are comparable.

Certain precautions must be taken in using Eq. (14–25). The tooth profiles are not con-
jugate below the base circle, and consequently, if either one or the other of the first two
terms in brackets is larger than the third term, then it should be replaced by the third
term. In addition, the effective outside radius is sometimes less than r + a, owing to
removal of burrs or rounding of the tips of the teeth. When this is the case, always use
the effective outside radius instead of r + a.

14–6 The Elastic Coefficient Cp (ZE)
Values of Cp may be computed directly from Eq. (14–13) or obtained from Table 14–8.

14–7 Dynamic Factor Kv

As noted earlier, dynamic factors are used to account for inaccuracies in the manufac-
ture and meshing of gear teeth in action. Transmission error is defined as the departure
from uniform angular velocity of the gear pair. Some of the effects that produce trans-
mission error are:

• Inaccuracies produced in the generation of the tooth profile; these include errors in
tooth spacing, profile lead, and runout

• Vibration of the tooth during meshing due to the tooth stiffness

• Magnitude of the pitch-line velocity

• Dynamic unbalance of the rotating members

• Wear and permanent deformation of contacting portions of the teeth

• Gearshaft misalignment and the linear and angular deflection of the shaft

• Tooth friction

In an attempt to account for these effects, AGMA has defined a set of quality num-
bers.7 These numbers define the tolerances for gears of various sizes manufactured to a
specified accuracy. Quality numbers 3 to 7 will include most commercial-quality gears.
Quality numbers 8 to 12 are of precision quality. The AGMA transmission accuracy-
level number Qv could be taken as the same as the quality number. The following equa-
tions for the dynamic factor are based on these Qv numbers:

Kv =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
A + √

V

A

)B

V in ft/min

(
A + √

200V

A

)B

V in m/s

(14–27)

where
A = 50 + 56(1 − B)

B = 0.25(12 − Qv)
2/3

(14–28)

and the maximum velocity, representing the end point of the Qv curve, is given by

(Vt)max =

⎧⎪⎨⎪⎩
[A + (Qv − 3)]2 ft/min

[A + (Qv − 3)]2

200
m/s

(14–29)
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Table 14–8

Elastic Coefficient Cp (ZE), 
√

psi (
√

MPa) Source: AGMA 218.01

Gear Material and Modulus
of Elasticity EG, lbf/in2 (MPa)*

Malleable Nodular Cast Aluminum Tin
Pinion Modulus of Steel Iron Iron Iron Bronze Bronze

Pinion Elasticity Ep 30 � 106 25 � 106 24 � 106 22 � 106 17.5 � 106 16 � 106

Material psi (MPa)* (2 � 105) (1.7 � 105) (1.7 � 105) (1.5 � 105) (1.2 � 105) (1.1 � 105)

Steel 30 × 106 2300 2180 2160 2100 1950 1900
(2 × 105) (191) (181) (179) (174) (162) (158)

Malleable iron 25 × 106 2180 2090 2070 2020 1900 1850
(1.7 × 105) (181) (174) (172) (168) (158) (154)

Nodular iron 24 × 106 2160 2070 2050 2000 1880 1830
(1.7 × 105) (179) (172) (170) (166) (156) (152)

Cast iron 22 × 106 2100 2020 2000 1960 1850 1800
(1.5 × 105) (174) (168) (166) (163) (154) (149)

Aluminum bronze 17.5 × 106 1950 1900 1880 1850 1750 1700
(1.2 × 105) (162) (158) (156) (154) (145) (141)

Tin bronze 16 × 106 1900 1850 1830 1800 1700 1650
(1.1 × 105) (158) (154) (152) (149) (141) (137)

Poisson’s ratio � 0.30.
∗When more exact values for modulus of elasticity are obtained from roller contact tests, they may be used.

7
5

7

bud29281_ch14_733-784.qxd  12/21/09  5:13 PM  Page 757 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



758 Mechanical Engineering Design

Figure 14–9

Dynamic factor Kv. The
equations to these curves are
given by Eq. (14–27) and the
end points by Eq. (14–29).
(ANSI/AGMA 2001-D04, 
Annex A)
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Figure 14–9 is a graph of Kv , the dynamic factor, as a function of pitch-line speed for
graphical estimates of Kv .

14–8 Overload Factor Ko

The overload factor Ko is intended to make allowance for all externally applied loads in
excess of the nominal tangential load W t in a particular application (see Figs. 14–17 and
14–18). Examples include variations in torque from the mean value due to firing of cylin-
ders in an internal combustion engine or reaction to torque variations in a piston pump
drive. There are other similar factors such as application factor or service factor. These
factors are established after considerable field experience in a particular application.8

14–9 Surface Condition Factor Cf (ZR)
The surface condition factor Cf or Z R is used only in the pitting resistance equation,
Eq. (14–16). It depends on

• Surface finish as affected by, but not limited to, cutting, shaving, lapping, grinding,
shotpeening

• Residual stress

• Plastic effects (work hardening)

Standard surface conditions for gear teeth have not yet been established. When a detri-
mental surface finish effect is known to exist, AGMA specifies a value of Cf greater
than unity.

8An extensive list of service factors appears in Howard B. Schwerdlin, “Couplings,” Chap. 16 in Joseph E.
Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design,
3rd ed., McGraw-Hill, New York, 2004.
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14–10 Size Factor Ks

The size factor reflects nonuniformity of material properties due to size. It depends
upon

• Tooth size

• Diameter of part

• Ratio of tooth size to diameter of part

• Face width

• Area of stress pattern

• Ratio of case depth to tooth size

• Hardenability and heat treatment

Standard size factors for gear teeth have not yet been established for cases where there
is a detrimental size effect. In such cases AGMA recommends a size factor greater than
unity. If there is no detrimental size effect, use unity.

AGMA has identified and provided a symbol for size factor. Also, AGMA
suggests Ks = 1, which makes Ks a placeholder in Eqs. (14–15) and (14–16) until
more information is gathered. Following the standard in this manner is a failure to
apply all of your knowledge. From Table 13–1, l = a + b = 2.25/P . The tooth thick-
ness t in Fig. 14–6 is given in Sec. 14–1, Eq. (b), as t = √

4lx where x = 3Y/(2P)

from Eq. (14–3). From Eq. (6–25) the equivalent diameter de of a rectangular sec-
tion in bending is de = 0.808

√
Ft . From Eq. (6–20) kb = (de/0.3)−0.107. Noting that

Ks is the reciprocal of kb , we find the result of all the algebraic substitution is

Ks = 1

kb
= 1.192

(
F

√
Y

P

)0.0535

(a)

Ks can be viewed as Lewis’s geometry incorporated into the Marin size factor in
fatigue. You may set Ks = 1, or you may elect to use the preceding Eq. (a). This is a
point to discuss with your instructor. We will use Eq. (a) to remind you that you have a
choice. If Ks in Eq. (a) is less than 1, use Ks = 1.

14–11 Load-Distribution Factor Km (KH)
The load-distribution factor modified the stress equations to reflect nonuniform distribu-
tion of load across the line of contact. The ideal is to locate the gear “midspan” between
two bearings at the zero slope place when the load is applied. However, this is not always
possible. The following procedure is applicable to

• Net face width to pinion pitch diameter ratio F/d ≤ 2

• Gear elements mounted between the bearings

• Face widths up to 40 in

• Contact, when loaded, across the full width of the narrowest member

The load-distribution factor under these conditions is currently given by the face load
distribution factor, Cm f , where

Km = Cm f = 1 + Cmc(Cp f Cpm + CmaCe) (14–30)
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where

Cmc =
{

1 for uncrowned teeth

0.8 for crowned teeth
(14–31)

Cp f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F

10d
− 0.025 F ≤ 1 in

F

10d
− 0.0375 + 0.0125F 1 < F ≤ 17 in

F

10d
− 0.1109 + 0.0207F − 0.000 228F2 17 < F ≤ 40 in

(14–32)

Note that for values of F/(10d) < 0.05, F/(10d) = 0.05 is used.

Cpm =
{

1 for straddle-mounted pinion with S1/S < 0.175

1.1 for straddle-mounted pinion with S1/S ≥ 0.175
(14–33)

Cma = A + B F + C F2 (see Table 14–9 for values of A, B, and C) (14–34)

Ce =
⎧⎨⎩

0.8 for gearing adjusted at assembly, or compatibility
is improved by lapping, or both

1 for all other conditions
(14–35)

See Fig. 14–10 for definitions of S and S1 for use with Eq. (14–33), and see Fig. 14–11
for graph of Cma .

Condition A B C

Open gearing 0.247 0.0167 −0.765(10−4)

Commercial, enclosed units 0.127 0.0158 −0.930(10−4)

Precision, enclosed units 0.0675 0.0128 −0.926(10−4)

Extraprecision enclosed gear units 0.00360 0.0102 −0.822(10−4)

*See ANSI/AGMA 2101-D04, pp. 20–22, for SI formulation.

Table 14–9

Empirical Constants

A, B, and C for

Eq. (14–34), Face 

Width F in Inches∗

Source: ANSI/AGMA
2001-D04.

Figure 14–10

Definition of distances S and 
S1 used in evaluating Cpm,
Eq. (14–33). (ANSI/AGMA
2001-D04.)

S1
S
2

Centerline of
bearing

Centerline of
bearing

Centerline of
gear face

S
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For determination of Cma , see Eq. (14–34)

14–12 Hardness-Ratio Factor CH

The pinion generally has a smaller number of teeth than the gear and consequently is sub-
jected to more cycles of contact stress. If both the pinion and the gear are through-hardened,
then a uniform surface strength can be obtained by making the pinion harder than the gear.
A similar effect can be obtained when a surface-hardened pinion is mated with a through-
hardened gear. The hardness-ratio factor CH is used only for the gear. Its purpose is to
adjust the surface strengths for this effect. The values of CH are obtained from the equation

CH = 1.0 + A′(mG − 1.0) (14–36)

where

A′ = 8.98(10−3)

(
HB P

HBG

)
− 8.29(10−3) 1.2 ≤ HB P

HBG
≤ 1.7

The terms HB P and HBG are the Brinell hardness (10-mm ball at 3000-kg load) of the
pinion and gear, respectively. The term mG is the speed ratio and is given by Eq. (14–22).
See Fig. 14–12 for a graph of Eq. (14–36). For

HB P

HBG
< 1.2, A′ = 0

HB P

HBG
> 1.7, A′ = 0.006 98

When surface-hardened pinions with hardnesses of 48 Rockwell C scale (Rockwell
C48) or harder are run with through-hardened gears (180–400 Brinell), a work harden-
ing occurs. The CH factor is a function of pinion surface finish fP and the mating gear
hardness. Figure 14–13 displays the relationships:

CH = 1 + B ′(450 − HBG) (14–37)

Figure 14–11

Mesh alignment factor Cma. Curve-fit equations in Table 14–9. (ANSI/AGMA 2001-D04.)
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Figure 14–13

Hardness-ratio factor CH

(surface-hardened steel pinion).
(ANSI/AGMA 2001-D04.)

180 200 250 300 350 400
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Brinell hardness of the gear, HBG

H
ar

dn
es

s-
ra

tio
 f

ac
to

r, 
C

H

Surface Finish of Pinion, fp,
microinches, Ra

fp = 16

fp = 32
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When fp > 64
use CH = 1.0

where B ′ = 0.000 75 exp[−0.0112 fP ] and fP is the surface finish of the pinion
expressed as root-mean-square roughness Ra in μ in.

14–13 Stress-Cycle Factors YN and ZN

The AGMA strengths as given in Figs. 14–2 through 14–4, in Tables 14–3 and 14–4 for
bending fatigue, and in Fig. 14–5 and Tables 14–5 and 14–6 for contact-stress fatigue
are based on 107 load cycles applied. The purpose of the load cycle factors YN and Z N

is to modify the gear strength for lives other than 107 cycles. Values for these factors
are given in Figs. 14–14 and 14–15. Note that for 107 cycles YN = Z N = 1 on each
graph. Note also that the equations for YN and Z N change on either side of 107 cycles.
For life goals slightly higher than 107 cycles, the mating gear may be experiencing
fewer than 107 cycles and the equations for (YN )P and (YN )G can be different. The
same comment applies to (Z N )P and (Z N )G .

Figure 14–12

Hardness-ratio factor CH

(through-hardened steel).
(ANSI/AGMA 2001-D04.)
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Figure 14–14

Repeatedly applied bending
strength stress-cycle factor YN.
(ANSI/AGMA 2001-D04.)
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Figure 14–15

Pitting resistance stress-cycle
factor ZN. (ANSI/AGMA 
2001-D04.)
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14–14 Reliability Factor KR (YZ)
The reliability factor accounts for the effect of the statistical distributions of material
fatigue failures. Load variation is not addressed here. The gear strengths St and Sc are
based on a reliability of 99 percent. Table 14–10 is based on data developed by the U.S.
Navy for bending and contact-stress fatigue failures.

The functional relationship between K R and reliability is highly nonlinear. When
interpolation is required, linear interpolation is too crude. A log transformation to each
quantity produces a linear string. A least-squares regression fit is

K R =
{

0.658 − 0.0759 ln(1 − R) 0.5 < R < 0.99

0.50 − 0.109 ln(1 − R) 0.99 ≤ R ≤ 0.9999
(14–38)

For cardinal values of R, take K R from the table. Otherwise use the logarithmic inter-
polation afforded by Eqs. (14–38).
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Figure 14–16

Rim-thickness factor KB.
(ANSI/AGMA 2001-D04.)
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14–15 Temperature Factor KT (Yθ)
For oil or gear-blank temperatures up to 250°F (120°C), use KT = Yθ = 1.0. For higher
temperatures, the factor should be greater than unity. Heat exchangers may be used to
ensure that operating temperatures are considerably below this value, as is desirable for
the lubricant.

14–16 Rim-Thickness Factor KB

When the rim thickness is not sufficient to provide full support for the tooth root, the
location of bending fatigue failure may be through the gear rim rather than at the tooth
fillet. In such cases, the use of a stress-modifying factor K B or (tR) is recommended.
This factor, the rim-thickness factor K B , adjusts the estimated bending stress for the
thin-rimmed gear. It is a function of the backup ratio m B ,

m B = tR

ht
(14–39)

where tR = rim thickness below the tooth, in, and ht = the tooth height. The geometry
is depicted in Fig. 14–16. The rim-thickness factor K B is given by

K B =
⎧⎨⎩ 1.6 ln

2.242

m B
m B < 1.2

1 m B ≥ 1.2
(14–40)

Reliability KR (YZ)

0.9999 1.50

0.999 1.25

0.99 1.00

0.90 0.85

0.50 0.70

Table 14–10

Reliability Factors KR (YZ )

Source: ANSI/AGMA 
2001-D04.
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Figure 14–16 also gives the value of K B graphically. The rim-thickness factor K B is
applied in addition to the 0.70 reverse-loading factor when applicable.

14–17 Safety Factors SF and SH

The ANSI/AGMA standards 2001-D04 and 2101-D04 contain a safety factor SF

guarding against bending fatigue failure and safety factor SH guarding against pitting
failure.

The definition of SF , from Eq. (14–17), is

SF = St YN /(KT K R)

σ
= fully corrected bending strength

bending stress
(14–41)

where σ is estimated from Eq. (14–15). It is a strength-over-stress definition in a case
where the stress is linear with the transmitted load.

The definition of SH , from Eq. (14–18), is

SH = Sc Z N CH/(KT K R)

σc
= fully corrected contact strength

contact stress
(14–42)

when σc is estimated from Eq. (14–16). This, too, is a strength-over-stress definition but
in a case where the stress is not linear with the transmitted load W t . 

While the definition of SH does not interfere with its intended function, a caution
is required when comparing SF with SH in an analysis in order to ascertain the nature
and severity of the threat to loss of function. To render SH linear with the transmitted
load, W t it could have been defined as

SH =
(

fully corrected contact strength

contact stress imposed

)2

(14–43)

with the exponent 2 for linear or helical contact, or an exponent of 3 for crowned
teeth (spherical contact). With the definition, Eq. (14–42), compare SF with S2

H
(or S3

H for crowned teeth) when trying to identify the threat to loss of function with
confidence.

The role of the overload factor Ko is to include predictable excursions of load beyond
W t based on experience. A safety factor is intended to account for unquantifiable ele-
ments in addition to Ko. When designing a gear mesh, the quantity SF becomes a design
factor (SF)d within the meanings used in this book. The quantity SF evaluated as part of
a design assessment is a factor of safety. This applies equally well to the quantity SH .

14–18 Analysis
Description of the procedure based on the AGMA standard is highly detailed. The best
review is a “road map” for bending fatigue and contact-stress fatigue. Figure 14–17
identifies the bending stress equation, the endurance strength in bending equation, and
the factor of safety SF . Figure 14–18 displays the contact-stress equation, the contact
fatigue endurance strength equation, and the factor of safety SH . When analyzing a gear
problem, this figure is a useful reference.

The following example of a gear mesh analysis is intended to make all the details
presented concerning the AGMA method more familiar.

bud29281_ch14_733-784.qxd  12/18/09  3:25 PM  Page 765 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



766 Mechanical Engineering Design

Figure 14–17

Roadmap of gear bending equations based on AGMA standards. (ANSI/AGMA 2001-D04.)

SPUR GEAR BENDING 
Based on ANSI�AGMA 2001-D04

dP =
NP

Pd

V = πdn
12

W t = 33 000 Η
V

Gear
bending
stress
equation
Eq. (14–15)

Gear
bending
endurance
strength
equation
Eq. (14–17)

Bending
factor of
safety
Eq. (14–41)

�  = W tKoKvKs

�all =

SF =

Pd

F
KmKB

J

1 [or Eq. (a), Sec. 14–10]; p. 759

Eq. (14–30); p. 759

Eq. (14–40); p. 764

Eq. (14–27); p. 756

Table below

St

SF

YN

KT KR

St YN ⁄ (KT KR)
�

0.99(St)107 Tables 14–3, 14–4; pp. 748, 749

Fig. 14–14; p. 763

Table 14–10, Eq. (14–38); pp. 763, 764

1 if T < 250°F

Remember to compare SF with S2
H when deciding whether bending

or wear is the threat to function.  For crowned gears compare SF with S 3
H .

Fig. 14–6; p. 753

Table of Overload Factors, Ko

Driven Machine

Power source

Uniform
Light shock
Medium shock

Uniform

1.00
1.25 
1.50

Moderate shock

1.25 
1.50 
1.75

Heavy shock

1.75 
2.00 
2.25
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Figure 14–18

Roadmap of gear wear equations based on AGMA standards. (ANSI/AGMA 2001-D04.)

SPUR GEAR WEAR
Based on ANSI�AGMA 2001-D04
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V = πdn
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Gear
contact
endurance
strength
Eq. (14–18)

Wear
factor of
safety
Eq. (14–42)

�c = Cp   W
tKoKvKs

�c,all =

SH =

Km

dPF
Cf

I( )

Eq. (14–13), Table 14–8; pp. 744, 757

1 [or Eq. (a), Sec. 14–10]; p. 759
Eq. (14–30); p. 759

1

1 ⁄ 2

Eq. (14–27); p. 756

Eq. (14–23); p. 755

Table below

Sc ZN CH

SH KT KR

Sc ZN CH ⁄ (KT KR)
�c

Fig. 14–15; p. 763

Gear only

Section 14–12, gear only; pp. 761, 762

Table 14–10, Eq. (14–38); pp. 763, 764
1 if T < 250°F

Remember to compare SF with S2
H when deciding whether bending

or wear is the threat to function. For crowned gears compare SF with S 3
H .

Table of Overload Factors, Ko

Driven Machine

Power source

Uniform
Light shock
Medium shock

Uniform

1.00
1.25 
1.50

Moderate shock

1.25 
1.50 
1.75

Heavy shock

1.75 
2.00 
2.25

0.99(Sc )107 Tables 14–6, 14–7; pp. 751, 752
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EXAMPLE 14–4 A 17-tooth 20° pressure angle spur pinion rotates at 1800 rev/min and transmits 4 hp to
a 52-tooth disk gear. The diametral pitch is 10 teeth/in, the face width 1.5 in, and the
quality standard is No. 6. The gears are straddle-mounted with bearings immediately
adjacent. The pinion is a grade 1 steel with a hardness of 240 Brinell tooth surface and
through-hardened core. The gear is steel, through-hardened also, grade 1 material, with
a Brinell hardness of 200, tooth surface and core. Poisson’s ratio is 0.30, JP = 0.30,
JG = 0.40, and Young’s modulus is 30(106) psi. The loading is smooth because of
motor and load. Assume a pinion life of 108 cycles and a reliability of 0.90, and use
YN = 1.3558N−0.0178, Z N = 1.4488N−0.023. The tooth profile is uncrowned. This is a
commercial enclosed gear unit.
(a) Find the factor of safety of the gears in bending.
(b) Find the factor of safety of the gears in wear.
(c) By examining the factors of safety, identify the threat to each gear and to the mesh.

Solution There will be many terms to obtain so use Figs. 14–17 and 14–18 as guides to what is
needed.

dP = NP/Pd = 17/10 = 1.7 in dG = 52/10 = 5.2 in

V = πdPnP

12
= π(1.7)1800

12
= 801.1 ft/min

W t = 33 000 H

V
= 33 000(4)

801.1
= 164.8 lbf

Assuming uniform loading, Ko = 1. To evaluate Kv , from Eq. (14–28) with a quality
number Qv = 6,

B = 0.25(12 − 6)2/3 = 0.8255

A = 50 + 56(1 − 0.8255) = 59.77

Then from Eq. (14–27) the dynamic factor is

Kv =
(

59.77 + √
801.1

59.77

)0.8255

= 1.377

To determine the size factor, Ks , the Lewis form factor is needed. From Table 14–2,
with NP = 17 teeth, YP = 0.303. Interpolation for the gear with NG = 52 teeth yields
YG = 0.412. Thus from Eq. (a) of Sec. 14–10, with F = 1.5 in,

(Ks)P = 1.192

(
1.5

√
0.303

10

)0.0535

= 1.043

(Ks)G = 1.192

(
1.5

√
0.412

10

)0.0535

= 1.052
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The load distribution factor Km is determined from Eq. (14–30), where five terms are
needed. They are, where F = 1.5 in when needed:

Uncrowned, Eq. (14–30): Cmc = 1,
Eq. (14–32): Cp f = 1.5/[10(1.7)] − 0.0375 + 0.0125(1.5) = 0.0695
Bearings immediately adjacent, Eq. (14–33): Cpm = 1
Commercial enclosed gear units (Fig. 14–11): Cma = 0.15
Eq. (14–35): Ce = 1

Thus,

Km = 1 + Cmc(Cp f Cpm + CmaCe) = 1 + (1)[0.0695(1) + 0.15(1)] = 1.22

Assuming constant thickness gears, the rim-thickness factor K B = 1. The speed ratio is
mG = NG/NP = 52/17 = 3.059. The load cycle factors given in the problem state-
ment, with N(pinion) = 108 cycles and N(gear) = 108/mG = 108/3.059 cycles, are

(YN )P = 1.3558(108)−0.0178 = 0.977

(YN )G = 1.3558(108/3.059)−0.0178 = 0.996

From Table 14.10, with a reliability of 0.9, K R = 0.85. From Fig. 14–18, the tempera-
ture and surface condition factors are KT = 1 and Cf = 1. From Eq. (14–23), with
mN = 1 for spur gears,

I = cos 20◦ sin 20◦

2

3.059

3.059 + 1
= 0.121

From Table 14–8, Cp = 2300
√

psi.
Next, we need the terms for the gear endurance strength equations. From Table 14–3,

for grade 1 steel with HB P = 240 and HBG = 200, we use Fig. 14–2, which gives

(St)P = 77.3(240) + 12 800 = 31 350 psi

(St)G = 77.3(200) + 12 800 = 28 260 psi

Similarly, from Table 14–6, we use Fig. 14–5, which gives

(Sc)P = 322(240) + 29 100 = 106 400 psi

(Sc)G = 322(200) + 29 100 = 93 500 psi

From Fig. 14–15,

(Z N )P = 1.4488(108)−0.023 = 0.948

(Z N )G = 1.4488(108/3.059)−0.023 = 0.973

For the hardness ratio factor CH, the hardness ratio is HB P/HBG = 240/200 = 1.2. Then,
from Sec. 14–12,

A′ = 8.98(10−3)(HB P/HBG) − 8.29(10−3)

= 8.98(10−3)(1.2) − 8.29(10−3) = 0.002 49

Thus, from Eq. (14–36),

CH = 1 + 0.002 49(3.059 − 1) = 1.005
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(a) Pinion tooth bending. Substituting the appropriate terms for the pinion into
Eq. (14–15) gives

(σ )P =
(

W t Ko Kv Ks
Pd

F

Km K B

J

)
P

= 164.8(1)1.377(1.043)
10

1.5

1.22 (1)

0.30

= 6417 psi

Substituting the appropriate terms for the pinion into Eq. (14–41) gives

Answer (SF)P =
(

St YN /(KT K R)

σ

)
P

= 31 350(0.977)/[1(0.85)]

6417
= 5.62

Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14–15)
gives

(σ )G = 164.8(1)1.377(1.052)
10

1.5

1.22(1)

0.40
= 4854 psi

Substituting the appropriate terms for the gear into Eq. (14–41) gives

Answer (SF)G = 28 260(0.996)/[1(0.85)]

4854
= 6.82

(b) Pinion tooth wear. Substituting the appropriate terms for the pinion into Eq. (14–16)
gives

(σc)P = Cp

(
W t Ko Kv Ks

Km

dP F

Cf

I

)1/2

P

= 2300

[
164.8(1)1.377(1.043)

1.22

1.7(1.5)

1

0.121

]1/2

= 70 360 psi

Substituting the appropriate terms for the pinion into Eq. (14–42) gives

Answer (SH )P =
[

Sc Z N /(KT K R)

σc

]
P

= 106 400(0.948)/[1(0.85)]

70 360
= 1.69

Gear tooth wear. The only term in Eq. (14–16) that changes for the gear is Ks. Thus,

(σc)G =
[
(Ks)G

(Ks)P

]1/2

(σc)P =
(

1.052

1.043

)1/2

70 360 = 70 660 psi

Substituting the appropriate terms for the gear into Eq. (14–42) with CH = 1.005 gives

Answer (SH )G = 93 500(0.973)1.005/[1(0.85)]

70 660
= 1.52

(c) For the pinion, we compare (SF)P with (SH )2
P , or 5.73 with 1.692 = 2.86, so the

threat in the pinion is from wear. For the gear, we compare (SF)G with (SH )2
G , or 6.96

with 1.522 = 2.31, so the threat in the gear is also from wear.

There are perspectives to be gained from Ex. 14–4. First, the pinion is overly strong
in bending compared to wear. The performance in wear can be improved by surface-
hardening techniques, such as flame or induction hardening, nitriding, or carburizing
and case hardening, as well as shot peening. This in turn permits the gearset to be made
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smaller. Second, in bending, the gear is stronger than the pinion, indicating that both the
gear core hardness and tooth size could be reduced; that is, we may increase P and
reduce diameter of the gears, or perhaps allow a cheaper material. Third, in wear,
surface strength equations have the ratio (Z N )/K R . The values of (Z N )P and (Z N )G are
affected by gear ratio mG . The designer can control strength by specifying surface
hardness. This point will be elaborated later.

Having followed a spur-gear analysis in detail in Ex. 14–4, it is timely to analyze
a helical gearset under similar circumstances to observe similarities and differences.

EXAMPLE 14–5 A 17-tooth 20◦ normal pitch-angle helical pinion with a right-hand helix angle of 30◦

rotates at 1800 rev/min when transmitting 4 hp to a 52-tooth helical gear. The normal
diametral pitch is 10 teeth/in, the face width is 1.5 in, and the set has a quality number
of 6. The gears are straddle-mounted with bearings immediately adjacent. The pinion
and gear are made from a through-hardened steel with surface and core hardnesses of
240 Brinell on the pinion and surface and core hardnesses of 200 Brinell on the gear.
The transmission is smooth, connecting an electric motor and a centrifugal pump.
Assume a pinion life of 108 cycles and a reliability of 0.9 and use the upper curves in
Figs. 14–14 and 14–15.
(a) Find the factors of safety of the gears in bending.
(b) Find the factors of safety of the gears in wear.
(c) By examining the factors of safety identify the threat to each gear and to the mesh.

Solution All of the parameters in this example are the same as in Ex. 14–4 with the exception that we
are using helical gears. Thus, several terms will be the same as Ex. 14–4. The reader should
verify that the following terms remain unchanged: Ko = 1, YP = 0.303, YG = 0.412,
mG = 3.059, (Ks)P = 1.043, (Ks)G = 1.052, (YN )P = 0.977, (YN )G = 0.996, K R = 0.85,
KT = 1, Cf = 1, Cp = 2300

√
psi, (St)P = 31 350 psi, (St)G = 28 260 psi, (Sc)P =

106 380 psi, (Sc)G = 93 500 psi, (Z N )P = 0.948, (Z N )G = 0.973, and CH = 1.005.
For helical gears, the transverse diametral pitch, given by Eq. (13–18), is

Pt = Pn cos ψ = 10 cos 30◦ = 8.660 teeth/in

Thus, the pitch diameters are dP = NP/Pt = 17/8.660 = 1.963 in and dG = 52/8.660 =
6.005 in. The pitch-line velocity and transmitted force are

V = πdPnP

12
= π(1.963)1800

12
= 925 ft/min

W t = 33 000H

V
= 33 000(4)

925
= 142.7 lbf

As in Ex. 14–4, for the dynamic factor, B = 0.8255 and A = 59.77. Thus, Eq. (14–27)
gives

Kv =
(

59.77 + √
925

59.77

)0.8255

= 1.404

The geometry factor I for helical gears requires a little work. First, the transverse pressure
angle is given by Eq. (13–19)

φt = tan−1

(
tan φn

cos ψ

)
= tan−1

(
tan 20◦

cos 30◦

)
= 22.80◦
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The radii of the pinion and gear are rP = 1.963/2 = 0.9815 in and rG = 6.004/2 =
3.002 in, respectively. The addendum is a = 1/Pn = 1/10 = 0.1, and the base-circle
radii of the pinion and gear are given by Eq. (13–6) with φ = φt :

(rb)P = rP cos φt = 0.9815 cos 22.80◦ = 0.9048 in

(rb)G = 3.002 cos 22.80◦ = 2.767 in

From Eq. (14–25), the surface strength geometry factor

Z =
√

(0.9815 + 0.1)2 − 0.90482 +
√

(3.004 + 0.1)2 − 2.7692

− (0.9815 + 3.004) sin 22.80◦

= 0.5924 + 1.4027 − 1.544 4 = 0.4507 in

Since the first two terms are less than 1.544 4, the equation for Z stands. From
Eq. (14–24) the normal circular pitch pN is

pN = pn cos φn = π

Pn
cos 20◦ = π

10
cos 20◦ = 0.2952 in

From Eq. (14–21), the load sharing ratio

mN = pN

0.95Z
= 0.2952

0.95(0.4507)
= 0.6895

Substituting in Eq. (14–23), the geometry factor I is

I = sin 22.80◦ cos 22.80◦

2(0.6895)

3.06

3.06 + 1
= 0.195

From Fig. 14–7, geometry factors J ′
P = 0.45 and J ′

G = 0.54. Also from Fig. 14–8 the
J-factor multipliers are 0.94 and 0.98, correcting J ′

P and J ′
G to

JP = 0.45(0.94) = 0.423

JG = 0.54(0.98) = 0.529

The load-distribution factor Km is estimated from Eq. (14–32):

Cp f = 1.5

10(1.963)
− 0.0375 + 0.0125(1.5) = 0.0577

with Cmc = 1, Cpm = 1, Cma = 0.15 from Fig. 14–11, and Ce = 1. Therefore, from
Eq. (14–30),

Km = 1 + (1)[0.0577(1) + 0.15(1)] = 1.208

(a) Pinion tooth bending. Substituting the appropriate terms into Eq. (14–15) using Pt

gives

(σ )P =
(

W t Ko Kv Ks
Pt

F

Km K B

J

)
P

= 142.7(1)1.404(1.043)
8.66

1.5

1.208(1)

0.423

= 3445 psi
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Substituting the appropriate terms for the pinion into Eq. (14–41) gives

Answer (SF )P =
(

St YN/(KT K R)

σ

)
P

= 31 350(0.977)/[1(0.85)]

3445
= 10.5

Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14–15) gives

(σ )G = 142.7(1)1.404(1.052)
8.66

1.5

1.208(1)

0.529
= 2779 psi

Substituting the appropriate terms for the gear into Eq. (14–41) gives

Answer (SF)G = 28 260(0.996)/[1(0.85)]

2779
= 11.9

(b) Pinion tooth wear. Substituting the appropriate terms for the pinion into Eq. (14–16)
gives

(σc)P = Cp

(
W t Ko Kv Ks

Km

dP F

Cf

I

)1/2

P

= 2300

[
142.7(1)1.404(1.043)

1.208

1.963(1.5)

1

0.195

]1/2

= 48 230 psi

Substituting the appropriate terms for the pinion into Eq. (14–42) gives

Answer (SH )P =
(

Sc Z N/(KT K R)

σc

)
P

= 106 400(0.948)/[1(0.85)]

48 230
= 2.46

Gear tooth wear. The only term in Eq. (14–16) that changes for the gear is Ks. Thus,

(σc)G =
[
(Ks)G

(Ks)P

]1/2

(σc)P =
(

1.052

1.043

)1/2

48 230 = 48 440 psi

Substituting the appropriate terms for the gear into Eq. (14–42) with CH = 1.005 gives

Answer (SH )G = 93 500(0.973)1.005/[1(0.85)]

48 440
= 2.22

(c) For the pinion we compare SF with S2
H , or 10.5 with 2.462 = 6.05, so the threat in

the pinion is from wear. For the gear we compare SF with S2
H , or 11.9 with 2.222 = 4.93,

so the threat is also from wear in the gear. For the meshing gearset wear controls.

It is worthwhile to compare Ex. 14–4 with Ex. 14–5. The spur and helical gearsets
were placed in nearly identical circumstances. The helical gear teeth are of greater
length because of the helix and identical face widths. The pitch diameters of the helical
gears are larger. The J factors and the I factor are larger, thereby reducing stresses. The
result is larger factors of safety. In the design phase the gearsets in Ex. 14–4 and
Ex. 14–5 can be made smaller with control of materials and relative hardnesses.
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Now that examples have given the AGMA parameters substance, it is time to exam-
ine some desirable (and necessary) relationships between material properties of spur
gears in mesh. In bending, the AGMA equations are displayed side by side:

σP =
(

W t Ko Kv Ks
Pd

F

Km K B

J

)
P

σG =
(

W t Ko Kv Ks
Pd

F

Km K B

J

)
G

(SF)P =
(

St YN /(KT K R)

σ

)
P

(SF)G =
(

St YN /(KT K R)

σ

)
G

Equating the factors of safety, substituting for stress and strength, canceling identical
terms (Ks virtually equal or exactly equal), and solving for (St)G gives

(St)G = (St)P
(YN )P

(YN )G

JP

JG
(a)

The stress-cycle factor YN comes from Fig. 14–14, where for a particular hardness,
YN = αNβ . For the pinion, (YN )P = αNβ

P , and for the gear, (YN )G = α(NP/mG)β .
Substituting these into Eq. (a) and simplifying gives

(St)G = (St)Pmβ

G

JP

JG
(14–44)

Normally, mG > 1 and JG > JP , so equation (14–44) shows that the gear can be less
strong (lower Brinell hardness) than the pinion for the same safety factor.

EXAMPLE 14–6 In a set of spur gears, a 300-Brinell 18-tooth 16-pitch 20◦ full-depth pinion meshes
with a 64-tooth gear. Both gear and pinion are of grade 1 through-hardened steel.
Using β = −0.023, what hardness can the gear have for the same factor of safety?

Solution For through-hardened grade 1 steel the pinion strength (St)P is given in Fig. 14–2:

(St)P = 77.3(300) + 12 800 = 35 990 psi

From Fig. 14–6 the form factors are JP = 0.32 and JG = 0.41. Equation (14–44) gives 

(St)G = 35 990

(
64

18

)−0.023 0.32

0.41
= 27 280 psi

Use the equation in Fig. 14–2 again.

Answer (HB)G = 27 280 − 12 800

77.3
= 187 Brinell

The AGMA contact-stress equations also are displayed side by side:

(σc)P = Cp

(
W t Ko Kv Ks

Km

dP F

Cf

I

)1/2

P

(σc)G = Cp

(
W t Ko Kv Ks

Km

dP F

Cf

I

)1/2

G

(SH )P =
(

Sc Z N/(KT K R)

σc

)
P

(SH )G =
(

Sc Z N CH/(KT K R)

σc

)
G
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Equating the factors of safety, substituting the stress relations, and canceling identical
terms including Ks gives, after solving for (Sc)G ,

(Sc)G = (Sc)P
(Z N )P

(Z N )G

(
1

CH

)
G

= (SC)Pmβ

G

(
1

CH

)
G

where, as in the development of Eq. (14–44), (Z N )P/(Z N )G = mβ

G and the value of β
for wear comes from Fig. 14–15. Since CH is so close to unity, it is usually neglected;
therefore

(Sc)G = (Sc)Pmβ

G (14–45)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
a priori decisions

⎫⎪⎪⎪⎬⎪⎪⎪⎭ design decisions

EXAMPLE 14–7 For β = −0.056 for a through-hardened steel, grade 1, continue Ex. 14–6 for wear.

Solution From Fig. 14–5,

(Sc)P = 322(300) + 29 100 = 125 700 psi

From Eq. (14–45),

(Sc)G = (Sc)P

(
64

18

)−0.056

= 125 700

(
64

18

)−0.056

= 117 100 psi

Answer (HB)G = 117 100 − 29 200

322
= 273 Brinell

which is slightly less than the pinion hardness of 300 Brinell.

Equations (14–44) and (14–45) apply as well to helical gears.

14–19 Design of a Gear Mesh
A useful decision set for spur and helical gears includes

• Function: load, speed, reliability, life, Ko

• Unquantifiable risk: design factor nd

• Tooth system: φ, ψ , addendum, dedendum, root fillet radius

• Gear ratio mG , Np , NG

• Quality number Qv

• Diametral pitch Pd

• Face width F

• Pinion material, core hardness, case hardness

• Gear material, core hardness, case hardness

The first item to notice is the dimensionality of the decision set. There are four design
decision categories, eight different decisions if you count them separately. This is a larger
number than we have encountered before. It is important to use a design strategy that is
convenient in either longhand execution or computer implementation. The design decisions
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have been placed in order of importance (impact on the amount of work to be redone in
iterations). The steps, after the a priori decisions have been made are

• Choose a diametral pitch.

• Examine implications on face width, pitch diameters, and material properties. If not
satisfactory, return to pitch decision for change.

• Choose a pinion material and examine core and case hardness requirements. If not
satisfactory, return to pitch decision and iterate until no decisions are changed.

• Choose a gear material and examine core and case hardness requirements. If not
satisfactory, return to pitch decision and iterate until no decisions are changed.

With these plan steps in mind, we can consider them in more detail.
First select a trial diametral pitch.

Pinion bending:

• Select a median face width for this pitch, 4π/P

• Find the range of necessary ultimate strengths

• Choose a material and a core hardness

• Find face width to meet factor of safety in bending

• Choose face width

• Check factor of safety in bending

Gear bending:

• Find necessary companion core hardness

• Choose a material and core hardness

• Check factor of safety in bending

Pinion wear:

• Find necessary Sc and attendant case hardness

• Choose a case hardness

• Check factor of safety in wear

Gear wear:

• Find companion case hardness

• Choose a case hardness

• Check factor of safety in wear

Completing this set of steps will yield a satisfactory design. Additional designs
with diametral pitches adjacent to the first satisfactory design will produce several
among which to choose. A figure of merit is necessary in order to choose the best.
Unfortunately, a figure of merit in gear design is complex in an academic environment
because material and processing cost vary. The possibility of using a process depends
on the manufacturing facility if gears are made in house.

After examining Ex. 14–4 and Ex. 14–5 and seeing the wide range of factors of
safety, one might entertain the notion of setting all factors of safety equal.9 In steel

9In designing gears it makes sense to define the factor of safety in wear as (S)2
H for uncrowned teeth, so that

there is no mix-up. ANSI, in the preface to ANSI/AGMA 2001-D04 and 2101-D04, states “the use is com-
pletely voluntary. . . does not preclude anyone from using . . . procedures . . . not conforming to the standards.”

bud29281_ch14_733-784.qxd  12/21/09  5:13 PM  Page 776 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Spur and Helical Gears 777Spur and Helical Gears 777

gears, wear is usually controlling and (SH )P and (SH )G can be brought close to equal-
ity. The use of softer cores can bring down (SF)P and (SF)G , but there is value in keep-
ing them higher. A tooth broken by bending fatigue not only can destroy the gear set,
but can bend shafts, damage bearings, and produce inertial stresses up- and downstream
in the power train, causing damage elsewhere if the gear box locks.

EXAMPLE 14–8 Design a 4:1 spur-gear reduction for a 100-hp, three-phase squirrel-cage induction
motor running at 1120 rev/min. The load is smooth, providing a reliability of 0.95 at
109 revolutions of the pinion. Gearing space is meager. Use Nitralloy 135M, grade 1 mate-
rial to keep the gear size small. The gears are heat-treated first then nitrided.

Solution Make the a priori decisions:

• Function: 100 hp, 1120 rev/min, R = 0.95, N = 109 cycles, Ko = 1

• Design factor for unquantifiable exingencies: nd = 2

• Tooth system: φn = 20◦

• Tooth count: NP = 18 teeth, NG = 72 teeth (no interference)

• Quality number: Qv = 6, use grade 1 material

• Assume m B ≥ 1.2 in Eq. (14–40), K B = 1

Pitch: Select a trial diametral pitch of Pd = 4 teeth/in. Thus, dP = 18/4 = 4.5 in and
dG = 72/4 = 18 in. From Table 14–2, YP = 0.309, YG = 0.4324 (interpolated). From
Fig. 14–6, JP = 0.32, JG = 0.415.

V = πdPnP

12
= π(4.5)1120

12
= 1319 ft/min

W t = 33 000H

V
= 33 000(100)

1319
= 2502 lbf

From Eqs. (14–28) and (14–27),

B = 0.25(12 − Qv)
2/3 = 0.25(12 − 6)2/3 = 0.8255

A = 50 + 56(1 − 0.8255) = 59.77

Kv =
(

59.77 + √
1319

59.77

)0.8255

= 1.480

From Eq. (14–38), K R = 0.658 − 0.0759 ln(1 − 0.95) = 0.885. From Fig. 14–14,

(YN )P = 1.3558(109)−0.0178 = 0.938

(YN )G = 1.3558(109/4)−0.0178 = 0.961

From Fig. 14–15,

(Z N )P = 1.4488(109)−0.023 = 0.900

(Z N )G = 1.4488(109/4)−0.023 = 0.929
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From the recommendation after Eq. (14–8), 3p ≤ F ≤ 5p. Try F = 4p = 4π/P =
4π/4 = 3.14 in. From Eq. (a), Sec. 14–10,

Ks = 1.192

(
F

√
Y

P

)0.0535

= 1.192

(
3.14

√
0.309

4

)0.0535

= 1.140

From Eqs. (14–31), (14–33) and (14–35), Cmc = Cpm = Ce = 1. From Fig. 14–11,
Cma = 0.175 for commercial enclosed gear units. From Eq. (14–32), F/(10dP) = 3.14/

[10(4.5)] = 0.0698. Thus,

Cp f = 0.0698 − 0.0375 + 0.0125(3.14) = 0.0715

From Eq. (14–30),

Km = 1 + (1)[0.0715(1) + 0.175(1)] = 1.247

From Table 14–8, for steel gears, Cp = 2300
√

psi. From Eq. (14–23), with mG = 4 and
mN = 1,

I = cos 20◦ sin 20◦

2

4

4 + 1
= 0.1286

Pinion tooth bending. With the above estimates of Ks and Km from the trial diametral
pitch, we check to see if the mesh width F is controlled by bending or wear considera-
tions. Equating Eqs. (14–15) and (14–17), substituting nd W t for W t , and solving for
the face width (F)bend necessary to resist bending fatigue, we obtain

(F)bend = nd W t Ko Kv Ks Pd
Km K B

JP

KT K R

St YN
(1)

Equating Eqs. (14–16) and (14–18), substituting nd W t for W t , and solving for the face
width (F)wear necessary to resist wear fatigue, we obtain

(F)wear =
(

Cp Z N

Sc KT K R

)2

nd W t Ko Kv Ks
KmCf

dP I
(2)

From Table 14–5 the hardness range of Nitralloy 135M is Rockwell C32–36 (302–335
Brinell). Choosing a midrange hardness as attainable, using 320 Brinell. From
Fig. 14–4,

St = 86.2(320) + 12 730 = 40 310 psi

Inserting the numerical value of St in Eq. (1) to estimate the face width gives

(F)bend = 2(2502)(1)1.48(1.14)4
1.247(1)(1)0.885

0.32(40 310)0.938
= 3.08 in

From Table 14–6 for Nitralloy 135M, Sc = 170 000 psi. Inserting this in Eq. (2), we
find

(F)wear =
(

2300(0.900)

170 000(1)0.885

)2

2(2502)1(1.48)1.14
1.247(1)

4.5(0.1286)
= 3.44 in
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Decision Make face width 3.50 in. Correct Ks and Km :

Ks = 1.192

(
3.50

√
0.309

4

)0.0535

= 1.147

F

10dP
= 3.50

10(4.5)
= 0.0778

Cp f = 0.0778 − 0.0375 + 0.0125(3.50) = 0.0841

Km = 1 + (1)[0.0841(1) + 0.175(1)] = 1.259

The bending stress induced by W t in bending, from Eq. (14–15), is

(σ )P = 2502(1)1.48(1.147)
4

3.50

1.259(1)

0.32
= 19 100 psi

The AGMA factor of safety in bending of the pinion, from Eq. (14–41), is 

(SF)P = 40 310(0.938)/[1(0.885)]

19 100
= 2.24

Decision Gear tooth bending. Use cast gear blank because of the 18-in pitch diameter. Use the
same material, heat treatment, and nitriding. The load-induced bending stress is in the
ratio of JP/JG . Then

(σ )G = 19 100
0.32

0.415
= 14 730 psi

The factor of safety of the gear in bending is

(SF)G = 40 310(0.961)/[1(0.885)]

14 730
= 2.97

Pinion tooth wear. The contact stress, given by Eq. (14–16), is

(σc)P = 2300

[
2502(1)1.48(1.147)

1.259

4.5(3.5)

1

0.129

]1/2

= 118 000 psi

The factor of safety from Eq. (14–42), is

(SH )P = 170 000(0.900)/[1(0.885)]

118 000
= 1.465

By our definition of factor of safety, pinion bending is (SF)P = 2.24, and wear is
(SH )2

P = (1.465)2 = 2.15.

Gear tooth wear. The hardness of the gear and pinion are the same. Thus, from
Fig. 14–12, CH = 1, the contact stress on the gear is the same as the pinion, (σc)G =
118 000 psi. The wear strength is also the same, Sc = 170 000 psi. The factor of safety
of the gear in wear is

(SH )G = 170 000(0.929)/[1(0.885)]

118 000
= 1.51

So, for the gear in bending, (SF)G = 2.97, and wear (SH )2
G = (1.51)2 = 2.29.
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Rim. Keep m B ≥ 1.2. The whole depth is ht = addendum + dedendum = 1/Pd +
1.25/Pd = 2.25/Pd = 2.25/4 = 0.5625 in. The rim thickness tR is

tR ≥ m Bht = 1.2(0.5625) = 0.675 in

In the design of the gear blank, be sure the rim thickness exceeds 0.675 in; if it does
not, review and modify this mesh design.

10See H. W. Van Gerpen, C. K. Reece, and J. K. Jensen, Computer Aided Design of Custom Gears,
Van Gerpen–Reece Engineering, Cedar Falls, Iowa, 1996.

This design example showed a satisfactory design for a four-pitch spur-gear mesh.
Material could be changed, as could pitch. There are a number of other satisfactory
designs, thus a figure of merit is needed to identify the best.

One can appreciate that gear design was one of the early applications of the digital
computer to mechanical engineering. A design program should be interactive, present-
ing results of calculations, pausing for a decision by the designer, and showing the con-
sequences of the decision, with a loop back to change a decision for the better. The
program can be structured in totem-pole fashion, with the most influential decision at
the top, then tumbling down, decision after decision, ending with the ability to change
the current decision or to begin again. Such a program would make a fine class project.
Troubleshooting the coding will reinforce your knowledge, adding flexibility as well as
bells and whistles in subsequent terms.

Standard gears may not be the most economical design that meets the functional
requirements, because no application is standard in all respects.10 Methods of design-
ing custom gears are well understood and frequently used in mobile equipment to
provide good weight-to-performance index. The required calculations including opti-
mizations are within the capability of a personal computer.

PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1–1 of Sec. 1–16, p. 24.

Because gearing problems can be difficult, the problems are presented by section.

Section 14–1

14–1 A steel spur pinion has a pitch of 6 teeth/in, 22 full-depth teeth, and a 20◦ pressure angle. The
pinion runs at a speed of 1200 rev/min and transmits 15 hp to a 60-tooth gear. If the face width
is 2 in, estimate the bending stress.

14–2 A steel spur pinion has a diametral pitch of 10 teeth/in, 18 teeth cut full-depth with a 20◦ pressure
angle, and a face width of 1 in. This pinion is expected to transmit 2 hp at a speed of 600 rev/min.
Determine the bending stress.

14–3 A steel spur pinion has a module of 1.25 mm, 18 teeth cut on the 20◦ full-depth system, and a
face width of 12 mm. At a speed of 1800 rev/min, this pinion is expected to carry a steady load
of 0.5 kW. Determine the resulting bending stress.

14–4 A steel spur pinion has 16 teeth cut on the 20◦ full-depth system with a module of 8 mm and a
face width of 90 mm. The pinion rotates at 150 rev/min and transmits 6 kW to the mating steel
gear. What is the resulting bending stress?
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14–5 A steel spur pinion has a module of 1 mm and 16 teeth cut on the 20◦ full-depth system and is to
carry 0.15 kW at 400 rev/min. Determine a suitable face width based on an allowable bending
stress of 150 MPa.

14–6 A 20◦ full-depth steel spur pinion has 20 teeth and a module of 2 mm and is to transmit 0.5 kW at
a speed of 200 rev/min. Find an appropriate face width if the bending stress is not to exceed
75 MPa.

14–7 A 20◦ full-depth steel spur pinion has a diametral pitch of 5 teeth/in and 24 teeth and transmits 6 hp
at a speed of 50 rev/min. Find an appropriate face width if the allowable bending stress is 20 kpsi.

14–8 A steel spur pinion is to transmit 20 hp at a speed of 400 rev/min. The pinion is cut on the 20◦

full-depth system and has a diametral pitch of 4 teeth/in and 16 teeth. Find a suitable face width
based on an allowable stress of 12 kpsi.

14–9 A 20◦ full-depth steel spur pinion with 18 teeth is to transmit 2.5 hp at a speed of 600 rev/min.
Determine appropriate values for the face width and diametral pitch based on an allowable bend-
ing stress of 10 kpsi.

14–10 A 20◦ full-depth steel spur pinion is to transmit 1.5 kW hp at a speed of 900 rev/min. If the pin-
ion has 18 teeth, determine suitable values for the module and face width. The bending stress
should not exceed 75 MPa.

Section 14–2

14–11 A speed reducer has 20◦ full-depth teeth and consists of a 20-tooth steel spur pinion driving a
50-tooth cast-iron gear. The horsepower transmitted is 12 at a pinion speed of 1200 rev/min. For
a diametral pitch of 8 teeth/in and a face width of 1.5 in, find the contact stress.

14–12 A gear drive consists of a 16-tooth 20◦ steel spur pinion and a 48-tooth cast-iron gear having a
pitch of 12 teeth/in. For a power input of 1.5 hp at a pinion speed of 700 rev/min, select a face
width based on an allowable contact stress of 100 kpsi.

14–13 A gearset has a module of 5 mm, a 20◦ pressure angle, and a 24-tooth cast-iron spur pinion
driving a 48-tooth cast-iron gear. The pinion is to rotate at 50 rev/min. What horsepower input
can be used with this gearset if the contact stress is limited to 690 MPa and F = 60 mm?

14–14 A 20◦ 20-tooth cast-iron spur pinion having a module of 4 mm drives a 32-tooth cast-iron gear.
Find the contact stress if the pinion speed is 1000 rev/min, the face width is 50 mm, and 10 kW
of power is transmitted.

14–15 A steel spur pinion and gear have a diametral pitch of 12 teeth/in, milled teeth, 17 and 30 teeth,
respectively, a 20◦ pressure angle, and a pinion speed of 525 rev/min. The tooth properties are
Sut = 76 kpsi, Sy = 42 kpsi and the Brinell hardness is 149. For a design factor of 2.25, a face
width of 7

8 in, what is the power rating of the gearset?

14–16 A milled-teeth steel pinion and gear pair have Sut = 113 kpsi, Sy = 86 kpsi and a hardness at the
involute surface of 262 Brinell. The diametral pitch is 3 teeth/in, the face width is 2.5 in, and
the pinion speed is 870 rev/min. The tooth counts are 20 and 100. For a design factor of 1.5, rate
the gearset for power considering both bending and wear.

14–17 A 20◦ full-depth steel spur pinion rotates at 1145 rev/min. It has a module of 6 mm, a face width
of 75 mm, and 16 milled teeth. The ultimate tensile strength at the involute is 900 MPa exhibit-
ing a Brinell hardness of 260. The gear is steel with 30 teeth and has identical material strengths.
For a design factor of 1.3 find the power rating of the gearset based on the pinion and the gear
resisting bending and wear fatigue.
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14–18 A steel spur pinion has a pitch of 6 teeth/in, 17 full-depth milled teeth, and a pressure angle
of 20◦ . The pinion has an ultimate tensile strength at the involute surface of 116 kpsi, a Brinell
hardness of 232, and a yield strength of 90 kpsi. Its shaft speed is 1120 rev/min, its face width
is 2 in, and its mating gear has 51 teeth. Rate the pinion for power transmission if the design
factor is 2.
(a) Pinion bending fatigue imposes what power limitation?
(b) Pinion surface fatigue imposes what power limitation? The gear has identical strengths to the

pinion with regard to material properties.
(c) Consider power limitations due to gear bending and wear.
(d) Rate the gearset.

Section 14–3 to 14–19

14–19 A commercial enclosed gear drive consists of a 20◦ spur pinion having 16 teeth driving a 48-tooth
gear. The pinion speed is 300 rev/min, the face width 2 in, and the diametral pitch 6 teeth/in. The
gears are grade 1 steel, through-hardened at 200 Brinell, made to No. 6 quality standards,
uncrowned, and are to be accurately and rigidly mounted. Assume a pinion life of 108 cycles and
a reliability of 0.90. Determine the AGMA bending and contact stresses and the corresponding
factors of safety if 5 hp is to be transmitted.

14–20 A 20◦ spur pinion with 20 teeth and a module of 2.5 mm transmits 120 W to a 36-tooth gear. The
pinion speed is 100 rev/min, and the gears are grade 1, 18-mm face width, through-hardened steel
at 200 Brinell, uncrowned, manufactured to a No. 6 quality standard, and considered to be of
open gearing quality installation. Find the AGMA bending and contact stresses and the corre-
sponding factors of safety for a pinion life of 108 cycles and a reliability of 0.95.

14–21 Repeat Prob. 14–19 using helical gears each with a 20◦ normal pitch angle and a helix angle
of 30◦ and a normal diametral pitch of 6 teeth/in.

14–22 A spur gearset has 17 teeth on the pinion and 51 teeth on the gear. The pressure angle is 20◦ and
the overload factor Ko = 1. The diametral pitch is 6 teeth/in and the face width is 2 in. The pin-
ion speed is 1120 rev/min and its cycle life is to be 108 revolutions at a reliability R = 0.99. The
quality number is 5. The material is a through-hardened steel, grade 1, with Brinell hardnesses of
232 core and case of both gears. For a design factor of 2, rate the gearset for these conditions
using the AGMA method.

14–23 In Sec. 14–10, Eq. (a) is given for Ks based on the procedure in Ex. 14–2. Derive this equation.

14–24 A speed-reducer has 20◦ full-depth teeth, and the single-reduction spur-gear gearset has 22 and
60 teeth. The diametral pitch is 4 teeth/in and the face width is 3 1

4 in. The pinion shaft speed is
1145 rev/min. The life goal of 5-year 24-hour-per-day service is about 3(109) pinion revolutions.
The absolute value of the pitch variation is such that the transmission accuracy level number is 6.
The materials are 4340 through-hardened grade 1 steels, heat-treated to 250 Brinell, core and
case, both gears. The load is moderate shock and the power is smooth. For a reliability of 0.99,
rate the speed reducer for power.

14–25 The speed reducer of Prob. 14–24 is to be used for an application requiring 40 hp at 1145 rev/min.
Estimate the stresses of pinion bending, gear bending, pinion wear, and gear wear and the
attendant AGMA factors of safety (SF )P , (SF )G , (SH )P , and (SH )G . For the reducer, what
is the factor of safety for unquantifiable exingencies in W t ? What mode of failure is the most
threatening?

14–26 The gearset of Prob. 14–24 needs improvement of wear capacity. Toward this end the gears are
nitrided so that the grade 1 materials have hardnesses as follows: The pinion core is 250 and the
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pinion case hardness is 390 Brinell, and the gear core hardness is 250 core and 390 case. Estimate
the power rating for the new gearset.

14–27 The gearset of Prob. 14–24 has had its gear specification changed to 9310 for carburizing and
surface hardening with the result that the pinion Brinell hardnesses are 285 core and 580–600
case, and the gear hardnesses are 285 core and 580–600 case. Estimate the power rating for the
new gearset.

14–28 The gearset of Prob. 14–27 is going to be upgraded in material to a quality of grade 2 (9310) steel.
Estimate the power rating for the new gearset.

14–29 Matters of scale always improve insight and perspective. Reduce the physical size of the gearset
in Prob. 14–24 by one-half and note the result on the estimates of transmitted load W t and power.

14–30 AGMA procedures with cast-iron gear pairs differ from those with steels because life predictions
are difficult; consequently (YN )P , (YN )G , (Z N )P , and (Z N )G are set to unity. The consequence
of this is that the fatigue strengths of the pinion and gear materials are the same. The reliability
is 0.99 and the life is 107 revolution of the pinion (K R = 1). For longer lives the reducer is der-
ated in power. For the pinion and gear set of Prob. 14–24, use grade 40 cast iron for both gears
(HB = 201 Brinell). Rate the reducer for power with SF and SH equal to unity.

14–31 Spur-gear teeth have rolling and slipping contact (often about 8 percent slip). Spur gears tested
to wear failure are reported at 108 cycles as Buckingham’s surface fatigue load-stress factor K.
This factor is related to Hertzian contact strength SC by

SC =
√

1.4K

(1/E1 + 1/E2) sin φ

where φ is the normal pressure angle. Cast iron grade 20 gears with φ = 14 1
2

◦
and 20◦ pressure

angle exhibit a minimum K of 81 and 112 psi, respectively. How does this compare with SC =
0.32HB kpsi?

14–32 You’ve probably noticed that although the AGMA method is based on two equations, the details
of assembling all the factors is computationally intensive. To reduce error and omissions, a com-
puter program would be useful. Write a program to perform a power rating of an existing gearset,
then use Prob. 14–24, 14–26, 14–27, 14–28, and 14–29 to test your program by comparing the
results to your longhand solutions.

14–33 In Ex. 14–5 use nitrided grade 1 steel (4140) which produces Brinell hardnesses of 250 core and
500 at the surface (case). Use the upper fatigue curves on Figs. 14–14 and 14–15. Estimate the
power capacity of the mesh with factors of safety of SF = SH = 1.

14–34 In Ex. 14–5 use carburized and case-hardened gears of grade 1. Carburizing and case-hardening
can produce a 550 Brinell case. The core hardnesses are 200 Brinell. Estimate the power
capacity of the mesh with factors of safety of SF = SH = 1, using the lower fatigue curves in
Figs. 14–14 and 14–15.

14–35 In Ex. 14–5, use carburized and case-hardened gears of grade 2 steel. The core hardnesses are 200,
and surface hardnesses are 600 Brinell. Use the lower fatigue curves of Figs. 14–14 and 14–15.
Estimate the power capacity of the mesh using SF = SH = 1. Compare the power capacity with
the results of Prob. 14–34.

14–36* The countershaft in Prob. 3–72, p. 138, is part of a speed reducing compound gear train using 20◦

spur gears. A gear on the input shaft drives gear A. Gear B drives a gear on the output shaft. The
input shaft runs at 2400 rev/min. Each gear reduces the speed (and thus increases the torque) by

Spur and Helical Gears 783Spur and Helical Gears 783
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a 2 to 1 ratio. All gears are to be of the same material. Since gear B is the smallest gear, trans-
mitting the largest load, it will likely be critical, so a preliminary analysis is to be performed on
it. Use a diametral pitch of 2 teeth/in, a face-width of 4 times the circular pitch, a Grade 2 steel
through-hardened to a Brinell hardness of 300, and a desired life of 15 kh with a 95 percent
reliability. Determine factors of safety for bending and wear.

14–37* The countershaft in Prob. 3–73, p. 138, is part of a speed reducing compound gear train using 20◦

spur gears. A gear on the input shaft drives gear A with a 2 to 1 speed reduction. Gear B drives a
gear on the output shaft with a 5 to 1 speed reduction. The input shaft runs at 1800 rev/min. All
gears are to be of the same material. Since gear B is the smallest gear, transmitting the largest
load, it will likely be critical, so a preliminary analysis is to be performed on it. Use a module of
18.75 mm/tooth, a face-width of 4 times the circular pitch, a Grade 2 steel through-hardened
to a Brinell hardness of 300, and a desired life of 12 kh with a 98 percent reliability. Determine
factors of safety for bending and wear.

14–38* Build on the results of Prob. 13–40, p. 728, to find factors of safety for bending and wear for
gear F. Both gears are made from Grade 2 carburized and hardened steel. Use a face-width of
4 times the circular pitch. The desired life is 12 kh with a 95 percent reliability.

14–39* Build on the results of Prob. 13–41, p. 729, to find factors of safety for bending and wear for 
gear C. Both gears are made from Grade 2 carburized and hardened steel. Use a face-width of 
4 times the circular pitch. The desired life is 14 kh with a 98 percent reliability.

784 Mechanical Engineering Design
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786 Mechanical Engineering Design

The American Gear Manufacturers Association (AGMA) has established standards for
the analysis and design of the various kinds of bevel and worm gears. Chapter 14 was
an introduction to the AGMA methods for spur and helical gears. AGMA has estab-
lished similar methods for other types of gearing, which all follow the same general
approach.

15–1 Bevel Gearing—General
Bevel gears may be classified as follows:

• Straight bevel gears

• Spiral bevel gears

• Zerol bevel gears

• Hypoid gears

• Spiroid gears

A straight bevel gear was illustrated in Fig. 13–35. These gears are usually used for
pitch-line velocities up to 1000 ft/min (5 m/s) when the noise level is not an important
consideration. They are available in many stock sizes and are less expensive to produce
than other bevel gears, especially in small quantities.

A spiral bevel gear is shown in Fig. 15–1; the definition of the spiral angle is illus-
trated in Fig. 15–2. These gears are recommended for higher speeds and where the
noise level is an important consideration. Spiral bevel gears are the bevel counterpart of
the helical gear; it can be seen in Fig. 15–1 that the pitch surfaces and the nature of con-
tact are the same as for straight bevel gears except for the differences brought about by
the spiral-shaped teeth.

The Zerol bevel gear is a patented gear having curved teeth but with a zero spiral
angle. The axial thrust loads permissible for Zerol bevel gears are not as large as those
for the spiral bevel gear, and so they are often used instead of straight bevel gears. The
Zerol bevel gear is generated by the same tool used for regular spiral bevel gears. For
design purposes, use the same procedure as for straight bevel gears and then simply
substitute a Zerol bevel gear.

Figure 15–1

Spiral bevel gears. (Courtesy of
Gleason Works, Rochester, N.Y.)
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Basic crown rack

Cutter radius

Spiral
angle

Mean radius
of crown rack

Circular pitch

Face advance

�

Figure 15–2

Cutting spiral-gear teeth on the
basic crown rack.

Figure 15–3

Hypoid gears. (Courtesy of
Gleason Works, Rochester, N.Y.)

It is frequently desirable, as in the case of automotive differential applications, to have
gearing similar to bevel gears but with the shafts offset. Such gears are called hypoid gears,
because their pitch surfaces are hyperboloids of revolution. The tooth action between such
gears is a combination of rolling and sliding along a straight line and has much in common
with that of worm gears. Figure 15–3 shows a pair of hypoid gears in mesh.

Figure 15–4 is included to assist in the classification of spiral bevel gearing. It is
seen that the hypoid gear has a relatively small shaft offset. For larger offsets, the pinion
begins to resemble a tapered worm and the set is then called spiroid gearing.
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Worm

Spiroid

Hypoid

Spiral bevel

Ring gear

Figure 15–4

Comparison of intersecting-
and offset-shaft bevel-type
gearings. (From Gear
Handbook by Darle W. Dudley,
1962, pp. 2–24.)

15–2 Bevel-Gear Stresses and Strengths
In a typical bevel-gear mounting, Fig. 13–36, for example, one of the gears is often
mounted outboard of the bearings. This means that the shaft deflections can be more
pronounced and can have a greater effect on the nature of the tooth contact. Another dif-
ficulty that occurs in predicting the stress in bevel-gear teeth is the fact that the teeth are
tapered. Thus, to achieve perfect line contact passing through the cone center, the teeth
ought to bend more at the large end than at the small end. To obtain this condition
requires that the load be proportionately greater at the large end. Because of this vary-
ing load across the face of the tooth, it is desirable to have a fairly short face width.

Because of the complexity of bevel, spiral bevel, Zerol bevel, hypoid, and spiroid
gears, as well as the limitations of space, only a portion of the applicable standards that
refer to straight-bevel gears is presented here.1 Table 15–1 gives the symbols used in
ANSI/AGMA 2003-B97.

Fundamental Contact Stress Equation

sc = σc = Cp

(
W t

FdP I
Ko Kv KmCsCxc

)1/2

(U.S. customary units)

σH = Z E

(
1000W t

bd Z1
K A Kv K Hβ Zx Zxc

)1/2

(SI units)

(15–1)

The first term in each equation is the AGMA symbol, whereas; σc, our normal notation,
is directly equivalent.

1Figures 15–5 to 15–13 and Tables 15–1 to 15–7 have been extracted from ANSI/AGMA 2003-B97, 
Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel and Spiral
Bevel Gear Teeth with the permission of the publisher, the American Gear Manufacturers Association,
500 Montgomery Street, Suite 350, Alexandria, VA, 22314-1560.
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Table 15–1 

Symbols Used in Bevel Gear Rating Equations, ANSI/AGMA 2003-B97 Standard Source: ANSI/AGMA 2003-B97.

AGMA ISO
Symbol Symbol Description Units

Am Rm Mean cone distance in (mm)
A0 Re Outer cone distance in (mm)
CH ZW Hardness ratio factor for pitting resistance
Ci Zi Inertia factor for pitting resistance
CL ZNT Stress cycle factor for pitting resistance
Cp ZE Elastic coefficient [lbf/in2]0.5

([N/mm2]0.5)
CR ZZ Reliability factor for pitting
CSF Service factor for pitting resistance
CS Zx Size factor for pitting resistance
Cxc Zxc Crowning factor for pitting resistance
D, d de2, de1 Outer pitch diameters of gear and pinion, respectively in (mm)
EG, EP E2, E1 Young’s modulus of elasticity for materials of gear and pinion, respectively lbf/in2

(N/mm2)
e e Base of natural (Napierian) logarithms
F b Net face width in (mm)
FeG, FeP b ′

2, b ′
1 Effective face widths of gear and pinion, respectively in (mm)

fP Ra1 Pinion surface roughness μin (μm)
HBG HB2 Minimum Brinell hardness number for gear material HB
HBP HB1 Minimum Brinell hardness number for pinion material HB
hc Eht min Minimum total case depth at tooth middepth in (mm)
he h′

c Minimum effective case depth in (mm)
he lim h′

c lim Suggested maximum effective case depth limit at tooth middepth in (mm)
I ZI Geometry factor for pitting resistance
J YJ Geometry factor for bending strength
JG, JP YJ2, YJ1 Geometry factor for bending strength for gear and pinion, respectively
KF YF Stress correction and concentration factor
Ki Yi Inertia factor for bending strength
KL YNT Stress cycle factor for bending strength
Km KHβ Load distribution factor
Ko KA Overload factor
KR Yz Reliability factor for bending strength
KS YX Size factor for bending strength
KSF Service factor for bending strength
KT Kθ Temperature factor
Kv Kv Dynamic factor
Kx Yβ Lengthwise curvature factor for bending strength

met Outer transverse module (mm)
mmt Mean transverse module (mm)
mmn Mean normal module (mm)

mNI εNI Load sharing ratio, pitting
mNJ εNJ Load sharing ratio, bending
N z2 Number of gear teeth
NL nL Number of load cycles
n z1 Number of pinion teeth
nP n1 Pinion speed rev/min

(Continued)
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790 Mechanical Engineering Design

AGMA ISO
Symbol Symbol Description Units

P P Design power through gear pair hp (kW)
Pa Pa Allowable transmitted power hp (kW)
Pac Paz Allowable transmitted power for pitting resistance hp (kW)
Pacu Pazu Allowable transmitted power for pitting resistance at unity service factor hp (kW)
Pat Pay Allowable transmitted power for bending strength hp (kW)
Patu Payu Allowable transmitted power for bending strength at unity service factor hp (kW)
Pd Outer transverse diametral pitch teeth/in
Pm Mean transverse diametral pitch teeth/in
Pmn Mean normal diametral pitch teeth/in
Qv Qv Transmission accuracy number
q q Exponent used in formula for lengthwise curvature factor
R, r rmpt 2, rmpt1 Mean transverse pitch radii for gear and pinion, respectively in (mm)
Rt, rt rmyo2, rmyo1 Mean transverse radii to point of load application for gear in (mm)

and pinion, respectively
rc rc 0 Cutter radius used for producing Zerol bevel and spiral bevel gears in (mm)
s gc Length of the instantaneous line of contact between mating tooth surfaces in (mm)
sac σH lim Allowable contact stress number lbf/in2

(N/mm2)
sat σF lim Bending stress number (allowable) lbf/in2

(N/mm2)
sc σH Calculated contact stress number lbf/in2

(N/mm2)
sF sF Bending safety factor
sH sH Contact safety factor
st σF Calculated bending stress number lbf/in2

(N/mm2)
swc σHP Permissible contact stress number lbf/in2

(N/mm2)
swt σFP Permissible bending stress number lbf/in2

(N/mm2)
TP T1 Operating pinion torque lbf in (Nm)
TT θT Operating gear blank temperature °F(°C)
t0 sai Normal tooth top land thickness at narrowest point in (mm)
Uc Uc Core hardness coefficient for nitrided gear lbf/in2

(N/mm2)
UH UH Hardening process factor for steel lbf/in2

(N/mm2)
vt vet Pitch-line velocity at outer pitch circle ft/min (m/s)
YKG, YKP YK2, YK1 Tooth form factors including stress-concentration factor for gear

and pinion, respectively

μG, μp ν2, ν1 Poisson’s ratio for materials of gear and pinion, respectively
ρ0 ρyo Relative radius of profile curvature at point of maximum contact stress in (mm)

between mating tooth surfaces
� �n Normal pressure angle at pitch surface
�t �wt Transverse pressure angle at pitch point
ψ �m Mean spiral angle at pitch surface
ψb �mb Mean base spiral angle 

Table 15–1

Symbols Used in Gear Rating Equations, ANSI/AGMA 2003-B97 Standard (Continued )
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Bevel and Worm Gears 791

Permissible Contact Stress Number (Strength) Equation

swc = (σc)all = sacCLCH

SH KT CR
(U.S. customary units)

σH P = σH lim Z N T ZW

SH Kθ Z Z
(SI units)

(15–2)

Bending Stress

st = W t

F
Pd Ko Kv

Ks Km

Kx J
(U.S. customary units)

σF = 1000W t

b

K A Kv

met

Yx K Hβ

YβYJ
(SI units)

(15–3)

Permissible Bending Stress Equation

swt = sat KL

SF KT K R
(U.S. customary units)

σF P = σF limYN T

SF KθYz
(SI units)

(15–4)

15–3 AGMA Equation Factors
Overload Factor Ko (KA)
The overload factor makes allowance for any externally applied loads in excess of the
nominal transmitted load. Table 15–2, from Appendix A of 2003-B97, is included for
your guidance.

Safety Factors SH and SF

The factors of safety SH and SF as defined in 2003-B97 are adjustments to strength, not
load, and consequently cannot be used as is to assess (by comparison) whether the
threat is from wear fatigue or bending fatigue. Since W t is the same for the pinion and
gear, the comparison of 

√
SH to SF allows direct comparison.

Dynamic Factor Kv

In 2003-C87 AGMA changed the definition of Kv to its reciprocal but used the same
symbol. Other standards have yet to follow this move. The dynamic factor Kv makes

Table 15–2

Overload Factors Ko (KA)

Source: ANSI/AGMA
2003-B97.

Character of Character of Load on Driven Machine
Prime Mover Uniform Light Shock Medium Shock Heavy Shock

Uniform 1.00 1.25 1.50 1.75 or higher

Light shock 1.10 1.35 1.60 1.85 or higher

Medium shock 1.25 1.50 1.75 2.00 or higher

Heavy shock 1.50 1.75 2.00 2.25 or higher

Note: This table is for speed-decreasing drives. For speed-increasing drives, add 0.01(N/n)2 or 0.01(z2/z1)2

to the above factors.
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Figure 15–5

Dynamic factor Kv .
(Source: ANSI/AGMA 
2003-B97.)

allowance for the effect of gear-tooth quality related to speed and load, and the increase
in stress that follows. AGMA uses a transmission accuracy number Qv to describe the
precision with which tooth profiles are spaced along the pitch circle. Figure 15–5 shows
graphically how pitch-line velocity and transmission accuracy number are related to the
dynamic factor Kv . Curve fits are 

Kv =
(

A + √
vt

A

)B

(U.S. customary units)

Kv =
(

A + √
200vet

A

)B

(SI units)

(15–5)

where

A = 50 + 56(1 − B)

B = 0.25(12 − Qv)
2/3

(15–6)

and vt(vet) is the pitch-line velocity at outside pitch diameter, expressed in ft/min (m/s): 

vt = πdPnP/12 (U.S. customary units)

vet = 5.236(10−5)d1n1 (SI units)
(15–7)

The maximum recommended pitch-line velocity is associated with the abscissa of the
terminal points of the curve in Fig. 15–5:

vt max = [A + (Qv − 3)]2 (U.S. customary units)

vet max = [A + (Qv − 3)]2

200
(SI units)

(15–8)

where vt max and vet max are in ft/min and m/s, respectively.
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Bevel and Worm Gears 793

Size Factor for Pitting Resistance Cs (Zx)

Cs =
⎧⎨⎩

0.5 F < 0.5 in

0.125F + 0.4375 0.5 ≤ F ≤ 4.5 in

1 F > 4.5 in

(U.S. customary units)

Zx =
⎧⎨⎩

0.5 b < 12.7 mm

0.004 92b + 0.4375 12.7 ≤ b ≤ 114.3 mm

1 b > 114.3 mm

(SI units)

(15–9)

Size Factor for Bending Ks (Yx)

Ks =
{

0.4867 + 0.2132/Pd 0.5 ≤ Pd ≤ 16 teeth/in

0.5 Pd > 16 teeth/in
(U.S. customary units)

Yx =
{

0.5 met < 1.6 mm

0.4867 + 0.008 339met 1.6 ≤ met ≤ 50 mm
(SI units)

Load-Distribution Factor Km (KH�)

Km = Kmb + 0.0036F2 (U.S. customary units)

K Hβ = Kmb + 5.6(10−6)b2 (SI units)
(15–11)

where

Kmb =
⎧⎨⎩

1.00 both members straddle-mounted

1.10 one member straddle-mounted

1.25 neither member straddle-mounted

Crowning Factor for Pitting Cxc (Zxc)
The teeth of most bevel gears are crowned in the lengthwise direction during manufac-
ture to accommodate to the deflection of the mountings.

Cxc = Zxc =
{

1.5 properly crowned teeth

2.0 or larger uncrowned teeth
(15–12)

Lengthwise Curvature Factor for Bending Strength Kx (Y�)
For straight-bevel gears,

Kx = Yβ = 1 (15–13)

Pitting Resistance Geometry Factor I (ZI)
Figure 15–6 shows the geometry factor I (ZI) for straight-bevel gears with a 20◦ pressure
angle and 90◦ shaft angle. Enter the figure ordinate with the number of pinion teeth,
move to the number of gear-teeth contour, and read from the abscissa.

Bending Strength Geometry Factor J (YJ)
Figure 15–7 shows the geometry factor J for straight-bevel gears with a 20◦ pressure
angle and 90◦ shaft angle.

(15–10)
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Contact geometry factor I (ZI)
for coniflex straight-bevel gears
with a 20◦ normal pressure
angle and a 90◦ shaft angle.
(Source: ANSI/AGMA 
2003-B97.)
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(Source: ANSI/AGMA 
2003-B97.)
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Figure 15–8

Contact stress-cycle factor for pitting resistance CL (ZNT) for carburized case-hardened steel bevel gears.
(Source: ANSI/AGMA 2003-B97.)

Stress-Cycle Factor for Pitting Resistance CL (ZNT)

CL =
{

2 103 ≤ NL < 104

3.4822N−0.0602
L 104 ≤ NL ≤ 1010

Z N T =
{ 2 103 ≤ nL < 104

3.4822n−0.0602
L 104 ≤ nL ≤ 1010

(15–14)

See Fig. 15–8 for a graphical presentation of Eqs. (15–14).

Stress-Cycle Factor for Bending Strength KL (YNT)

KL =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2.7 102 ≤ NL < 103

6.1514N−0.1182
L 103 ≤ NL < 3(106)

1.6831N−0.0323
L 3(106) ≤ NL ≤ 1010 general

1.3558N−0.0178
L 3(106) ≤ NL ≤ 1010 critical

YN T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2.7 102 ≤ nL < 103

6.1514n−0.1182
L 103 ≤ nL < 3(106)

1.6831n−0.0323
L 3(106) ≤ nL ≤ 1010 general

1.3558n−0.0323
L 3(106) ≤ nL ≤ 1010 critical

See Fig. 15–9 for a plot of Eqs. (15–15).

(15–15)

bud29281_ch15_785-824.qxd  12/18/09  5:49 PM  Page 795 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



796 Mechanical Engineering Design
St

re
ss

-c
yc

le
 f

ac
to

r,
 K

L
 (

Y N
T
)

Number of load cycles, NL (nL)

104102 103
0.5

0.6

0.7

0.8

0.9
1.0

0.5

0.6

0.7

0.8

0.9
1.0

1.5

2.0

3.0

3.5

105 106 107 108 109 1010

KL = 1.3558 NL
–0.0178

YNT = 1.3558 nL
–0.0178

NOTE: The choice of KL (YNT) is influenced by:
Pitch-line velocity
Gear material cleanliness
Residual stress
Material ductility and fracture toughness

KL = 1.683 NL
–0.0323

YNT = 1.683 nL
–0.0323

KL = 6.1514 NL
–0.1192

YNT = 6.1514 nL
–0.1192

Case carburized

Figure 15–9

Stress-cycle factor for bending strength KL (YNT) for carburized case-hardened steel bevel gears.
(Source: ANSI/AGMA 2003-B97.)

Hardness-Ratio Factor CH (ZW)

CH = 1 + B1(N/n − 1) B1 = 0.008 98(HB P/HBG) − 0.008 29

ZW = 1 + B1(z1/z2 − 1) B1 = 0.008 98(HB1/HB2) − 0.008 29
(15–16)

The preceding equations are valid when 1.2 ≤ HB P/HBG ≤ 1.7 (1.2 ≤ HB1/HB2 ≤ 1.7).
Figure 15–10 graphically displays Eqs. (15–16). When a surface-hardened pinion 
(48 HRC or harder) is run with a through-hardened gear (180 ≤ HB ≤ 400), a work-
hardening effect occurs. The CH (ZW ) factor varies with pinion surface roughness fP(Ra1)

and the mating-gear hardness:

CH = 1 + B2(450 − HBG) B2 = 0.000 75 exp(−0.0122 fP)

ZW = 1 + B2(450 − HB2) B2 = 0.000 75 exp(−0.52 fP)
(15–17)

where fP(Ra1) = pinion surface hardness μin (μm)

HBG(HB2) = minimum Brinell hardness

See Fig. 15–11 for carburized steel gear pairs of approximately equal hardness CH =
ZW = 1.

Temperature Factor KT (K�)

KT =
{

1 32◦F ≤ t ≤ 250◦F

(460 + t)/710 t > 250◦F

Kθ =
{

1 0◦C ≤ θ ≤ 120◦C

(273 + θ)/393 θ > 120◦C

(15–18)
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Hardness-ratio factor CH (ZW)
for through-hardened pinion
and gear. 
(Source: ANSI/AGMA 
2003-B97.)
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Hardness-ratio factor CH (ZW)
for surface-hardened pinions.
(Source: ANSI/AGMA 
2003-B97.)

Reliability Factors CR (ZZ) and KR (YZ)

Table 15–3 displays the reliability factors. Note that CR = √
K R and Z Z = √

YZ .
Logarithmic interpolation equations are 

(15–19)

(15–20)

The reliability of the stress (fatigue) numbers allowable in Tables 15–4, 15–5, 15–6, and
15–7 is 0.99.

YZ = K R =
{

0.50 − 0.25 log(1 − R) 0.99 ≤ R ≤ 0.999

0.70 − 0.15 log(1 − R) 0.90 ≤ R < 0.99
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Reliability
Factors for Steel*

Requirements of Application CR (ZZ) KR (YZ)†

Fewer than one failure in 10 000 1.22 1.50

Fewer than one failure in 1000 1.12 1.25

Fewer than one failure in 100 1.00 1.00

Fewer than one failure in 10 0.92 0.85‡

Fewer than one failure in 2 0.84 0.70§

*At the present time there are insufficient data concerning the reliability of bevel gears
made from other materials.
†Tooth breakage is sometimes considered a greater hazard than pitting. In such cases a
greater value of KR (YZ) is selected for bending.
‡At this value plastic flow might occur rather than pitting.
§From test data extrapolation.

Table 15–3 

Reliability Factors

Source: ANSI/AGMA
2003-B97.

Elastic Coefficient for Pitting Resistance Cp (ZE)

Cp =
√

1

π
[(

1 − ν2
P

)/
EP + (

1 − ν2
G

)/
EG

]
Z E =

√
1

π
[(

1 − ν2
1

)/
E1 + (

1 − ν2
2

)/
E2

]
(15–21)

Minimum Allowable Contact Stress Number,
Material Heat Surface* sac (�H lim) lbf/in2 (N/mm2)
Designation Treatment Hardness Grade 1† Grade 2† Grade 3†

Steel Through-hardened‡ Fig. 15–12 Fig. 15–12 Fig. 15–12

Flame or induction 50 HRC 175 000 190 000
hardened§ (1210) (1310)

Carburized and 2003-B97 200 000 225 000 250 000
case hardened§ Table 8 (1380) (1550) (1720)

AISI 4140 Nitrided§ 84.5 HR15N 145 000
(1000)

Nitralloy 160 000
135M Nitrided§ 90.0 HR15N (1100)

*Hardness to be equivalent to that at the tooth middepth in the center of the face width.
†See ANSI/AGMA 2003-B97, Tables 8 through 11, for metallurgical factors for each stress grade of steel gears.
‡These materials must be annealed or normalized as a minumum.
§The allowable stress numbers indicated may be used with the case depths prescribed in 21.1, ANSI/AGMA 2003-B97.

Table 15–4

Allowable Contact Stress Number for Steel Gears, sac (σH lim) Source: ANSI/AGMA 2003-B97.
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Material Designation
Typical Minimum Allowable Contact

Heat Surface Stress Number, sac

Material ASTM ISO Treatment Hardness (�H lim) lbf/in2 (N/mm2)

Cast iron ASTM A48 ISO/DR 185
Class 30 Grade 200 As cast 175 HB 50 000 (345)
Class 40 Grade 300 As cast 200 HB 65 000 (450)

Ductile ASTM A536 ISO/DIS 1083
(nodular) Grade 80-55-06 Grade 600-370-03 Quenched 180 HB 94 000 (650)
iron Grade 120-90-02 Grade 800-480-02 and tempered 300 HB 135 000 (930)

Table 15–5

Allowable Contact Stress Number for Iron Gears, sac (σH lim) Source: ANSI/AGMA 2003-B97.

where Cp = elastic coefficient, 2290 
√

psi for steel

Z E = elastic coefficient, 190 
√

N/mm2 for steel

EP and EG = Young’s moduli for pinion and gear respectively, psi

E1 and E2 = Young’s moduli for pinion and gear respectively, N/mm2

Allowable Contact Stress

Tables 15–4 and 15–5 provide values of sac(σH ) for steel gears and for iron gears,
respectively. Figure 15–12 graphically displays allowable stress for grade 1 and 2
materials.

Minimum Bending Stress Number (Allowable),
Material Heat Surface sat (�F lim) lbf/in2 (N/mm2)
Designation Treatment Hardness Grade 1* Grade 2* Grade 3*

Steel Through-hardened Fig. 15–13 Fig. 15–13 Fig. 15–13

Flame or induction hardened
Unhardened roots 50 HRC 15 000 (85) 13 500 (95)
Hardened roots 22 500 (154)

Carburized and case 2003-B97
hardened† Table 8 30 000 (205) 35 000 (240) 40 000 (275)

AISI 4140 Nitrided†,‡ 84.5 HR15N 22 000 (150)

Nitralloy 135M Nitrided†,‡ 90.0 HR15N 24 000 (165)

∗See ANSI/AGMA 2003-B97, Tables 8–11, for metallurgical factors for each stress grade of steel gears.
†The allowable stress numbers indicated may be used with the case depths prescribed in 21.1, ANSI/AGMA 2003-B97.
‡The overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be investigated
before proceeding with the design.

Table 15–6

Allowable Bending Stress Numbers for Steel Gears, sat (σF lim) Source: ANSI/AGMA 2003-B97.
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Material Designation
Typical Minimum Bending Stress Number

Heat Surface (Allowable), sat

Material ASTM ISO Treatment Hardness (�F lim) lbf/in2 (N/mm2)

Cast iron ASTM A48 ISO/DR 185
Class 30 Grade 200 As cast 175 HB 4500 (30)
Class 40 Grade 300 As cast 200 HB 6500 (45)

Ductile ASTM A536 ISO/DIS 1083
(nodular) Grade 80-55-06 Grade 600-370-03 Quenched 180 HB 10 000 (70)
iron Grade 120-90-02 Grade 800-480-02 and tempered 300 HB 13 500 (95)

Table 15–7

Allowable Bending Stress Number for Iron Gears, sat (σF lim) Source: ANSI/AGMA 2003-B97.

The equations are

sac = 341HB + 23 620 psi grade 1
σH lim = 2.35HB + 162.89 MPa grade 1
sac = 363.6HB + 29 560 psi grade 2
σH lim = 2.51HB + 203.86 MPa grade 2

(15–22)

Allowable Bending Stress Numbers

Tables 15–6 and 15–7 provide sat(σF lim) for steel gears and for iron gears, respectively.
Figure 15–13 shows graphically allowable bending stress sat(σH lim) for through-hardened
steels. The equations are

sat = 44HB + 2100 psi grade 1
σF lim = 0.30HB + 14.48 MPa grade 1
sat = 48HB + 5980 psi grade 2
σH lim = 0.33HB + 41.24 MPa grade 2

(15–23)

Reversed Loading

AGMA recommends use of 70 percent of allowable strength in cases where tooth load
is completely reversed, as in idler gears and reversing mechanisms.

Summary

Figure 15–14 is a “roadmap” for straight-bevel gear wear relations using 2003-B97.
Figure 15–15 is a similar guide for straight-bevel gear bending using 2003-B97.
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Allowable contact stress
number for through-hardened
steel gears, sac(σH lim).
(Source: ANSI/AGMA 
2003-B97.)
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(�F lim = 0.30 HB + 14.48)

Figure 15–13

Allowable bending stress
number for through-hardened
steel gears, sat (σF lim).
(Source: ANSI/AGMA
2003-B97.)

STRAIGHT-BEVEL GEAR WEAR

Gear
contact
stress

Gear
wear
strength

Wear
factor
of safety

BASED ON ANSI ⁄AGMA 2003-B97

Geometry Force Analysis Strength Analysis

dp =
NP

Pd

dav = dp − F cos �

� =
NP

NG
tan−1

� =
NG

NP
tan−1

W t =

W r = W t tan� cos�

W a = W t tan� sin�

2T
dav

W t =

W r = W t tan� cos�

W a = W t tan� sin�

2T
dp

Sc = �c = Cp Ko Kv Km Cs Cxc
W t

FdP I( )1 ⁄ 2

Swc = (�c)all =
sac CL CH

SH KT CR

At large end of tooth

Table 15-2, p. 791
Eqs. (15-5) to (15-8), p. 792

Eq. (15-11), p. 793

Tables 15-4, 15-5, Fig. 15-12, Eq. (15-22), pp. 798–800
Fig. 15-8, Eq. (15-14), p. 795

Eqs. (15-16), (15-17), gear only, p. 796

Eq. (15-12), p. 793

Eq. (15-9), p. 793

Eqs. (15-19), (15-20), Table 15-3, pp. 797, 798

Eq. (15-18), p. 796

Fig. 15-6, p. 794
Eq. (15-21), p. 798

SH =           , based on strength
(�c)all

�c

nw =                 , based on W t ; can be compared
                          directly with SF

(�c)all
�c( )2

Figure 15–14

“Roadmap” summary of
principal straight-bevel gear
wear equations and their
parameters.
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802 Mechanical Engineering Design

STRAIGHT-BEVEL GEAR BENDING

Gear
bending
stress

Gear
bending
strength

Bending
factor
of safety

BASED ON ANSI ⁄AGMA 2003-B97

Geometry Force Analysis Strength Analysis

dp =
NP

P

dav = dp − F cos �

� =
NP

NG
tan−1

� =
NG

NP
tan−1

W t =

W r = W t tan� cos�

W a = W t tan� sin�

2T
dav

W t =

W r = W t tan� cos�

W a = W t tan� sin�

2T
dp

Swt = �all =
sat KL

SF KT KR

At large end of tooth

Table 15-2, p. 791

Eqs. (15-5) to (15-8), p. 792

Eq. (15-11), p. 793

Eq. (15-10), p. 793

Table 15-6 or 15-7, pp. 799, 800

Fig. 15-9, Eq. (15-15), pp. 795, 796

Fig. 15-7, p. 794

Eq. (15-13), p. 793

Eqs. (15-19), (15-20), Table 15-3, pp. 797, 798

Eq. (15-18), p. 796

SF =       , based on strength
�all
�

nB =       , based on W t , same as SF

�all
�

St = � = Pd Ko Kv
W t

F
Ks Km

Kx J

Figure 15–15

“Roadmap” summary of
principal straight-bevel gear
bending equations and their
parameters.

The standard does not mention specific steel but mentions the hardness attainable
by heat treatments such as through-hardening, carburizing and case-hardening, flame-
hardening, and nitriding. Through-hardening results depend on size (diametral pitch).
Through-hardened materials and the corresponding Rockwell C-scale hardness at the
90 percent martensite shown in parentheses following include 1045 (50), 1060 (54),
1335 (46), 2340 (49), 3140 (49), 4047 (52), 4130 (44), 4140 (49), 4340 (49), 5145 (51),
E52100 (60), 6150 (53), 8640 (50), and 9840 (49). For carburized case-hard materials
the approximate core hardnesses are 1015 (22), 1025 (37), 1118 (33), 1320 (35), 2317
(30), 4320 (35), 4620 (35), 4820 (35), 6120 (35), 8620 (35), and E9310 (30). The con-
version from HRC to HB (300-kg load, 10-mm ball) is

HRC 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10

HB 388 375 352 331 321 301 285 269 259 248 235 223 217 207 199 192 187
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Bevel and Worm Gears 803

Most bevel-gear sets are made from carburized case-hardened steel, and the factors
incorporated in 2003-B97 largely address these high-performance gears. For through-
hardened gears, 2003-B97 is silent on KL and CL , and Figs. 15–8 and 15–9 should
prudently be considered as approximate.

15–4 Straight-Bevel Gear Analysis

EXAMPLE 15–1 A pair of identical straight-tooth miter gears listed in a catalog has a diametral pitch of
5 at the large end, 25 teeth, a 1.10-in face width, and a 20◦ normal pressure angle; the
gears are grade 1 steel through-hardened with a core and case hardness of 180 Brinell.
The gears are uncrowned and intended for general industrial use. They have a quality
number of Qv = 7. It is likely that the application intended will require outboard
mounting of the gears. Use a safety factor of 1, a 107 cycle life, and a 0.99 reliability.
(a) For a speed of 600 rev/min find the power rating of this gearset based on AGMA
bending strength.
(b) For the same conditions as in part (a) find the power rating of this gearset based on
AGMA wear strength.
(c) For a reliability of 0.995, a gear life of 109 revolutions, and a safety factor of
SF = SH = 1.5, find the power rating for this gearset using AGMA strengths.

Solution From Figs. 15–14 and 15–15,

dP = NP/P = 25/5 = 5.000 in

vt = πdPnP/12 = π(5)600/12 = 785.4 ft/min

Overload factor: uniform-uniform loading, Table 15–2, Ko = 1.00.
Safety factor: SF = 1, SH = 1.
Dynamic factor Kv : from Eq. (15–6),

B = 0.25(12 − 7)2/3 = 0.731

A = 50 + 56(1 − 0.731) = 65.06

Kv =
(

65.06 + √
785.4

65.06

)0.731

= 1.299

From Eq. (15–8),

vt max = [65.06 + (7 − 3)]2 = 4769 ft/min

vt < vt max, that is, 785.4 < 4769 ft/min, therefore Kv is valid. From Eq. (15–10),

Ks = 0.4867 + 0.2132/5 = 0.529

From Eq. (15–11), 

Kmb = 1.25 and Km = 1.25 + 0.0036(1.10)2 = 1.254

From Eq. (15–13), Kx = 1. From Fig. 15–6, I = 0.065; from Fig. 15–7, JP = 0.216,
JG = 0.216. From Eq. (15–15),

KL = 1.683(107)−0.0323 = 0.999 96
.= 1

bud29281_ch15_785-824.qxd  12/18/09  5:49 PM  Page 803 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



804 Mechanical Engineering Design

From Eq. (15–14),

CL = 3.4822(107)−0.0602 = 1.32

Since HB P/HBG = 1, then from Fig. 15–10, CH = 1. From Eqs. (15–13) and (15–18),
Kx = 1 and KT = 1, respectively. From Eq. (15–20),

K R = 0.70 − 0.15 log(1 − 0.99) = 1, CR =
√

K R =
√

1 = 1

(a) Bending: From Eq. (15–23),

sat = 44(180) + 2100 = 10 020 psi

From Eq. (15–3),

st = σ = W t

F
Pd Ko Kv

Ks Km

Kx J
= W t

1.10
(5)(1)1.299

0.529(1.254)

(1)0.216

= 18.13W t

From Eq. (15–4),

swt = sat KL

SF KT K R
= 10 020(1)

(1)(1)(1)
= 10 020 psi

Equating st and swt ,

18.13W t = 10 020 W t = 552.6 lbf

Answer H = W tvt

33 000
= 552.6(785.4)

33 000
= 13.2 hp

(b) Wear: From Fig. 15–12,

sac = 341(180) + 23 620 = 85 000 psi

From Eq. (15–2),

σc,all = sacCLCH

SH KT CR
= 85 000(1.32)(1)

(1)(1)(1)
= 112 200 psi

Now Cp = 2290
√

psi from definitions following Eq. (15–21). From Eq. (15–9),

Cs = 0.125(1.1) + 0.4375 = 0.575

From Eq. (15–12), Cxc = 2. Substituting in Eq. (15–1) gives 

σc = Cp

(
W t

FdP I
Ko Kv KmCsCxc

)1/2

= 2290

[
W t

1.10(5)0.065
(1)1.299(1.254)0.575(2)

]1/2

= 5242
√

W t

Equating σc and σc,all gives

5242
√

W t = 112 200, W t = 458.1 lbf

H = 458.1(785.4)

33 000
= 10.9 hp
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Bevel and Worm Gears 805

Rated power for the gearset is

Answer H = min(12.9, 10.9) = 10.9 hp

(c) Life goal 109 cycles, R = 0.995, SF = SH = 1.5, and from Eq. (15–15),

KL = 1.683(109)−0.0323 = 0.8618

From Eq. (15–19),

K R = 0.50 − 0.25 log(1 − 0.995) = 1.075, CR =
√

K R =
√

1.075 = 1.037

From Eq. (15–14),

CL = 3.4822(109)−0.0602 = 1

Bending: From Eq. (15–23) and part (a), sat = 10 020 psi. From Eq. (15–3),

st = σ = W t

1.10
5(1)1.299

0.529(1.254)

(1)0.216
= 18.13W t

From Eq. (15–4),

swt = sat KL

SF KT K R
= 10 020(0.8618)

1.5(1)1.075
= 5355 psi

Equating st to swt gives

18.13W t = 5355 W t = 295.4 lbf

H = 295.4(785.4)

33 000
= 7.0 hp

Wear: From Eq. (15–22), and part (b), sac = 85 000 psi.
Substituting into Eq. (15–2) gives

σc,all = sacCLCH

SH KT CR
= 85 000(1)(1)

1.5(1)1.037
= 54 640 psi

Substituting into Eq. (15–1) gives, from part (b), σc = 5242
√

W t .
Equating σc to σc,all gives

σc = σc,all = 54 640 = 5242
√

W t W t = 108.6 lbf

The wear power is

H = 108.6(785.4)

33 000
= 2.58 hp

Answer The mesh rated power is H = min(7.0, 2.58) = 2.6 hp.
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806 Mechanical Engineering Design

15–5 Design of a Straight-Bevel Gear Mesh
A useful decision set for straight-bevel gear design is

• Function

• Design factor

• Tooth system

• Tooth count

• Pitch and face width

• Quality number

• Gear material, core and case hardness

• Pinion material, core and case hardness

In bevel gears the quality number is linked to the wear strength. The J factor for the gear
can be smaller than for the pinion. Bending strength is not linear with face width,
because added material is placed at the small end of the teeth. Consequently, face width
is roughly prescribed as

F = min(0.3A0, 10/Pd) (15–24)

where A0 is the cone distance (see Fig. 13–20), given by

A0 = dP

2 sin γ
= dG

2 sin �
(15–25)

EXAMPLE 15–2 Design a straight-bevel gear mesh for shaft centerlines that intersect perpendicularly, to
deliver 6.85 hp at 900 rev/min with a gear ratio of 3:1, temperature of 300◦F, normal
pressure angle of 20◦, using a design factor of 2. The load is uniform-uniform. Although
the minimum number of teeth on the pinion is 13, which will mesh with 31 or more
teeth without interference, use a pinion of 20 teeth. The material is to be AGMA grade 1
and the teeth are to be crowned. The reliability goal is 0.995 with a pinion life of 109

revolutions.

Solution First we list the a priori decisions and their immediate consequences.

Function: 6.85 hp at 900 rev/min, gear ratio mG = 3, 300◦F environment, neither gear
straddle-mounted, Kmb = 1.25 [Eq. (15–11)], R = 0.995 at 109 revolutions of the pinion,

Eq. (15–14): (CL)G = 3.4822(109/3)−0.0602 = 1.068

(CL)P = 3.4822(109)−0.0602 = 1

Eq. (15–15): (KL)G = 1.683(109/3)−0.0323 = 0.8929

(KL)P = 1.683(109)−0.0323 = 0.8618

Eq. (15–19): K R = 0.50 − 0.25 log(1 − 0.995) = 1.075

CR = √
K R = √

1.075 = 1.037

Eq. (15–18): KT = CT = (460 + 300)/710 = 1.070

⎫⎪⎪⎪⎬⎪⎪⎪⎭ A priori decisions

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Design variables

bud29281_ch15_785-824.qxd  12/18/09  5:49 PM  Page 806 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Bevel and Worm Gears 807

Design factor: nd = 2, SF = 2, SH = √
2 = 1.414.

Tooth system: crowned, straight-bevel gears, normal pressure angle 20◦,

Eq. (15–13): Kx = 1

Eq. (15–12): Cxc = 1.5.

With NP = 20 teeth, NG = (3)20 = 60 teeth and from Fig. 15–14,

γ = tan−1(NP/NG) = tan−1(20/60) = 18.43◦ � = tan−1(60/20) = 71.57◦

From Figs. 15–6 and 15–7, I = 0.0825, JP = 0.248, and JG = 0.202. Note that
JP > JG .

Decision 1: Trial diametral pitch, Pd = 8 teeth/in. 

Eq. (15–10): Ks = 0.4867 + 0.2132/8 = 0.5134

dP = NP/Pd = 20/8 = 2.5 in

dG = 2.5(3) = 7.5 in

vt = πdPnP/12 = π(2.5)900/12 = 589.0 ft/min

W t = 33 000 hp/vt = 33 000(6.85)/589.0 = 383.8 lbf

Eq. (15–25): A0 = dP/(2 sin γ ) = 2.5/(2 sin 18.43◦) = 3.954 in

Eq. (15–24):

F = min(0.3A0, 10/Pd) = min[0.3(3.954), 10/8] = min(1.186, 1.25) = 1.186 in

Decision 2: Let F = 1.25 in. Then,

Eq. (15–9): Cs = 0.125(1.25) + 0.4375 = 0.5937

Eq. (15–11): Km = 1.25 + 0.0036(1.25)2 = 1.256

Decision 3: Let the transmission accuracy number be 6. Then, from Eq. (15–6),

B = 0.25(12 − 6)2/3 = 0.8255

A = 50 + 56(1 − 0.8255) = 59.77

Eq. (15–5): Kv =
(

59.77 + √
589.0

59.77

)0.8255

= 1.325

Decision 4: Pinion and gear material and treatment. Carburize and case-harden grade
ASTM 1320 to

Core 21 HRC (HB is 229 Brinell)
Case 55-64 HRC (HB is 515 Brinell)

From Table 15–4, sac = 200 000 psi and from Table 15–6, sat = 30 000 psi.

Gear bending: From Eq. (15–3), the bending stress is

(st)G = W t

F
Pd Ko Kv

Ks Km

Kx JG
= 383.8

1.25
8(1)1.325

0.5134(1.256)

(1)0.202

= 10 390 psi
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808 Mechanical Engineering Design

The bending strength, from Eq. (15–4), is given by

(swt)G =
(

sat KL

SF KT K R

)
G

= 30 000(0.8929)

2(1.070)1.075
= 11 640 psi

The strength exceeds the stress by a factor of 11640/10390 = 1.12, giving an actual
factor of safety of (SF)G = 2(1.12) = 2.24.

Pinion bending: The bending stress can be found from

(st)P = (st)G
JG

JP
= 10 390

0.202

0.248
= 8463 psi

The bending strength, again from Eq. (15–4), is given by

(swt)P =
(

sat KL

SF KT K R

)
P

= 30 000 (0.8618)

2(1.070)1.075
= 11 240 psi

The strength exceeds the stress by a factor of 11 240/8463 = 1.33, giving an actual fac-
tor of safety of (SF)P = 2(1.33) = 2.66.

Gear wear: The load-induced contact stress for the pinion and gear, from Eq. (15–1), is

sc = Cp

(
W t

FdP I
Ko Kv KmCsCxc

)1/2

= 2290

[
383.8

1.25(2.5)0.0825
(1)1.325(1.256)0.5937(1.5)

]1/2

= 107 560 psi

From Eq. (15–2) the contact strength of the gear is

(swc)G =
(

sacCLCH

SH KT CR

)
G

= 200 000(1.068)(1)√
2(1.070)1.037

= 136 120 psi

The strength exceeds the stress by a factor of 136 120/107 560 = 1.266, giving an actual
factor of safety of (SH )2

G = 1.2662(2) = 3.21.

Pinion wear: From Eq. (15–2) the contact strength of the pinion is

(swc)P =
(

sacCLCH

SH KT CR

)
P

= 200 000(1)(1)√
2(1.070)1.037

= 127 450 psi

The strength exceeds the stress by a factor of 136 120/127 450 = 1.068, giving an
actual factor of safety of (SH )2

P = 1.0682(2) = 2.28.
The actual factors of safety are 2.24, 2.66, 3.21, and 2.28. Making a direct compari-

son of the factors, we note that the threat from gear bending and pinion wear are prac-
tically equal. We also note that three of the ratios are comparable. Our goal would be to
make changes in the design decisions that drive the factors closer to 2. The next step
would be to adjust the design variables. It is obvious that an iterative process is
involved. We need a figure of merit to order the designs. A computer program clearly is
desirable.
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�n

14.5° 20° 25°
Quantity Symbol NW � 2 NW � 2 NW � 2

Addendum a 0.3183px 0.3183px 0.286px

Dedendum b 0.3683px 0.3683px 0.349px

Whole depth ht 0.6866px 0.6866px 0.635px

*The table entries are for a tangential diametral pitch of the gear of Pt = 1.

Table 15–8

Cylindrical Worm

Dimensions Common to

Both Worm and Gear*

15–6 Worm Gearing—AGMA Equation
Since they are essentially nonenveloping worm gears, the crossed helical gears, shown
in Fig. 15–16, can be considered with other worm gearing. Because the teeth of worm
gears have point contact changing to line contact as the gears are used, worm gears are
said to “wear in,” whereas other types “wear out.”

Crossed helical gears, and worm gears too, usually have a 90◦ shaft angle, though
this need not be so. The relation between the shaft and helix angles is∑

= ψP ± ψG (15–26)

where
∑

is the shaft angle. The plus sign is used when both helix angles are of the
same hand, and the minus sign when they are of opposite hand. The subscript P in
Eq. (15–26) refers to the pinion (worm); the subscript W is used for this same purpose.
The subscript G refers to the gear, also called gear wheel, worm wheel, or simply the
wheel. Table 15–8 gives cylindrical worm dimensions common to worm and gear.

Section 13–11 introduced worm gears, and Sec. 13–17 developed the force analy-
sis and efficiency of worm gearing to which we will refer. Here our interest is in
strength and durability. Good proportions indicate the pitch worm diameter d falls in
the range

C0.875

3
≤ d ≤ C0.875

1.6
(15–27)

Pitch cylinder
of B

Pitch cylinder
of A

Axis of B

Axis of A

Figure 15–16

View of the pitch cylinders of a
pair of crossed helical gears.
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810 Mechanical Engineering Design

where C is the center-to-center distance.2 AGMA relates the allowable tangential force
on the worm-gear tooth (W t)all to other parameters by

(W t)all = Cs D0.8
m FeCmCv (15–28)

where Cs = materials factor

Dm = mean gear diameter, in (mm)

Fe = effective face width of the gear (actual face width, but not to exceed
0.67dm , the mean worm diameter), in (mm)

Cm = ratio correction factor

Cv = velocity factor

The friction force Wf is given by

Wf = f W t

cos λ cos φn
(15–29)

where f = coefficient of friction

λ = lead angle at mean worm diameter

φn = normal pressure angle

The sliding velocity Vs is

Vs = πnW dm

12 cos λ
(15–30)

where nW = rotative speed of the worm and dm = mean worm diameter. The torque at
the worm gear is

TG = W t Dm

2
(15–31)

where Dm is the mean gear diameter.
The parameters in Eq. (15–28) are, quantitatively,

Cs = 270 + 10.37C3 C ≤ 3 in (15–32)

For sand-cast gears,

Cs =
{

1000 C > 3 dG ≤ 2.5 in

1190 − 477 log dG C > 3 dG > 2.5 in
(15–33)

For chilled-cast gears,

Cs =
{

1000 C > 3 dG ≤ 8 in

1412 − 456 log dG C > 3 dG > 8 in
(15–34)

2ANSI/AGMA 6034-B92, February 1992, Practice for Enclosed Cylindrical Wormgear Speed-Reducers
and Gear Motors; and ANSI/AGMA 6022-C93, Dec. 1993, Design Manual for Cylindrical Wormgearing.
Note: Equations (15–32) to (15–38) are contained in Annex C of 6034-B92 for informational purposes 
only. To comply with ANSI/AGMA 6034-B92, use the tabulations of these rating factors provided in the
standard.
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Bevel and Worm Gears 811

For centrifugally cast gears,

Cs =
{

1000 C > 3 dG ≤ 25 in

1251 − 180 log dG C > 3 dG > 25 in
(15–35)

The ratio correction factor Cm is given by

Cm =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.02

√
−m2

G + 40mG − 76 + 0.46 3 < mG ≤ 20

0.0107
√

−m2
G + 56mG + 5145 20 < mG ≤ 76

1.1483 − 0.006 58mG mG > 76

(15–36)

The velocity factor Cv is given by

Cv =

⎧⎪⎨⎪⎩
0.659 exp(−0.0011Vs) Vs < 700 ft/min

13.31V −0.571
s 700 ≤ Vs < 3000 ft/min

65.52V −0.774
s Vs > 3000 ft/min

(15–37)

AGMA reports the coefficient of friction f as

f =

⎧⎪⎨⎪⎩
0.15 Vs = 0

0.124 exp
(−0.074V 0.645

s

)
0 < Vs ≤ 10 ft/min

0.103 exp
(−0.110V 0.450

s

) + 0.012 Vs > 10 ft/min

(15–38)

Now we examine some worm-gear mesh geometry. The addendum a and dedendum b
are

a = px

π
= 0.3183px (15–39)

b = 1.157px

π
= 0.3683px (15–40)

The full depth ht is

ht =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2.157px

π
= 0.6866px px ≥ 0.16 in

2.200px

π
+ 0.002 = 0.7003px + 0.002 px < 0.16 in

(15–41)

The worm outside diameter d0 is

d0 = d + 2a (15–42)

The worm root diameter dr is

dr = d − 2b (15–43)

The worm-gear throat diameter Dt is

Dt = D + 2a (15–44)
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812 Mechanical Engineering Design

3Earle Buckingham, Analytical Mechanics of Gears, McGraw-Hill, New York, 1949, p. 495.

where D is the worm-gear pitch diameter. The worm-gear root diameter Dr is

Dr = D − 2b (15–45)

The clearance c is

c = b − a (15–46)

The worm face width (maximum) (FW )max is

(FW )max = 2

√(
Dt

2

)2

−
(

D

2
− a

)2

= 2
√

2Da (15–47)

which was simplified using Eq. (15–44). The worm-gear face width FG is

FG =
{

2dm/3 px > 0.16 in

1.125
√

(d0 + 2c)2 − (d0 − 4a)2 px ≤ 0.16 in
(15–48)

The heat loss rate Hloss from the worm-gear case in ft · lbf/min is

Hloss = 33 000(1 − e)Hin (15–49)

where e is efficiency, given by Eq. (13–46), and Hin is the input horsepower from the
worm. The overall coefficient h̄CR for combined convective and radiative heat transfer
from the worm-gear case in ft · lbf/(min · in2 · ◦F) is

h̄CR =

⎧⎪⎪⎨⎪⎪⎩
nW

6494
+ 0.13 no fan on worm shaft

nW

3939
+ 0.13 fan on worm shaft

(15–50)

When the case lateral area A is expressed in in2, the temperature of the oil sump ts is
given by

ts = ta + Hloss

h̄CR A
= 33 000(1 − e)(H)in

h̄CR A
+ ta (15–51)

Bypassing Eqs. (15–49), (15–50), and (15–51) one can apply the AGMA recommenda-
tion for minimum lateral area Amin in in2 using

Amin = 43.20C1.7 (15–52)

Because worm teeth are inherently much stronger than worm-gear teeth, they are
not considered. The teeth in worm gears are short and thick on the edges of the face;
midplane they are thinner as well as curved. Buckingham3 adapted the Lewis equation
for this case:

σa = W t
G

pn Fe y
(15–53)

where pn = px cos λ and y is the Lewis form factor related to circular pitch. For φn =
14.5◦, y = 0.100; φn = 20◦, y = 0.125; φn = 25◦, y = 0.150; φn = 30◦, y = 0.175.
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Bevel and Worm Gears 813

15–7 Worm-Gear Analysis
Compared to other gearing systems worm-gear meshes have a much lower mechanical
efficiency. Cooling, for the benefit of the lubricant, becomes a design constraint some-
times resulting in what appears to be an oversize gear case in light of its contents. If
the heat can be dissipated by natural cooling, or simply with a fan on the wormshaft,
simplicity persists. Water coils within the gear case or lubricant outpumping to an exter-
nal cooler is the next level of complexity. For this reason, gear-case area is a design
decision.

To reduce cooling load, use multiple-thread worms. Also keep the worm pitch dia-
meter as small as possible.

Multiple-thread worms can remove the self-locking feature of many worm-gear
drives. When the worm drives the gearset, the mechanical efficiency eW is given by

eW = cos φn − f tan λ

cos φn + f cot λ
(15–54)

With the gear driving the gearset, the mechanical efficiency eG is given by

eG = cos φn − f cot λ

cos φn + f tan λ
(15–55)

To ensure that the worm gear will drive the worm,

fstat < cos φn tan λ (15–56)

where values of fstat can be found in ANSI/AGMA 6034-B92. To prevent the worm
gear from driving the worm, refer to clause 9 of 6034-B92 for a discussion of self-
locking in the static condition.

It is important to have a way to relate the tangential component of the gear force
W t

G to the tangential component of the worm force W t
W , which includes the role of

friction and the angularities of φn and λ. Refer to Eq. (13–45) solved for W t
W :

W t
W = W t

G

cos φn sin λ + f cos λ

cos φn cos λ − f sin λ
(15–57)

In the absence of friction

W t
W = W t

G tan λ

The mechanical efficiency of most gearing is very high, which allows power in and
power out to be used almost interchangeably. Worm gearsets have such poor efficien-
cies that we work with, and speak of, output power. The magnitude of the gear trans-
mitted force W t

G can be related to the output horsepower H0, the application factor Ka ,
the efficiency e, and design factor nd by

W t
G = 33 000nd H0 Ka

VGe
(15–58)

We use Eq. (15–57) to obtain the corresponding worm force W t
W . It follows that

HW = W t
W VW

33 000
= πdW nW W t

W

12(33 000)
hp (15–59)

HG = W t
G VG

33 000
= πdGnG W t

G

12(33 000)
hp (15–60)
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From Eq. (13–44),

Wf = f W t
G

f sin λ − cos φn cos λ
(15–61)

The sliding velocity of the worm at the pitch cylinder Vs is

Vs = πdnW

12 cos λ
(15–62)

and the friction power Hf is given by

Hf = |Wf |Vs

33 000
hp (15–63)

Table 15–9 gives the largest lead angle λmax associated with normal pressure angle φn .

Maximum Lead
�n Angle �max

14.5° 16°

20° 25°

25° 35°

30° 45°

Table 15–9

Largest Lead Angle

Associated with a

Normal Pressure Angle

φn for Worm Gearing

EXAMPLE 15–3 A single-thread steel worm rotates at 1800 rev/min, meshing with a 24-tooth worm gear
transmitting 3 hp to the output shaft. The worm pitch diameter is 3 in and the tangen-
tial diametral pitch of the gear is 4 teeth/in. The normal pressure angle is 14.5◦. The
ambient temperature is 70◦F. The application factor is 1.25 and the design factor is 1;
gear face width is 2 in, lateral case area 600 in2, and the gear is chill-cast bronze.
(a) Find the gear geometry.
(b) Find the transmitted gear forces and the mesh efficiency.
(c) Is the mesh sufficient to handle the loading?
(d) Estimate the lubricant sump temperature.

Solution (a) mG = NG/NW = 24/1 = 24, gear: D = NG/Pt = 24/4 = 6.000 in, worm: 
d = 3.000 in. The axial circular pitch px is px = π/Pt = π/4 = 0.7854 in. C =
(3 + 6)/2 = 4.5 in.

Eq. (15–39): a = px/π = 0.7854/π = 0.250 in

Eq. (15–40): b = 0.3683px = 0.3683(0.7854) = 0.289 in

Eq. (15–41): ht = 0.6866px = 0.6866(0.7854) = 0.539 in

Eq. (15–42): d0 = 3 + 2(0.250) = 3.500 in

Eq. (15–43): dr = 3 − 2(0.289) = 2.422 in

Eq. (15–44): Dt = 6 + 2(0.250) = 6.500 in

Eq. (15–45): Dr = 6 − 2(0.289) = 5.422 in

Eq. (15–46): c = 0.289 − 0.250 = 0.039 in

Eq. (15–47): (FW )max = 2
√

2(6)0.250 = 3.464 in
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Bevel and Worm Gears 815

The tangential speeds of the worm, VW , and gear, VG , are, respectively,

VW = π(3)1800/12 = 1414 ft/min VG = π(6)1800/24

12
= 117.8 ft/min

The lead of the worm, from Eq. (13–27), is L � px NW = 0.7854(1) = 0.7854 in. The
lead angle λ, from Eq. (13–28), is

λ = tan−1 L

πd
= tan−1 0.7854

π(3)
= 4.764◦

The normal diametral pitch for a worm gear is the same as for a helical gear, which from
Eq. (13–18) with ψ = λ is

Pn = Pt

cos λ
= 4

cos 4.764◦ = 4.014

pn = π

Pn
= π

4.014
= 0.7827 in

The sliding velocity, from Eq. (15–62), is

Vs = πdnW

12 cos λ
= π(3)1800

12 cos 4.764◦ = 1419 ft/min

(b) The coefficient of friction, from Eq. (15–38), is

f = 0.103 exp[−0.110(1419)0.450] + 0.012 = 0.0178

The efficiency e, from Eq. (13–46), is

Answer e = cos φn − f tan λ

cos φn + f cot λ
= cos 14.5◦ − 0.0178 tan 4.764◦

cos 14.5◦ + 0.0178 cot 4.764◦ = 0.818

The designer used nd = 1, Ka = 1.25 and an output horsepower of H0 = 3 hp. The
gear tangential force component W t

G , from Eq. (15–58), is

Answer W t
G = 33 000nd H0 Ka

VGe
= 33 000(1)3(1.25)

117.8(0.818)
= 1284 lbf

Answer The tangential force on the worm is given by Eq. (15–57):

W t
W = W t

G

cos φn sin λ + f cos λ

cos φn cos λ − f sin λ

= 1284
cos 14.5◦ sin 4.764◦ + 0.0178 cos 4.764◦

cos 14.5◦ cos 4.764◦ − 0.0178 sin 4.764◦
(c)

Eq. (15–34): Cs = 1000

Eq. (15–36): Cm = 0.0107
√

−242 + 56(24) + 5145 = 0.823

Eq. (15–37): Cv = 13.31(1419)−0.571 = 0.2114

= 131 lbf

4Note:  From ANSI/AGMA 6034-B92, the rating factors are Cs = 1000, Cm = 0.825, Cv = 0.214, and
f = 0.0185 .
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Eq. (15–28): (W t)all = Cs D0.8(Fe)GCmCv

= 1000(6)0.8(2)0.823(0.211) = 1456 lbf

Since W t
G < (W t)all , the mesh will survive at least 25 000 h. The friction force Wf is

given by Eq. (15–61):

Wf = f W t
G

f sin λ − cos φn cos λ
= 0.0178(1284)

0.0178 sin 4.764◦ − cos 14.5◦ cos 4.764◦

= −23.7 lbf

The power dissipated in frictional work Hf is given by Eq. (15–63):

Hf = |Wf |Vs

33 000
= |−23.7|1419

33 000
= 1.02 hp

The worm and gear powers, HW and HG , are given by

HW = W t
W VW

33 000
= 131(1414)

33 000
= 5.61 hp HG = W t

G VG

33 000
= 1284(117.8)

33 000
= 4.58 hp

Answer Gear power is satisfactory. Now,

Pn = Pt/cos λ = 4/cos 4.764◦ = 4.014

pn = π/Pn = π/4.014 = 0.7827 in

The bending stress in a gear tooth is given by Buckingham’s adaptation of the Lewis
equation, Eq. (15–53), as

(σ )G = W t
G

pn FG y
= 1284

0.7827(2)(0.1)
= 8200 psi

Answer Stress in gear satisfactory.
(d)

Eq. (15–52): Amin = 43.2C1.7 = 43.2(4.5)1.7 = 557 in2

The gear case has a lateral area of 600 in2.

Eq. (15–49): Hloss = 33 000(1 − e)Hin = 33 000(1 − 0.818)5.61

= 33 690 ft · lbf/min

Eq. (15–50): h̄CR = nW

3939
+ 0.13 = 1800

3939
+ 0.13 = 0.587 ft · lbf/(min · in2 · ◦F)

Answer Eq. (15–51): ts = ta + Hloss

h̄CR A
= 70 + 33 690

0.587(600)
= 166◦F
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15–8 Designing a Worm-Gear Mesh
A usable decision set for a worm-gear mesh includes

• Function: power, speed, mG , Ka

• Design factor: nd

• Tooth system

• Materials and processes

• Number of threads on the worm: NW

• Axial pitch of worm: px

• Pitch diameter of the worm: dW

• Face width of gear: FG

• Lateral area of case: A

Reliability information for worm gearing is not well developed at this time. The use of
Eq. (15–28) together with the factors Cs , Cm , and Cv , with an alloy steel case-hardened
worm together with customary nonferrous worm-wheel materials, will result in lives in
excess of 25 000 h. The worm-gear materials in the experience base are principally
bronzes:

• Tin- and nickel-bronzes (chilled-casting produces hardest surfaces)

• Lead-bronze (high-speed applications)

• Aluminum- and silicon-bronze (heavy load, slow-speed application)

The factor Cs for bronze in the spectrum sand-cast, chilled-cast, and centrifugally cast
increases in the same order.

Standardization of tooth systems is not as far along as it is in other types of gear-
ing. For the designer this represents freedom of action, but acquisition of tooling for
tooth-forming is more of a problem for in-house manufacturing. When using a subcon-
tractor the designer must be aware of what the supplier is capable of providing with on-
hand tooling.

Axial pitches for the worm are usually integers, and quotients of integers are
common. Typical pitches are 1

4 , 5
16 , 3

8 , 1
2 , 3

4 , 1, 5
4 , 6

4 , 7
4 , and 2, but others are possible.

Table 15–8 shows dimensions common to both worm gear and cylindrical worm for
proportions often used. Teeth frequently are stubbed when lead angles are 30◦ or
larger.

Worm-gear design is constrained by available tooling, space restrictions, shaft center-
to-center distances, gear ratios needed, and the designer’s experience. ANSI/AGMA
6022-C93, Design Manual for Cylindrical Wormgearing offers the following guidance.
Normal pressure angles are chosen from 14.5◦, 17.5◦, 20◦, 22.5◦, 25◦, 27.5◦, and 30◦.
The recommended minimum number of gear teeth is given in Table 15–10. The normal
range of the number of threads on the worm is 1 through 10. Mean worm pitch diameter
is usually chosen in the range given by Eq. (15–27).

A design decision is the axial pitch of the worm. Since acceptable proportions are
couched in terms of the center-to-center distance, which is not yet known, one chooses
a trial axial pitch px . Having NW and a trial worm diameter d,

NG = mG NW Pt = π

px
D = NG

Pt

⎫⎪⎪⎬⎪⎪⎭ Design variables

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
A priori decisions
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Then

(d )lo = C0.875/3 (d )hi = C0.875/1.6

Examine (d )lo ≤ d ≤ (d )hi , and refine the selection of mean worm-pitch diameter to d1

if necessary. Recompute the center-to-center distance as C = (d1 + D)/2. There is even
an opportunity to make C a round number. Choose C and set

d2 = 2C − D

Equations (15–39) through (15–48) apply to one usual set of proportions.

�n (NG)min

14.5 40

17.5 27

20 21

22.5 17

25 14

27.5 12

30 10

Table 15–10

Minimum Number of

Gear Teeth for Normal

Pressure Angle �n

EXAMPLE 15–4 Design a 10-hp 11:1 worm-gear speed-reducer mesh for a lumber mill planer feed drive
for 3- to 10-h daily use. A 1720-rev/min squirrel-cage induction motor drives the planer
feed (Ka = 1.25), and the ambient temperature is 70◦F.

Solution Function: H0 = 10 hp, mG = 11, nW = 1720 rev/min.
Design factor: nd = 1.2.
Materials and processes: case-hardened alloy steel worm, sand-cast bronze gear.
Worm threads: double, NW = 2, NG = mG NW = 11(2) = 22 gear teeth acceptable for
φn = 20◦, according to Table 15–10.
Decision 1: Choose an axial pitch of worm px = 1.5 in. Then,

Pt = π/px = π/1.5 = 2.0944

D = NG/Pt = 22/2.0944 = 10.504 in

Eq. (15–39): a = 0.3183px = 0.3183(1.5) = 0.4775 in (addendum)

Eq. (15–40): b = 0.3683(1.5) = 0.5525 in (dedendum)

Eq. (15–41): ht = 0.6866(1.5) = 1.030 in

Decision 2: Choose a mean worm diameter d = 2.000 in. Then

C = (d + D)/2 = (2.000 + 10.504)/2 = 6.252 in

(d)lo = 6.2520.875/3 = 1.657 in

(d)hi = 6.2520.875/1.6 = 3.107 in

The range, given by Eq. (15–27), is 1.657 ≤ d ≤ 3.107 in, which is satisfactory. Try
d = 2.500 in. Recompute C: 

C = (2.5 + 10.504)/2 = 6.502 in
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The range is now 1.715 ≤ d ≤ 3.216 in, which is still satisfactory. Decision: d = 2.500 in.
Then

Eq. (13–27): L = px NW = 1.5(2) = 3.000 in

Eq. (13–28):

λ = tan−1[L/(πd)] = tan−1[3/(π2.5)] = 20.905◦ (from Table 15–9 lead angle OK)

Eq. (15–62): Vs = πdnW

12 cos λ
= π(2.5)1720

12 cos 20.905◦ = 1205.1 ft/min

VW = πdnW

12
= π(2.5)1720

12
= 1125.7 ft/min

VG = π DnG

12
= π(10.504)1720/11

12
= 430.0 ft/min

Eq. (15–33): Cs = 1190 − 477 log 10.504 = 702.8

Eq. (15–36): Cm = 0.02
√

−112 + 40(11) − 76 + 0.46 = 0.772

Eq. (15–37): Cv = 13.31(1205.1)−0.571 = 0.232

Eq. (15–38): f = 0.103 exp[−0.11(1205.1)0.45] + 0.012 = 0.01915

Eq. (15–54): eW = cos 20◦ − 0.0191 tan 20.905◦

cos 20◦ + 0.0191 cot 20.905◦ = 0.942

(If the worm gear drives, eG = 0.939.) To ensure nominal 10-hp output, with adjust-
ments for Ka, nd , and e,

Eq. (15–57): W t
W = 1222

cos 20◦ sin 20.905◦ + 0.0191 cos 20.905◦

cos 20◦ cos 20.905◦ − 0.0191 sin 20.905◦ = 495.4 lbf

Eq. (15–58): W t
G = 33 000(1.2)10(1.25)

430(0.942)
= 1222 lbf

Eq. (15–59): HW = π(2.5)1720(495.4)

12(33 000)
= 16.9 hp

Eq. (15–60): HG = π(10.504)1720/11(1222)

12(33 000)
= 15.92 hp

Eq. (15–61): Wf = 0.0191(1222)

0.0191 sin 20.905◦ − cos 20◦ cos 20.905◦ = −26.8 lbf

Eq. (15–63): Hf = |−26.8|1205.1

33 000
= 0.979 hp

With Cs = 702.8, Cm = 0.772, and Cv = 0.232,

(Fe)req = W t
G

Cs D0.8CmCv

= 1222

702.8(10.504)0.80.772(0.232)
= 1.479 in

5Note: From ANSI/AGMA 6034-B92, the rating factors are Cs = 703, Cm = 0.773, Cv = 0.2345, and
f = 0.01995.
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Decision 3: The available range of (Fe)G is 1.479 ≤ (Fe)G ≤ 2d/3 or 1.479 ≤ (Fe)G ≤
1.667 in. Set (Fe)G = 1.5 in.

Eq. (15–28): W t
all = 702.8(10.504)0.81.5(0.772)0.232 = 1239 lbf

This is greater than 1222 lbf. There is a little excess capacity. The force analysis stands.

Decision 4:

Eq. (15–50): h̄CR = nW

6494
+ 0.13 = 1720

6494
+ 0.13 = 0.395 ft · lbf/(min · in2 · ◦F)

Eq. (15–49): Hloss = 33 000(1 − e)HW = 33 000(1 − 0.942)16.9 = 32 347 ft · lbf/min

The AGMA area, from Eq. (15–52), is Amin = 43.2C1.7 = 43.2(6.502)1.7 = 1041.5 in2.
A rough estimate of the lateral area for 6-in clearances:

Vertical: d + D + 6 = 2.5 + 10.5 + 6 = 19 in

Width: D + 6 = 10.5 + 6 = 16.5 in

Thickness: d + 6 = 2.5 + 6 = 8.5 in

Area: 2(19)16.5 + 2(8.5)19 + 16.5(8.5)
.= 1090 in2

Expect an area of 1100 in2. Choose: Air-cooled, no fan on worm, with an ambient tem-
perature of 70◦F.

ts = ta + Hloss

h̄CR A
= 70 + 32 350

0.395(1100)
= 70 + 74.5 = 144.5◦F

Lubricant is safe with some margin for smaller area.

Eq. (13–18): Pn = Pt

cos λ
= 2.094

cos 20.905◦ = 2.242

pn = π

Pn
= π

2.242
= 1.401 in

Gear bending stress, for reference, is

Eq. (15–53): σ = W t
G

pn Fe y
= 1222

1.401(1.5)0.125
= 4652 psi

The risk is from wear, which is addressed by the AGMA method that provides (W t
G)all.

15–9 Buckingham Wear Load
A precursor to the AGMA method was the method of Buckingham, which identified an
allowable wear load in worm gearing. Buckingham showed that the allowable gear-
tooth loading for wear can be estimated from(

W t
G

)
all = KwdG Fe (15–64)

where Kw = worm-gear load factor

dG = gear-pitch diameter

Fe = worm-gear effective face width
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Table 15–11 gives values for Kw for worm gearsets as a function of the material pairing
and the normal pressure angle.

Material Thread Angle �n

Worm Gear 141
2

Hardened steel* Chilled bronze 90 125 150 180

Hardened steel* Bronze 60 80 100 120

Steel, 250 BHN (min.) Bronze 36 50 60 72

High-test cast iron Bronze 80 115 140 165

Gray iron† Aluminum 10 12 15 18

High-test cast iron Gray iron 90 125 150 180

High-test cast iron Cast steel 22 31 37 45

High-test cast iron High-test cast iron 135 185 225 270

Steel 250 BHN (min.) Laminated phenolic 47 64 80 95

Gray iron Laminated phenolic 70 96 120 140

*Over 500 BHN surface.
†For steel worms, multiply given values by 0.6.

Table 15–11

Wear Factor Kw for 

Worm Gearing 

Source: Earle Buckingham,
Design of Worm and Spiral
Gears, Industrial Press,
New York, 1981.

° 20° 25° 30°

EXAMPLE 15–5 Estimate the allowable gear wear load (W t
G)all for the gearset of Ex. 15–4 using

Buckingham’s wear equation.

Solution From Table 15–11 for a hardened steel worm and a bronze bear, Kw is given as 80 for
φn = 20◦. Equation (15–64) gives(

W t
G

)
all = 80(10.504)1.5 = 1260 lbf

which is larger than the 1239 lbf of the AGMA method. The method of Buckingham
does not have refinements of the AGMA method. [Is (W t

G)all linear with gear diameter?]

For material combinations not addressed by AGMA, Buckingham’s method allows
quantitative treatment.

PROBLEMS
15–1 An uncrowned straight-bevel pinion has 20 teeth, a diametral pitch of 6 teeth/in, and a transmis-

sion accuracy number of 6. Both the pinion and gear are made of through-hardened steel with a
Brinell hardness of 300. The driven gear has 60 teeth. The gearset has a life goal of 109 revolutions
of the pinion with a reliability of 0.999. The shaft angle is 90◦; the pinion speed is 900 rev/min.
The face width is 1.25 in, and the normal pressure angle is 20◦. The pinion is mounted outboard
of its bearings, and the gear is straddle-mounted. Based on the AGMA bending strength, what is
the power rating of the gearset? Use K0 = 1, SF = 1, and SH = 1.
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15–2 For the gearset and conditions of Prob. 15–1, find the power rating based on the AGMA surface
durability.

15–3 An uncrowned straight-bevel pinion has 30 teeth, a diametral pitch of 6, and a transmission accuracy
number of 6. The driven gear has 60 teeth. Both are made of No. 30 cast iron. The shaft angle is 90◦.
The face width is 1.25 in, the pinion speed is 900 rev/min, and the normal pressure angle is 20◦.
The pinion is mounted outboard of its bearings; the bearings of the gear straddle it. What is the
power rating based on AGMA bending strength? (For cast iron gearsets reliability information has
not yet been developed. We say the life is greater than 107 revolutions; set KL = 1, CL = 1,
CR = 1, K R = 1; and apply a factor of safety. Use SF = 2 and SH = √

2.)

15–4 For the gearset and conditions of Prob. 15–3, find the power rating based on AGMA surface dura-
bility. For the solutions to Probs. 15–3 and 15–4, what is the power rating of the gearset?

15–5 An uncrowned straight-bevel pinion has 22 teeth, a module of 4 mm, and a transmission accuracy
number of 5. The pinion and the gear are made of through-hardened steel, both having core and
case hardnesses of 180 Brinell. The pinion drives the 24-tooth bevel gear. The shaft angle is 90◦,
the pinion speed is 1800 rev/min, the face width is 25 mm, and the normal pressure angle is 20◦.
Both gears have an outboard mounting. Find the power rating based on AGMA pitting resistance
if the life goal is 109 revolutions of the pinion at 0.999 reliability.

15–6 For the gearset and conditions of Prob. 15–5, find the power rating for AGMA bending
strength.

15–7 In straight-bevel gearing, there are some analogs to Eqs. (14–44) and (14–45). If we have a pinion
core with a hardness of (HB )11 and we try equal power ratings, the transmitted load W t can be
made equal in all four cases. It is possible to find these relations:

Core Case

Pinion (HB)11 (HB)12

Gear (HB)21 (HB)22

(a) For carburized case-hardened gear steel with core AGMA bending strength (sat )G and pinion
core strength (sat )P, show that the relationship is

(sat )G = (sat )P
JP

JG
m−0.0323

G

This allows (HB )21 to be related to (HB )11 .

(b) Show that the AGMA contact strength of the gear case (sac)G can be related to the
AGMA core bending strength of the pinion core (sat )P by

(sac)G = Cp

(CL )G CH

√
S2

H

SF

(sat )P (KL )P Kx JP KT Cs Cx c

NP I Ks

If factors of safety are applied to the transmitted load Wt , then SH = √
SF and S2

H /SF is unity.
The result allows (HB )22 to be related to (HB )11 .

(c) Show that the AGMA contact strength of the gear (sac)G is related to the contact strength
of the pinion (sac)P by

(sac)P = (sac)G m0.0602
G CH
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Bevel and Worm Gears 823

15–8 Refer to your solution to Probs. 15–1 and 15–2, which is to have a pinion core hardness of
300 Brinell. Use the relations from Prob. 15–7 to establish the hardness of the gear core and the
case hardnesses of both gears.

15–9 Repeat Probs. 15–1 and 15–2 with the hardness protocol

Core Case

Pinion 300 372

Gear 352 344

which can be established by relations in Prob. 15–7, and see if the result matches transmitted
loads W t in all four cases.

15–10 A catalog of stock bevel gears lists a power rating of 5.2 hp at 1200 rev/min pinion speed for a
straight-bevel gearset consisting of a 20-tooth pinion driving a 40-tooth gear. This gear pair has
a 20◦ normal pressure angle, a face width of 0.71 in, and a diametral pitch of 10 teeth/in and is
through-hardened to 300 BHN. Assume the gears are for general industrial use, are generated to
a transmission accuracy number of 5, and are uncrowned. Given these data, what do you think
about the stated catalog power rating?

15–11 Apply the relations of Prob. 15–7 to Ex. 15–1 and find the Brinell case hardness of the gears for
equal allowable load W t in bending and wear. Check your work by reworking Ex. 15–1 to see if
you are correct. How would you go about the heat treatment of the gears?

15–12 Your experience with Ex. 15–1 and problems based on it will enable you to write an interactive
computer program for power rating of through-hardened steel gears. Test your understanding of
bevel-gear analysis by noting the ease with which the coding develops. The hardness protocol
developed in Prob. 15–7 can be incorporated at the end of your code, first to display it, then as an
option to loop back and see the consequences of it.

15–13 Use your experience with Prob. 15–11 and Ex. 15–2 to design an interactive computer-aided
design program for straight-steel bevel gears, implementing the ANSI/AGMA 2003-B97 standard.
It will be helpful to follow the decision set in Sec. 15–5, allowing the return to earlier decisions
for revision as the consequences of earlier decisions develop.

15–14 A single-threaded steel worm rotates at 1725 rev/min, meshing with a 56-tooth worm gear trans-
mitting 1 hp to the output shaft. The pitch diameter of the worm is 1.50. The tangential diametral
pitch of the gear is 8 teeth per inch and the normal pressure angle is 20◦. The ambient temperature
is 70◦F, the application factor is 1.25, the design factor is 1, the gear face is 0.5 in, the lateral case
area is 850 in2, and the gear is sand-cast bronze.
(a) Determine and evaluate the geometric properties of the gears.
(b) Determine the transmitted gear forces and the mesh efficiency.
(c) Is the mesh sufficient to handle the loading?
(d ) Estimate the lubricant sump temperature.

As in Ex. 15–4, design a cylindrical worm-gear mesh to connect a squirrel-cage induction motor to a
liquid agitator. The motor speed is 1125 rev/min, and the velocity ratio is to be 10:1. The output power
requirement is 25 hp. The shaft axes are 90◦ to each other. An overload factor Ko (see Table 15–2)
makes allowance for external dynamic excursions of load from the nominal or average load W t . For
this service Ko = 1.25 is appropriate. Additionally, a design factor nd of 1.1 is to be included to
address other unquantifiable risks. For Probs. 15–15 to 15–17 use the AGMA method for (W t

G )all

whereas for Probs. 15–18 to 15–22, use the Buckingham method. See Table 15–12.

15–15 to
15–22
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824 Mechanical Engineering Design

Problem Materials
No. Method Worm Gear

15–15 AGMA Steel, HRC 58 Sand-cast bronze

15–16 AGMA Steel, HRC 58 Chilled-cast bronze

15–17 AGMA Steel, HRC 58 Centrifugal-cast bronze

15–18 Buckingham Steel, 500 Bhn Chilled-cast bronze

15–19 Buckingham Steel, 500 Bhn Cast bronze

15–20 Buckingham Steel, 250 Bhn Cast bronze

15–21 Buckingham High-test cast iron Cast bronze

15–22 Buckingham High-test cast iron High-test cast iron

Table 15–12

Table Supporting

Problems 15–15 to 15–22
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826 Mechanical Engineering Design

This chapter is concerned with a group of elements usually associated with rotation that
have in common the function of storing and/or transferring rotating energy. Because
of this similarity of function, clutches, brakes, couplings, and flywheels are treated
together in this book.

A simplified dynamic representation of a friction clutch or brake is shown in
Fig. 16–1a. Two inertias, I1 and I2, traveling at the respective angular velocities ω1 and
ω2, one of which may be zero in the case of brakes, are to be brought to the same speed
by engaging the clutch or brake. Slippage occurs because the two elements are running
at different speeds and energy is dissipated during actuation, resulting in a temperature
rise. In analyzing the performance of these devices we shall be interested in:

1 The actuating force
2 The torque transmitted
3 The energy loss
4 The temperature rise

The torque transmitted is related to the actuating force, the coefficient of friction, and
the geometry of the clutch or brake. This is a problem in statics, which will have to be
studied separately for each geometric configuration. However, temperature rise is
related to energy loss and can be studied without regard to the type of brake or clutch,
because the geometry of interest is that of the heat-dissipating surfaces.

The various types of devices to be studied may be classified as follows:

1 Rim types with internal expanding shoes
2 Rim types with external contracting shoes
3 Band types
4 Disk or axial types
5 Cone types
6 Miscellaneous types

A flywheel is an inertial energy-storage device. It absorbs mechanical energy by
increasing its angular velocity and delivers energy by decreasing its velocity. Figure 16–1b
is a mathematical representation of a flywheel.An input torque Ti ,corresponding to a coor-
dinate θi , will cause the flywheel speed to increase. And a load or output torque To, with
coordinate θo,will absorb energy from the flywheel and cause it to slow down. We shall be
interested in designing flywheels so as to obtain a specified amount of speed regulation.

�1

I1

I2
�2

Clutch or brake

Ti, �i

To, �o

I, �

(b)

(a)

Figure 16–1

(a) Dynamic representation
of a clutch or brake; 
(b) mathematical representation
of a flywheel.
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Clutches, Brakes, Couplings, and Flywheels 827

16–1 Static Analysis of Clutches and Brakes
Many types of clutches and brakes can be analyzed by following a general procedure.
The procedure entails the following tasks:

• Estimate, model, or measure the pressure distribution on the friction surfaces.

• Find a relationship between the largest pressure and the pressure at any point.

• Use the conditions of static equilibrium to find the braking force or torque and the
support reactions.

Let us apply these tasks to the doorstop depicted in Fig. 16–2a. The stop is hinged at
pin A. A normal pressure distribution p(u) is shown under the friction pad as a function
of position u, taken from the right edge of the pad. A similar distribution of shearing
frictional traction is on the surface, of intensity f p(u), in the direction of the motion of
the floor relative to the pad, where f is the coefficient of friction. The width of the pad
into the page is w2. The net force in the y direction and moment about C from the pres-
sure are respectively,

N = w2

∫ w1

0
p(u) du = pavw1w2 (a)

w2

∫ w1

0
p(u)u du = ūw2

∫ w1

0
p(u) du = pavw1w2ū (b)

We sum the forces in the x-direction to obtain∑
Fx = Rx ∓ w2

∫ w1

0
f p(u) du = 0

where − or + is for rightward or leftward relative motion of the floor, respectively.
Assuming f constant, solving for Rx gives

Rx = ±w2

∫ w1

0
f p(u) du = ± f w1w2 pav (c)

Summing the forces in the y direction gives∑
Fy = −F + w2

∫ w1

0
p(u) du + Ry = 0

from which

Ry = F − w2

∫ w1

0
p(u) du = F − pavw1w2 (d)

for either direction. Summing moments about the pin located at A we have∑
MA = Fb − w2

∫ w1

0
p(u)(c + u) du ∓ a f w2

∫ w1

0
p(u) du = 0

A brake shoe is self-energizing if its moment sense helps set the brake, self-deenergizing
if the moment resists setting the brake. Continuing,

F = w2

b

[∫ w1

0
p(u)(c + u) du ± a f

∫ w1

0
p(u) du

]
(e)
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(d)
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30
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(e)

2.139
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2.139

5.348
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2.14

Plan view of pad

w1

w2

��

P(u)

Relative motion

Friction pad
y2

r1 ��

r2 ��

C

C

Figure 16–2

A common doorstop.
(a) Free body of the doorstop.
(b) Trapezoidal pressure
distribution on the foot pad
based on linear deformation of
pad. (c) Free-body diagram for
leftward movement of the floor,
uniform pressure, Ex. 16–1. 
(d ) Free-body diagram for
rightward movement of the
floor, uniform pressure,
Ex. 16–1. (e) Free-body
diagram for leftward movement
of the floor, trapezoidal
pressure, Ex. 16–1.
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Clutches, Brakes, Couplings, and Flywheels 829

Can F be equal to or less than zero? Only during rightward motion of the floor when
the expression in brackets in Eq. (e) is equal to or less than zero. We set the brackets to
zero or less: ∫ w1

0
p(u)(c + u) du − a f

∫ w1

0
p(u) du ≤ 0

from which

fcr ≥ 1

a

∫ w1

0
p(u)(c + u) du∫ w1

0
p(u) du

= 1

a

c
∫ w1

0
p(u) du +

∫ w1

0
p(u)u du∫ w1

0
p(u) du

fcr ≥ c + ū

a
(f )

where ū is the distance of the center of pressure from the right edge of the pad. The con-
clusion that a self-acting or self-locking phenomenon is present is independent of our
knowledge of the normal pressure distribution p(u). Our ability to find the critical value
of the coefficient of friction fcr is dependent on our knowledge of p(u), from which we
derive ū.

EXAMPLE 16–1 The doorstop depicted in Fig. 16–2a has the following dimensions: a = 4 in, b = 2 in,
c = 1.6 in, w1 = 1 in, w2 = 0.75 in, where w2 is the depth of the pad into the plane of
the paper.
(a) For a leftward relative movement of the floor, an actuating force F of 10 lbf, a coef-
ficient of friction of 0.4, use a uniform pressure distribution pav, find Rx , Ry, pav, and
the largest pressure pa.

(b) Repeat part a for rightward relative movement of the floor.
(c) Model the normal pressure to be the “crush” of the pad, much as if it were composed
of many small helical coil springs. Find Rx , Ry, pav, and pa for leftward relative
movement of the floor and other conditions as in part a.
(d ) For rightward relative movement of the floor, is the doorstop a self-acting brake?

Solution (a)

Eq. (c): Rx = f pavw1w2 = 0.4(1)(0.75)pav = 0.3pav

Eq. (d): Ry = F − pavw1w2 = 10 − pav(1)(0.75) = 10 − 0.75pav

Eq. (e): F = w2

b

[∫ 1

0
pav(c + u) du + a f

∫ 1

0
pav du

]

= w2

b

(
pavc

∫ 1

0
du + pav

∫ 1

0
u du + a f pav

∫ 1

0
du

)

= w2 pav

b
(c + 0.5 + a f ) = 0.75

2
[1.6 + 0.5 + 4(0.4)]pav

= 1.3875pav
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Solving for pav gives

pav = F

1.3875
= 10

1.3875
= 7.207 psi

We evaluate Rx and Ry as

Answer Rx = 0.3(7.207) = 2.162 lbf

Answer Ry = 10 − 0.75(7.207) = 4.595 lbf

The normal force N on the pad is F − Ry = 10 − 4.595 = 5.405 lbf, upward. The line
of action is through the center of pressure, which is at the center of the pad. The fric-
tion force is f N = 0.4(5.405) = 2.162 lbf directed to the left. A check of the moments
about A gives ∑

MA = Fb − f Na − N (w1/2 + c)

= 10(2) − 0.4(5.405)4 − 5.405(1/2 + 1.6)
.= 0

Answer The maximum pressure pa = pav = 7.207 psi.
(b)

Eq. (c): Rx = − f pavw1w2 = −0.4(1)(0.75)pav = −0.3pav

Eq. (d): Ry = F − pavw1w2 = 10 − pav(1)(0.75) = 10 − 0.75pav

Eq. (e): F = w2

b

[∫ 1

0
pav(c + u) du + a f

∫ 1

0
pav du

]
= w2

b

(
pavc

∫ 1

0
du + pav

∫ 1

0
u du + a f pav

∫ 1

0
du

)
= 0.75

2
pav[1.6 + 0.5 − 4(0.4)] = 0.1875pav

from which

pav = F

0.1875
= 10

0.1875
= 53.33 psi

which makes

Answer Rx = −0.3(53.33) = −16 lbf

Answer Ry = 10 − 0.75(53.33) = −30 lbf

The normal force N on the pad is 10 + 30 = 40 lbf upward. The friction shearing force
is f N = 0.4(40) = 16 lbf to the right. We now check the moments about A:

MA = f Na + Fb − N (c + 0.5) = 16(4) + 10(2) − 40(1.6 + 0.5) = 0

Note the change in average pressure from 7.207 psi in part a to 53.3 psi. Also note how
directions of forces have changed. The maximum pressure pa is the same as pav, which
has changed from 7.207 psi to 53.3 psi.
(c) We will model the deformation of the pad as follows. If the doorstop rotates �φ

counterclockwise, the right and left edges of the pad will deform down y1 and y2, respec-
tively (Fig. 16–2b). From similar triangles, y1/(r1 �φ) = c/r1 and y2/(r2 �φ) =
(c + w1)/r2. Thus, y1 = c �φ and y2 = (c + w1)�φ. This means that y is directly
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proportional to the horizontal distance from the pivot point A; that is, y = C1v, where
C1 is a constant (see Fig. 16–2b). Assuming the pressure is directly proportional to
deformation, then p(v) = C2v, where C2 is a constant. In terms of u, the pressure is
p(u) = C2(c + u) = C2(1.6 + u).

Eq. (e): 

F = w2

b

[∫ w1

0
p(u)c du +

∫ w1

0
p(u)u du + a f

∫ w1

0
p(u) du

]

= 0.75

2

[∫ 1

0
C2(1.6 + u)1.6 du +

∫ 1

0
C2(1.6 + u) u du + a f

∫ 1

0
C2(1.6 + u)du

]
= 0.375C2[(1.6 + 0.5)1.6 + (0.8 + 0.3333) + 4(0.4)(1.6 + 0.5)] = 2.945C2

Since F = 10 lbf, then C2 = 10/2.945 = 3.396 psi/in, and p(u) = 3.396(1.6 + u). The
average pressure is given by

Answer pav = 1

w1

∫ w1

0
p(u) du = 1

1

∫ 1

0
3.396(1.6 + u) du = 3.396(1.6 + 0.5) = 7.132 psi

The maximum pressure occurs at u = 1 in, and is

Answer pa = 3.396(1.6 + 1) = 8.83 psi

Equations (c) and (d ) of Sec. 16–1 are still valid. Thus,

Answer Rx = 0.3pav = 0.3(7.131) = 2.139 lbf

Ry = 10 − 0.75pav = 10 − 0.75(7.131) = 4.652 lbf

The average pressure is pav = 7.13 psi and the maximum pressure is pa = 8.83 psi,
which is approximately 24 percent higher than the average pressure. The presumption
that the pressure was uniform in part a (because the pad was small, or because the
arithmetic would be easier?) underestimated the peak pressure. Modeling the pad as a
one-dimensional springset is better, but the pad is really a three-dimensional continuum.
A theory of elasticity approach or a finite element modeling may be overkill, given
uncertainties inherent in this problem, but it still represents better modeling.
(d) To evaluate ū we need to evaluate two integrations∫ c

0
p(u)u du =

∫ 1

0
3.396(1.6 + u)u du = 3.396(0.8 + 0.3333) = 3.849 lbf

∫ c

0
p(u) du =

∫ 1

0
3.396(1.6 + u) du = 3.396(1.6 + 0.5) = 7.132 lbf/in

Thus ū = 3.849/7.132 = 0.5397 in. Then, from Eq. ( f ) of Sec. 16–1, the critical co-
efficient of friction is

Answer fcr ≥ c + ū

a
= 1.6 + 0.5397

4
= 0.535

The doorstop friction pad does not have a high enough coefficient of friction to make the
doorstop a self-acting brake. The configuration must change and/or the pad material
specification must be changed to sustain the function of a doorstop.
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Figure 16–3

An internal expanding
centrifugal-acting rim clutch.
(Courtesy of the Hilliard
Corporation.)

16–2 Internal Expanding Rim Clutches and Brakes
The internal-shoe rim clutch shown in Fig. 16–3 consists essentially of three elements: the
mating frictional surface, the means of transmitting the torque to and from the surfaces,
and the actuating mechanism. Depending upon the operating mechanism, such clutches
are further classified as expanding-ring, centrifugal, magnetic, hydraulic, and pneumatic.

The expanding-ring clutch is often used in textile machinery, excavators, and
machine tools where the clutch may be located within the driving pulley. Expanding-
ring clutches benefit from centrifugal effects; transmit high torque, even at low speeds;
and require both positive engagement and ample release force.

The centrifugal clutch is used mostly for automatic operation. If no spring is used,
the torque transmitted is proportional to the square of the speed. This is particularly
useful for electric-motor drives where, during starting, the driven machine comes up to
speed without shock. Springs can also be used to prevent engagement until a certain
motor speed is reached, but some shock may occur.

Magnetic clutches are particularly useful for automatic and remote-control systems.
Such clutches are also useful in drives subject to complex load cycles (see Sec. 11–7).

Hydraulic and pneumatic clutches are also useful in drives having complex load-
ing cycles and in automatic machinery, or in robots. Here the fluid flow can be con-
trolled remotely using solenoid valves. These clutches are also available as disk, cone,
and multiple-plate clutches.

In braking systems, the internal-shoe or drum brake is used mostly for automotive
applications.

To analyze an internal-shoe device, refer to Fig. 16–4, which shows a shoe pivoted
at point A, with the actuating force acting at the other end of the shoe. Since the shoe is
long, we cannot make the assumption that the distribution of normal forces is uniform.
The mechanical arrangement permits no pressure to be applied at the heel, and we will
therefore assume the pressure at this point to be zero.

It is the usual practice to omit the friction material for a short distance away from
the heel (point A). This eliminates interference, and the material would contribute little
to the performance anyway, as will be shown. In some designs the hinge pin is made
movable to provide additional heel pressure. This gives the effect of a floating shoe.
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Figure 16–4

Internal friction shoe geometry.
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Rim rotation

(Floating shoes will not be treated in this book, although their design follows the same
general principles.)

Let us consider the pressure p acting upon an element of area of the frictional material
located at an angle θ from the hinge pin (Fig. 16–4). We designate the maximum pressure
pa located at an angle θa from the hinge pin. To find the pressure distribution on the
periphery of the internal shoe, consider point B on the shoe (Fig. 16–5). As in Ex. 16–1, if
the shoe deforms by an infinitesimal rotation �φ about the pivot point A, deformation per-
pendicular to AB is h �φ. From the isosceles triangle AO B, h = 2 r sin(θ/2), so

h �φ = 2 r �φ sin(θ/2)

The deformation perpendicular to the rim is h �φ cos(θ/2), which is

h �φ cos(θ/2) = 2 r �φ sin(θ/2) cos(θ/2) = r �φ sin θ

Thus, the deformation, and consequently the pressure, is proportional to sin θ . In terms
of the pressure at B and where the pressure is a maximum, this means

p

sin θ
= pa

sin θa
(a)

Figure 16–5

The geometry associated with
an arbitrary point on the shoe.
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834 Mechanical Engineering Design

Rearranging gives

p = pa

sin θa
sin θ (16–1)

This pressure distribution has interesting and useful characteristics:

• The pressure distribution is sinusoidal with respect to the angle θ .

• If the shoe is short, as shown in Fig. 16–6a, the largest pressure on the shoe is pa

occurring at the end of the shoe, θ2.

• If the shoe is long, as shown in Fig. 16–6b, the largest pressure on the shoe is pa

occurring at θa = 90◦.

Since limitations on friction materials are expressed in terms of the largest allowable
pressure on the lining, the designer wants to think in terms of pa and not about the
amplitude of the sinusoidal distribution that addresses locations off the shoe.

When θ = 0, Eq. (16–1) shows that the pressure is zero. The frictional material
located at the heel therefore contributes very little to the braking action and might as
well be omitted. A good design would concentrate as much frictional material as pos-
sible in the neighborhood of the point of maximum pressure. Such a design is shown in
Fig. 16–7. In this figure the frictional material begins at an angle θ1, measured from the
hinge pin A, and ends at an angle θ2. Any arrangement such as this will give a good
distribution of the frictional material.

Proceeding now (Fig. 16–7), the hinge-pin reactions are Rx and Ry . The actuating
force F has components Fx and Fy and operates at distance c from the hinge pin.
At any angle θ from the hinge pin there acts a differential normal force d N whose
magnitude is

d N = pbr dθ (b)

Figure 16–6

Defining the angle θa at which
the maximum pressure pa

occurs when (a) shoe exists 
in zone θ1 ≤ θ2 ≤ π/2 and
(b) shoe exists in zone
θ1 ≤ π/2 ≤ θ2.
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Figure 16–7
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Clutches, Brakes, Couplings, and Flywheels 835

where b is the face width (perpendicular to the paper) of the friction material.
Substituting the value of the pressure from Eq. (16–1), the normal force is

d N = pabr sin θ dθ

sin θa
(c)

The normal force d N has horizontal and vertical components d N cos θ and d N sin θ ,
as shown in the figure. The frictional force f d N has horizontal and vertical compo-
nents whose magnitudes are f d N sin θ and f d N cos θ , respectively. By applying the
conditions of static equilibrium, we may find the actuating force F, the torque T, and
the pin reactions Rx and Ry .

We shall find the actuating force F, using the condition that the summation of the
moments about the hinge pin is zero. The frictional forces have a moment arm about
the pin of r − a cos θ . The moment Mf of these frictional forces is

Mf =
∫

f d N (r − a cos θ) = f pabr

sin θa

∫ θ2

θ1

sin θ(r − a cos θ) dθ (16–2)

which is obtained by substituting the value of d N from Eq. (c). It is convenient to
integrate Eq. (16–2) for each problem, and we shall therefore retain it in this form. The
moment arm of the normal force d N about the pin is a sin θ . Designating the moment
of the normal forces by MN and summing these about the hinge pin give

MN =
∫

d N (a sin θ) = pabra

sin θa

∫ θ2

θ1

sin2 θ dθ (16–3)

The actuating force F must balance these moments. Thus

F = MN − Mf

c
(16–4)

We see here that a condition for zero actuating force exists. In other words, if
we make MN = Mf , self-locking is obtained, and no actuating force is required. This
furnishes us with a method for obtaining the dimensions for some self-energizing
action. Thus the dimension a in Fig. 16–7 must be such that

MN > Mf (16–5)

The torque T applied to the drum by the brake shoe is the sum of the frictional
forces f d N times the radius of the drum:

T =
∫

f r d N = f pabr2

sin θa

∫ θ2

θ1

sin θ dθ

= f pabr2(cos θ1 − cos θ2)

sin θa

(16–6)

The hinge-pin reactions are found by taking a summation of the horizontal and
vertical forces. Thus, for Rx , we have

Rx =
∫

d N cos θ −
∫

f d N sin θ − Fx

= pabr

sin θa

(∫ θ2

θ1

sin θ cos θ dθ − f
∫ θ2

θ1

sin2 θ dθ

)
− Fx

(d )
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836 Mechanical Engineering Design

The vertical reaction is found in the same way:

Ry =
∫

d N sin θ +
∫

f d N cos θ − Fy

= pabr

sin θa

(∫ θ2

θ1

sin2 θ dθ + f
∫ θ2

θ1

sin θ cos θ dθ

)
− Fy

(e)

The direction of the frictional forces is reversed if the rotation is reversed. Thus, for
counterclockwise rotation the actuating force is

F = MN + Mf

c
(16–7)

and since both moments have the same sense, the self-energizing effect is lost. Also, for
counterclockwise rotation the signs of the frictional terms in the equations for the pin
reactions change, and Eqs. (d ) and (e) become

Rx = pabr

sin θa

(∫ θ2

θ1

sin θ cos θ dθ + f
∫ θ2

θ1

sin2 θ dθ

)
− Fx (f )

Ry = pabr

sin θa

(∫ θ2

θ1

sin2 θ dθ − f
∫ θ2

θ1

sin θ cos θ dθ

)
− Fy (g)

Equations (d), (e), ( f ), and (g) can be simplified to ease computations. Thus, let

A =
∫ θ2

θ1

sin θ cos θ dθ =
(

1

2
sin2 θ

)θ2

θ1

B =
∫ θ2

θ1

sin2 θ dθ =
(

θ

2
− 1

4
sin 2θ

)θ2

θ1

(16–8)

Then, for clockwise rotation as shown in Fig. 16–7, the hinge-pin reactions are

Rx = pabr

sin θa
(A − f B) − Fx

Ry = pabr

sin θa
(B + f A) − Fy

(16–9)

For counterclockwise rotation, Eqs. ( f ) and (g) become

Rx = pabr

sin θa
(A + f B) − Fx

Ry = pabr

sin θa
(B − f A) − Fy

(16–10)

In using these equations, the reference system always has its origin at the center of
the drum. The positive x axis is taken through the hinge pin. The positive y axis is
always in the direction of the shoe, even if this should result in a left-handed system.

The following assumptions are implied by the preceding analysis:

1 The pressure at any point on the shoe is assumed to be proportional to the distance
from the hinge pin, being zero at the heel. This should be considered from the
standpoint that pressures specified by manufacturers are averages rather than
maxima.
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Clutches, Brakes, Couplings, and Flywheels 837

Figure 16–8

Brake with internal expanding
shoes; dimensions in
millimeters. F F

100

62 62

112

50 50

150

Rotation 24°

126°

30°

2 The effect of centrifugal force has been neglected. In the case of brakes, the shoes
are not rotating, and no centrifugal force exists. In clutch design, the effect of this
force must be considered in writing the equations of static equilibrium.

3 The shoe is assumed to be rigid. Since this cannot be true, some deflection will
occur, depending upon the load, pressure, and stiffness of the shoe. The resulting
pressure distribution may be different from that which has been assumed.

4 The entire analysis has been based upon a coefficient of friction that does not vary
with pressure. Actually, the coefficient may vary with a number of conditions,
including temperature, wear, and environment.

EXAMPLE 16–2 The brake shown in Fig. 16–8 is 300 mm in diameter and is actuated by a mechanism
that exerts the same force F on each shoe. The shoes are identical and have a face width
of 32 mm. The lining is a molded asbestos having a coefficient of friction of 0.32 and
a pressure limitation of 1000 kPa. Estimate the maximum
(a) Actuating force F.
(b) Braking capacity.
(c) Hinge-pin reactions.

Solution (a) The right-hand shoe is self-energizing, and so the force F is found on the basis that
the maximum pressure will occur on this shoe. Here θ1 = 0◦, θ2 = 126◦, θa = 90◦, and
sin θa = 1. Also,

a =
√

(112)2 + (50)2 = 122.7 mm

Integrating Eq. (16–2) from 0 to θ2 yields

Mf = f pabr

sin θa

[(
−r cos θ

)θ2

0

− a

(
1

2
sin2 θ

)θ2

0

]

= f pabr

sin θa

(
r − r cos θ2 − a

2
sin2 θ2

)
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838 Mechanical Engineering Design

Changing all lengths to meters, we have

Mf = (0.32)[1000(10)3](0.032)(0.150)

×
[

0.150 − 0.150 cos 126◦ −
(

0.1227

2

)
sin2 126◦

]
= 304 N · m

The moment of the normal forces is obtained from Eq. (16–3). Integrating from 0 to θ2

gives

MN = pabra

sin θa

(
θ

2
− 1

4
sin 2θ

)θ2

0

= pabra

sin θa

(
θ2

2
− 1

4
sin 2θ2

)
= [1000(10)3](0.032)(0.150)(0.1227)

{
π

2

126

180
− 1

4
sin[(2)(126◦)]

}
= 788 N · m

From Eq. (16–4), the actuating force is

Answer F = MN − Mf

c
= 788 − 304

100 + 112
= 2.28 kN

(b) From Eq. (16–6), the torque applied by the right-hand shoe is

TR = f pabr2(cos θ1 − cos θ2)

sin θa

= 0.32[1000(10)3](0.032)(0.150)2(cos 0◦ − cos 126◦)
sin 90◦ = 366 N · m

The torque contributed by the left-hand shoe cannot be obtained until we learn its max-
imum operating pressure. Equations (16–2) and (16–3) indicate that the frictional and
normal moments are proportional to this pressure. Thus, for the left-hand shoe,

MN = 788pa

1000
Mf = 304pa

1000

Then, from Eq. (16–7),

F = MN + Mf

c
or

2.28 = (788/1000)pa + (304/1000)pa

100 + 112

Solving gives pa = 443 kPa. Then, from Eq. (16–6), the torque on the left-hand shoe is

TL = f pabr2(cos θ1 − cos θ2)

sin θa

Since sin θa = sin 90◦ = 1, we have

TL = 0.32[443(10)3](0.032)(0.150)2(cos 0◦ − cos 126◦) = 162 N · m
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Clutches, Brakes, Couplings, and Flywheels 839

The braking capacity is the total torque:

Answer T = TR + TL = 366 + 162 = 528 N · m

(c) In order to find the hinge-pin reactions, we note that sin θa = 1 and θ1 = 0. Then
Eq. (16–8) gives

A = 1

2
sin2 θ2 = 1

2
sin2 126◦ = 0.3273

B = θ2

2
− 1

4
sin 2θ2 = π(126)

2(180)
− 1

4
sin[(2)(126◦)] = 1.3373

Also, let

D = pabr

sin θa
= 1000(0.032)(0.150)

1
= 4.8 kN

where pa = 1000 kPa for the right-hand shoe. Then, using Eq. (16–9), we have

Rx = D(A − f B) − Fx = 4.8[0.3273 − 0.32(1.3373)] − 2.28 sin 24◦

= −1.410 kN

Ry = D(B + f A) − Fy = 4.8[1.3373 + 0.32(0.3273)] − 2.28 cos 24◦

= 4.839 kN
The resultant on this hinge pin is

Answer R =
√

(−1.410)2 + (4.839)2 = 5.04 kN

The reactions at the hinge pin of the left-hand shoe are found using Eqs. (16–10)
for a pressure of 443 kPa. They are found to be Rx = 0.678 kN and Ry = 0.538 kN.
The resultant is

Answer R =
√

(0.678)2 + (0.538)2 = 0.866 kN

The reactions for both hinge pins, together with their directions, are shown in Fig. 16–9.

Figure 16–9

x x

R

Rx

RyRy

Rx

Fy Fy

Fx

F F

Fx

R

y y

24° 24°
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840 Mechanical Engineering Design

Figure 16–10

An external contracting 
clutch-brake that is engaged 
by expanding the flexible tube
with compressed air. (Courtesy
of Twin Disc Clutch Company.)

This example dramatically shows the benefit to be gained by arranging the shoes
to be self-energizing. If the left-hand shoe were turned over so as to place the hinge pin
at the top, it could apply the same torque as the right-hand shoe. This would make the
capacity of the brake (2)(366) = 732 N · m instead of the present 528 N · m, a 30 per-
cent improvement. In addition, some of the friction material at the heel could be elim-
inated without seriously affecting the capacity, because of the low pressure in this area.
This change might actually improve the overall design because the additional rim expo-
sure would improve the heat-dissipation capacity.

16–3 External Contracting Rim Clutches and Brakes
The patented clutch-brake of Fig. 16–10 has external contracting friction elements, but
the actuating mechanism is pneumatic. Here we shall study only pivoted external shoe
brakes and clutches, though the methods presented can easily be adapted to the clutch-
brake of Fig. 16–10.

Operating mechanisms can be classified as:

1 Solenoids
2 Levers, linkages, or toggle devices
3 Linkages with spring loading
4 Hydraulic and pneumatic devices

The static analysis required for these devices has already been covered in Sec. 3–1. The
methods there apply to any mechanism system, including all those used in brakes and
clutches. It is not necessary to repeat the material in Chap. 3 that applies directly to such
mechanisms. Omitting the operating mechanisms from consideration allows us to con-
centrate on brake and clutch performance without the extraneous influences introduced
by the need to analyze the statics of the control mechanisms.

The notation for external contracting shoes is shown in Fig. 16–11. The moments
of the frictional and normal forces about the hinge pin are the same as for the internal

bud29281_ch16_825-878.qxd  12/18/09  8:19 PM  Page 840 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Clutches, Brakes, Couplings, and Flywheels 841

expanding shoes. Equations (16–2) and (16–3) apply and are repeated here for
convenience:

Mf = f pabr

sin θa

∫ θ2

θ1

sin θ(r − a cos θ) dθ (16–2)

MN = pabra

sin θa

∫ θ2

θ1

sin2 θ dθ (16–3)

Both these equations give positive values for clockwise moments (Fig. 16–11) when
used for external contracting shoes. The actuating force must be large enough to bal-
ance both moments:

F = MN + Mf

c
(16–11)

The horizontal and vertical reactions at the hinge pin are found in the same manner
as for internal expanding shoes. They are

Rx =
∫

d N cos θ +
∫

f d N sin θ − Fx (a)

Ry =
∫

f d N cos θ −
∫

d N sin θ + Fy (b)

By using Eq. (16–8) and Eq. (c) from Sec. 16–2, we have

Rx = pabr

sin θa
(A + f B) − Fx

Ry = pabr

sin θa
( f A − B) + Fy

(16–12)

Figure 16–11

Notation of external 
contracting shoes.
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842 Mechanical Engineering Design

If the rotation is counterclockwise, the sign of the frictional term in each equation
is reversed. Thus Eq. (16–11) for the actuating force becomes

F = MN − Mf

c
(16–13)

and self-energization exists for counterclockwise rotation. The horizontal and vertical
reactions are found, in the same manner as before, to be

Rx = pabr

sin θa
(A − f B) − Fx

Ry = pabr

sin θa
(− f A − B) + Fy

(16–14)

It should be noted that, when external contracting designs are used as clutches, the
effect of centrifugal force is to decrease the normal force. Thus, as the speed increases,
a larger value of the actuating force F is required.

A special case arises when the pivot is symmetrically located and also placed so
that the moment of the friction forces about the pivot is zero. The geometry of such
a brake will be similar to that of Fig. 16–12a. To get a pressure-distribution relation,
we note that lining wear is such as to retain the cylindrical shape, much as a milling
machine cutter feeding in the x direction would do to the shoe held in a vise. See
Fig. 16–12b. This means the abscissa component of wear is w0 for all positions θ .
If wear in the radial direction is expressed as w(θ), then

w(θ) = w0 cos θ

Using Eq. (12–26), p. 662, to express radial wear w(θ) as

w(θ) = K PV t

Figure 16–12

(a) Brake with symmetrical
pivoted shoe; (b) wear of 
brake lining.
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where K is a material constant, P is pressure, V is rim velocity, and t is time. Then,
denoting P as p(θ) above and solving for p(θ) gives

p(θ) = w(θ)

K V t
= w0 cos θ

K V t

Since all elemental surface areas of the friction material see the same rubbing speed for
the same duration, w0/(K V t) is a constant and

p(θ) = (constant) cos θ = pa cos θ (c)

where pa is the maximum value of p(θ).
Proceeding to the force analysis, we observe from Fig. 16–12a that

d N = pbr dθ (d )

or

d N = pabr cos θ dθ (e)

The distance a to the pivot is chosen by finding where the moment of the frictional
forces Mf is zero. First, this ensures that reaction Ry is at the correct location to
establish symmetrical wear. Second, a cosinusoidal pressure distribution is sustained,
preserving our predictive ability. Symmetry means θ1 = θ2, so

Mf = 2
∫ θ2

0
( f d N )(a cos θ − r) = 0

Substituting Eq. (e) gives

2 f pabr
∫ θ2

0
(a cos2 θ − r cos θ) dθ = 0

from which

a = 4r sin θ2

2θ2 + sin 2θ2
(16–15)

The distance a depends on the pressure distribution. Mislocating the pivot makes Mf

zero about a different location, so the brake lining adjusts its local contact pressure,
through wear, to compensate. The result is unsymmetrical wear, retiring the shoe lin-
ing, hence the shoe, sooner. 

With the pivot located according to Eq. (16–15), the moment about the pin is zero,
and the horizontal and vertical reactions are

Rx = 2
∫ θ2

0
d N cos θ = pabr

2
(2θ2 + sin 2θ2) (16–16)

where, because of symmetry, ∫
f d N sin θ = 0

Also,

Ry = 2
∫ θ2

0
f d N cos θ = pabr f

2
(2θ2 + sin 2θ2) (16–17)
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844 Mechanical Engineering Design

where ∫
d N sin θ = 0

also because of symmetry. Note, too, that Rx = −N and Ry = − f N , as might be
expected for the particular choice of the dimension a. Therefore the torque is

T = a f N (16–18)

16–4 Band-Type Clutches and Brakes
Flexible clutch and brake bands are used in power excavators and in hoisting and other
machinery. The analysis follows the notation of Fig. 16–13.

Because of friction and the rotation of the drum, the actuating force P2 is less
than the pin reaction P1. Any element of the band, of angular length dθ , will be in equili-
brium under the action of the forces shown in the figure. Summing these forces in the
vertical direction, we have

(P + d P) sin
dθ

2
+ P sin

dθ

2
− d N = 0 (a)

d N = Pdθ (b)

since for small angles sin dθ/2 = dθ/2. Summing the forces in the horizontal direction
gives

(P + d P) cos
dθ

2
− P cos

dθ

2
− f d N = 0 (c)

d P − f d N = 0 (d )

since for small angles, cos(dθ/2)
.= 1. Substituting the value of d N from Eq. (b) in (d )

and integrating give ∫ P1

P2

d P

P
= f

∫ φ

0
dθ or ln

P1

P2
= f φ

Figure 16–13

Forces on a brake band. P + dP P
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and

P1

P2
= e f φ (16–19)

The torque may be obtained from the equation

T = (P1 − P2)
D

2
(16–20)

The normal force d N acting on an element of area of width b and length rdθ is

d N = pbr dθ (e)

where p is the pressure. Substitution of the value of d N from Eq. (b) gives

P dθ = pbr dθ

Therefore

p = P

br
= 2P

bD
(16–21)

The pressure is therefore proportional to the tension in the band. The maximum pressure
pa will occur at the toe and has the value

pa = 2P1

bD
(16–22)

16–5 Frictional-Contact Axial Clutches
An axial clutch is one in which the mating frictional members are moved in a direction
parallel to the shaft. One of the earliest of these is the cone clutch, which is simple in
construction and quite powerful. However, except for relatively simple installations,
it has been largely displaced by the disk clutch employing one or more disks as the
operating members. Advantages of the disk clutch include the freedom from centrifugal
effects, the large frictional area that can be installed in a small space, the more effective
heat-dissipation surfaces, and the favorable pressure distribution. Figure 16–14 shows a

Figure 16–14

Cross-sectional view of a
single-plate clutch; A, driver; 
B, driven plate (keyed to driven
shaft); C, actuator.

C

B

A
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Figure 16–15

An oil-actuated multiple-disk
clutch-brake for operation in an
oil bath or spray. It is especially
useful for rapid cycling.
(Courtesy of Twin Disc Clutch
Company.)

Figure 16–16

Disk friction member.

D

d

r

dr

F

single-plate disk clutch; a multiple-disk clutch-brake is shown in Fig. 16–15. Let us now
determine the capacity of such a clutch or brake in terms of the material and geometry.

Figure 16–16 shows a friction disk having an outside diameter D and an inside diam-
eter d. We are interested in obtaining the axial force F necessary to produce a certain
torque T and pressure p. Two methods of solving the problem, depending upon the con-
struction of the clutch, are in general use. If the disks are rigid, then the greatest amount
of wear will at first occur in the outer areas, since the work of friction is greater in those
areas. After a certain amount of wear has taken place, the pressure distribution will change
so as to permit the wear to be uniform. This is the basis of the first method of solution.

Another method of construction employs springs to obtain a uniform pressure over
the area. It is this assumption of uniform pressure that is used in the second method of
solution.

Uniform Wear

After initial wear has taken place and the disks have worn down to a point where
uniform wear is established, the axial wear can be expressed by Eq. (12–27), p. 663, as

w = f1 f2 K PV t
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in which only P and V vary from place to place in the rubbing surfaces. By definition
uniform wear is constant from place to place; therefore,

PV = (constant) = C1

prω = C2

pr = C3 = pmaxri = pari = pa
d

2

(a)

We can take an expression from Eq. (a), which is the condition for having the same
amount of work done at radius r as is done at radius d/2. Referring to Fig. 16–16, we
have an element of area of radius r and thickness dr . The area of this element is
2πr dr , so that the normal force acting upon this element is d F = 2πpr dr . We can
find the total normal force by letting r vary from d/2 to D/2 and integrating. Thus,
with pr constant,

F =
∫ D/2

d/2
2πpr dr = πpad

∫ D/2

d/2
dr = πpad

2
(D − d) (16–23)

The torque is found by integrating the product of the frictional force and the radius:

T =
∫ D/2

d/2
2π f pr2 dr = π f pad

∫ D/2

d/2
r dr = π f pad

8
(D2 − d2) (16–24)

By substituting the value of F from Eq. (16–23) we may obtain a more convenient
expression for the torque. Thus

T = F f

4
(D + d) (16–25)

In use, Eq. (16–23) gives the actuating force for the selected maximum pressure pa .
This equation holds for any number of friction pairs or surfaces. Equation (16–25),
however, gives the torque capacity for only a single friction surface.

Uniform Pressure

When uniform pressure can be assumed over the area of the disk, the actuating force F
is simply the product of the pressure and the area. This gives

F = πpa

4
(D2 − d2) (16–26)

As before, the torque is found by integrating the product of the frictional force and the
radius:

T = 2π f p
∫ D/2

d/2
r2 dr = π f p

12
(D3 − d3) (16–27)

Since p = pa , from Eq. (16–26) we can rewrite Eq. (16–27) as

T = F f

3

D3 − d3

D2 − d2
(16–28)

It should be noted for both equations that the torque is for a single pair of mating
surfaces. This value must therefore be multiplied by the number of pairs of surfaces in
contact.
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Let us express Eq. (16–25) for torque during uniform wear as

T

f F D
= 1 + d/D

4
(b)

and Eq. (16–28) for torque during uniform pressure (new clutch) as

T

f F D
= 1

3

1 − (d/D)3

1 − (d/D)2
(c)

and plot these in Fig. 16–17. What we see is a dimensionless presentation of Eqs. (b)
and (c) which reduces the number of variables from five (T, f, F, D, and d) to three
(T/F D, f , and d/D) which are dimensionless. This is the method of Buckingham. The
dimensionless groups (called pi terms) are

π1 = T

F D
π2 = f π3 = d

D

This allows a five-dimensional space to be reduced to a three-dimensional space.
Further, because of the “multiplicative” relation between f and T in Eqs. (b) and (c),
it is possible to plot π1/π2 versus π3 in a two-dimensional space (the plane of a sheet
of paper) to view all cases over the domain of existence of Eqs. (b) and (c) and to
compare, without risk of oversight! By examining Fig. 16–17 we can conclude that a
new clutch, Eq. (b), always transmits more torque than an old clutch, Eq. (c).
Furthermore, since clutches of this type are proportioned to make the diameter ratio
d/D fall in the range 0.6 ≤ d/D ≤ 1, the largest discrepancy between Eq. (b) and
Eq. (c) will be

T

f F D
= 1 + 0.6

4
= 0.400 (old clutch, uniform wear)

T

f F D
= 1

3

1 − 0.63

1 − 0.62
= 0.4083 (new clutch, uniform pressure)

so the proportional error is (0.4083 − 0.400)/0.400 = 0.021, or about 2 percent. Given
the uncertainties in the actual coefficient of friction and the certainty that new clutches
get old, there is little reason to use anything but Eqs. (16–23), (16–24), and (16–25).

Figure 16–17

Dimensionless plot of 
Eqs. (b) and (c).

0 0.5 1
0

0.5

1

Uniform pressure

Uniform wear
d
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T
 f FD
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Figure 16–18

An automotive disk brake.
(Courtesy DaimlerChrysler
Corporation.)

Wheel
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16–6 Disk Brakes
As indicated in Fig. 16–16, there is no fundamental difference between a disk clutch
and a disk brake. The analysis of the preceding section applies to disk brakes too.

We have seen that rim or drum brakes can be designed for self-energization. While
this feature is important in reducing the braking effort required, it also has a disadvan-
tage. When drum brakes are used as vehicle brakes, only a slight change in the coefficient
of friction will cause a large change in the pedal force required for braking. A not unusual
30 percent reduction in the coefficient of friction due to a temperature change or
moisture, for example, can result in a 50 percent change in the pedal force required to
obtain the same braking torque obtainable prior to the change. The disk brake has no self-
energization, and hence is not so susceptible to changes in the coefficient of friction.

Another type of disk brake is the floating caliper brake, shown in Fig. 16–18. The
caliper supports a single floating piston actuated by hydraulic pressure. The action is
much like that of a screw clamp, with the piston replacing the function of the screw. The
floating action also compensates for wear and ensures a fairly constant pressure over
the area of the friction pads. The seal and boot of Fig. 16–18 are designed to obtain
clearance by backing off from the piston when the piston is released.

Caliper brakes (named for the nature of the actuating linkage) and disk brakes
(named for the shape of the unlined surface) press friction material against the face(s)
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of a rotating disk. Depicted in Fig. 16–19 is the geometry of an annular-pad brake con-
tact area. The governing axial wear equation is Eq. (12–27), p. 663,

w = f1 f2 K PV t

The coordinate r̄ locates the line of action of force F that intersects the y axis. Of
interest also is the effective radius re, which is the radius of an equivalent shoe of infin-
itesimal radial thickness. If p is the local contact pressure, the actuating force F and the
friction torque T are given by

F =
∫ θ2

θ1

∫ ro

ri

pr dr dθ = (θ2 − θ1)

∫ ro

ri

pr dr (16–29)

T =
∫ θ2

θ1

∫ ro

ri

f pr2 dr dθ = (θ2 − θ1) f
∫ ro

ri

pr2 dr (16–30)

The equivalent radius re can be found from f Fre = T , or 

re = T

f F
=

∫ ro

ri

pr2 dr∫ ro

ri

pr dr
(16–31)

The locating coordinate r̄ of the activating force is found by taking moments about the
x axis:

Mx = Fr̄ =
∫ θ2

θ1

∫ ro

ri

pr(r sin θ) dr dθ = (cos θ1 − cos θ2)

∫ ro

ri

pr2 dr

r̄ = Mx

F
= (cos θ1 − cos θ2)

θ2 − θ1
re (16–32)

Uniform Wear

It is clear from Eq. (12–27) that for the axial wear to be the same everywhere, the prod-
uct PV must be a constant. From Eq. (a), Sec. 16–5, the pressure p can be expressed
in terms of the largest allowable pressure pa (which occurs at the inner radius ri ) as

Figure 16–19

Geometry of contact area of an
annular-pad segment of a
caliper brake.

y

x
ro

�1

�2ri

FF

r
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p = pari/r . Equation (16–29) becomes

F = (θ2 − θ1)pari (ro − ri ) (16–33)

Equation (16–30) becomes

T = (θ2 − θ1) f pari

∫ ro

ri

r dr = 1

2
(θ2 − θ1) f pari

(
r2

o − r2
i

)
(16–34)

Equation (16–31) becomes

re =
pari

∫ ro

ri

r dr

pari

∫ ro

ri

dr
= r2

o − r2
i

2

1

ro − ri
= ro + ri

2
(16–35)

Equation (16–32) becomes

r̄ = cos θ1 − cos θ2

θ2 − θ1

ro + ri

2
(16–36)

Uniform Pressure

In this situation, approximated by a new brake, p = pa . Equation (16–29) becomes

F = (θ2 − θ1)pa

∫ ro

ri

r dr = 1

2
(θ2 − θ1)pa

(
r2

o − r2
i

)
(16–37)

Equation (16–30) becomes

T = (θ2 − θ1) f pa

∫ ro

ri

r2 dr = 1

3
(θ2 − θ1) f pa

(
r3

o − r3
i

)
(16–38)

Equation (16–31) becomes

re =
pa

∫ ro

ri

r2 dr

pa

∫ ro

ri

r dr
= r3

o − r3
i

3

2

r2
o − r2

i

= 2

3

r3
o − r3

i

r2
o − r2

i

(16–39)

Equation (16–32) becomes

r̄ = cos θ1 − cos θ2

θ2 − θ1

2

3

r3
o − r3

i

r2
o − r2

i

= 2

3

r3
o − r3

i

r2
o − r2

i

cos θ1 − cos θ2

θ2 − θ1
(16–40)

EXAMPLE 16–3 Two annular pads, ri = 3.875 in, ro = 5.50 in, subtend an angle of 108◦, have a co-
efficient of friction of 0.37, and are actuated by a pair of hydraulic cylinders 1.5 in in
diameter. The torque requirement is 13 000 lbf · in. For uniform wear
(a) Find the largest normal pressure pa .
(b) Estimate the actuating force F.
(c) Find the equivalent radius re and force location r̄ .
(d) Estimate the required hydraulic pressure.
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Solution (a) From Eq. (16–34), with T = 13 000/2 = 6500 lbf · in for each pad,

Answer pa = 2T

(θ2 − θ1) f ri
(
r2

o − r2
i

)
= 2(6500)

(144◦ − 36◦)(π/180)0.37(3.875)(5.52 − 3.8752)
= 315.8 psi

(b) From Eq. (16–33),

Answer F = (θ2 − θ1)pari (ro − ri ) = (144◦ − 36◦)(π/180)315.8(3.875)(5.5 − 3.875)

= 3748 lbf

(c) From Eq. (16–35),

Answer re = ro + ri

2
= 5.50 + 3.875

2
= 4.688 in

From Eq. (16–36),

Answer r̄ = cos θ1 − cos θ2

θ2 − θ1

ro + ri

2
= cos 36◦ − cos 144◦

(144◦ − 36◦)(π/180)

5.50 + 3.875

2

= 4.024 in

(d ) Each cylinder supplies the actuating force, 3748 lbf.

Answer phydraulic = F

AP
= 3748

π(1.52/4)
= 2121 psi

Circular (Button or Puck) Pad Caliper Brake

Figure 16–20 displays the pad geometry. Numerical integration is necessary to ana-
lyze this brake since the boundaries are difficult to handle in closed form. Table 16–1
gives the parameters for this brake as determined by Fazekas. The effective radius is
given by 

re = δe (16–41)

The actuating force is given by

F = π R2 pav (16–42)

and the torque is given by

T = f Fre (16–43)

Figure 16–20

Geometry of circular pad of a
caliper brake.

e

R
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EXAMPLE 16–4 A button-pad disk brake uses dry sintered metal pads. The pad radius is 1
2 in, and its

center is 2 in from the axis of rotation of the 3 1
2 -in-diameter disk. Using half of the

largest allowable pressure, pmax = 350 psi, find the actuating force and the brake
torque. The coefficient of friction is 0.31.

Solution Since the pad radius R = 0.5 in and eccentricity e = 2 in,

R

e
= 0.5

2
= 0.25

From Table 16–1, by interpolation, δ = 0.963 and pmax/pav = 1.290. It follows that the
effective radius e is found from Eq. (16–41):

re = δe = 0.963(2) = 1.926 in

and the average pressure is

pav = pmax/2

1.290
= 350/2

1.290
= 135.7 psi

The actuating force F is found from Eq. (16–42) to be

Answer F = π R2 pav = π(0.5)2135.7 = 106.6 lbf (one side)

The brake torque T is

Answer T = f Fre = 0.31(106.6)1.926 = 63.65 lbf · in (one side)

16–7 Cone Clutches and Brakes
The drawing of a cone clutch in Fig. 16–21 shows that it consists of a cup keyed or splined
to one of the shafts, a cone that must slide axially on splines or keys on the mating shaft,
and a helical spring to hold the clutch in engagement. The clutch is disengaged by means
of a fork that fits into the shifting groove on the friction cone. The cone angle α and the
diameter and face width of the cone are the important geometric design parameters. If the

R

e

re

e

pmax

pav

0.0 1.000 1.000

0.1 0.983 1.093

0.2 0.969 1.212

0.3 0.957 1.367

0.4 0.947 1.578

0.5 0.938 1.875

Table 16–1

Parameters for a

Circular-Pad Caliper

Brake 

Source: G. A. Fazekas, “On
Circular Spot Brakes,” Trans.
ASME, J. Engineering for
Industry, vol. 94, Series B, 
No. 3, August 1972,
pp. 859–863.

� �
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Figure 16–21

Cross section of a cone clutch.

Cup Shifting groove

Spring

Cone

�  Cone angle

Figure 16–22

Contact area of a cone clutch.
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D

d

p dA
�

�

dr
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(a) (b)

cone angle is too small, say, less than about 8◦, then the force required to disengage the
clutch may be quite large. And the wedging effect lessens rapidly when larger cone
angles are used. Depending upon the characteristics of the friction materials, a good com-
promise can usually be found using cone angles between 10 and 15◦.

To find a relation between the operating force F and the torque transmitted, desig-
nate the dimensions of the friction cone as shown in Figure 16–22. As in the case of the
axial clutch, we can obtain one set of relations for a uniform-wear and another set for
a uniform-pressure assumption.

Uniform Wear

The pressure relation is the same as for the axial clutch:

p = pa
d

2r
(a)

Next, referring to Fig. 16–22, we see that we have an element of area d A of radius r
and width dr/sin α. Thus d A = (2πrdr)/sin α . As shown in Fig. 16–22, the operating
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force will be the integral of the axial component of the differential force p d A. Thus

F =
∫

p d A sin α =
∫ D/2

d/2

(
pa

d

2r

)(
2πr dr

sin α

)
(sin α)

= πpad
∫ D/2

d/2
dr = πpad

2
(D − d)

(16–44)

which is the same result as in Eq. (16–23).
The differential friction force is f p d A, and the torque is the integral of the prod-

uct of this force with the radius. Thus

T =
∫

r f p d A =
∫ D/2

d/2
(r f )

(
pa

d

2r

)(
2πr dr

sin α

)

= π f pad

sin α

∫ D/2

d/2
r dr = π f pad

8 sin α
(D2 − d2)

(16–45)

Note that Eq. (16–24) is a special case of Eq. (16–45), with α = 90◦. Using
Eq. (16–44), we find that the torque can also be written

T = F f

4 sin α
(D + d) (16–46)

Uniform Pressure

Using p = pa , the actuating force is found to be

F =
∫

pa d Asin α =
∫ D/2

d/2
(pa)

(
2πr dr

sin α

)
(sin α) = πpa

4
(D2 − d2) (16–47)

The torque is

T =
∫

r f pa d A =
∫ D/2

d/2
(r f pa)

(
2πr dr

sin α

)
= π f pa

12 sin α
(D3 − d3) (16–48)

Using Eq. (16–47) in Eq. (16–48) gives

T = F f

3 sin α

D3 − d3

D2 − d2
(16–49)

As in the case of the axial clutch, we can write Eq. (16–46) dimensionlessly as

T sin α

f Fd
= 1 + d/D

4
(b)

and write Eq. (16–49) as

T sin α

f Fd
= 1

3

1 − (d/D)3

1 − (d/D)2
(c)

This time there are six (T, α, f, F, D, and d ) parameters and four pi terms:

π1 = T

F D
π2 = f π3 = sin α π4 = d

D

As in Fig. 16–17, we plot T sin α/( f F D) as ordinate and d/D as abscissa. The plots
and conclusions are the same. There is little reason for using equations other than
Eqs. (16–44), (16–45), and (16–46).
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16–8 Energy Considerations
When the rotating members of a machine are caused to stop by means of a brake, the
kinetic energy of rotation must be absorbed by the brake. This energy appears in the
brake in the form of heat. In the same way, when the members of a machine that are ini-
tially at rest are brought up to speed, slipping must occur in the clutch until the driven
members have the same speed as the driver. Kinetic energy is absorbed during slippage
of either a clutch or a brake, and this energy appears as heat.

We have seen how the torque capacity of a clutch or brake depends upon the co-
efficient of friction of the material and upon a safe normal pressure. However, the char-
acter of the load may be such that, if this torque value is permitted, the clutch or brake
may be destroyed by its own generated heat. The capacity of a clutch is therefore
limited by two factors, the characteristics of the material and the ability of the clutch to
dissipate heat. In this section we shall consider the amount of heat generated by a
clutching or braking operation. If the heat is generated faster than it is dissipated, we
have a temperature-rise problem; that is the subject of the next section.

To get a clear picture of what happens during a simple clutching or braking opera-
tion, refer to Fig. 16–1a, which is a mathematical model of a two-inertia system con-
nected by a clutch. As shown, inertias I1 and I2 have initial angular velocities of ω1 and
ω2, respectively. During the clutch operation both angular velocities change and even-
tually become equal. We assume that the two shafts are rigid and that the clutch torque
is constant.

Writing the equation of motion for inertia 1 gives

I1θ̈1 = −T (a)

where θ̈1 is the angular acceleration of I1 and T is the clutch torque. A similar equation
for I2 is

I2θ̈2 = T (b)

We can determine the instantaneous angular velocities θ̇1 and θ̇2 of I1 and I2 after any
period of time t has elapsed by integrating Eqs. (a) and (b). The results are

θ̇1 = − T

I1
t + ω1 (c)

θ̇2 = T

I2
t + ω2 (d)

where θ̇1 = ω1 and θ̇2 = ω2 at t = 0. The difference in the velocities, sometimes called
the relative velocity, is

θ̇ = θ̇1 − θ̇2 = − T

I1
t + ω1 −

(
T

I2
t + ω2

)

= ω1 − ω2 − T

(
I1 + I2

I1 I2

)
t

(16–50)

The clutching operation is completed at the instant in which the two angular velocities
θ̇1 and θ̇2 become equal. Let the time required for the entire operation be t1. Then θ̇ = 0
when θ̇1 = θ̇2, and so Eq. (16–50) gives the time as

t1 = I1 I2(ω1 − ω2)

T (I1 + I2)
(16–51)
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This equation shows that the time required for the engagement operation is directly
proportional to the velocity difference and inversely proportional to the torque.

We have assumed the clutch torque to be constant. Therefore, using Eq. (16–50),
we find the rate of energy-dissipation during the clutching operation to be

u = T θ̇ = T

[
ω1 − ω2 − T

(
I1 + I2

I1 I2

)
t

]
(e)

This equation shows that the energy-dissipation rate is greatest at the start, when t = 0.
The total energy dissipated during the clutching operation or braking cycle is

obtained by integrating Eq. (e) from t = 0 to t = t1. The result is found to be

E =
∫ t1

0
u dt = T

∫ t1

0

[
ω1 − ω2 − T

(
I1 + I2

I1 I2

)
t

]
dt

= I1 I2(ω1 − ω2)
2

2(I1 + I2)

(16–52)

where Eq. (16–51) was employed. Note that the energy dissipated is proportional to the
velocity difference squared and is independent of the clutch torque.

Note that E in Eq. (16–52) is the energy lost or dissipated; this is the energy that is
absorbed by the clutch or brake. If the inertias are expressed in U.S. customary units
(lbf · in · s2), then the energy absorbed by the clutch assembly is in in · lbf. Using these
units, the heat generated in Btu is

H = E

9336
(16–53)

In SI, the inertias are expressed in kilogram-meter2 units, and the energy dissipated
is expressed in joules.

16–9 Temperature Rise
The temperature rise of the clutch or brake assembly can be approximated by the classic
expression

�T = H

CpW
(16–54)

where �T = temperature rise, °F

Cp = specific heat capacity, Btu/(lbm · ◦F); use 0.12 for steel or cast iron

W = mass of clutch or brake parts, lbm

A similar equation can be written for SI units. It is

�T = E

Cpm
(16–55)

where �T = temperature rise, °C

Cp = specific heat capacity; use 500 J/kg · ◦C for steel or cast iron

m = mass of clutch or brake parts, kg

The temperature-rise equations above can be used to explain what happens when a
clutch or brake is operated. However, there are so many variables involved that it would

bud29281_ch16_825-878.qxd  12/18/09  8:19 PM  Page 857 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



858 Mechanical Engineering Design

Figure 16–23

The effect of clutching or
braking operations on
temperature. T∞ is the ambient
temperature. Note that the
temperature rise �T may be
different for each operation.
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be most unlikely that such an analysis would even approximate experimental results.
For this reason such analyses are most useful, for repetitive cycling, in pinpointing
those design parameters that have the greatest effect on performance.

If an object is at initial temperature T1 in an environment of temperature T∞, then
Newton’s cooling model is expressed as

T − T∞
T1 − T∞

= exp

(
− h̄CR A

WCp
t

)
(16–56)

where T = temperature at time t, °F

T1 = initial temperature, °F

T∞ = environmental temperature, °F

h̄CR = overall coefficient of heat transfer, Btu/(in2 · s · ◦F)

A = lateral surface area, in2

W = mass of the object, lbm

Cp = specific heat capacity of the object, Btu/(lbm · ◦F)

Figure 16–23 shows an application of Eq. (16–56). The curve ABC is the expo-
nential decline of temperature given by Eq. (16–56). At time tB a second application
of the brake occurs. The temperature quickly rises to temperature T2, and a new cool-
ing curve is started. For repetitive brake applications, subsequent temperature peaks
T3, T4, . . . , occur until the brake is able to dissipate by cooling between operations an
amount of heat equal to the energy absorbed in the application. If this is a production
situation with brake applications every t1 seconds, then a steady state develops in which
all the peaks Tmax and all the valleys Tmin are repetitive.

The heat-dissipation capacity of disk brakes has to be planned to avoid reaching the
temperatures of disk and pad that are detrimental to the parts. When a disk brake has a
rhythm such as discussed above, then the rate of heat transfer is described by another
Newtonian equation:

Hloss = h̄CR A(T − T∞) = (hr + fvhc)A(T − T∞) (16–57)
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Figure 16–24

(a) Heat-transfer coefficient in
still air. (b) Ventilation factors.
(Courtesy of Tolo-o-matic.)

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

hr

hc

Temperature rise T − T∞ (°F)

H
ea

t-
tr

an
sf

er
 c

oe
ff

ic
ie

nt
(h

c 
or

 h
r)

 (
10

−6
 B

tu
⁄s

 · 
in

2 
· °

F)

0 20 40 60 80
0

2

4

6

8

Forced ventilation velocity (ft�s)

M
ul

tip
ly

in
g 

fa
ct

or
 f v

(a)

(b)

where Hloss = rate of energy loss, Btu/s

h̄CR = overall coefficient of heat transfer, Btu/(in2 · s · ◦F)

hr = radiation component of h̄CR, Btu/(in2 · s · ◦F), Fig. 16–24a

hc = convective component of h̄CR, Btu/(in2 · s · ◦F), Fig. 16–24a

fv = ventilation factor, Fig. 16–24b

T = disk temperature, ◦F

T∞ = ambient temperature, ◦F

The energy E absorbed by the brake stopping an equivalent rotary inertia I in terms
of original and final angular velocities ωo and ω f is given by Eq. (16–53) with I1 = I
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and I2 = 0,

E = 1

2

I

9336

(
ω2

o − ω2
f

)
(16–58)

in Btu. The temperature rise �T due to a single stop is

�T = E

WC
(16–59)

Tmax has to be high enough to transfer E Btu in t1 seconds. For steady state, rearrange
Eq. (16–56) as

Tmin − T∞
Tmax − T∞

= exp(−βt1)

where β = h̄CR A/(WCp). Cross-multiply, add Tmax to both sides, set Tmax − Tmin = �T ,
and rearrange, obtaining

Tmax = T∞ + �T

1 − exp(−βt1)
(16–60)

EXAMPLE 16–5 A caliper brake is used 24 times per hour to arrest a machine shaft from a speed
of 250 rev/min to rest. The ventilation of the brake provides a mean air speed of
25 ft/s. The equivalent rotary inertia of the machine as seen from the brake shaft is
289 lbm · in · s. The disk is steel with a density γ = 0.282 lbm/in3, a specific heat
capacity of 0.108 Btu/(lbm · ◦F), a diameter of 6 in, a thickness of 1

4 in. The pads are
dry sintered metal. The lateral area of the brake surface is 50 in2. Find Tmax and Tmin

for the steady-state operation.

Solution t1 = 602/24 = 150 s

Assuming a temperature rise of Tmax − T∞ = 200◦F, from Fig. 16–24a,

hr = 3.0(10−6) Btu/(in2 · s · ◦F)

hc = 2.0(10−6) Btu/(in2 · s · ◦F)

Fig. 16–24b fv = 4.8

h̄CR = hr + fvhc = 3.0(10−6) + 4.8(2.0)10−6 = 12.6(10−6) Btu/(in2 · s · ◦F)

The mass of the disk is

W = πγ D2h

4
= π(0.282)62(0.25)

4
= 1.99 lbm

Eq. (16–58): E = 1

2

I

9336

(
ω2

o − ω2
f

) = 289

2(9336)

(
2π

60
250

)2

= 10.6 Btu

β = h̄CR A

WCp
= 12.6(10−6)50

1.99(0.108)
= 2.93(10−3) s−1

bud29281_ch16_825-878.qxd  12/21/09  7:29 PM  Page 860 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Clutches, Brakes, Couplings, and Flywheels 861

Ratio of Area to Average Braking Power,
in2/(Btu/s)

Band and Plate Disk Caliper
Duty Cycle Typical Applications Drum Brakes Brakes Disk Brakes

Infrequent Emergency brakes 0.85 2.8 0.28

Intermittent Elevators, cranes, and winches 2.8 7.1 0.70

Heavy-duty Excavators, presses 5.6–6.9 13.6 1.41

Table 16–2

Area of Friction Material Required for a Given Average Braking Power Sources: M. J. Neale, The Tribology Handbook,

Butterworth, London, 1973; Friction Materials for Engineers, Ferodo Ltd., Chapel-en-le-frith, England, 1968.

Eq. (16–59): �T = E

WCp
= 10.6

1.99(0.108)
= 49.3◦F

Answer Eq. (16–60): Tmax = 70 + 49.3

1 − exp[−2.93(10−3)150]
= 209◦F

Answer Tmin = 209 − 49.3 = 160◦F

The predicted temperature rise here is Tmax − T∞ = 139◦F. Iterating with revised val-
ues of hr and hc from Fig. 16–24a, we can make the solution converge to Tmax = 220◦F
and Tmin = 171◦F.

Table 16–3 for dry sintered metal pads gives a continuous operating maximum
temperature of 570–660◦F. There is no danger of overheating.

16–10 Friction Materials
A brake or friction clutch should have the following lining material characteristics to a
degree that is dependent on the severity of service:

• High and reproducible coefficient of friction

• Imperviousness to environmental conditions, such as moisture

• The ability to withstand high temperatures, together with good thermal conductivity
and diffusivity, as well as high specific heat capacity

• Good resiliency

• High resistance to wear, scoring, and galling

• Compatible with the environment

• Flexibility

Table 16–2 gives area of friction surface required for several braking powers. Table 16–3
gives important characteristics of some friction materials for brakes and clutches.
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Friction Maximum Maximum Temperature Maximum
Coefficient Pressure Instantaneous, Continuous, Velocity Vmax,

Material f pmax, psi °F °F ft/min Applications

Cermet 0.32 150 1500 750 Brakes and clutches

Sintered metal (dry) 0.29–0.33 300–400 930–1020 570–660 3600 Clutches and caliper disk
brakes

Sintered metal (wet) 0.06–0.08 500 930 570 3600 Clutches

Rigid molded asbestos (dry) 0.35–0.41 100 660–750 350 3600 Drum brakes and clutches

Rigid molded asbestos (wet) 0.06 300 660 350 3600 Industrial clutches

Rigid molded asbestos pads 0.31–0.49 750 930–1380 440–660 4800 Disk brakes

Rigid molded nonasbestos 0.33–0.63 100–150 500–750 4800–7500 Clutches and brakes

Semirigid molded asbestos 0.37–0.41 100 660 300 3600 Clutches and brakes

Flexible molded asbestos 0.39–0.45 100 660–750 300–350 3600 Clutches and brakes

Wound asbestos yarn and 0.38 100 660 300 3600 Vehicle clutches
wire

Woven asbestos yarn and 0.38 100 500 260 3600 Industrial clutches and
wire brakes

Woven cotton 0.47 100 230 170 3600 Industrial clutches and
brakes

Resilient paper (wet) 0.09–0.15 400 300 PV < 500 000 Clutches and transmission
psi · ft/min bands

Table 16–3

Characteristics of Friction Materials for Brakes and Clutches Sources: Ferodo Ltd., Chapel-en-le-frith, England; Scan-pac, Mequon, Wisc.; Raybestos, New York,

N.Y. and Stratford, Conn.; Gatke Corp., Chicago, Ill.; General Metals Powder Co., Akron, Ohio; D. A. B. Industries, Troy, Mich.; Friction Products Co., Medina, Ohio.

8
6
2
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Woven Molded Rigid
Lining Lining Block

Compressive strength, kpsi 10–15 10–18 10–15

Compressive strength, MPa 70–100 70–125 70–100

Tensile strength, kpsi 2.5–3 4–5 3–4

Tensile strength, MPa 17–21 27–35 21–27

Max. temperature, °F 400–500 500 750

Max. temperature, °C 200–260 260 400

Max. speed, ft/min 7500 5000 7500

Max. speed, m/s 38 25 38

Max. pressure, psi 50–100 100 150

Max. pressure, kPa 340–690 690 1000

Frictional coefficient, mean 0.45 0.47 0.40–45

Table 16–4

Some Properties

of Brake Linings

The manufacture of friction materials is a highly specialized process, and it is
advisable to consult manufacturers’ catalogs and handbooks, as well as manufacturers
directly, in selecting friction materials for specific applications. Selection involves a
consideration of the many characteristics as well as the standard sizes available.

The woven-cotton lining is produced as a fabric belt that is impregnated with resins
and polymerized. It is used mostly in heavy machinery and is usually supplied in rolls
up to 50 ft in length. Thicknesses available range from 1

8 to 1 in, in widths up to about
12 in.

A woven-asbestos lining is made in a similar manner to the cotton lining and may
also contain metal particles. It is not quite as flexible as the cotton lining and comes in
a smaller range of sizes. Along with the cotton lining, the asbestos lining was widely
used as a brake material in heavy machinery.

Molded-asbestos linings contain asbestos fiber and friction modifiers; a thermoset
polymer is used, with heat, to form a rigid or semirigid molding. The principal use was
in drum brakes.

Molded-asbestos pads are similar to molded linings but have no flexibility; they
were used for both clutches and brakes.

Sintered-metal pads are made of a mixture of copper and/or iron particles with
friction modifiers, molded under high pressure and then heated to a high temperature
to fuse the material. These pads are used in both brakes and clutches for heavy-duty
applications.

Cermet pads are similar to the sintered-metal pads and have a substantial ceramic
content.

Table 16–4 lists properties of typical brake linings. The linings may consist of a
mixture of fibers to provide strength and ability to withstand high temperatures, various
friction particles to obtain a degree of wear resistance as well as a higher coefficient of
friction, and bonding materials.

Table 16–5 includes a wider variety of clutch friction materials, together with some
of their properties. Some of these materials may be run wet by allowing them to dip in
oil or to be sprayed by oil. This reduces the coefficient of friction somewhat but carries
away more heat and permits higher pressures to be used.
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Friction Coefficient Max. Temperature Max. Pressure
Material Wet Dry °F °C psi kPa

Cast iron on cast iron 0.05 0.15–0.20 600 320 150–250 1000–1750

Powdered metal* on cast iron 0.05–0.1 0.1–0.4 1000 540 150 1000

Powdered metal* on hard 0.05–0.1 0.1–0.3 1000 540 300 2100
steel

Wood on steel or cast iron 0.16 0.2–0.35 300 150 60–90 400–620

Leather on steel or cast iron 0.12 0.3–0.5 200 100 10–40 70–280

Cork on steel or cast iron 0.15–0.25 0.3–0.5 200 100 8–14 50–100

Felt on steel or cast iron 0.18 0.22 280 140 5–10 35–70

Woven asbestos* on steel or 0.1–0.2 0.3–0.6 350–500 175–260 50–100 350–700
cast iron

Molded asbestos* on steel 0.08–0.12 0.2–0.5 500 260 50–150 350–1000
or cast iron

Impregnated asbestos* on 0.12 0.32 500–750 260–400 150 1000
steel or cast iron

Carbon graphite on steel 0.05–0.1 0.25 700–1000 370–540 300 2100

*The friction coefficient can be maintained with ±5 percent for specific materials in this group.

Table 16–5

Friction Materials for Clutches

16–11 Miscellaneous Clutches and Couplings
The square-jaw clutch shown in Fig. 16–25a is one form of positive-contact clutch.
These clutches have the following characteristics:

1 They do not slip.
2 No heat is generated.
3 They cannot be engaged at high speeds.
4 Sometimes they cannot be engaged when both shafts are at rest.
5 Engagement at any speed is accompanied by shock.

The greatest differences among the various types of positive clutches are concerned
with the design of the jaws. To provide a longer period of time for shift action during
engagement, the jaws may be ratchet-shaped, spiral-shaped, or gear-tooth-shaped.
Sometimes a great many teeth or jaws are used, and they may be cut either circumferen-
tially, so that they engage by cylindrical mating, or on the faces of the mating elements.

Although positive clutches are not used to the extent of the frictional-contact types,
they do have important applications where synchronous operation is required, as, for
example, in power presses or rolling-mill screw-downs.

Devices such as linear drives or motor-operated screwdrivers must run to a definite
limit and then come to a stop. An overload-release type of clutch is required for these
applications. Figure 16–25b is a schematic drawing illustrating the principle of opera-
tion of such a clutch. These clutches are usually spring-loaded so as to release at a
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Figure 16–26

Shaft couplings. (a) Plain.
(b) Light-duty toothed
coupling. (c) BOST-FLEX®

through-bore design having
elastomer insert to transmit
torque by compression; insert
permits 1° misalignment. 
(d) Three-jaw coupling available
with bronze, rubber, or
polyurethane insert to minimize
vibration. (Reproduced by
permission, Boston Gear
Division, Colfax Corp.)

(a)

(c) (d)

(b)

predetermined torque. The clicking sound which is heard when the overload point is
reached is considered to be a desirable signal.

Both fatigue and shock loads must be considered in obtaining the stresses and
deflections of the various portions of positive clutches. In addition, wear must generally
be considered. The application of the fundamentals discussed in Parts 1 and 2 is usually
sufficient for the complete design of these devices.

An overrunning clutch or coupling permits the driven member of a machine to
“freewheel” or “overrun” because the driver is stopped or because another source of
power increases the speed of the driven mechanism. The construction uses rollers or
balls mounted between an outer sleeve and an inner member having cam flats machined
around the periphery. Driving action is obtained by wedging the rollers between the
sleeve and the cam flats. This clutch is therefore equivalent to a pawl and ratchet with
an infinite number of teeth.

There are many varieties of overrunning clutches available, and they are built in
capacities up to hundreds of horsepower. Since no slippage is involved, the only power
loss is that due to bearing friction and windage.

The shaft couplings shown in Fig. 16–26 are representative of the selection avail-
able in catalogs.

Figure 16–25

(a) Square-jaw clutch;
(b) overload release clutch
using a detent.

Shift lever

(a) (b)
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Figure 16–27
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16–12 Flywheels
The equation of motion for the flywheel represented in Fig. 16–1b is∑

M = Ti (θi , θ̇i ) − To(θo, θ̇o) − I θ̈ = 0

or

I θ̈ = Ti (θi , ωi ) − To(θo, ωo) (a)

where Ti is considered positive and To negative, and where θ̇ and θ̈ are the first and second
time derivatives of θ , respectively. Note that both Ti and To may depend for their values
on the angular displacements θi and θo as well as their angular velocities ωi and ωo. In
many cases the torque characteristic depends upon only one of these. Thus, the torque
delivered by an induction motor depends upon the speed of the motor. In fact, motor man-
ufacturers publish charts detailing the torque-speed characteristics of their various motors.

When the input and output torque functions are given, Eq. (a) can be solved for the
motion of the flywheel using well-known techniques for solving linear and nonlinear
differential equations. We can dispense with this here by assuming a rigid shaft, giving
θi = θ = θo and ωi = ω = ωo . Thus, Eq. (a) becomes

I θ̈ = Ti (θ, ω) − To(θ, ω) (b)

When the two torque functions are known and the starting values of the displacement θ
and velocity ω are given, Eq. (b) can be solved for θ , ω, and θ̈ as functions of time.
However, we are not really interested in the instantaneous values of these terms at all.
Primarily we want to know the overall performance of the flywheel. What should its
moment of inertia be? How do we match the power source to the load? And what are
the resulting performance characteristics of the system that we have selected?

To gain insight into the problem, a hypothetical situation is diagrammed in Fig. 16–27.
An input power source subjects a flywheel to a constant torque Ti while the shaft rotates
from θ1 to θ2. This is a positive torque and is plotted upward. Equation (b) indicates that a
positive acceleration θ̈ will be the result, and so the shaft velocity increases from ω1 to ω2.
As shown, the shaft now rotates from θ2 to θ3 with zero torque and hence, from Eq. (b),
with zero acceleration. Therefore ω3 = ω2. From θ3 to θ4 a load, or output torque, of con-
stant magnitude is applied, causing the shaft to slow down from ω3 to ω4. Note that the out-
put torque is plotted in the negative direction in accordance with Eq. (b).

The work input to the flywheel is the area of the rectangle between θ1 and θ2, or

Ui = Ti (θ2 − θ1) (c)
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Figure 16–28

Relation between torque and
crank angle for a one-cylinder,
four-stroke–cycle internal
combustion engine.
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The work output of the flywheel is the area of the rectangle from θ3 to θ4, or

Uo = To(θ4 − θ3) (d )

If Uo is greater than Ui , the load uses more energy than has been delivered to the fly-
wheel and so ω4 will be less than ω1. If Uo = Ui , ω4 will be equal to ω1 because the
gains and losses are equal; we are assuming no friction losses. And finally, ω4 will be
greater than ω1 if Ui > Uo .

We can also write these relations in terms of kinetic energy. At θ = θ1 the flywheel
has a velocity of ω1 rad/s, and so its kinetic energy is

E1 = 1

2
Iω2

1 (e)

At θ = θ2 the velocity is ω2, and so

E2 = 1

2
Iω2

2 (f )

Thus the change in kinetic energy is

E2 − E1 = 1

2
I
(
ω2

2 − ω2
1

)
(16–61)

Many of the torque displacement functions encountered in practical engineering
situations are so complicated that they must be integrated by numerical methods. Fig-
ure 16–28, for example, is a typical plot of the engine torque for one cycle of motion of
a single-cylinder internal combustion engine. Since a part of the torque curve is nega-
tive, the flywheel must return part of the energy back to the engine. Integrating this
curve from θ = 0 to 4π and dividing the result by 4π yields the mean torque Tm avail-
able to drive a load during the cycle.

It is convenient to define a coefficient of speed fluctuation as

Cs = ω2 − ω1

ω
(16–62)
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θ θ θ θ
deg lbf • in deg lbf • in deg lbf • in deg lbf • in

0 0 195 −107 375 −85 555 −107

15 2800 210 −206 390 −125 570 −206

30 2090 225 −260 405 −89 585 −292

45 2430 240 −323 420 8 600 −355

60 2160 255 −310 435 126 615 −371

75 1840 270 −242 450 242 630 −362

90 1590 285 −126 465 310 645 −312

105 1210 300 −8 480 323 660 −272

120 1066 315 89 495 280 675 −274

135 803 330 125 510 206 690 −548

150 532 345 85 525 107 705 −760

165 184 360 0 540 0 720 0

180 0

Table 16–6

Plotting Data for

Fig. 16–29

where ω is the nominal angular velocity, given by

ω = ω2 + ω1

2
(16–63)

Equation (16–61) can be factored to give

E2 − E1 = I

2
(ω2 − ω1)(ω2 + ω1)

Since ω2 − ω1 = Csω and ω2 + ω1 = 2ω, we have

E2 − E1 = Cs Iω2 (16–64)

Equation (16–64) can be used to obtain an appropriate flywheel inertia corresponding
to the energy change E2 − E1.

EXAMPLE 16–6 Table 16–6 lists values of the torque used to plot Fig. 16–28. The nominal speed of the
engine is to be 250 rad/s.
(a) Integrate the torque-displacement function for one cycle and find the energy that can
be delivered to a load during the cycle.
(b) Determine the mean torque Tm (see Fig. 16–28).
(c) The greatest energy fluctuation is approximately between θ = 15◦ and θ = 150◦ on
the torque diagram; see Fig. 16–28 and note that To = −Tm . Using a coefficient of
speed fluctuation Cs = 0.1, find a suitable value for the flywheel inertia.
(d ) Find ω2 and ω1.

Solution (a) Using n = 48 intervals of �θ = 4π/48, numerical integration of the data of
Table 16–6 yields E = 3368 in · lbf. This is the energy that can be delivered to the load.

, T, , T, , T, , T,
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Figure 16–29

(a) Punch-press torque demand
during punching. (b) Squirrel-
cage electric motor torque-
speed characteristic.

Torque T Torque TM

0
0 �1

Rotation �

Tr

0
0 �r �s

Angular velocity �

(b)(a)

Answer (b) Tm = 3368

4π
= 268 lbf · in

(c) The largest positive loop on the torque-displacement diagram occurs between
θ = 0◦ and θ = 180◦. We select this loop as yielding the largest speed change.
Subtracting 268 lbf · in from the values in Table 16–6 for this loop gives, respectively,
−268, 2532, 1822, 2162, 1892, 1572, 1322, 942, 798, 535, 264, −84, and −268 lbf · in.
Numerically integrating T − Tm with respect to θ yields E2 − E1 = 3531 lbf · in. We
now solve Eq. (16–64) for I. This gives

Answer I = E2 − E1

Csω2
= 3531

0.1(250)2
= 0.565 lbf · s2 in

(d ) Equations (16–62) and (16–63) can be solved simultaneously for ω2 and ω1.
Substituting appropriate values in these two equations yields

Answer ω2 = ω

2
(2 + Cs) = 250

2
(2 + 0.1) = 262.5 rad/s

Answer ω1 = 2ω − ω2 = 2(250) − 262.5 = 237.5 rad/s

These two speeds occur at θ = 180◦ and θ = 0◦, respectively.

Punch-press torque demand often takes the form of a severe impulse and the run-
ning friction of the drive train. The motor overcomes the minor task of overcoming fric-
tion while attending to the major task of restoring the flywheel’s angular speed. The
situation can be idealized as shown in Fig. 16–29. Neglecting the running friction,
Euler’s equation can be written as

T (θ1 − 0) = 1

2
I
(
ω2

1 − ω2
2

) = E2 − E1

where the only significant inertia is that of the flywheel. Punch presses can have the
motor and flywheel on one shaft, then, through a gear reduction, drive a slider-crank
mechanism that carries the punching tool. The motor can be connected to the punch
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continuously, creating a punching rhythm, or it can be connected on command through
a clutch that allows one punch and a disconnect. The motor and flywheel must be sized
for the most demanding service, which is steady punching. The work done is given by

W =
∫ θ2

θ1

[T (θ) − T ] dθ = 1

2
I
(
ω2

max − ω2
min

)
This equation can be arranged to include the coefficient of speed fluctuation Cs as
follows:

W = 1

2
I
(
ω2

max − ω2
min

) = I

2
(ωmax − ωmin) (ωmax + ωmin)

= I

2
(Csω̄)(2ω0) = I Csω̄ω0

When the speed fluctuation is low, ω0
.= ω̄, and

I = W

Csω̄2

An induction motor has a linear torque characteristic T = aω + b in the range of
operation. The constants a and b can be found from the nameplate speed ωr and the
synchronous speed ωs :

a = Tr − Ts

ωr − ωs
= Tr

ωr − ωs
= − Tr

ωs − ωr

b = Trωs − Tsωr

ωs − ωr
= Trωs

ωs − ωr

(16–65)

For example, a 3-hp three-phase squirrel-cage ac motor rated at 1125 rev/min has
a torque of 63 025(3)/1125 = 168.1 lbf · in. The rated angular velocity is ωr =
2πnr/60 = 2π(1125)/60 = 117.81 rad/s, and the synchronous angular velocity ωs =
2π(1200)/60 = 125.66 rad/s. Thus a = −21.41 lbf · in · s/rad, and b = 2690.9 lbf · in,
and we can express T (ω) as aω + b. During the interval from t1 to t2 the motor accel-
erates the flywheel according to I θ̈ = TM (i.e., T dω/dt = TM ). Separating the equa-
tion TM = I dω/dt we have∫ t2

t1

dt =
∫ ω2

ωr

I dω

TM
= I

∫ ω2

ωr

dω

aω + b
= I

a
ln

aω2 + b

aωr + b
= I

a
ln

T2

Tr

or

t2 − t1 = I

a
ln

T2

Tr
(16–66)

For the deceleration interval when the motor and flywheel feel the punch torque on the
shaft as TL , (TM − TL) = I dω/dt , or∫ t1

0
dt = I

∫ ωr

ω2

dω

TM − TL
= I

∫ ωr

ω2

dω

aω + b − TL
= I

a
ln

aωr + b − TL

aω2 + b − TL

or

t1 = I

a
ln

Tr − TL

T2 − TL
(16–67)
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Problem 16–1

30° 30°

30° 30°

120°120°

Pin Pin

R

F F

We can divide Eq. (16–66) by Eq. (16–67) to obtain

T2

Tr
=

(
TL − Tr

TL − T2

)(t2−t1)/t1

(16–68)

Equation (16–68) can be solved for T2 numerically. Having T2 the flywheel inertia is,
from Eq. (16–66),

I = a(t2 − t1)

ln(T2/Tr )
(16–69)

It is important that a be in units of lbf · in · s/rad so that I has proper units. The constant
a should not be in lbf · in per rev/min or lbf · in per rev/s.

PROBLEMS
16–1 The figure shows an internal rim-type brake having an inside rim diameter of 300 mm and a

dimension R = 125 mm. The shoes have a face width of 40 mm and are both actuated by a force
of 2.2 kN. The mean coefficient of friction is 0.28.
(a) Find the maximum pressure and indicate the shoe on which it occurs.
(b) Estimate the braking torque effected by each shoe, and find the total braking torque.
(c) Estimate the resulting hinge-pin reactions. 

16–2 For the brake in Prob. 16–1, consider the pin and actuator locations to be the same. However,
instead of 120°, let the friction surface of the brake shoes be 90° and centrally located. Find the
maximum pressure and the total braking torque.

16–3 In the figure for Prob. 16–1, the inside rim diameter is 11 in and the dimension R is 3.5 in. The
shoes have a face width of 1.25 in. Find the braking torque and the maximum pressure for each
shoe if the actuating force is 225 lbf, the drum rotation is counterclockwise, and f = 0.30.

16–4 The figure shows a 400-mm-diameter brake drum with four internally expanding shoes. Each of
the hinge pins A and B supports a pair of shoes. The actuating mechanism is to be arranged to
produce the same force F on each shoe. The face width of the shoes is 75 mm. The material used
permits a coefficient of friction of 0.24 and a maximum pressure of 1000 kPa.
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Problem 16–5

Dimensions in inches.

F

6 R

6

8 12

Rotation

90°
45°

(a) Determine the actuating force. 
(b) Estimate the brake capacity.
(c) Noting that rotation may be in either direction, estimate the hinge-pin reactions.

16–5 The block-type hand brake shown in the figure has a face width of 1.25 in and a mean coefficient
of friction of 0.25. For an estimated actuating force of 90 lbf, find the maximum pressure on the
shoe and find the braking torque.

Problem 16–4

The dimensions in millimeters are
a = 150, c = 165, R = 200,

and d = 50.

15° 15°

F F

F F

dd

dd

15° 15°

10°

10°

10°

10°
a a

c

cR

A B

16–6 Suppose the standard deviation of the coefficient of friction in Prob. 16–5 is σ̂ f = 0.025, where
the deviation from the mean is due entirely to environmental conditions. Find the brake torques
corresponding to ±3σ̂ f .

16–7 The brake shown in the figure has a coefficient of friction of 0.30, a face width of 2 in, and a lim-
iting shoe lining pressure of 150 psi. Find the limiting actuating force F and the torque capacity. 

16–8 Refer to the symmetrical pivoted external brake shoe of Fig. 16–12 and Eq. (16–15). Suppose the
pressure distribution was uniform, that is, the pressure p is independent of θ . What would the
pivot distance a′ be? If θ1 = θ2 = 60◦ , compare a with a′ . 

16–9 The shoes on the brake depicted in the figure subtend a 90◦ arc on the drum of this external
pivoted-shoe brake. The actuation force P is applied to the lever. The rotation direction of the
drum is counterclockwise, and the coefficient of friction is 0.30.
(a) What should the dimension e be?
(b) Draw the free-body diagrams of the handle lever and both shoe levers, with forces expressed

in terms of the actuation force P .
(c) Does the direction of rotation of the drum affect the braking torque?
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Problem 16–11

�

P1
P2

Rotation

16–10 Problem 16–9 is preliminary to analyzing the brake. A rigid molded non-asbestos lining is used
dry in the brake of Prob. 16–9 on a cast iron drum. The shoes are 6 in wide and subtend a 90◦ arc.
Find the maximum allowable actuation force and the braking torque.

16–11 The maximum band interface pressure on the brake shown in the figure is 620 kPa. Use a 350 mm-
diameter drum, a band width of 25 mm, a coefficient of friction of 0.30, and an angle-of-wrap of
270◦. Find the band tensions and the torque capacity.

Problem 16–7

Dimensions in inches.

5

30° 30°

3 3

12

12

5

4

16 F

A B
R

ot
at

io
n

130°

20° 20°

130°

10 R

Problem 16–9

Dimensions in inches.
15.28

7.78

e

13.5

Shoe

6

3

3
8

P
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Problem 16–14 P

3 in
10 in

Problem 16–13

Dimensions in millimeters.
F

200

160

100 225

16–12 The drum for the band brake in Prob. 16–11 is 12 in in diameter. The band selected has a mean
coefficient of friction of 0.28 and a width of 3.25 in. It can safely support a tension of 1.8 kip. If
the angle of wrap is 270◦, find the lining pressure and the torque capacity. 

16–13 The brake shown in the figure has a coefficient of friction of 0.30 and is to operate using a
maximum force F of 400 N. If the band width is 50 mm, find the band tensions and the brak-
ing torque.

16–14 The figure depicts a band brake whose drum rotates counterclockwise at 200 rev/min. The drum
diameter is 16 in and the band lining 3 in wide. The coefficient of friction is 0.20. The maximum
lining interface pressure is 70 psi. 
(a) Find the brake torque, necessary force P, and steady-state power.
(b) Complete the free-body diagram of the drum. Find the bearing radial load that a pair of

straddle-mounted bearings would have to carry.
(c) What is the lining pressure p at both ends of the contact arc? 

16–15 The figure shows a band brake designed to prevent “backward” rotation of the shaft. The angle
of wrap is 270◦, the band width is 2 1

8 in, and the coefficient of friction is 0.20. The torque to be
resisted by the brake is 150 lbf · ft. The diameter of the pulley is 8 1

4 in.
(a) What dimension c1 will just prevent backward motion?
(b) If the rocker was designed with c1 = 1 in, what is the maximum pressure between the band

and drum at 150 lbf · ft back torque? 
(c) If the back-torque demand is 100 lbf · in, what is the largest pressure between the band and

drum? 
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16–16 A plate clutch has a single pair of mating friction surfaces 250-mm OD by 175-mm ID. The mean
value of the coefficient of friction is 0.30, and the actuating force is 4 kN. 
(a) Find the maximum pressure and the torque capacity using the uniform-wear model.
(b) Find the maximum pressure and the torque capacity using the uniform-pressure model.

16–17 A hydraulically operated multidisk plate clutch has an effective disk outer diameter of 6.5 in and
an inner diameter of 4 in. The coefficient of friction is 0.24, and the limiting pressure is 120 psi.
There are six planes of sliding present.
(a) Using the uniform wear model, estimate the axial force F and the torque T.
(b) Let the inner diameter of the friction pairs d be a variable. Complete the following table:

d, in 2 3 4 5 6

T, lbf · in

(c) What does the table show?

16–18 Look again at Prob. 16–17.
(a) Show how the optimal diameter d∗ is related to the outside diameter D.
(b) What is the optimal inner diameter?
(c) What does the tabulation show about maxima?
(d ) Common proportions for such plate clutches lie in the range 0.45 ≤ d/D ≤ 0.80. Is the result

in part a useful?

16–19 A cone clutch has D = 12 in, d = 11 in, a cone length of 2.25 in, and a coefficient of friction
of 0.28. A torque of 1.8 kip � in is to be transmitted. For this requirement, estimate the actuating
force and pressure by both models. 

16–20 Show that for the caliper brake the T/( f F D) versus d/D plots are the same as Eqs. (b) and (c)
of Sec. 16–5.

16–21 A two-jaw clutch has the dimensions shown in the figure and is made of ductile steel. The clutch
has been designed to transmit 2 kW at 500 rev/min. Find the bearing and shear stresses in the key
and the jaws. 

Problem 16–15

P2 P1

c1

2 in1
4

Rocker detail
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16–22 A brake has a normal braking torque of 2.8 kip � in and heat-dissipating surfaces whose mass is
40 lbm. Suppose a load is brought to rest in 8.0 s from an initial angular speed of 1600 rev/min
using the normal braking torque; estimate the temperature rise of the heat-dissipating
surfaces.

16–23 A cast-iron flywheel has a rim whose OD is 1.5 m and whose ID is 1.4 m. The flywheel weight
is to be such that an energy fluctuation of 6.75 J will cause the angular speed to vary no more
than 240 to 260 rev/min. Estimate the coefficient of speed fluctuation. If the weight of the spokes
is neglected, what should be the width of the rim?

16–24 A single-geared blanking press has a stroke of 200 mm and a rated capacity of 320 kN. A cam-
driven ram is assumed to be capable of delivering the full press load at constant force during the
last 15 percent of a constant-velocity stroke. The camshaft has an average speed of 90 rev/min
and is geared to the flywheel shaft at a 6:1 ratio. The total work done is to include an allowance
of 16 percent for friction. 
(a) Estimate the maximum energy fluctuation.
(b) Find the rim weight for an effective diameter of 1.2 m and a coefficient of speed fluctuation

of 0.10.

16–25 Using the data of Table 16–6, find the mean output torque and flywheel inertia required for a
three-cylinder in-line engine corresponding to a nominal speed of 2400 rev/min. Use Cs = 0.30.

16–26 When a motor armature inertia, a pinion inertia, and a motor torque reside on a motor shaft, and
a gear inertia, a load inertia, and a load torque exist on a second shaft, it is useful to reflect all the
torques and inertias to one shaft, say, the armature shaft. We need some rules to make such reflec-
tion easy. Consider the pinion and gear as disks of pitch radius.

• A torque on a second shaft is reflected to the motor shaft as the load torque divided by the
negative of the stepdown ratio.

• An inertia on a second shaft is reflected to the motor shaft as its inertia divided by the
stepdown ratio squared.

• The inertia of a disk gear on a second shaft in mesh with a disk pinion on the motor shaft is
reflected to the pinion shaft as the pinion inertia multiplied by the stepdown ratio squared.

(a) Verify the three rules.
(b) Using the rules, reduce the two-shaft system in the figure to a motor-shaft shish-kebob

equivalent. Correctly done, the dynamic response of the shish kebab and the real system are
identical.

(c) For a stepdown ratio of n = 10 compare the shish-kebab inertias. 

Problem 16–21

Dimensions in millimeters.

45°
1.5 (typ.)

6

3

10
50

24
 d

ia
.

45
 d

ia
.

26
 d

ia
.

bud29281_ch16_825-878.qxd  12/18/09  8:19 PM  Page 876 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Clutches, Brakes, Couplings, and Flywheels 877

Problem 16–26

Dimensions in millimeters.

IM

T(�1)

1 2

IP

n

IG

IM IL

IP

T(�1) T(�2)

(a)

Shish-kebab
equivalent

(b)

Gear inertia
reflection

Load inertia
reflection

Load torque
reflection

16–27 Apply the rules of Prob. 16–26 to the three-shaft system shown in the figure to create a motor
shaft shish kebab.

(a) Show that the equivalent inertia Ie is given by

Ie = IM + IP + n2 IP + IP

n2
+ m2 IP

n2
+ IL

m2n2

(b) If the overall gear reduction R is a constant nm, show that the equivalent inertia becomes

Ie = IM + IP + n2 IP + IP

n2
+ R2 IP

n4
+ IL

R2

(c) If the problem is to minimize the gear-train inertia, find the ratios n and m for the values of
IP = 1, IM = 10, IL = 100, and R = 10.

16–28 For the conditions of Prob. 16–27, make a plot of the equivalent inertia Ie as ordinate and the
stepdown ratio n as abscissa in the range 1 ≤ n ≤ 10. How does the minimum inertia compare to
the single-step inertia?

16–29 A punch-press geared 10:1 is to make six punches per minute under circumstances where the tor-
que on the crankshaft is 1300 lbf · ft for 1

2 s. The motor’s nameplate reads 3 bhp at 1125 rev/min
for continuous duty. Design a satisfactory flywheel for use on the motor shaft to the extent of
specifying material and rim inside and outside diameters as well as its width. As you prepare your

Problem 16–27

IP

IPIM

TM

IG1

IG2

IL

n

m

R = nm
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specifications, note ωmax , ωmin , the coefficient of speed fluctuation Cs , energy transfer, and peak
power that the flywheel transmits to the punch-press. Note power and shock conditions imposed
on the gear train because the flywheel is on the motor shaft.

16–30 The punch-press of Prob. 16–29 needs a flywheel for service on the crankshaft of the punch-
press. Design a satisfactory flywheel to the extent of specifying material, rim inside and outside
diameters, and width. Note ωmax , ωmin ,Cs , energy transfer, and peak power the flywheel trans-
mits to the punch. What is the peak power seen in the gear train? What power and shock condi-
tions must the gear-train transmit?

16–31 Compare the designs resulting from the tasks assigned in Probs. 16–29 and 16–30. What have
you learned? What recommendations do you have?

878 Mechanical Engineering Design
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Belt Type Figure Joint Size Range Center Distance

Flat Yes No upper limit

Round Yes d = 1
8 to 3

4 in No upper limit

V None Limited

Timing None p = 2 mm and up Limited

Table 17–1

Characteristics of Some

Common Belt Types

(Figures are cross

sections except for the

timing belt, which is a

side view).

t

d

b

p

Belts, ropes, chains, and other similar elastic or flexible machine elements are used in
conveying systems and in the transmission of power over comparatively long distances.
It often happens that these elements can be used as a replacement for gears, shafts, bear-
ings, and other relatively rigid power-transmission devices. In many cases their use sim-
plifies the design of a machine and substantially reduces the cost.

In addition, since these elements are elastic and usually quite long, they play an
important part in absorbing shock loads and in damping out and isolating the effects of
vibration. This is an important advantage as far as machine life is concerned.

Most flexible elements do not have an infinite life. When they are used, it is important
to establish an inspection schedule to guard against wear, aging, and loss of elasticity.
The elements should be replaced at the first sign of deterioration.

17–1 Belts
The four principal types of belts are shown, with some of their characteristics, in
Table 17–1. Crowned pulleys are used for flat belts, and grooved pulleys, or sheaves, for
round and V belts. Timing belts require toothed wheels, or sprockets. In all cases, the
pulley axes must be separated by a certain minimum distance, depending upon the belt
type and size, to operate properly. Other characteristics of belts are:

• They may be used for long center distances.

• Except for timing belts, there is some slip and creep, and so the angular-velocity ratio
between the driving and driven shafts is neither constant nor exactly equal to the ratio
of the pulley diameters.

• In some cases an idler or tension pulley can be used to avoid adjustments in center
distance that are ordinarily necessitated by age or the installation of new belts.

Figure 17–1 illustrates the geometry of open and closed flat-belt drives. For a flat
belt with this drive the belt tension is such that the sag or droop is visible in Fig. 17–2a,
when the belt is running. Although the top is preferred for the loose side of the belt, for
other belt types either the top or the bottom may be used, because their installed tension
is usually greater.

Two types of reversing drives are shown in Fig. 17–2. Notice that both sides of the
belt contact the pulleys in Figs. 17–2b and 17–2c, and so these drives cannot be used
with V belts or timing belts.

ct = 0.03 to 0.20 in
0.75 to 5 mm

cb = 0.31 to 0.91 in
8 to 19 mm
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�d

� �

�D
d

sin–1

2C
D – d

2C
D + d

2C
D – d

2C
D – d

2C
D + d

2C
D + d

2C
D – d

sin–1

�d = � – 2 sin–1

�D = � + 2 sin–1

L = 1
2

sin–1

sin–1

4C2 – (D – d)2

D

D

C

C

d

4C2 – (D + d)2

4C2 – (D – d )2 + (D�D + d�d)

� = � + 2 sin–1

L = 1
24C2 – (D + d)2 + (D + d)�

(a)

(b)

1
2

1
2

Figure 17–1

Flat-belt geometry. (a) Open
belt. (b) Crossed belt.

Figure 17–2

Nonreversing and reversing
belt drives. (a) Nonreversing
open belt. (b) Reversing
crossed belt. Crossed belts
must be separated to prevent
rubbing if high-friction
materials are used. 
(c) Reversing open-belt drive.

Driver
(a)

(b)

(c)
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Figure 17–5

Variable-speed belt drives.

Fork

(a)

(b)

Figure 17–4

This drive eliminates the need
for a clutch. Flat belt can be
shifted left or right by use of
a fork.

Loose pulley
Driven

Shift fork

Driver

Midpoint

Figure 17–3

Quarter-twist belt drive;
an idler guide pulley must be
used if motion is to be in both
directions.

Figure 17–3 shows a flat-belt drive with out-of-plane pulleys. The shafts need not
be at right angles as in this case. Note the top view of the drive in Fig. 17–3. The pul-
leys must be positioned so that the belt leaves each pulley in the midplane of the other
pulley face. Other arrangements may require guide pulleys to achieve this condition.

Another advantage of flat belts is shown in Fig. 17–4, where clutching action is
obtained by shifting the belt from a loose to a tight or driven pulley.

Figure 17–5 shows two variable-speed drives. The drive in Fig. 17–5a is commonly
used only for flat belts. The drive of Fig. 17–5b can also be used for V belts and round
belts by using grooved sheaves.

Flat belts are made of urethane and also of rubber-impregnated fabric reinforced
with steel wire or nylon cords to take the tension load. One or both surfaces may have
a friction surface coating. Flat belts are quiet, they are efficient at high speeds, and they
can transmit large amounts of power over long center distances. Usually, flat belting is
purchased by the roll and cut and the ends are joined by using special kits furnished by
the manufacturer. Two or more flat belts running side by side, instead of a single wide
belt, are often used to form a conveying system.

A V belt is made of fabric and cord, usually cotton, rayon, or nylon, and impreg-
nated with rubber. In contrast with flat belts, V belts are used with similar sheaves and
at shorter center distances. V belts are slightly less efficient than flat belts, but a num-
ber of them can be used on a single sheave, thus making a multiple drive. V belts are
made only in certain lengths and have no joints.

Timing belts are made of rubberized fabric and steel wire and have teeth that fit
into grooves cut on the periphery of the sprockets. The timing belt does not stretch or
slip and consequently transmits power at a constant angular-velocity ratio. The fact that
the belt is toothed provides several advantages over ordinary belting. One of these is
that no initial tension is necessary, so that fixed-center drives may be used. Another is
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the elimination of the restriction on speeds; the teeth make it possible to run at nearly
any speed, slow or fast. Disadvantages are the first cost of the belt, the necessity of
grooving the sprockets, and the attendant dynamic fluctuations caused at the belt-tooth
meshing frequency.

17–2 Flat- and Round-Belt Drives
Modern flat-belt drives consist of a strong elastic core surrounded by an elastomer;
these drives have distinct advantages over gear drives or V-belt drives. A flat-belt drive
has an efficiency of about 98 percent, which is about the same as for a gear drive. On the
other hand, the efficiency of a V-belt drive ranges from about 70 to 96 percent.1 Flat-belt
drives produce very little noise and absorb more torsional vibration from the system than
either V-belt or gear drives.

When an open-belt drive (Fig. 17–1a) is used, the contact angles are found to be

θd = π − 2 sin−1 D − d

2C

θD = π + 2 sin−1 D − d

2C

(17–1)

where D = diameter of large pulley

d = diameter of small pulley

C = center distance

θ = angle of contact

The length of the belt is found by summing the two arc lengths with twice the distance
between the beginning and end of contact. The result is

L = [4C2 − (D − d)2]1/2 + 1

2
(DθD + dθd) (17–2)

A similar set of equations can be derived for the crossed belt of Fig. 17–2b. For this
belt, the angle of wrap is the same for both pulleys and is

θ = π + 2 sin−1 D + d

2C
(17–3)

The belt length for crossed belts is found to be

L = [4C2 − (D + d)2]1/2 + 1

2
(D + d)θ (17–4)

Firbank2 explains flat-belt-drive theory in the following way. A change in belt ten-
sion due to friction forces between the belt and pulley will cause the belt to elongate or
contract and move relative to the surface of the pulley. This motion is caused by elastic
creep and is associated with sliding friction as opposed to static friction. The action at
the driving pulley, through that portion of the angle of contact that is actually transmit-
ting power, is such that the belt moves more slowly than the surface speed of the pulley
because of the elastic creep. The angle of contact is made up of the effective arc,

1A. W. Wallin, “Efficiency of Synchronous Belts and V-Belts,” Proc. Nat. Conf. Power Transmission, vol. 5,
Illinois Institute of Technology, Chicago, Nov. 7–9, 1978, pp. 265–271.
2T. C. Firbank, Mechanics of the Flat Belt Drive, ASME paper no. 72-PTG-21.
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dS

r

F

f dN
dN

F + dF

�

d�

Figure 17–6

Free body of an infinitesimal
element of a flat belt in contact
with a pulley.

through which power is transmitted, and the idle arc. For the driving pulley the belt first
contacts the pulley with a tight-side tension F1 and a velocity V1, which is the same as
the surface velocity of the pulley. The belt then passes through the idle arc with no
change in F1 or V1. Then creep or sliding contact begins, and the belt tension changes
in accordance with the friction forces. At the end of the effective arc the belt leaves the
pulley with a loose-side tension F2 and a reduced speed V2.

Firbank has used this theory to express the mechanics of flat-belt drives in mathe-
matical form and has verified the results by experiment. His observations include the find-
ing that substantially more power is transmitted by static friction than sliding friction. He
also found that the coefficient of friction for a belt having a nylon core and leather surface
was typically 0.7, but that it could be raised to 0.9 by employing special surface finishes.

Our model will assume that the friction force on the belt is proportional to the nor-
mal pressure along the arc of contact. We seek first a relationship between the tight side
tension and slack side tension, similar to that of band brakes but incorporating the con-
sequences of movement, that is, centrifugal tension in the belt. In Fig. 17–6 we see a
free body of a small segment of the belt. The differential force dS is due to centrifugal
force, d N is the normal force between the belt and pulley, and f d N is the shearing
traction due to friction at the point of slip. The belt width is b and the thickness is t. The
belt mass per unit length is m. The centrifugal force dS can be expressed as

dS = (mr dθ)rω2 = mr2ω2 dθ = mV 2 dθ = Fc dθ (a)

where V is the belt speed. Summing forces radially gives∑
Fr = −(F + d F)

dθ

2
− F

dθ

2
+ d N + dS = 0

Ignoring the higher-order term, we have

d N = F dθ − dS (b)

Summing forces tangentially gives∑
Ft = − f d N − F + (F + d F) = 0

from which, incorporating Eqs. (a) and (b), we obtain

d F = f d N = f F dθ − f dS = f F dθ − f mr2ω2 dθ

or

d F

dθ
− f F = − f mr2ω2 (c)

The solution to this nonhomogeneous first-order linear differential equation is

F = A exp( f θ) + mr2ω2 (d )

where A is an arbitrary constant. Assuming θ starts at the loose side, the boundary con-
dition that F at θ = 0 equals F2 gives A = F2 − mr2ω2. The solution is

F = (F2 − mr2ω2) exp( f θ) + mr2ω2 (17–5)

At the end of the angle of wrap φ, the tight side,

F |θ=φ = F1 = (F2 − mr2ω2) exp( f φ) + mr2ω2 (17–6)
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Flexible Mechanical Elements 885

Now we can write

F1 − mr2ω2

F2 − mr2ω2
= F1 − Fc

F2 − Fc
= exp( f φ) (17–7)

where, from Eq. (a), Fc = mr2ω2. It is also useful that Eq. (17–7) can be written as

F1 − F2 = (F1 − Fc)
exp( f φ) − 1

exp( f φ)
(17–8)

Now Fc is found as follows: with n being the rotational speed, in rev/min, of the pulley
of diameter d, the belt speed is 

V = π dn/12 ft/min

The weight w of a foot of belt is given in terms of the weight density γ in lbf/in3 as
w = 12γ bt lbf/ft where b and t are in inches. Fc is written as

Fc = w

g

(
V

60

)2

= w

32.17

(
V

60

)2

(e)

Figure 17–7 shows a free body of a pulley and part of the belt. The tight side
tension F1 and the loose side tension F2 have the following additive components:

F1 = Fi + Fc + �F/2 = Fi + Fc + T/d (f )

F2 = Fi + Fc − �F/2 = Fi + Fc − T/d (g)

where Fi = initial tension

Fc = hoop tension due to centrifugal force

�F/2 = tension due to the transmitted torque T

d = diameter of the pulley

The difference between F1 and F2 is related to the pulley torque. Subtracting Eq. (g)
from Eq. ( f ) gives

F1 − F2 = 2T

d
(h)

Adding Eqs. ( f ) and (g) gives

F1 + F2 = 2Fi + 2Fc

d

T

F1 = Fi + Fc + ΔF�2

     = Fi + Fc +
T
d

F2 = Fi + Fc – ΔF�2

     = Fi + Fc –
T
d

Figure 17–7

Forces and torques on a pulley.
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886 Mechanical Engineering Design

from which

Fi = F1 + F2

2
− Fc (i )

Dividing Eq. (i) by Eq. (h), manipulating, and using Eq. (17–7) gives

Fi

T/d
= (F1 + F2)/2 − Fc

(F1 − F2)/2
= F1 + F2 − 2Fc

F1 − F2
= (F1 − Fc) + (F2 − Fc)

(F1 − Fc) − (F2 − Fc)

= (F1 − Fc)/(F2 − Fc) + 1

(F1 − Fc)/(F2 − Fc) − 1
= exp( f φ) + 1

exp( f φ) − 1

from which

Fi = T

d

exp( f φ) + 1

exp( f φ) − 1
(17–9)

Equation (17–9) give us a fundamental insight into flat belting. If Fi equals zero, then
T equals zero: no initial tension, no torque transmitted. The torque is in proportion to the
initial tension. This means that if there is to be a satisfactory flat-belt drive, the initial
tension must be (1) provided, (2) sustained, (3) in the proper amount, and (4) maintained
by routine inspection.

From Eq. ( f ), incorporating Eq. (17–9) gives

F1 = Fi + Fc + T

d
= Fc + Fi + Fi

exp( f φ) − 1

exp( f φ) + 1

= Fc + Fi [exp( f φ) + 1] + Fi [exp( f φ) − 1]

exp( f φ) + 1

F1 = Fc + Fi
2 exp( f φ)

exp( f φ) + 1
(17–10)

From Eq. (g), incorporating Eq. (17–9) gives

F2 = Fi + Fc − T

d
= Fc + Fi − Fi

exp( f φ) − 1

exp( f φ) + 1

= Fc + Fi [exp( f φ) + 1] − Fi [exp( f φ) − 1]

exp( f φ) + 1

F2 = Fc + Fi
2

exp( f φ) + 1
(17–11)
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Fi (Fi)a

Fc

F2

F1

(F1)a

2 T
d

F2 = Fc +
2Fi 

exp( f�) + 1

F1 = Fc +
2Fi exp( f�)
exp( f�) + 1

Initial tension Fi

B
el

t t
en

si
on

 F
1 

or
 F

2

Figure 17–8

Plot of initial tension Fi against
belt tension F1 or F2, showing
the intercept Fc, the equations
of the curves, and where 
2T/d is to be found.

Equation (17–7) is called the belting equation, but Eqs. (17–9), (17–10), and (17–11)
reveal how belting works. We plot Eqs. (17–10) and (17–11) as shown in Fig. 17–8
against Fi as abscissa. The initial tension needs to be sufficient so that the difference
between the F1 and F2 curve is 2T/d. With no torque transmitted, the least possible belt
tension is F1 = F2 = Fc .

The transmitted horsepower is given by

H = (F1 − F2)V

33 000
(j)

Manufacturers provide specifications for their belts that include allowable tension Fa

(or stress σall), the tension being expressed in units of force per unit width. Belt life is
usually several years. The severity of flexing at the pulley and its effect on life is reflected
in a pulley correction factor Cp . Speed in excess of 600 ft/min and its effect on life is
reflected in a velocity correction factor Cv . For polyamide and urethane belts use
Cv = 1. For leather belts see Fig. 17–9. A service factor Ks is used for excursions of

Figure 17–9

Velocity correction factor Cv

for leather belts for various
thicknesses. (Data source:
Machinery’s Handbook, 
20th ed., Industrial Press,
New York, 1976, p. 1047.)
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888 Mechanical Engineering Design

load from nominal, applied to the nominal power as Hd = HnomKsnd , where nd is the
design factor for exigencies. These effects are incorporated as follows:

(F1)a = bFaCpCv (17–12)

where (F1)a = allowable largest tension, lbf

b = belt width, in

Fa = manufacturer’s allowed tension, lbf/in

Cp = pulley correction factor (Table 17–4)

Cv = velocity correction factor

The steps in analyzing a flat-belt drive can include (see Ex. 17–1)

1 Find exp( f φ) from belt-drive geometry and friction
2 From belt geometry and speed find Fc

3 From T = 63 025HnomKsnd/n find necessary torque
4 From torque T find the necessary (F1)a − F2 = 2T/d
5 From Tables 17–2 and 17–4, and Eq. (17–12) determine (F1)a.

6 Find F2 from (F1)a − [(F1)a − F2]
7 From Eq. (i) find the necessary initial tension Fi

8 Check the friction development, f ′ < f . Use Eq. (17–7) solved for f ′:

f ′ = 1

φ
ln

(F1)a − Fc

F2 − Fc

9 Find the factor of safety from n f s = Ha/(HnomKs)

It is unfortunate that many of the available data on belting are from sources in which
they are presented in a very simplistic manner. These sources use a variety of charts,
nomographs, and tables to enable someone who knows nothing about belting to apply
them. Little, if any, computation is needed for such a person to obtain valid results. Since
a basic understanding of the process, in many cases, is lacking, there is no way this
person can vary the steps in the process to obtain a better design.

Incorporating the available belt-drive data into a form that provides a good under-
standing of belt mechanics involves certain adjustments in the data. Because of this, the
results from the analysis presented here will not correspond exactly with those of the
sources from which they were obtained.

A moderate variety of belt materials, with some of their properties, are listed in
Table 17–2. These are sufficient for solving a large variety of design and analysis prob-
lems. The design equation to be used is Eq. ( j).

The values given in Table 17–2 for the allowable belt tension are based on a belt
speed of 600 ft/min. For higher speeds, use Fig. 17–9 to obtain Cv values for leather
belts. For polyamide and urethane belts, use Cv = 1.0.

The service factors Ks for V-belt drives, given in Table 17–15 in Sec. 17–3, are also
recommended here for flat- and round-belt drives.

Minimum pulley sizes for the various belts are listed in Tables 17–2 and 17–3. The
pulley correction factor accounts for the amount of bending or flexing of the belt and
how this affects the life of the belt. For this reason it is dependent on the size and mate-
rial of the belt used. See Table 17–4. Use Cp = 1.0 for urethane belts.

Flat-belt pulleys should be crowned to keep belts from running off the pulleys. If only
one pulley is crowned, it should be the larger one. Both pulleys must be crowned when-
ever the pulley axes are not in a horizontal position. Use Table 17–5 for the crown height.
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Minimum Allowable Tension
Pulley per Unit Width Specific

Size, Diameter, at 600 ft/min, Weight, Coefficient
Material Specification in in lbf/in lbf/in3 of Friction

Leather 1 ply t � 11
64 3 30 0.035–0.045 0.4

t � 13
64 3 1

2 33 0.035–0.045 0.4

2 ply t � 18
64 4 1

2 41 0.035–0.045 0.4

t � 20
64 6a 50 0.035–0.045 0.4

t � 23
64 9a 60 0.035–0.045 0.4

Polyamideb F–0c t � 0.03 0.60 10 0.035 0.5

F–1c t � 0.05 1.0 35 0.035 0.5

F–2c t � 0.07 2.4 60 0.051 0.5

A–2c t � 0.11 2.4 60 0.037 0.8

A–3c t � 0.13 4.3 100 0.042 0.8

A–4c t � 0.20 9.5 175 0.039 0.8

A–5c t � 0.25 13.5 275 0.039 0.8

Urethaned w = 0.50 t � 0.062 See 5.2e 0.038–0.045 0.7

w = 0.75 t � 0.078 Table 9.8e 0.038–0.045 0.7

w = 1.25 t � 0.090 17–3 18.9e 0.038–0.045 0.7

Round d � 1
4 See 8.3e 0.038–0.045 0.7

d � 3
8 Table 18.6e 0.038–0.045 0.7

d � 1
2 17–3 33.0e 0.038–0.045 0.7

d � 3
4 74.3e 0.038–0.045 0.7

aAdd 2 in to pulley size for belts 8 in wide or more.
bSource: Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.
cFriction cover of acrylonitrile-butadiene rubber on both sides.
dSource: Eagle Belting Co., Des Plaines, Ill.
eAt 6% elongation; 12% is maximum allowable value.

Table 17–2

Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

Ratio of Pulley Speed to Belt Length,
Belt Belt rev/(ft • min)
Style Size, in Up to 250 250 to 499 500 to 1000

Flat 0.50 × 0.062 0.38 0.44 0.50

0.75 × 0.078 0.50 0.63 0.75

1.25 × 0.090 0.50 0.63 0.75

Round 1
4 1.50 1.75 2.00
3
8 2.25 2.62 3.00
1
2 3.00 3.50 4.00
3
4 5.00 6.00 7.00

Table 17–3

Minimum Pulley Sizes

for Flat and Round

Urethane Belts (Listed 

are the pulley diameters

in inches). 

Source: Eagle Belting Co.,
Des Plaines, Ill.

889
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890 Mechanical Engineering Design

Small-Pulley Diameter, in
Material 1.6 to 4 4.5 to 8 9 to 12.5 14, 16 18 to 31.5 Over 31.5

Leather 0.5 0.6 0.7 0.8 0.9 1.0

Polyamide, F–0 0.95 1.0 1.0 1.0 1.0 1.0

F–1 0.70 0.92 0.95 1.0 1.0 1.0

F–2 0.73 0.86 0.96 1.0 1.0 1.0

A–2 0.73 0.86 0.96 1.0 1.0 1.0

A–3 — 0.70 0.87 0.94 0.96 1.0

A–4 — — 0.71 0.80 0.85 0.92

A–5 — — — 0.72 0.77 0.91

*Average values of CP for the given ranges were approximated from curves in the Habasit Engineering Manual, Habasit Belting, Inc.,
Chamblee (Atlanta), Ga.

Table 17–4

Pulley Correction Factor CP for Flat Belts*

ISO Crown ISO
Pulley Height, Pulley Crown Height, in

Diameter, in in Diameter, in w � 10 in w � 10 in

1.6, 2, 2.5 0.012 12.5, 14 0.03 0.03

2.8, 3.15 0.012 12.5, 14 0.04 0.04

3.55, 4, 4.5 0.012 22.4, 25, 28 0.05 0.05

5, 5.6 0.016 31.5, 35.5 0.05 0.06

6.3, 7.1 0.020 40 0.05 0.06

8, 9 0.024 45, 50, 56 0.06 0.08

10, 11.2 0.030 63, 71, 80 0.07 0.10

*Crown should be rounded, not angled; maximum roughness is Ra � AA 63 μin.

Table 17–5

Crown Height and ISO

Pulley Diameters for Flat

Belts*

EXAMPLE 17–1 A polyamide A-3 flat belt 6 in wide is used to transmit 15 hp under light shock condi-
tions where Ks = 1.25, and a factor of safety equal to or greater than 1.1 is appropriate.
The pulley rotational axes are parallel and in the horizontal plane. The shafts are 8 ft
apart. The 6-in driving pulley rotates at 1750 rev/min in such a way that the loose side
is on top. The driven pulley is 18 in in diameter. See Fig. 17–10. The factor of safety is
for unquantifiable exigencies.
(a) Estimate the centrifugal tension Fc and the torque T.
(b) Estimate the allowable F1, F2, Fi and allowable power Ha .
(c) Estimate the factor of safety. Is it satisfactory?

Figure 17–10

The flat-belt drive of Ex. 17–1.
6 in

96 in

1750 rpm

18 in

Belt 6 in � 0.130 in

� = 0.042
lbf
in3

15 hp

d = 6 in, D = 18 in
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Flexible Mechanical Elements 891

Solution (a) Eq. (17–1): φ = θd = π − 2 sin−1

[
18 − 6

2(8)12

]
= 3.0165 rad

exp( f φ) = exp[0.8(3.0165)] = 11.17

V = π(6)1750/12 = 2749 ft/min

Table 17–2: w = 12γ bt = 12(0.042)6(0.130) = 0.393 lbf/ft

Answer Eq. (e): Fc = w

g

(
V

60

)2

= 0.393

32.17

(
2749

60

)2

= 25.6 lbf

T = 63 025HnomKsnd

n
= 63 025(15)1.25(1.1)

1750

Answer = 742.8 lbf · in

(b) The necessary (F1)a − F2 to transmit the torque T, from Eq. (h), is

(F1)a − F2 = 2T

d
= 2(742.8)

6
= 247.6 lbf

From Table 17–2 Fa = 100 lbf. For polyamide belts Cv = 1, and from Table 17–4
Cp = 0.70. From Eq. (17–12) the allowable largest belt tension (F1)a is

Answer (F1)a = bFaCpCv = 6(100)0.70(1) = 420 lbf

then

Answer F2 = (F1)a − [(F1)a − F2] = 420 − 247.6 = 172.4 lbf

and from Eq. (i)

Fi = (F1)a + F2

2
− Fc = 420 + 172.4

2
− 25.6 = 270.6 lbf

Answer The combination (F1)a , F2, and Fi will transmit the design power of 15(1.25)(1.1) =
20.6 hp and protect the belt. We check the friction development by solving Eq. (17–7)
for f ′:

f ′ = 1

φ
ln

(F1)a − Fc

F2 − Fc
= 1

3.0165
ln

420 − 25.6

172.4 − 25.6
= 0.328

From Table 17–2, f = 0.8. Since f ′ < f , that is, 0.328 < 0.80, there is no danger of
slipping.

(c)

Answer n f s = H

HnomKs
= 20.6

15(1.25)
= 1.1 (as expected)

Answer The belt is satisfactory and the maximum allowable belt tension exists. If the initial
tension is maintained, the capacity is the design power of 20.6 hp.
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892 Mechanical Engineering Design

Initial tension is the key to the functioning of the flat belt as intended. There are
ways of controlling initial tension. One way is to place the motor and drive pulley on a
pivoted mounting plate so that the weight of the motor, pulley, and mounting plate and
a share of the belt weight induces the correct initial tension and maintains it. A second
way is use of a spring-loaded idler pulley, adjusted to the same task. Both of these
methods accommodate to temporary or permanent belt stretch. See Fig. 17–11.

Because flat belts were used for long center-to-center distances, the weight of the
belt itself can provide the initial tension. The static belt deflects to an approximate cate-
nary curve, and the dip from a straight belt can be measured against a stretched music
wire. This provides a way of measuring and adjusting the dip. From catenary theory the
dip is related to the initial tension by

dip = 12(C/12)2w

8Fi
= C2w

96Fi
(17–13)

where dip = dip, in

C = center-to-center distance, in

w = weight per foot of the belt, lbf/ft

Fi = initial tension, lbf

In Ex. 17–1 the dip corresponding to a 270.6-lbf initial tension is

dip = (962)0.393

96(270.6)
= 0.14 in

W

Slack side

Tight side

F2

F1

W

Fi Fi

C

dip

(a)

(b)

(c)

Figure 17–11

Belt-tensioning schemes.
(a) Weighted idler pulley.
(b) Pivoted motor mount.
(c) Catenary-induced tension.
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Flexible Mechanical Elements 893

A decision set for a flat belt can be

• Function: power, speed, durability, reduction, service factor, C

• Design factor: nd

• Initial tension maintenance

• Belt material

• Drive geometry, d, D

• Belt thickness: t

• Belt width: b

Depending on the problem, some or all of the last four could be design variables. Belt
cross-sectional area is really the design decision, but available belt thicknesses and
widths are discrete choices. Available dimensions are found in suppliers’ catalogs.

EXAMPLE 17–2 Design a flat-belt drive to connect horizontal shafts on 16-ft centers. The velocity ratio
is to be 2.25:1. The angular speed of the small driving pulley is 860 rev/min, and the
nominal power transmission is to be 60 hp under very light shock.

Solution • Function: Hnom = 60 hp, 860 rev/min, 2.25:1 ratio, Ks = 1.15, C = 16 ft

• Design factor: nd = 1.05

• Initial tension maintenance: catenary

• Belt material: polyamide

• Drive geometry, d, D

• Belt thickness: t

• Belt width: b

The last four could be design variables. Let’s make a few more a priori decisions.

Decision d = 16 in, D = 2.25d = 2.25(16) = 36 in.

Decision Use polyamide A-3 belt; therefore t = 0.13 in and Cv = 1.
Now there is one design decision remaining to be made, the belt width b.

Table 17–2: γ = 0.042 lbf/in3 f = 0.8 Fa = 100 lbf/in at 600 rev/min

Table 17–4: Cp = 0.94

Eq. (17–12): F1a = b(100)0.94(1) = 94.0b lbf (1)

Hd = HnomKsnd = 60(1.15)1.05 = 72.5 hp

T = 63 025Hd

n
= 63 025(72.5)

860
= 5310 lbf · in

Estimate exp( f φ) for full friction development:

Eq. (17–1): φ = θd = π − 2 sin−1 36 − 16

2(16)12
= 3.037 rad

exp( f φ) = exp[0.80(3.037)] = 11.35
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894 Mechanical Engineering Design

Estimate centrifugal tension Fc in terms of belt width b:

w = 12γ bt = 12(0.042)b(0.13) = 0.0655b lbf/ft

V = πdn/12 = π(16)860/12 = 3602 ft/min

Eq. (e): Fc = w

g

(
V

60

)2

= 0.0655b

32.17

(
3602

60

)2

= 7.34b lbf (2)

For design conditions, that is, at Hd power level, using Eq. (h) gives

(F1)a − F2 = 2T/d = 2(5310)/16 = 664 lbf (3)

F2 = (F1)a − [(F1)a − F2] = 94.0b − 664 lbf (4)

Using Eq. (i) gives

Fi = (F1)a + F2

2
− Fc = 94.0b + 94.0b − 664

2
− 7.34b = 86.7b − 332 lbf (5)

Place friction development at its highest level, using Eq. (17–7):

f φ = ln
(F1)a − Fc

F2 − Fc
= ln

94.0b − 7.34b

94.0b − 664 − 7.34b
= ln

86.7b

86.7b − 664

Solving the preceding equation for belt width b at which friction is fully developed gives

b = 664

86.7

exp( f φ)

exp( f φ) − 1
= 664

86.7

11.38

11.38 − 1
= 8.40 in

A belt width greater than 8.40 in will develop friction less than f = 0.80. The manu-
facturer’s data indicate that the next available larger width is 10 in.

Decision Use 10-in-wide belt.
It follows that for a 10-in-wide belt

Eq. (2): Fc = 7.34(10) = 73.4 lbf

Eq. (1): (F1)a = 94(10) = 940 lbf

Eq. (4): F2 = 94(10) − 664 = 276 lbf

Eq. (5): Fi = 86.7(10) − 332 = 535 lbf

The transmitted power, from Eq. (3), is

Ht = [(F1)a − F2]V

33 000
= 664(3602)

33 000
= 72.5 hp

and the level of friction development f ′, from Eq. (17–7) is

f ′ = 1

φ
ln

(F1)a − Fc

F2 − Fc
= 1

3.037
ln

940 − 73.4

276 − 73.4
= 0.479

which is less than f = 0.8, and thus is satisfactory. Had a 9-in belt width been avail-
able, the analysis would show (F1)a = 846 lbf, F2 = 182 lbf, Fi = 448 lbf, and
f ′ = 0.63. With a figure of merit available reflecting cost, thicker belts (A-4 or A-5)
could be examined to ascertain which of the satisfactory alternatives is best. From
Eq. (17–13) the catenary dip is

dip = C2w

96Fi
= [16(12)]2 0.0655(10)

96(535)
= 0.470 in
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Figure 17–12

Flat-belt tensions. T
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F

C D
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(b)

A B C D E F A

F2

F1

Fi

Fc

ΔF�2

ΔF�2

Fc

Figure 17–12 illustrates the variation of flexible flat-belt tensions at some cardinal
points during a belt pass.

Flat Metal Belts

Thin flat metal belts with their attendant strength and geometric stability could not be
fabricated until laser welding and thin rolling technology made possible belts as thin
as 0.002 in and as narrow as 0.026 in. The introduction of perforations allows no-slip
applications. Thin metal belts exhibit

• High strength-to-weight ratio

• Dimensional stability

• Accurate timing

• Usefulness to temperatures up to 700°F

• Good electrical and thermal conduction properties

In addition, stainless steel alloys offer “inert,” nonabsorbent belts suitable to hos-
tile (corrosive) environments, and can be made sterile for food and pharmaceutical
applications.

Thin metal belts can be classified as friction drives, timing or positioning drives,
or tape drives. Among friction drives are plain, metal-coated, and perforated belts.
Crowned pulleys are used to compensate for tracking errors.

Figure 17–13 shows a thin flat metal belt with the tight tension F1 and the slack
side tension F2 revealed. The relationship between F1 and F2 and the driving torque T
is the same as in Eq. (h). Equations (17–9), (17–10), and (17–11) also apply. The largest
allowable tension, as in Eq. (17–12), is posed in terms of stress in metal belts. A bend-
ing stress is created by making the belt conform to the pulley, and its tensile magnitude
σb is given by

σb = Et

(1 − ν2)D
= E

(1 − ν2)(D/t)
(17–14)
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896 Mechanical Engineering Design

Belt
Passes

625 ≥106

400 0.500 · 106

333 0.165 · 106

200 0.085 · 106

*Data courtesy of Belt
Technologies, Agawam, Mass.

Table 17–6

Belt Life for Stainless

Steel Friction Drives*

Figure 17–13

Metal-belt tensions and
torques.

TM

TLD1

TM

F1

F2

D1

D2

(a) (b)

where E = Young’s modulus

t = belt thickness

ν = Poisson’s ratio

D = pulley diameter

The tensile stresses (σ )1 and (σ )2 imposed by the belt tensions F1 and F2 are

(σ )1 = F1/(bt) and (σ )2 = F2/(bt)

The largest tensile stress is (σb)1 + F1/(bt) and the smallest is (σb)2 + F2/(bt). During
a belt pass both levels of stress appear.

Although the belts are of simple geometry, the method of Marin is not used because
the condition of the butt weldment (to form the loop) is not accurately known, and the
testing of coupons is difficult. The belts are run to failure on two equal-sized pulleys.
Information concerning fatigue life, as shown in Table 17–6, is obtainable. Tables 17–7
and 17–8 give additional information.

Table 17–6 shows metal belt life expectancies for a stainless steel belt. From
Eq. (17–14) with E = 28 Mpsi and ν = 0.29, the bending stresses corresponding to the
four entries of the table are 48 914, 76 428, 91 805, and 152 855 psi. Using a natural
log transformation on stress and passes shows that the regression line (r = −0.96) is

σ = 14 169 982N−0.407 = 14.17(106)N−0.407
p (17–15)

where Np is the number of belt passes.

D

t
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Flexible Mechanical Elements 897

Belt Thickness, Minimum Pulley
in Diameter, in

0.002 1.2

0.003 1.8

0.005 3.0

0.008 5.0

0.010 6.0

0.015 10

0.020 12.5

0.040 25.0

*Data courtesy of Belt Technologies, Agawam, Mass.

Table 17–7

Minimum Pulley

Diameter*

Yield Young’s
Strength, Modulus, Poisson’s

Alloy kpsi Mpsi Ratio

301 or 302 175 28 0.285
stainless steel

BeCu 170 17 0.220

1075 or 1095 230 30 0.287
carbon steel

Titanium 150 15 —

Inconel 160 30 0.284

*Data courtesy of Belt Technologies, Agawam, Mass.

Table 17–8

Typical Material

Properties, Metal Belts*

The selection of a metal flat belt can consist of the following steps:

1 Find exp( f φ) from geometry and friction
2 Find endurance strength

Sf = 14.17(106)N−0.407
p 301, 302 stainless

Sf = Sy/3 others

3 Allowable tension

F1a =
[

Sf − Et

(1 − ν2)D

]
tb = ab

4 �F = 2T/D

5 F2 = F1a − �F = ab − �F

6 Fi = F1a + F2

2
= ab + ab − �F

2
= ab − �F

2

7 bmin = �F

a

exp( f φ)

exp( f φ) − 1

8 Choose b > bmin, F1 = ab, F2 = ab − �F , Fi = ab − �F/2, T = �F D/2
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898 Mechanical Engineering Design

9 Check frictional development f ′:

f ′ = 1

φ
ln

F1

F2
f ′ < f

EXAMPLE 17–3 A friction-drive stainless steel metal belt runs over two 4-in metal pulleys ( f = 0.35).
The belt thickness is to be 0.003 in. For a life exceeding 106 belt passes with smooth
torque (Ks = 1), (a) select the belt if the torque is to be 30 lbf · in, and (b) find the
initial tension Fi .

Solution (a) From step 1, φ = θd = π , therefore exp(0.35π) = 3.00. From step 2,

(Sf )106 = 14.17(106)(106)−0.407 = 51 210 psi

From steps 3, 4, 5, and 6,

F1a =
[

51 210 − 28(106)0.003

(1 − 0.2852)4

]
0.003b = 85.1b lbf (1)

�F = 2T/D = 2(30)/4 = 15 lbf

F2 = F1a − �F = 85.1b − 15 lbf (2)

Fi = F1a + F2

2
= 85.1b + 15

2
lbf (3)

From step 7,

bmin = �F

a

exp( f φ)

exp( f φ) − 1
= 15

85.1

3.00

3.00 − 1
= 0.264 in

Decision Select an available 0.75-in-wide belt 0.003 in thick.

Eq. (1): F1 = 85.1(0.75) = 63.8 lbf

Eq. (2): F2 = 85.1(0.75) − 15 = 48.8 lbf

Eq. (3): Fi = (63.8 + 48.8)/2 = 56.3 lbf

f ′ = 1

φ
ln

F1

F2
= 1

π
ln

63.8

48.8
= 0.0853

Note f ′ < f , that is, 0.0853 < 0.35.

17–3 V Belts
The cross-sectional dimensions of V belts have been standardized by manufacturers,
with each section designated by a letter of the alphabet for sizes in inch dimensions.
Metric sizes are designated in numbers. Though these have not been included here, the
procedure for analyzing and designing them is the same as presented here. Dimensions,
minimum sheave diameters, and the horsepower range for each of the lettered sections
are listed in Table 17–9.
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Flexible Mechanical Elements 899

Belt Width a, Thickness b, Minimum Sheave hp Range,
Section in in Diameter, in One or More Belts

A 1
2

11
32 3.0 1

4 –10

B 21
32

7
16 5.4 1–25

C 7
8

17
32 9.0 15–100

D 1 1
4

3
4 13.0 50–250

E 1 1
2 1 21.6 100 and up

Table 17–9

Standard V-Belt Sections

a

b

40°

Section Circumference, in

A 26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85,
90, 96, 105, 112, 120, 128

B 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85,
90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210,
240, 270, 300

C 51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162,173, 180,
195, 210, 240, 270, 300, 330, 360, 390, 420

D 120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360,390, 420,
480, 540, 600, 660

E 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

Table 17–10

Inside Circumferences of

Standard V Belts

Belt section A B C D E

Quantity to be added 1.3 1.8 2.9 3.3 4.5

Table 17–11

Length Conversion Dimensions (Add the listed quantity to the

inside circumference to obtain the pitch length in inches).

To specify a V belt, give the belt-section letter, followed by the inside circumfer-
ence in inches (standard circumferences are listed in Table 17–10). For example, B75
is a B-section belt having an inside circumference of 75 in.

Calculations involving the belt length are usually based on the pitch length. For any
given belt section, the pitch length is obtained by adding a quantity to the inside cir-
cumference (Tables 17–10 and 17–11). For example, a B75 belt has a pitch length of
76.8 in. Similarly, calculations of the velocity ratios are made using the pitch diameters
of the sheaves, and for this reason the stated diameters are usually understood to be the
pitch diameters even though they are not always so specified.

The groove angle of a sheave is made somewhat smaller than the belt-section
angle. This causes the belt to wedge itself into the groove, thus increasing friction. The
exact value of this angle depends on the belt section, the sheave diameter, and the angle
of contact. If it is made too much smaller than the belt, the force required to pull the belt
out of the groove as the belt leaves the pulley will be excessive. Optimum values are
given in the commercial literature.
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900 Mechanical Engineering Design

The minimum sheave diameters have been listed in Table 17–9. For best results, a
V belt should be run quite fast: 4000 ft/min is a good speed. Trouble may be encoun-
tered if the belt runs much faster than 5000 ft/min or much slower than 1000 ft/min.

The pitch length L p and the center-to-center distance C are

L p = 2C + π(D + d)/2 + (D − d)2/(4C) (17–16a)

C = 0.25

⎧⎨⎩
[

L p − π

2
(D + d)

]
+

√[
L p − π

2
(D + d)

]2

− 2(D − d)2

⎫⎬⎭ (17–16b)

where D = pitch diameter of the large sheave and d = pitch diameter of the small sheave.
In the case of flat belts, there is virtually no limit to the center-to-center distance.

Long center-to-center distances are not recommended for V belts because the excessive
vibration of the slack side will shorten the belt life materially. In general, the center-
to-center distance should be no greater than 3 times the sum of the sheave diameters
and no less than the diameter of the larger sheave. Link-type V belts have less
vibration, because of better balance, and hence may be used with longer center-to-
center distances.

The basis for power ratings of V belts depends somewhat on the manufacturer; it
is not often mentioned quantitatively in vendors’ literature but is available from ven-
dors. The basis may be a number of hours, 24 000, for example, or a life of 108 or 109

belt passes. Since the number of belts must be an integer, an undersized belt set that is
augmented by one belt can be substantially oversized. Table 17–12 gives power ratings
of standard V belts.

The rating, whether in terms of hours or belt passes, is for a belt running on equal-
diameter sheaves (180◦ of wrap), of moderate length, and transmitting a steady load.
Deviations from these laboratory test conditions are acknowledged by multiplicative
adjustments. If the tabulated power of a belt for a C-section belt is 9.46 hp for a 12-in-
diameter sheave at a peripheral speed of 3000 ft/min (Table 17–12), then, when the belt
is used under other conditions, the tabulated value Htab is adjusted as follows:

Ha = K1 K2 Htab (17–17)

where Ha = allowable power, per belt

K1 = angle-of-wrap correction factor, Table 17–13

K2 = belt length correction factor, Table 17–14

The allowable power can be near to Htab, depending upon circumstances.
In a V belt the effective coefficient of friction f ′ is f/sin(φ/2), which amounts to

an augmentation by a factor of about 3 due to the grooves. The effective coefficient of
friction f ′ is sometimes tabulated against sheave groove angles of 30◦, 34◦, and 38◦,
the tabulated values being 0.50, 0.45, and 0.40, respectively, revealing a belt material-
on-metal coefficient of friction of 0.13 for each case. The Gates Rubber Company
declares its effective coefficient of friction to be 0.5123 for grooves. Thus

F1 − Fc

F2 − Fc
= exp(0.5123φ) (17–18)

The design power is given by

Hd = HnomKsnd (17–19)

where Hnom is the nominal power, Ks is the service factor given in Table 17–15, and nd is
the design factor. The number of belts, Nb, is usually the next higher integer to Hd/Ha .

bud29281_ch17_879-932.qxd  12/21/09  8:46 PM  Page 900 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Flexible Mechanical Elements 901

Belt Sheave Pitch Belt Speed, ft/min
Section Diameter, in 1000 2000 3000 4000 5000

A 2.6 0.47 0.62 0.53 0.15
3.0 0.66 1.01 1.12 0.93 0.38
3.4 0.81 1.31 1.57 1.53 1.12
3.8 0.93 1.55 1.92 2.00 1.71
4.2 1.03 1.74 2.20 2.38 2.19
4.6 1.11 1.89 2.44 2.69 2.58
5.0 and up 1.17 2.03 2.64 2.96 2.89

B 4.2 1.07 1.58 1.68 1.26 0.22
4.6 1.27 1.99 2.29 2.08 1.24
5.0 1.44 2.33 2.80 2.76 2.10
5.4 1.59 2.62 3.24 3.34 2.82
5.8 1.72 2.87 3.61 3.85 3.45
6.2 1.82 3.09 3.94 4.28 4.00
6.6 1.92 3.29 4.23 4.67 4.48
7.0 and up 2.01 3.46 4.49 5.01 4.90

C 6.0 1.84 2.66 2.72 1.87
7.0 2.48 3.94 4.64 4.44 3.12
8.0 2.96 4.90 6.09 6.36 5.52
9.0 3.34 5.65 7.21 7.86 7.39

10.0 3.64 6.25 8.11 9.06 8.89
11.0 3.88 6.74 8.84 10.0 10.1
12.0 and up 4.09 7.15 9.46 10.9 11.1

D 10.0 4.14 6.13 6.55 5.09 1.35
11.0 5.00 7.83 9.11 8.50 5.62
12.0 5.71 9.26 11.2 11.4 9.18
13.0 6.31 10.5 13.0 13.8 12.2
14.0 6.82 11.5 14.6 15.8 14.8
15.0 7.27 12.4 15.9 17.6 17.0
16.0 7.66 13.2 17.1 19.2 19.0
17.0 and up 8.01 13.9 18.1 20.6 20.7

E 16.0 8.68 14.0 17.5 18.1 15.3
18.0 9.92 16.7 21.2 23.0 21.5
20.0 10.9 18.7 24.2 26.9 26.4
22.0 11.7 20.3 26.6 30.2 30.5
24.0 12.4 21.6 28.6 32.9 33.8
26.0 13.0 22.8 30.3 35.1 36.7
28.0 and up 13.4 23.7 31.8 37.1 39.1

Table 17–12

Horsepower Ratings of

Standard V Belts

That is,

Nb ≥ Hd

Ha
Nb = 1, 2, 3, . . . (17–20)

Designers work on a per-belt basis.
The flat-belt tensions shown in Fig. 17–12 ignored the tension induced by bending

the belt about the pulleys. This is more pronounced with V belts, as shown in Fig. 17–14.
The centrifugal tension Fc is given by

Fc = Kc

(
V

1000

)2

(17–21)

where Kc is from Table 17–16.
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K1

0.00 180 1.00 0.75

0.10 174.3 0.99 0.76

0.20 166.5 0.97 0.78

0.30 162.7 0.96 0.79

0.40 156.9 0.94 0.80

0.50 151.0 0.93 0.81

0.60 145.1 0.91 0.83

0.70 139.0 0.89 0.84

0.80 132.8 0.87 0.85

0.90 126.5 0.85 0.85

1.00 120.0 0.82 0.82

1.10 113.3 0.80 0.80

1.20 106.3 0.77 0.77

1.30 98.9 0.73 0.73

1.40 91.1 0.70 0.70

1.50 82.8 0.65 0.65

*A curve fit for the VV column in terms of θ is
K1 = 0.143 543 + 0.007 46 8 θ − 0.000 015 052 θ 2

in the range 90° ≤ θ ≤ 180°.

902 Mechanical Engineering Design

Table 17–13

Angle of Contact

Correction Factor K1 for

VV* and V-Flat Drives

Nominal Belt Length, in
Length Factor A Belts B Belts C Belts D Belts E Belts

0.85 Up to 35 Up to 46 Up to 75 Up to 128

0.90 38–46 48–60 81–96 144–162 Up to 195

0.95 48–55 62–75 105–120 173–210 210–240

1.00 60–75 78–97 128–158 240 270–300

1.05 78–90 105–120 162–195 270–330 330–390

1.10 96–112 128–144 210–240 360–420 420–480

1.15 120 and up 158–180 270–300 480 540–600

1.20 195 and up 330 and up 540 and up 660

*Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.

Table 17–14

Belt-Length Correction

Factor K2*

Source of Power
Normal Torque High or Nonuniform

Driven Machinery Characteristic Torque

Uniform 1.0 to 1.2 1.1 to 1.3

Light shock 1.1 to 1.3 1.2 to 1.4

Medium shock 1.2 to 1.4 1.4 to 1.6

Heavy shock 1.3 to 1.5 1.5 to 1.8

Table 17–15

Suggested Service

Factors KS for V-Belt

Drives

��, deg VV V Flat
D�d

C
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Figure 17–14

V-belt tensions. T

F1

F2

+ + +

B A
F

C D
E

(a)

(b)

A B C D E F A

F1

ΔF�2T1 T2

Fi

Fc

(Fb)1 (Fb)2

Fc

ΔF�2

F2

The power that is transmitted per belt is based on �F = F1 − F2, where

�F = 63 025Hd/Nb

n(d/2)
(17–22)

then from Eq. (17–8) the largest tension F1 is given by

F1 = Fc + �F exp( f φ)

exp( f φ) − 1
(17–23)

From the definition of �F , the least tension F2 is

F2 = F1 − �F (17–24)

From Eq. ( j) in Sec. 17–2

Fi = F1 + F2

2
− Fc (17–25)

Belt Section Kb Kc

A 220 0.561

B 576 0.965

C 1 600 1.716

D 5 680 3.498

E 10 850 5.041

3V 230 0.425

5V 1098 1.217

8V 4830 3.288

*Data courtesy of Gates Rubber Co., Denver, Colo.

Table 17–16

Some V-Belt Parameters*
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108 to 109 109 to 1010
Minimum

Belt Force Peaks Force Peaks Sheave
Section K b K b Diameter, in

A 674 11.089 3.0

B 1193 10.926 5.0

C 2038 11.173 8.5

D 4208 11.105 13.0

E 6061 11.100 21.6

3V 728 12.464 1062 10.153 2.65

5V 1654 12.593 2394 10.283 7.1

8V 3638 12.629 5253 10.319 12.5 

Table 17–17 

Durability Parameters

for Some V-Belt Sections

Source: M. E. Spotts, Design
of Machine Elements, 6th ed.
Prentice Hall, Englewood
Cliffs, N.J., 1985.

The factor of safety is

n f s = Ha Nb

HnomKs
(17–26)

Durability (life) correlations are complicated by the fact that the bending induces
flexural stresses in the belt; the corresponding belt tension that induces the same maxi-
mum tensile stress is Fb1 at the driving sheave and Fb2 at the driven pulley. These equiv-
alent tensions are added to F1 as

T1 = F1 + (Fb)1 = F1 + Kb

d

T2 = F1 + (Fb)2 = F1 + Kb

D

where Kb is given in Table 17–16. The equation for the tension versus pass trade-off
used by the Gates Rubber Company is of the form

T b NP = K b

where NP is the number of passes and b is approximately 11. See Table 17–17. The
Miner rule is used to sum damage incurred by the two tension peaks:

1

NP
=

(
K

T1

)−b

+
(

K

T2

)−b

or

NP =
[(

K

T1

)−b

+
(

K

T2

)−b ]−1

(17–27)

The lifetime t in hours is given by

t = NP L p

720V
(17–28)
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The constants K and b have their ranges of validity. If NP > 109, report that NP = 109

and t > NP L p/(720V ) without placing confidence in numerical values beyond the
validity interval. See the statement about NP and t near the conclusion of Ex. 17–4.

The analysis of a V-belt drive can consist of the following steps:

• Find V, L p , C, φ, and exp(0.5123φ)

• Find Hd , Ha , and Nb from Hd/Ha and round up

• Find Fc, �F , F1, F2, and Fi , and n f s

• Find belt life in number of passes, or hours, if possible

EXAMPLE 17–4 A 10-hp split-phase motor running at 1750 rev/min is used to drive a rotary pump,
which operates 24 hours per day. An engineer has specified a 7.4-in small sheave, an
11-in large sheave, and three B112 belts. The service factor of 1.2 was augmented by
0.1 because of the continuous-duty requirement. Analyze the drive and estimate the belt
life in passes and hours.

Solution The peripheral speed V of the belt is

V = π dn/12 = π(7.4)1750/12 = 3390 ft/min

Table 17–11: L p = L + Lc = 112 + 1.8 = 113.8 in

Eq. (17–16b): C = 0.25

{[
113.8 − π

2
(11 + 7.4)

]

+
√[

113.8 − π

2
(11 + 7.4)

]2

− 2(11 − 7.4)2

}
= 42.4 in

Eq. (17–1): φ = θd = π − 2 sin−1(11 − 7.4)/[2(42.4)] = 3.057 rad

exp[0.5123(3.057)] = 4.788

Interpolating in Table 17–12 for V = 3390 ft/min gives Htab = 4.693 hp. The wrap
angle in degrees is 3.057(180)/π = 175◦ . From Table 17–13, K1 = 0.99. From
Table 17–14, K2 = 1.05. Thus, from Eq. (17–17),

Ha = K1 K2 Htab = 0.99(1.05)4.693 = 4.878 hp

Eq. (17–19): Hd = HnomKsnd = 10(1.2 + 0.1)(1) = 13 hp

Eq. (17–20): Nb ≥ Hd/Ha = 13/4.878 = 2.67 → 3

From Table 17–16, Kc = 0.965. Thus, from Eq. (17–21),

Fc = 0.965(3390/1000)2 = 11.1 lbf

Eq. (17–22): �F = 63 025(13)/3

1750(7.4/2)
= 42.2 lbf

Eq. (17–23): F1 = 11.1 + 42.2(4.788)

4.788 − 1
= 64.4 lbf
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Outside diameter

Root diameter

Belt pitch

Pitch circle
of pulley

Belt pitch lineFigure 17–15

Timing-belt drive showing
portions of the pulley and belt.
Note that the pitch diameter of
the pulley is greater than the
diametral distance across the
top lands of the teeth.

Eq. (17–24): F2 = F1 − �F = 64.4 − 42.2 = 22.2 lbf

Eq. (17–25): Fi = 64.4 + 22.2

2
− 11.1 = 32.2 lbf

Eq. (17–26): n f s = Ha Nb

HnomKs
= 4.878(3)

10(1.3)
= 1.13

Life: From Table 17–16, Kb = 576.

Fb1 = Kb

d
= 576

7.4
= 77.8 lbf

Fb2 = 576

11
= 52.4 lbf

T1 = F1 + Fb1 = 64.4 + 77.8 = 142.2 lbf

T2 = F1 + Fb2 = 64.4 + 52.4 = 116.8 lbf

From Table 17–17, K = 1193 and b = 10.926.

Eq. (17–27): NP =
[(

1193

142.2

)−10.926

+
(

1193

116.8

)−10.926
]−1

= 11(109) passes

Answer Since NP is out of the validity range of Eq. (17–27), life is reported as greater than 109

passes. Then

Answer Eq. (17–28): t >
109(113.8)

720(3390)
= 46 600 h

17–4 Timing Belts
A timing belt is made of a rubberized fabric coated with a nylon fabric, and has steel wire
within to take the tension load. It has teeth that fit into grooves cut on the periphery of
the pulleys (Fig. 17–15). A timing belt does not stretch appreciably or slip and conse-
quently transmits power at a constant angular-velocity ratio. No initial tension is needed.
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Flexible Mechanical Elements 907

Such belts can operate over a very wide range of speeds, have efficiencies in the range
of 97 to 99 percent, require no lubrication, and are quieter than chain drives. There is
no chordal-speed variation, as in chain drives (see Sec. 17–5), and so they are an attrac-
tive solution for precision-drive requirements.

The steel wire, the tension member of a timing belt, is located at the belt pitch
line (Fig. 17–15). Thus the pitch length is the same regardless of the thickness of the
backing.

The five standard inch-series pitches available are listed in Table 17–18 with their
letter designations. Standard pitch lengths are available in sizes from 6 to 180 in.
Pulleys come in sizes from 0.60 in pitch diameter up to 35.8 in and with groove num-
bers from 10 to 120.

The design and selection process for timing belts is so similar to that for V belts that
the process will not be presented here. As in the case of other belt drives, the manufac-
turers will provide an ample supply of information and details on sizes and strengths.

17–5 Roller Chain
Basic features of chain drives include a constant ratio, since no slippage or creep is
involved; long life; and the ability to drive a number of shafts from a single source of
power.

Roller chains have been standardized as to sizes by the ANSI. Figure 17–16 shows
the nomenclature. The pitch is the linear distance between the centers of the rollers. The
width is the space between the inner link plates. These chains are manufactured in sin-
gle, double, triple, and quadruple strands. The dimensions of standard sizes are listed in
Table 17–19.

Service Designation Pitch p, in

Extra light XL 1
5

Light L 3
8

Heavy H 1
2

Extra heavy XH 7
8

Double extra heavy XXH 1 1
4

Table 17–18

Standard Pitches

of Timing Belts

Roller diameter

Width

Pitch p

Strand
spacing

Figure 17–16

Portion of a double-strand
roller chain.
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908 Mechanical Engineering Design

Minimum Average Multiple-
ANSI Tensile Weight, Roller Strand
Chain Pitch, Width, Strength, lbf/ft Diameter, Spacing,

Number in (mm) in (mm) lbf (N) (N/m) in (mm) in (mm)

25 0.250 0.125 780 0.09 0.130 0.252
(6.35) (3.18) (3 470) (1.31) (3.30) (6.40)

35 0.375 0.188 1 760 0.21 0.200 0.399
(9.52) (4.76) (7 830) (3.06) (5.08) (10.13)

41 0.500 0.25 1 500 0.25 0.306 —
(12.70) (6.35) (6 670) (3.65) (7.77) —

40 0.500 0.312 3 130 0.42 0.312 0.566
(12.70) (7.94) (13 920) (6.13) (7.92) (14.38)

50 0.625 0.375 4 880 0.69 0.400 0.713
(15.88) (9.52) (21 700) (10.1) (10.16) (18.11)

60 0.750 0.500 7 030 1.00 0.469 0.897
(19.05) (12.7) (31 300) (14.6) (11.91) (22.78)

80 1.000 0.625 12 500 1.71 0.625 1.153
(25.40) (15.88) (55 600) (25.0) (15.87) (29.29)

100 1.250 0.750 19 500 2.58 0.750 1.409
(31.75) (19.05) (86 700) (37.7) (19.05) (35.76)

120 1.500 1.000 28 000 3.87 0.875 1.789
(38.10) (25.40) (124 500) (56.5) (22.22) (45.44)

140 1.750 1.000 38 000 4.95 1.000 1.924
(44.45) (25.40) (169 000) (72.2) (25.40) (48.87)

160 2.000 1.250 50 000 6.61 1.125 2.305
(50.80) (31.75) (222 000) (96.5) (28.57) (58.55)

180 2.250 1.406 63 000 9.06 1.406 2.592
(57.15) (35.71) (280 000) (132.2) (35.71) (65.84)

200 2.500 1.500 78 000 10.96 1.562 2.817
(63.50) (38.10) (347 000) (159.9) (39.67) (71.55)

240 3.00 1.875 112 000 16.4 1.875 3.458
(76.70) (47.63) (498 000) (239) (47.62) (87.83)

Table 17–19

Dimensions of American

Standard Roller

Chains—Single Strand

Source: Compiled from ANSI
B29.1-1975.

Figure 17–17 shows a sprocket driving a chain and rotating in a counterclockwise
direction. Denoting the chain pitch by p, the pitch angle by γ , and the pitch diameter of
the sprocket by D, from the trigonometry of the figure we see

sin
γ

2
= p/2

D/2
or D = p

sin(γ/2)
(a)

Since γ = 360◦/N , where N is the number of sprocket teeth, Eq. (a) can be written

D = p

sin(180◦/N )
(17–29)

The angle γ/2, through which the link swings as it enters contact, is called the
angle of articulation. It can be seen that the magnitude of this angle is a function of
the number of teeth. Rotation of the link through this angle causes impact between the
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p
A

B
e

�

D

� ⁄ 2

Variable

Figure 17–17

Engagement of a chain and
sprocket.

rollers and the sprocket teeth and also wear in the chain joint. Since the life of a prop-
erly selected drive is a function of the wear and the surface fatigue strength of the
rollers, it is important to reduce the angle of articulation as much as possible.

The number of sprocket teeth also affects the velocity ratio during the rotation
through the pitch angle γ . At the position shown in Fig. 17–17, the chain AB is
tangent to the pitch circle of the sprocket. However, when the sprocket has turned an
angle of γ/2, the chain line AB moves closer to the center of rotation of the sprocket.
This means that the chain line AB is moving up and down, and that the lever arm
varies with rotation through the pitch angle, all resulting in an uneven chain exit
velocity. You can think of the sprocket as a polygon in which the exit velocity of the
chain depends upon whether the exit is from a corner, or from a flat of the polygon.
Of course, the same effect occurs when the chain first enters into engagement with
the sprocket.

The chain velocity V is defined as the number of feet coming off the sprocket per
unit time. Thus the chain velocity in feet per minute is

V = N pn

12
(17–30)

where N = number of sprocket teeth

p = chain pitch, in

n = sprocket speed, rev/min

The maximum exit velocity of the chain is

vmax = π Dn

12
= πnp

12 sin(γ/2)
(b)

where Eq. (a) has been substituted for the pitch diameter D. The minimum exit velocity
occurs at a diameter d, smaller than D. Using the geometry of Fig. 17–17, we find

d = D cos
γ

2
(c)

Thus the minimum exit velocity is

vmin = πdn

12
= πnp

12

cos(γ/2)

sin(γ/2)
(d )
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910 Mechanical Engineering Design

Now substituting γ/2 = 180◦/N and employing Eqs. (17–30), (b), and (d ), we find the
speed variation to be

�V

V
= vmax − vmin

V
= π

N

[
1

sin(180◦/N )
− 1

tan(180◦/N )

]
(17–31)

This is called the chordal speed variation and is plotted in Fig. 17–18. When chain
drives are used to synchronize precision components or processes, due consideration
must be given to these variations. For example, if a chain drive synchronized the cut-
ting of photographic film with the forward drive of the film, the lengths of the cut sheets
of film might vary too much because of this chordal speed variation. Such variations
can also cause vibrations within the system.

Although a large number of teeth is considered desirable for the driving sprocket,
in the usual case it is advantageous to obtain as small a sprocket as possible, and this
requires one with a small number of teeth. For smooth operation at moderate and high
speeds it is considered good practice to use a driving sprocket with at least 17 teeth; 19
or 21 will, of course, give a better life expectancy with less chain noise. Where space
limitations are severe or for very slow speeds, smaller tooth numbers may be used by
sacrificing the life expectancy of the chain.

Driven sprockets are not made in standard sizes over 120 teeth, because the pitch
elongation will eventually cause the chain to “ride” high long before the chain is worn
out. The most successful drives have velocity ratios up to 6:1, but higher ratios may be
used at the sacrifice of chain life.

Roller chains seldom fail because they lack tensile strength; they more often fail
because they have been subjected to a great many hours of service. Actual failure may
be due either to wear of the rollers on the pins or to fatigue of the surfaces of the rollers.
Roller-chain manufacturers have compiled tables that give the horsepower capacity cor-
responding to a life expectancy of 15 kh for various sprocket speeds. These capacities
are tabulated in Table 17–20 for 17-tooth sprockets. Table 17–21 displays available
tooth counts on sprockets of one supplier. Table 17–22 lists the tooth correction factors
for other than 17 teeth. Table 17–23 shows the multiple-strand factors K2.

The capacities of chains are based on the following:

• 15 000 h at full load

• Single strand

• ANSI proportions

• Service factor of unity

• 100 pitches in length

• Recommended lubrication

Figure 17–18
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Flexible Mechanical Elements 911

Sprocket
Speed, ANSI Chain Number

rev/min 25 35 40 41 50 60

50 0.05 0.16 0.37 0.20 0.72 1.24

100 0.09 0.29 0.69 0.38 1.34 2.31

150 0.13* 0.41* 0.99* 0.55* 1.92* 3.32

200 0.16* 0.54* 1.29 0.71 2.50 4.30

300 0.23 0.78 1.85 1.02 3.61 6.20

400 0.30* 1.01* 2.40 1.32 4.67 8.03

500 0.37 1.24 2.93 1.61 5.71 9.81

600 0.44* 1.46* 3.45* 1.90* 6.72* 11.6

700 0.50 1.68 3.97 2.18 7.73 13.3

800 0.56* 1.89* 4.48* 2.46* 8.71* 15.0

900 0.62 2.10 4.98 2.74 9.69 16.7

1000 0.68* 2.31* 5.48 3.01 10.7 18.3

1200 0.81 2.73 6.45 3.29 12.6 21.6

1400 0.93* 3.13* 7.41 2.61 14.4 18.1

1600 1.05* 3.53* 8.36 2.14 12.8 14.8

1800 1.16 3.93 8.96 1.79 10.7 12.4

2000 1.27* 4.32* 7.72* 1.52* 9.23* 10.6

2500 1.56 5.28 5.51* 1.10* 6.58* 7.57

3000 1.84 5.64 4.17 0.83 4.98 5.76

Type A Type B Type C

*Estimated from ANSI tables by linear interpolation.

Note: Type A—manual or drip lubrication; type B—bath or disk lubrication; type C—oil-stream lubrication.

Table 17–20

Rated Horsepower

Capacity of Single-

Strand Single-Pitch

Roller Chain for a

17-Tooth Sprocket 

Source: Compiled from ANSI
B29.1-1975 information
only section, and from
B29.9-1958.

• Elongation maximum of 3 percent

• Horizontal shafts

• Two 17-tooth sprockets

The fatigue strength of link plates governs capacity at lower speeds. The American Chain
Association (ACA) publication Chains for Power Transmission and Materials Handling
(1982) gives, for single-strand chain, the nominal power H1, link-plate limited, as

H1 = 0.004N 1.08
1 n0.9

1 p(3−0.07p) hp (17–32)

and the nominal power H2, roller-limited, as

H2 = 1000Kr N 1.5
1 p0.8

n1.5
1

hp (17–33)

where N1 = number of teeth in the smaller sprocket

n1 = sprocket speed, rev/min

p = pitch of the chain, in

Kr = 29 for chain numbers 25, 35; 3.4 for chain 41; and 17 for chains 40–240

(Continued )
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Sprocket
Speed, ANSI Chain Number
rev/min 80 100 120 140 160 180 200 240

50 Type A 2.88 5.52 9.33 14.4 20.9 28.9 38.4 61.8

100 5.38 10.3 17.4 26.9 39.1 54.0 71.6 115

150 7.75 14.8 25.1 38.8 56.3 77.7 103 166

200 10.0 19.2 32.5 50.3 72.9 101 134 215

300 14.5 27.7 46.8 72.4 105 145 193 310

400 18.7 35.9 60.6 93.8 136 188 249 359

500 22.9 43.9 74.1 115 166 204 222 0

600 27.0 51.7 87.3 127 141 155 169

700 31.0 59.4 89.0 101 112 123 0

800 35.0 63.0 72.8 82.4 91.7 101

900 39.9 52.8 61.0 69.1 76.8 84.4

1000 37.7 45.0 52.1 59.0 65.6 72.1

1200 28.7 34.3 39.6 44.9 49.9 0

1400 22.7 27.2 31.5 35.6 0

1600 18.6 22.3 25.8 0

1800 15.6 18.7 21.6

2000 13.3 15.9 0

2500 9.56 0.40

3000 7.25 0

Type C Type C�

Note: Type A—manual or drip lubrication; type B—bath or disk lubrication; type C—oil-stream lubrication;
type C�—type C, but this is a galling region; submit design to manufacturer for evaluation.

Table 17–20

Rated Horsepower

Capacity of Single-

Strand Single-Pitch

Roller Chain for a

17-Tooth Sprocket

(Continued )

Ty
pe

 B

No. Available Sprocket Tooth Counts

25 8-30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

35 4-45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

41 6-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

40 8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

50 8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

60 8-60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

80 8-60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120

100 8-60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120

120 9-45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120

140 9-28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96

160 8-30, 32–36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96

180 13-25, 28, 35, 39, 40, 45, 54, 60

200 9-30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72

240 9-30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60

*Morse Chain Company, Ithaca, NY, Type B hub sprockets.

Table 17–21

Single-Strand Sprocket Tooth Counts Available from One Supplier*

912
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Number of K1 K1
Teeth on Pre-extreme Post-extreme

Driving Sprocket Horsepower Horsepower

11 0.62 0.52

12 0.69 0.59

13 0.75 0.67

14 0.81 0.75

15 0.87 0.83

16 0.94 0.91

17 1.00 1.00

18 1.06 1.09

19 1.13 1.18

20 1.19 1.28

N (N1/17)1.08 (N1/17)1.5

Table 17–22

Tooth Correction

Factors, K1

The constant 0.004 becomes 0.0022 for no. 41 lightweight chain. The nominal horse-
power in Table 17–20 is Hnom = min(H1, H2). For example, for N1 = 17, n1 = 1000
rev/min, no. 40 chain with p = 0.5 in, from Eq. (17–32),

H1 = 0.004(17)1.0810000.90.5[3−0.07(0.5)] = 5.48 hp

From Eq. (17–33),

H2 = 1000(17)171.5(0.50.8)

10001.5
= 21.64 hp

The tabulated value in Table 17–20 is Htab = min(5.48, 21.64) = 5.48 hp.
It is preferable to have an odd number of teeth on the driving sprocket (17, 19, . . .)

and an even number of pitches in the chain to avoid a special link. The approximate
length of the chain L in pitches is

L

p
.= 2C

p
+ N1 + N2

2
+ (N2 − N1)

2

4π2C/p
(17–34)

The center-to-center distance C is given by

C = p

4

⎡⎣−A +
√

A2 − 8

(
N2 − N1

2π

)2
⎤⎦ (17–35)

Number of Strands K2

1 1.0

2 1.7

3 2.5

4 3.3

5 3.9

6 4.6

8 6.0

Table 17–23

Multiple-Strand

Factors, K2
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914 Mechanical Engineering Design

where

A = N1 + N2

2
− L

p
(17–36)

The allowable power Ha is given by

Ha = K1 K2 Htab (17–37)

where K1 = correction factor for tooth number other than 17 (Table 17–22)

K2 = strand correction (Table 17–23)

The horsepower that must be transmitted Hd is given by

Hd = HnomKsnd (17–38)

Equation (17–32) is the basis of the pre-extreme power entries (vertical entries) of
Table 17–20, and the chain power is limited by link-plate fatigue. Equation (17–33) is
the basis for the post-extreme power entries of these tables, and the chain power per-
formance is limited by impact fatigue. The entries are for chains of 100 pitch length and
17-tooth sprocket. For a deviation from this

H2 = 1000

[
Kr

(
N1

n1

)1.5

p0.8

(
L p

100

)0.4 (
15 000

h

)0.4
]

(17–39)

where L p is the chain length in pitches and h is the chain life in hours. Viewed from a devi-
ation viewpoint, Eq. (17–39) can be written as a trade-off equation in the following form:

H 2.5
2 h

N 3.75
1 L p

= constant (17–40)

If tooth-correction factor K1 is used, then omit the term N 3.75
1 . Note that (N 1.5

1 )2.5 =
N 3.75

1 .
In Eq. (17–40) one would expect the h/L p term because doubling the hours can

require doubling the chain length, other conditions constant, for the same number of
cycles. Our experience with contact stresses leads us to expect a load (tension) life rela-
tion of the form Fa L = constant. In the more complex circumstance of roller-bushing
impact, the Diamond Chain Company has identified a = 2.5.

The maximum speed (rev/min) for a chain drive is limited by galling between the
pin and the bushing. Tests suggest

n1 ≤ 1000

[
82.5

7.95p(1.0278)N1(1.323)F/1000

]1/(1.59 log p+1.873)

rev/min

where F is the chain tension in pounds.

EXAMPLE 17–5 Select drive components for a 2:1 reduction, 90-hp input at 300 rev/min, moderate
shock, an abnormally long 18-hour day, poor lubrication, cold temperatures, dirty
surroundings, short drive C/p = 25.

Solution Function: Hnom = 90 hp, n1 = 300 rev/min, C/p = 25, Ks = 1.3
Design factor: nd = 1.5
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Sprocket teeth: N1 = 17 teeth, N2 = 34 teeth, K1 = 1, K2 = 1, 1.7, 2.5, 3.3
Chain number of strands:

Htab = nd Ks Hnom

K1 K2
= 1.5(1.3)90

(1)K2
= 176

K2

Form a table:

Number of 176/K2 Chain Number Lubrication
Strands (Table 17–23) (Table 17–19) Type

1 176/1 = 176 200 C′

2 176/1.7 = 104 160 C

3 176/2.5 = 70.4 140 B

4 176/3.3 = 53.3 140 B

Decision 3 strands of number 140 chain (Htab is 72.4 hp).
Number of pitches in the chain:

L

p
= 2C

p
+ N1 + N2

2
+ (N2 − N1)

2

4π2C/p

= 2(25) + 17 + 34

2
+ (34 − 17)2

4π2(25)
= 75.79 pitches

Decision Use 76 pitches. Then L/p = 76.
Identify the center-to-center distance: From Eqs. (17–35) and (17–36),

A = N1 + N2

2
− L

p
= 17 + 34

2
− 76 = −50.5

C = p

4

⎡⎣−A +
√

A2 − 8

(
N2 − N1

2π

)2
⎤⎦

= p

4

⎡⎣50.5 +
√

50.52 − 8

(
34 − 17

2π

)2
⎤⎦ = 25.104p

For a 140 chain, p = 1.75 in. Thus,

C = 25.104p = 25.104(1.75) = 43.93 in

Lubrication: Type B
Comment: This is operating on the pre-extreme portion of the power, so durability esti-
mates other than 15 000 h are not available. Given the poor operating conditions, life
will be much shorter.

Lubrication of roller chains is essential in order to obtain a long and trouble-free
life. Either a drip feed or a shallow bath in the lubricant is satisfactory. A medium or
light mineral oil, without additives, should be used. Except for unusual conditions,
heavy oils and greases are not recommended, because they are too viscous to enter the
small clearances in the chain parts.
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Figure 17–19

Types of wire rope; both lays
are available in either right or
left hand. (a) Regular lay

(b) Lang lay

(c) Section of
      6 × 7 rope

17–6 Wire Rope
Wire rope is made with two types of winding, as shown in Fig. 17–19. The regular lay,
which is the accepted standard, has the wire twisted in one direction to form the strands,
and the strands twisted in the opposite direction to form the rope. In the completed rope
the visible wires are approximately parallel to the axis of the rope. Regular-lay ropes do
not kink or untwist and are easy to handle.

Lang-lay ropes have the wires in the strand and the strands in the rope twisted in
the same direction, and hence the outer wires run diagonally across the axis of the rope.
Lang-lay ropes are more resistant to abrasive wear and failure due to fatigue than are
regular-lay ropes, but they are more likely to kink and untwist.

Standard ropes are made with a hemp core, which supports and lubricates the
strands. When the rope is subjected to heat, either a steel center or a wire-strand center
must be used.

Wire rope is designated as, for example, a 1 1
8 -in 6 × 7 haulage rope. The first figure

is the diameter of the rope (Fig. 17–19c). The second and third figures are the number
of strands and the number of wires in each strand, respectively. Table 17–24 lists some
of the various ropes that are available, together with their characteristics and properties.
The area of the metal in standard hoisting and haulage rope is Am = 0.38d2.

When a wire rope passes around a sheave, there is a certain amount of readjustment
of the elements. Each of the wires and strands must slide on several others, and pre-
sumably some individual bending takes place. It is probable that in this complex action
there exists some stress concentration. The stress in one of the wires of a rope passing
around a sheave may be calculated as follows. From solid mechanics, we have

M = E I

ρ
and M = σ I

c
(a)

where the quantities have their usual meaning. Eliminating M and solving for the stress
gives

σ = Ec

ρ
(b)

For the radius of curvature ρ, we can substitute the sheave radius D/2. Also, c = dw/2,
where dw is the wire diameter. These substitutions give

σ = Er
dw

D
(c)

where Er is the modulus of elasticity of the rope, not the wire.  To understand this equa-
tion, observe that the individual wire makes a corkscrew figure in space and if you pull
on it to determine E it will stretch or give more than its native E would suggest. Therefore
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Flexible Mechanical Elements 917

Minimum Modulus
Weight Sheave Standard Size of of

per Foot, Diameter, Sizes Outer Elasticity,* Strength,†
Rope lbf in d, in Material Wires Mpsi kpsi

6 × 7 haulage 1.50d 2 42d 1
4−11

2 Monitor steel d/9 14 100
Plow steel d/9 14 88
Mild plow steel d/9 14 76

6 × 19 standard 1.60d 2 26d –34d 1
4−23

4 Monitor steel d/13–d/16 12 106
hoisting Plow steel d/13–d/16 12 93

Mild plow steel d/13–d/16 12 80

6 × 37 special 1.55d 2 18d 1
4−31

2 Monitor steel d/22 11 100
flexible Plow steel d/22 11 88

8 × 19 extra 1.45d 2 21d –26d 1
4−11

2 Monitor steel d/15–d/19 10 92
flexible Plow steel d/15–d/19 10 80

7 × 7 aircraft 1.70d 2 — 1
16−3

8 Corrosion-resistant — — 124
steel
Carbon steel — — 124

7 × 9 aircraft 1.75d 2 — 1
8−13

8 Corrosion-resistant — — 135
steel
Carbon steel — — 143

19-wire aircraft 2.15d 2 — 1
32− 5

16 Corrosion-resistant — — 165
steel
Carbon steel — — 165

*The modulus of elasticity is only approximate; it is affected by the loads on the rope and, in general, increases with the life of the rope.
†The strength is based on the nominal area of the rope. The figures given are only approximate and are based on 1-in rope sizes and 1

4 -in aircraft-cable sizes.

Table 17–24

Wire-Rope Data Source: Compiled from American Steel and Wire Company Handbook.

E is still the modulus of elasticity of the wire, but in its peculiar configuration as part of
the rope, its modulus is smaller. For this reason we say that Er in Eq. (c) is the modulus
of elasticity of the rope, not the wire, recognizing that one can quibble over the name
used.

Equation (c) gives the tensile stress σ in the outer wires. The sheave diameter is
represented by D. This equation reveals the importance of using a large-diameter
sheave. The suggested minimum sheave diameters in Table 17–24 are based on a D/dw

ratio of 400. If possible, the sheaves should be designed for a larger ratio. For elevators
and mine hoists, D/dw is usually taken from 800 to 1000. If the ratio is less than 200,
heavy loads will often cause a permanent set in the rope.

A wire rope tension giving the same tensile stress as the sheave bending is called
the equivalent bending load Fb, given by

Fb = σ Am = Er dw Am

D
(17–41)

A wire rope may fail because the static load exceeds the ultimate strength of the
rope. Failure of this nature is generally not the fault of the designer, but rather that of the
operator in permitting the rope to be subjected to loads for which it was not designed.
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918 Mechanical Engineering Design

Figure 17–20

Percent strength loss due to
different D/d ratios; derived
from standard test data for 
6 × 19 and 6 × 17 class ropes.
(Materials provided by the Wire
Rope Technical Board (WRTB),
Wire Rope Users Manual Third
Edition, Second printing.
Reprinted by permission.)
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The first consideration in selecting a wire rope is to determine the static load. This
load is composed of the following items:

• The known or dead weight

• Additional loads caused by sudden stops or starts

• Shock loads

• Sheave-bearing friction

When these loads are summed, the total can be compared with the ultimate strength of
the rope to find a factor of safety. However, the ultimate strength used in this determi-
nation must be reduced by the strength loss that occurs when the rope passes over a
curved surface such as a stationary sheave or a pin; see Fig. 17–20.

For an average operation, use a factor of safety of 5. Factors of safety up to 8 or 9
are used if there is danger to human life and for very critical situations. Table 17–25

Table 17–25

Minimum Factors of

Safety for Wire Rope*

Source: Compiled from a
variety of sources, including
ANSI A17.1-1978.

Track cables 3.2

Guys 3.5

Mine shafts, ft:
Up to 500 8.0
1000–2000 7.0
2000–3000 6.0
Over 3000 5.0

Hoisting 5.0

Haulage 6.0

Cranes and derricks 6.0

Electric hoists 7.0

Hand elevators 5.0

Private elevators 7.5

Hand dumbwaiter 4.5

Grain elevators 7.5

*Use of these factors does not preclude a fatigue failure.

Passenger elevators, ft/min:
50 7.60

300 9.20
800 11.25

1200 11.80
1500 11.90

Freight elevators, ft/min:
50 6.65

300 8.20
800 10.00

1200 10.50
1500 10.55

Powered dumbwaiters, ft/min:
50 4.8

300 6.6
500 8.0
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Flexible Mechanical Elements 919

Sheave Material
Cast Cast Chilled Manganese

Rope Wooda Ironb Steelc Cast Ironsd Steele

Regular lay:
6 × 7 150 300 550 650 1470
6 × 19 250 480 900 1100 2400
6 × 37 300 585 1075 1325 3000
8 × 19 350 680 1260 1550 3500

Lang lay:
6 × 7 165 350 600 715 1650
6 × 19 275 550 1000 1210 2750
6 × 37 330 660 1180 1450 3300

aOn end grain of beech, hickory, or gum.
bFor HB (min.) = 125.
c30–40 carbon; HB (min.) = 160.
dUse only with uniform surface hardness.
eFor high speeds with balanced sheaves having ground surfaces.

Table 17–26

Maximum Allowable

Bearing Pressures of

Ropes on Sheaves (in psi)

Source: Wire Rope Users
Manual, AISI, 1979.

lists minimum factors of safety for a variety of design situations. Here, the factor of
safety is defined as

n = Fu

Ft

where Fu is the ultimate wire load and Ft is the largest working tension.
Once you have made a tentative selection of a rope based upon static strength, the

next consideration is to ensure that the wear life of the rope and the sheave or sheaves
meets certain requirements. When a loaded rope is bent over a sheave, the rope stretches
like a spring, rubs against the sheave, and causes wear of both the rope and the sheave.
The amount of wear that occurs depends upon the pressure of the rope in the sheave
groove. This pressure is called the bearing pressure; a good estimate of its magnitude
is given by

p = 2F

d D
(17–42)

where F = tensile force on rope

d = rope diameter

D = sheave diameter

The allowable pressures given in Table 17–26 are to be used only as a rough guide; they
may not prevent a fatigue failure or severe wear. They are presented here because they
represent past practice and furnish a starting point in design.

A fatigue diagram not unlike an S-N diagram can be obtained for wire rope. Such
a diagram is shown in Fig. 17–21. Here the ordinate is the pressure-strength ratio p/Su ,
and Su is the ultimate tensile strength of the wire. The abscissa is the number of bends
that occur in the total life of the rope. The curve implies that a wire rope has a fatigue
limit; but this is not true at all. A wire rope that is used over sheaves will eventually fail
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920 Mechanical Engineering Design

Figure 17–21

Experimentally determined
relation between the fatigue life
of wire rope and the sheave
pressure.
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in fatigue or in wear. However, the graph does show that the rope will have a long life
if the ratio p/Su is less than 0.001. Substitution of this ratio in Eq. (17–42) gives

Su = 2000F

d D
(17–43)

where Su is the ultimate strength of the wire, not the rope, and the units of Su are related
to the units of F. This interesting equation contains the wire strength, the load, the rope
diameter, and the sheave diameter—all four variables in a single equation! Dividing both
sides of Eq. (17–42) by the ultimate strength of the wires Su and solving for F gives

Ff = (p/Su)Sud D

2
(17–44)

where Ff is interpreted as the allowable fatigue tension as the wire is flexed a number
of times corresponding to p/Su selected from Fig. 17–21 for a particular rope and life
expectancy. The factor of safety can be defined in fatigue as

n f = Ff − Fb

Ft
(17–45)

where Ff is the rope tension strength under flexing and Ft is the tension at the place where
the rope is flexing. Unfortunately, the designer often has vendor information that tabulates
ultimate rope tension and gives no ultimate-strength Su information concerning the wires
from which the rope is made. Some guidance in strength of individual wires is

Improved plow steel (monitor) 240 < Su < 280 kpsi
Plow steel 210 < Su < 240 kpsi
Mild plow steel 180 < Su < 210 kpsi

In wire-rope usage, the factor of safety has been defined in static loading as n =
Fu/Ft or n = (Fu − Fb)/Ft , where Fb is the rope tension that would induce the same
outer-wire stress as that given by Eq. (c). The factor of safety in fatigue loading can be
defined as in Eq. (17–45), or by using a static analysis and compensating with a large fac-
tor of safety applicable to static loading, as in Table 17–25. When using factors of safety
expressed in codes, standards, corporate design manuals, or wire-rope manufacturers’
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Flexible Mechanical Elements 921

recommendations or from the literature, be sure to ascertain upon which basis the fac-
tor of safety is to be evaluated, and proceed accordingly.

If the rope is made of plow steel, the wires are probably hard-drawn AISI 1070 or
1080 carbon steel. Referring to Table 10–3, we see that this lies somewhere between
hard-drawn spring wire and music wire. But the constants m and A needed to solve
Eq. (10–14), p. 523, for Su are lacking.

Practicing engineers who desire to solve Eq. (17–43) should determine the wire
strength Su for the rope under consideration by unraveling enough wire to test for the Brinell
hardness. Then Su can be found using Eq. (2–17), p. 40. Fatigue failure in wire rope is not
sudden, as in solid bodies, but progressive, and shows as the breaking of an outside wire.
This means that the beginning of fatigue can be detected by periodic routine inspection.

Figure 17–22 is another graph showing the gain in life to be obtained by using large
D/d ratios. In view of the fact that the life of wire rope used over sheaves is only finite,
it is extremely important that the designer specify and insist that periodic inspection,
lubrication, and maintenance procedures be carried out during the life of the rope.
Table 17–27 gives useful properties of some wire ropes.

For a mine-hoist problem we can develop working equations from the preceding
presentation. The wire rope tension Ft due to load and acceleration/deceleration is

Ft =
(

W

m
+ wl

)(
1 + a

g

)
(17–46)

Figure 17–22

Service-life curve based on
bending and tensile stresses
only. This curve shows that
the life corresponding to
D/d = 48 is twice that of
D/d = 33. (Materials provided
by the Wire Rope Technical
Board (WRTB), Wire Rope
Users Manual Third Edition,
Second printing. Reprinted by
permission.)
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Weight Minimum Better Rope
Weight per Foot Sheave Sheave Diameter Area of Young’s

Wire per Foot Including Core Diameter Diameter of Wires Metal Modulus
Rope w, lbf/ft w, lbf/ft D, in D, in dw, in Am, in2 Er, psi

6 × 7 1.50d 2 42d 72d 0.111d 0.38d 2 13 × 106

6 × 19 1.60d 2 1.76d 2 30d 45d 0.067d 0.40d 2 12 × 106

6 × 37 1.55d 2 1.71d 2 18d 27d 0.048d 0.40d 2 12 × 106

Table 17–27

Some Useful Properties of 6 × 7, 6 × 19, and 6 × 37 Wire Ropes
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922 Mechanical Engineering Design

where W = weight at the end of the rope (cage and load), lbf

m = number of wire ropes supporting the load

w = weight/foot of the wire rope, lbf/ft

l = suspended length of rope, ft

a = maximum acceleration/deceleration experienced, ft/s2

g = acceleration of gravity, ft/s2

The fatigue tensile strength in pounds for a specified life Ff is

Ff = (p/Su)Su Dd

2
(17–47)

where (p/Su) = specified life, from Fig. 17–21

Su = ultimate tensile strength of the wires, psi

D = sheave or winch drum diameter, in

d = nominal wire rope size, in

The equivalent bending load Fb is

Fb = Er dw Am

D
(17–48)

where Er = Young’s modulus for the wire rope, Table 17–24 or 17–27, psi

dw = diameter of the wires, in

Am = metal cross-sectional area, Table 17–24 or 17–28, in2

D = sheave or winch drum diameter, in

The static factor of safety ns is

ns = Fu − Fb

Ft
(17–49)

Be careful when comparing recommended static factors of safety to Eq. (17–49), as ns

is sometimes defined as Fu/Ft . The fatigue factor of safety nf is

n f = Ff − Fb

Ft
(17–50)

EXAMPLE 17–6 Given a 6 × 19 monitor steel (Su = 240 kpsi) wire rope.
(a) Develop the expressions for rope tension Ft , fatigue tension Ff , equivalent bending
tensions Fb, and fatigue factor of safety nf for a 531.5-ft, 1-ton cage-and-load mine hoist
with a starting acceleration of 2 ft/s2 as depicted in Fig. 17–23. The sheave diameter is
72 in.
(b) Using the expressions developed in part (a), examine the variation in factor of safety
n f for various wire rope diameters d and number of supporting ropes m.

Solution (a) Rope tension Ft from Eq. (17–46) is given by

Answer Ft =
(

W

m
+ wl

)(
1 + a

g

)
=

[
2000

m
+ 1.60d2(531.5)

](
1 + 2

32.2

)
= 2124

m
+ 903d2 lbf
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Flexible Mechanical Elements 923

Figure 17–23

Geometry of the mine hoist 
of Ex. 17–6.

Ft

72 in

531.5 ft W = 531.5(1.6)d2 lbf

a = 2 ft/s2

W = 2000 lbf

From Fig. 17–21, use p/Su = 0.0014. Fatigue tension Ff from Eq. (17–47) is given by

Answer Ff = (p/Su)Su Dd

2
= 0.0014(240 000)72d

2
= 12 096d lbf

Equivalent bending tension Fb from Eq. (17–48) and Table 17–27 is given by

Answer Fb = Er dw Am

D
= 12(106)0.067d(0.40d2)

72
= 4467d3 lbf

Factor of safety nf in fatigue from Eq. (17–50) is given by

Answer n f = Ff − Fb

Ft
= 12 096d − 4467d3

2124/m + 903d2

(b) Form a table as follows:

nf

d m � 1 m � 2 m � 3 m � 4

0.25 1.355 2.641 3.865 5.029

0.375 1.910 3.617 5.150 6.536

0.500 2.336 4.263 5.879 7.254

0.625 2.612 4.573 6.099 7.331

0.750 2.731 4.578 5.911 6.918

0.875 2.696 4.330 5.425 6.210

1.000 2.520 3.882 4.736 5.320
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924 Mechanical Engineering Design

Wire rope sizes are discrete, as is the number of supporting ropes. Note that for each m
the factor of safety exhibits a maximum. Predictably the largest factor of safety increases
with m. If the required factor of safety were to be 6, only three or four ropes could meet
the requirement. The sizes are different: 5

8 -in ropes with three ropes or 3
8 -in ropes with

four ropes. The costs include not only the wires, but the grooved winch drums.

17–7 Flexible Shafts
One of the greatest limitations of the solid shaft is that it cannot transmit motion or power
around corners. It is therefore necessary to resort to belts, chains, or gears, together with
bearings and the supporting framework associated with them. The flexible shaft may
often be an economical solution to the problem of transmitting motion around corners. In
addition to the elimination of costly parts, its use may reduce noise considerably.

There are two main types of flexible shafts: the power-drive shaft for the transmis-
sion of power in a single direction, and the remote-control or manual-control shaft for the
transmission of motion in either direction.

The construction of a flexible shaft is shown in Fig. 17–24. The cable is made by
winding several layers of wire around a central core. For the power-drive shaft, rotation
should be in a direction such that the outer layer is wound up. Remote-control cables

Figure 17–24

Flexible shaft: (a) construction
details; (b) a variety of
configurations. (Courtesy of 
S. S. White Technologies, Inc.) Mandrel

(a)

(b)

First Layer
(4 Wires)

Last Layer
(7 Wires)
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Flexible Mechanical Elements 925

have a different lay of the wires forming the cable, with more wires in each layer, so
that the torsional deflection is approximately the same for either direction of rotation.

Flexible shafts are rated by specifying the torque corresponding to various radii of
curvature of the casing. A 15-in radius of curvature, for example, will give from 2 to 5
times more torque capacity than a 7-in radius. When flexible shafts are used in a drive
in which gears are also used, the gears should be placed so that the flexible shaft runs
at as high a speed as possible. This permits the transmission of the maximum amount
of horsepower.

PROBLEMS
17–1 A 6-in-wide polyamide F-1 flat belt is used to connect a 2-in-diameter pulley to drive a larger

pulley with an angular velocity ratio of 0.5. The center-to-center distance is 9 ft. The angular
speed of the small pulley is 1750 rev/min as it delivers 2 hp. The service is such that a service
factor Ks of 1.25 is appropriate.
(a) Find Fc , Fi , F1a , and F2 .
(b) Find Ha , n f s , and belt length.
(c) Find the dip.

17–2 Perspective and insight can be gained by doubling all geometric dimensions and observing the
effect on problem parameters. Take the drive of Prob. 17–1, double the dimensions, and compare.

17–3 A flat-belt drive is to consist of two 4-ft-diameter cast-iron pulleys spaced 16 ft apart. Select a
belt type to transmit 60 hp at a pulley speed of 380 rev/min. Use a service factor of 1.1 and a
design factor of 1.0.

17–4 In solving problems and examining examples, you probably have noticed some recurring forms:

w = 12γ bt = (12γ t)b = a1b,

(F1)a = FabCpCv = (FaCpCv)b = a0b

Fc = wV 2

g
= a1b

32.174

(
V

60

)2

= a2b

(F1)a − F2 = 2T/d = 33 000Hd/V = 33 000HnomKsnd/V

F2 = (F1)a − [(F1)a − F2] = a0b − 2T/d

f φ = ln
(F1)a − Fc

F2 − Fc
= ln

(a0 − a2)b

(a0 − a2)b − 2T/d

Show that

b = 1

a0 − a2

33 000Hd

V

exp( f φ)

exp( f φ) − 1

17–5 Return to Ex. 17–1 and complete the following.
(a) Find the torque capacity that would put the drive as built at the point of slip, as well as the

initial tension Fi .
(b) Find the belt width b that exhibits n f s = nd = 1.1.
(c) For part b find the corresponding F1a , Fc , Fi , F2 , power, and n f s .
(d ) What have you learned?

17–6 Take the drive of Prob. 17–5 and double the belt width. Compare Fc , Fi , F1a , F2 , Ha , n f s , and dip.
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Speed, Power, Lineshaft Diameter,
Machine rev/min hp Pulley in

Machine tool 400 12.5 B 16

Grinder 300 4.5 C 14

Dust extractor 500 8.0 D 18 

70°
60°

10 ft

Fr
om

 B

From
 C

Motor pulley:
Dia. = 12 in
Speed = 900 rev�min

From D
A

8 ft

A
B C D

Problem 17–9

(Courtesy of Dr. Ahmed F. Abdel
Azim, Zagazig University, Cairo.)

17–7 Belted pulleys place loads on shafts, inducing bending and loading bearings. Examine Fig. 17–7
and develop an expression for the load the belt places on the pulley, and then apply it to Ex. 17–2.

17–8 Example 17–2 resulted in selection of a 10-in-wide A-3 polyamide flat belt. Show that the value
of F1 restoring f to 0.80 is

F1 = (�F + Fc) exp f φ − Fc

exp f φ − 1

and compare the initial tensions.

17–9 The line shaft illustrated in the figure is used to transmit power from an electric motor by means of
flat-belt drives to various machines. Pulley A is driven by a vertical belt from the motor pulley. A belt
from pulley B drives a machine tool at an angle of 70◦ from the vertical and at a center-to-center
distance of 9 ft. Another belt from pulley C drives a grinder at a center-to-center distance of 11 ft.
Pulley C has a double width to permit belt shifting as shown in Fig. 17–4. The belt from pulley D
drives a dust-extractor fan whose axis is located horizontally 8 ft from the axis of the lineshaft.
Additional data are

The power requirements, listed above, account for the overall efficiencies of the equipment. The
two line-shaft bearings are mounted on hangers suspended from two overhead wide-flange
beams. Select the belt types and sizes for each of the four drives. Make provision for replacing
belts from time to time because of wear or permanent stretch.

17–10 Two shafts 20 ft apart, with axes in the same horizontal plane, are to be connected with a flat belt
in which the driving pulley, powered by a six-pole squirrel-cage induction motor with a 100 brake
hp rating at 1140 rev/min, drives the second shaft at half its angular speed. The driven shaft drives
light-shock machinery loads. Select a flat belt.
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Flexible Mechanical Elements 927

17–11 The mechanical efficiency of a flat-belt drive is approximately 98 percent. Because of its high
value, the efficiency is often neglected. If a designer should choose to include it, where would he
or she insert it in the flat-belt protocol?

17–12 In metal belts, the centrifugal tension Fc is ignored as negligible. Convince yourself that this is a
reasonable problem simplification.

17–13 A designer has to select a metal-belt drive to transmit a power of Hnom under circumstances
where a service factor of Ks and a design factor of nd are appropriate. The design goal becomes
Hd = Hnom Ks nd . Use Eq. (17–8) to show that the minimum belt width is given by

bmin = 1

a

(
33 000Hd

V

)
exp f θ

exp f θ − 1

where a is the constant from F1a = ab.

17–14 Design a friction metal flat-belt drive to connect a 1-hp, four-pole squirrel-cage motor turning at
1750 rev/min to a shaft 15 in away, running at half speed. The circumstances are such that a
service factor of 1.2 and a design factor of 1.05 are appropriate. The life goal is 106 belt passes,
f = 0.35, and the environmental considerations require a stainless steel belt.

17–15 A beryllium-copper metal flat belt with Sf = 56.67 kpsi is to transmit 5 hp at 1125 rev/min with
a life goal of 106 belt passes between two shafts 20 in apart whose centerlines are in a horizontal
plane. The coefficient of friction between belt and pulley is 0.32. The conditions are such that a
service factor of 1.25 and a design factor of 1.1 are appropriate. The driven shaft rotates at one-
third the motor-pulley speed. Specify your belt, pulley sizes, and initial tension at installation.

17–16 For the conditions of Prob. 17–15 use a 1095 plain carbon-steel heat-treated belt. Conditions at
the driving pulley hub require a pulley outside diameter of 3 in or more. Specify your belt, pulley
sizes, and initial tension at installation.

17–17 A single V belt is to be selected to deliver engine power to the wheel-drive transmission of a riding
tractor. A 5-hp single-cylinder engine is used. At most, 60 percent of this power is transmitted to the
belt. The driving sheave has a diameter of 6.2 in, the driven, 12.0 in. The belt selected should be as
close to a 92-in pitch length as possible. The engine speed is governor-controlled to a maximum of
3100 rev/min. Select a satisfactory belt and assess the factor of safety and the belt life in passes.

17–18 Two B85 V belts are used in a drive composed of a 5.4-in driving sheave, rotating at 1200 rev/min,
and a 16-in driven sheave. Find the power capacity of the drive based on a service factor of 1.25,
and find the center-to-center distance.

17–19 A 60-hp four-cylinder internal combustion engine is used to drive a brick-making machine under
a schedule of two shifts per day. The drive consists of two 26-in sheaves spaced about 12 ft apart,
with a sheave speed of 400 rev/min. Select a V-belt arrangement. Find the factor of safety, and
estimate the life in passes and hours.

17–20 A reciprocating air compressor has a 5-ft-diameter flywheel 14 in wide, and it operates at 
170 rev/min. An eight-pole squirrel-cage induction motor has nameplate data 50 bhp at 875
rev/min.
(a) Design a V-belt drive.
(b) Can cutting the V-belt grooves in the flywheel be avoided by using a V-flat drive?

17–21 The geometric implications of a V-flat drive are interesting.
(a) If the earth’s equator was an inextensible string, snug to the spherical earth, and you spliced

6 ft of string into the equatorial cord and arranged it to be concentric to the equator, how far
off the ground is the string?
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928 Mechanical Engineering Design

(b) Using the solution to part a, formulate the modifications to the expressions for mG , θd and θD ,
L p , and C. 

(c) As a result of this exercise, how would you revise your solution to part b of Prob. 17–20?

17–22 A 2-hp electric motor running at 1720 rev/min is to drive a blower at a speed of 240 rev/min.
Select a V-belt drive for this application and specify standard V belts, sheave sizes, and the
resulting center-to-center distance. The motor size limits the center distance to at least 22 in.

17–23 The standard roller-chain number indicates the chain pitch in inches, construction proportions,
series, and number of strands as follows:

10 0H-2

two strands

heavy series

standard proportions

pitch is 10/8 in

This convention makes the pitch directly readable from the chain number. In Ex. 17–5 ascertain
the pitch from the selected chain number and confirm from Table 17–19.

17–24 Equate Eqs. (17–32) and (17–33) to find the rotating speed n1 at which the power equates and
marks the division between the premaximum and the postmaximum power domains.
(a) Show that

n1 =
[

0.25(106)Kr N 0.42
1

p(2.2−0.07 p)

]1/2.4

(b) Find the speed n1 for a no. 60 chain, p = 0.75 in, N1 = 17, Kr = 17, and confirm from
Table 17–20.

(c) At which speeds is Eq. (17–40) applicable?

17–25 A double-strand no. 60 roller chain is used to transmit power between a 13-tooth driving sprocket
rotating at 300 rev/min and a 52-tooth driven sprocket.
(a) What is the allowable horsepower of this drive?
(b) Estimate the center-to-center distance if the chain length is 82 pitches.
(c) Estimate the torque and bending force on the driving shaft by the chain if the actual horse-

power transmitted is 30 percent less than the corrected (allowable) power.

17–26 A four-strand no. 40 roller chain transmits power from a 21-tooth driving sprocket to an 84-tooth
driven sprocket. The angular speed of the driving sprocket is 2000 rev/min.
(a) Estimate the chain length if the center-to-center distance has to be about 20 in.
(b) Estimate the tabulated horsepower entry H ′

tab for a 20 000-h life goal.
(c) Estimate the allowable horsepower for a 20 000-h life.
(d ) Estimate the tension in the chain at the allowable power.

17–27 A 700 rev/min 25-hp squirrel-cage induction motor is to drive a two-cylinder reciprocating pump,
out-of-doors under a shed. A service factor Ks of 1.5 and a design factor of 1.1 are appropriate.
The pump speed is 140 rev/min. Select a suitable chain and sprocket sizes.

17–28 A centrifugal pump is driven by a 50-hp synchronous motor at a speed of 1800 rev/min. The
pump is to operate at 900 rev/min. Despite the speed, the load is smooth (Ks = 1.2). For a design
factor of 1.1 specify a chain and sprockets that will realize a 50 000-h life goal. Let the sprockets
be 19T and 38T.
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Flexible Mechanical Elements 929

17–29 A mine hoist uses a 2-in 6 × 19 monitor-steel wire rope. The rope is used to haul loads of 4 tons
from the shaft 480 ft deep. The drum has a diameter of 6 ft, the sheaves are of good-quality cast
steel, and the smallest is 3 ft in diameter.
(a) Using a maximum hoisting speed of 1200 ft/min and a maximum acceleration of 2 ft/s2,

estimate the stresses in the rope.
(b) Estimate the various factors of safety.

17–30 A temporary construction elevator is to be designed to carry workers and materials to a height of
90 ft. The maximum estimated load to be hoisted is 5000 lbf at a velocity not to exceed 2 ft/s. For
minimum sheave diameters and acceleration of 4 ft/s2, specify the number of ropes required if the
1-in plow-steel 6 × 19 hoisting strand is used.

17–31 A 2000-ft mine hoist operates with a 72-in drum using 6 × 19 monitor-steel wire rope. The cage
and load weigh 8000 lbf, and the cage is subjected to an acceleration of 2 ft/s2 when starting.
(a) For a single-strand hoist how does the factor of safety n = Ff/Ft vary with the choice of rope

diameter?
(b) For four supporting strands of wire rope attached to the cage, how does the factor of safety

vary with the choice of rope diameter?

17–32 Generalize the results of Prob. 17–31 by representing the factor of safety n as

n = ad

(b/m) + cd2

where m is the number of ropes supporting the cage, and a, b, and c are constants. Show that the
optimal diameter is d∗ = [b/(mc)]1/2 and the corresponding maximum attainable factor of safety
is n∗ = a[m/(bc)]1/2/2.

17–33 From your results in Prob. 17–32, show that to meet a fatigue factor of safety n1 the optimal
solution is

m = 4bcn1

a2
ropes

having a diameter of

d = a

2cn1

Solve Prob. 17–31 if a factor of safety of 2 is required. Show what to do in order to accommo-
date to the necessary discreteness in the rope diameter d and the number of ropes m.

17–34 For Prob. 17–29 estimate the elongation of the rope if a 9000-lbf loaded mine cart is placed on
the cage. The results of Prob. 4–6 may be useful.

Computer Programs

In approaching the ensuing computer problems, the following suggestions may be helpful:

• Decide whether an analysis program or a design program would be more useful. In problems
as simple as these, you will find the programs similar. For maximum instructional benefit, try
the design problem.

• Creating a design program without a figure of merit precludes ranking alternative designs but
does not hinder the attainment of satisfactory designs. Your instructor can provide the class
design library with commercial catalogs, which not only have price information but define
available sizes.
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930 Mechanical Engineering Design

• Quantitative understanding and logic of interrelations are required for programming.
Difficulty in programming is a signal to you and your instructor to increase your understand-
ing. The following programs can be accomplished in 100 to 500 lines of code.

• Make programs interactive and user-friendly.

• Let the computer do what it can do best; the user should do what a human can do best.

• Assume the user has a copy of the text and can respond to prompts for information.

• If interpolating in a table is in order, solicit table entries in the neighborhood, and let the
computer crunch the numbers.

• In decision steps, allow the user to make the necessary decision, even if it is undesirable. This
allows learning of consequences and the use of the program for analysis.

• Display a lot of information in the summary. Show the decision set used up-front for user
perspective.

• When a summary is complete, adequacy assessment can be accomplished with ease, so
consider adding this feature.

17–35 Your experience with Probs. 17–1 through 17–11 has placed you in a position to write an
interactive computer program to design/select flat-belt drive components. A possible decision
set is

A Priori Decisions

• Function: Hnom , rev/min, velocity ratio, approximate C

• Design factor: nd

• Initial tension maintenance: catenary

• Belt material: t, dmin , allowable tension, density, f

• Drive geometry: d, D

• Belt thickness: t (in material decision)

Design Decisions

• Belt width: b

17–36 Problems 17–12 through 17–16 have given you some experience with flat metal friction belts,
indicating that a computer program could be helpful in the design/selection process. A possible
decision set is

A Priori Decisions

• Function: Hnom , rev/min, velocity ratio approximate C

• Design factor: nd

• Belt material: Sy , E, ν, dmin

• Drive geometry: d, D

• Belt thickness: t

Design Decisions

• Belt width: b

• Length of belt (often standard loop periphery)
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Flexible Mechanical Elements 931

17–37 Problems 17–17 through 17–22 have given you enough experience with V belts to convince you
that a computer program would be helpful in the design/selection of V-belt drive components.
Write such a program.

17–38 Experience with Probs. 17–23 through 17–28 can suggest an interactive computer program to
help in the design/selection process of roller-chain elements. A possible decision set is

A Priori Decisions

• Function: power, speed, space, Ks , life goal

• Design factor: nd

• Sprocket tooth counts: N1 , N2 , K1 , K2

Design Decisions

• Chain number

• Strand count

• Lubrication system

• Chain length in pitches

(center-to-center distance for reference)
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934 Mechanical Engineering Design

Transmission of power from a source, such as an engine or motor, through a machine to an
output actuation is one of the most common machine tasks. An efficient means of trans-
mitting power is through rotary motion of a shaft that is supported by bearings. Gears, belt
pulleys, or chain sprockets may be incorporated to provide for torque and speed changes
between shafts. Most shafts are cylindrical (solid or hollow), and include stepped diame-
ters with shoulders to accommodate the positioning and support of bearings, gears, etc.

The design of a system to transmit power requires attention to the design and selec-
tion of individual components (gears, bearings, shaft, etc.). However, as is often the case
in design, these components are not independent. For example, in order to design the
shaft for stress and deflection, it is necessary to know the applied forces. If the forces are
transmitted through gears, it is necessary to know the gear specifications in order to
determine the forces that will be transmitted to the shaft. But stock gears come with cer-
tain bore sizes, requiring knowledge of the necessary shaft diameter. It is no surprise that
the design process is interdependent and iterative, but where should a designer start?

The nature of machine design textbooks is to focus on each component separately. This
chapter will focus on an overview of a power transmission system design, demonstrating
how to incorporate the details of each component into an overall design process. A typical
two-stage gear reduction such as shown in Fig. 18–1 will be assumed for this discussion.
The design sequence is similar for variations of this particular transmission system.

The following outline will help clarify a logical design sequence. Discussion of
how each part of the outline affects the overall design process will be given in sequence
in this chapter. Details on the specifics for designing and selecting major components
are covered in separate chapters, particularly Chap. 7 on shaft design, Chap. 11 on bear-
ing selection, and Chaps. 13 and 14 on gear specification. A complete case study is pre-
sented as a specific vehicle to demonstrate the process.

3

2

5

4

Y

2

5

3 4

Figure 18–1

A compound reverted 
gear train.

CASE STUDY PART 1 
PROBLEM SPECIFICATION
Section 1–17, p. 24, presents the background for this case study involving a speed
reducer. A two-stage, compound reverted gear train such as shown in Fig. 18–1
will be designed. In this chapter, the design of the intermediate shaft and its
components is presented, taking into account the other shafts as necessary.
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Power Transmission Case Study 935

18–1 Design Sequence for Power Transmission
There is not a precise sequence of steps for any design process. By nature, design is an
iterative process in which it is necessary to make some tentative choices, and to build a
skeleton of a design, and to determine which parts of the design are critical. However,
much time can be saved by understanding the dependencies between the parts of the
problem, allowing the designer to know what parts will be affected by any given
change. In this section, only an outline is presented, with a short explanation of each
step. Further details will be discussed in the following sections.

• Power and torque requirements. Power considerations should be addressed first, as
this will determine the overall sizing needs for the entire system. Any necessary
speed or torque ratio from input to output must be determined before addressing
gear/pulley sizing.

• Gear specification. Necessary gear ratios and torque transmission issues can now be
addressed with selection of appropriate gears. Note that a full force analysis of the shafts
is not yet needed, as only the transmitted loads are required to specify the gears.

• Shaft layout. The general layout of the shaft, including axial location of gears and
bearings must now be specified. Decisions on how to transmit the torque from the
gears to the shaft need to be made (keys, splines, etc.), as well as how to hold gears
and bearings in place (retaining rings, press fits, nuts, etc.). However, it is not neces-
sary at this point to size these elements, since their standard sizes allow estimation of
stress-concentration factors.

• Force analysis. Once the gear/pulley diameters are known, and the axial locations of
the gears and bearings are known, the free-body, shear force, and bending moment
diagrams for the shafts can be produced. Forces at the bearings can be determined.

• Shaft material selection. Since fatigue design depends so heavily on the material
choice, it is usually easier to make a reasonable material selection first, then check
for satisfactory results.

• Shaft design for stress (fatigue and static). At this point, a stress design of the shaft
should look very similar to a typical design problem from the shaft chapter (Chap. 7).
Shear force and bending moment diagrams are known, critical locations can be pre-
dicted, approximate stress concentrations can be used, and estimates for shaft diame-
ters can be determined.

A subset of the pertinent design specifications that will be needed for this part
of the design are given here.

Power to be delivered: 20 hp
Input speed: 1750 rpm
Output speed: 82–88 rev/min
Usually low shock levels, occasional moderate shock
Input and output shafts extend 4 in outside gearbox
Maximum gearbox size: 14-in � 14-in base, 22-in height
Output shaft and input shaft in-line
Gear and bearing life � 12 000 hours; infinite shaft life
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936 Mechanical Engineering Design

• Shaft design for deflection. Since deflection analysis is dependent on the entire
shaft geometry, it is saved until this point. With all shaft geometry now estimated,
the critical deflections at the bearing and gear locations can be checked by analysis.

• Bearing selection. Specific bearings from a catalog may now be chosen to match the
estimated shaft diameters. The diameters can be adjusted slightly as necessary to
match the catalog specifications.

• Key and retaining ring selection. With shaft diameters settling in to stable values,
appropriate keys and retaining rings can be specified in standard sizes. This should
make little change in the overall design if reasonable stress-concentration factors
were assumed in previous steps.

• Final analysis. Once everything has been specified, iterated, and adjusted as neces-
sary for any specific part of the task, a complete analysis from start to finish will pro-
vide a final check and specific safety factors for the actual system.

18–2 Power and Torque Requirements
Power transmission systems will typically be specified by a power capacity, for example,
a 40-horsepower gearbox. This rating specifies the combination of torque and speed that
the unit can endure. Remember that, in the ideal case, power in equals power out, so that
we can refer to the power being the same throughout the system. In reality, there are small
losses due to factors like friction in the bearings and gears. In many transmission systems,
the losses in the rolling bearings will be negligible. Gears have a reasonably high
efficiency, with about 1 to 2 percent power loss in a pair of meshed gears. Thus, in the
double-reduction gearbox in Fig. 18–1, with two pairs of meshed gears the output power
is likely to be about 2 to 4 percent less than the input power. Since this is a small loss, it
is common to speak of simply the power of the system, rather than input power and output
power. Flat belts and timing belts have efficiencies typically in the mid to upper 90 percent
range. V belts and worm gears have efficiencies that may dip much lower, requiring a
distinction between the necessary input power to obtain a desired output power.

Torque, on the other hand, is typically not constant throughout a transmission
system. Remember that power equals the product of torque and speed. Since power in �
power out, we know that for a gear train

H = Tiωi = Toωo (18–1)

With a constant power, a gear ratio to decrease the angular velocity will simulta-
neously increase torque. The gear ratio, or train value, for the gear train is

e = ωo/ωi = Ti/To (18–2)

A typical power transmission design problem will specify the desired power capac-
ity, along with either the input and output angular velocities, or the input and output
torques. There will usually be a tolerance specified for the output values. After the spe-
cific gears are specified, the actual output values can be determined.

18–3 Gear Specification
With the gear train value known, the next step is to determine appropriate gears. As a
rough guideline, a train value of up to 10 to 1 can be obtained with one pair of gears.
Greater ratios can be obtained by compounding additional pairs of gears (See 
Sec. 13–13, p. 698). The compound reverted gear train in Fig. 18–1 can obtain a train
value of up to 100 to 1.
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Power Transmission Case Study 937

Since numbers of teeth on gears must be integers, it is best to design with teeth num-
bers rather than diameters. See Ex. 13–3, 13–4, and 13–5, pp. 700–702, for details on
designing appropriate numbers of teeth to satisfy the gear train value and any necessary
geometry condition, such as in-line condition of input and output shaft. Care should be
taken at this point to find the best combination of teeth numbers to minimize the overall
package size. If the train value only needs to be approximate, use this flexibility to try dif-
ferent options of teeth numbers to minimize the package size. A difference of one tooth
on the smallest gear can result in a significant increase in size of the overall package.

If designing for large production quantities, gears can be purchased in large enough
quantities that it is not necessary to worry about preferred sizes. For small lot production,
consideration should be given to the tradeoffs between smaller gearbox size and extra cost
for odd gear sizes that are difficult to purchase off the shelf. If stock gears are to be used,
their availability in prescribed numbers of teeth with anticipated diametral pitch should be
checked at this time. If necessary, iterate the design for numbers of teeth that are available.

CASE STUDY PART 2 
SPEED, TORQUE, AND GEAR RATIOS
Continue the case study by determining appropriate tooth counts to reduce the
input speed of ωi = 1750 rev/min to an output speed within the range

82 rev/min � ωo � 88 rev/min

Once final tooth counts are specified, determine values of
(a) Speeds for the intermediate and output shafts
(b) Torques for the input, intermediate and output shafts, to transmit 20 hp.

Solution
Use the notation for gear numbers from Fig. 18–1. Choose mean value for initial
design, ω5 = 85 rev/min.

e = ω5

ω2
= 85

1750
= 1

20.59
Eq. (18–2)

For a compound reverted geartrain,

e = 1

20.59
= N2

N3

N4

N5
Eq. (13–30), p. 699

For smallest package size, let both stages be the same reduction. Also, by making
the two stages identical, the in-line condition on the input and output shaft will
automatically be satisfied.

N2

N3
= N4

N5
=

√
1

20.59
= 1

4.54

For this ratio, the minimum number of teeth from Eq. (13–11), p. 686, is 16.

N2 = N4 = 16 teeth

N3 = 4.54(N2) = 72.64
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Try rounding down and check if ω5 is within limits.

ω5 =
(

16

72

)(
16

72

)
(1750) = 86.42 rev/min Acceptable

Proceed with

N2 = N4 = 16 teeth

N3 = N5 = 72 teeth

e =
(

16

72

)(
16

72

)
= 1

20.25

ω5 = 86.42 rev/min

ω3 = ω4 =
(

16

72

)
(1750) = 388.9 rev/ min

To determine the torques, return to the power relationship,

H = T2ω2 = T5ω5 Eq. (18–1)

T2 = H/ω2 =
(

20 hp

1750 rev/min

)(
550

ft-lbf/s

hp

)(
1 rev

2π rad

)(
60

s

min

)
T2 = 60.0 lbf · ft

T3 = T2
ω2

ω3
= 60.0

1750

388.9
= 270 lbf · ft

T5 = T2
ω2

ω5
= 60.0

1750

86.42
= 1215 lbf · ft

If a maximum size for the gearbox has been specified in the problem specification,
a minimum diametral pitch (maximum tooth size) can be estimated at this point by writ-
ing an expression for gearbox size in terms of gear diameters, and converting to num-
bers of teeth through the diametral pitch. For example, from Fig. 18–1, the overall
height of the gearbox is

Y = d3 + d2/2 + d5/2 + 2/P + clearances + wall thicknesses

where the 2/P term accounts for the addendum height of the teeth on gears 2 and 5 that
extend beyond the pitch diameters. Substituting di = Ni/P gives

Y = N3/P + N2/(2P) + N5/(2P) + 2/P + clearances + wall thicknesses

Solving this for P, we find

P = (N3 + N2/2 + N5/2 + 2)/(Y − clearances − wall thicknesses) (18–3)
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This is the minimum value that can be used for diametral pitch, and therefore the max-
imum tooth size, to stay within the overall gearbox constraint. It should be rounded up
to the next standard diametral pitch, which reduces the maximum tooth size.

The AGMA approach, as described in Chap. 14, for both bending and contact stress
should be applied next to determine suitable gear parameters. The primary design
parameters to be specified by the designer include material, diametral pitch, and face
width. A recommended procedure is to start with an estimated diametral pitch. This
allows determination of gear diameters (d = N/P), pitch-line velocities [Eq. (13–34), 
p. 707], and transmitted loads [Eq. (13–35) or (13–36), p. 707]. Typical spur gears are
available with face widths from 3 to 5 times the circular pitch p. Using an average of 4,
a first estimate can be made for face width F = 4p = 4π/P . Alternatively, the designer
can simply perform a quick search of on-line gear catalogs to find available face widths
for the diametral pitch and number of teeth.

Next, the AGMA equations in Chap. 14 can be used to determine appropriate mate-
rial choices to provide desired safety factors. It is generally most efficient to attempt to
analyze the most critical gear first, as it will determine the limiting values of diametral
pitch and material strength. Usually, the critical gear will be the smaller gear, on the
high-torque (low-speed) end of the gearbox.

If the required material strengths are too high, such that they are either too expensive
or not available, iteration with a smaller diametral pitch (larger tooth) will help. Of course,
this will increase the overall gearbox size. Often the excessive stress will be in one of the
small gears. Rather than increase the tooth size for all gears, it is sometimes better to
reconsider the design of tooth counts, shifting more of the gear ratio to the pair of gears
with less stress, and less ratio to the pair of gears with the excessive stress. This will allow
the offending gear to have more teeth and therefore larger diameter, decreasing its stress.

If contact stress turns out to be more limiting than bending stress, consider gear
materials that have been heat treated or case hardened to increase the surface strength.
Adjustments can be made to the diametral pitch if necessary to achieve a good balance of
size, material, and cost. If the stresses are all much lower than the material strengths, a
larger diametral pitch is in order, which will reduce the size of the gears and the gearbox.

Everything up to this point should be iterated until acceptable results are obtained,
as this portion of the design process can usually be accomplished independently from
the next stages of the process. The designer should be satisfied with the gear selection
before proceeding to the shaft. Selection of specific gears from catalogs at this point
will be helpful in later stages, particularly in knowing overall width, bore size, recom-
mended shoulder support, and maximum fillet radius.

CASE STUDY PART 3 
GEAR SPECIFICATION
Continue the case study by specifying appropriate gears, including pitch diameter,
diametral pitch, face width, and material. Achieve safety factors of at least 1.2
for wear and bending.

Solution
Estimate the minimum diametral pitch for overall gearbox height � 22 in.
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From Eq. (18–3) and Fig. 18–1,

Pmin =

(
N3 + N2

2
+ N5

2
+ 2

)
(Y − clearances − wall thickness)

Allow 1.5 in for clearances and wall thicknesses:

Pmin =

(
72 + 16

2
+ 72

2
+ 2

)
(22 − 1.5)

= 5.76 teeth/in

Start with P = 6 teeth/in

d2 = d4 = N2/P = 16/6 = 2.67 in

d3 = d5 = 72/6 = 12.0 in

Shaft speeds were previously determined to be

ω2 = 1750 rev/min ω3 = ω4 = 388.9 rev/min ω5 = 86.4 rev/min

Get pitch-line velocities and transmitted loads for later use.

V23 = πd2ω2

12
= π(2.67)(1750)

12
= 1223 ft/ min Eq. (13–34), p. 707

V45 = πd5ω5

12
= 271.5 ft/ min

W t
23 = 33 000

H

V23
= 33 000

(
20

1223

)
= 540.0 lbf Eq. (13–35), p. 707

W t
45 = 33 000

H

V45
= 2431 lbf

Start with gear 4, since it is the smallest gear, transmitting the largest load.
It will likely be critical. Start with wear by contact stress, since it is often the
limiting factor.

Gear 4 Wear

I = cos 20◦sin20◦

2(1)

(
4.5

4.5 + 1

)
= 0.1315 Eq. (14–23), p. 755

For Kv, assume Qv = 7. B = 0.731, A = 65.1 Eq. (14–29), p. 756

Kv =
(

65.1 + √
271.5

65.1

)0.731

= 1.18 Eq. (14–27), p. 756

Face width F is typically from 3 to 5 times circular pitch. Try

F = 4
( π

P

)
= 4

(π

6

)
= 2.09 in .

Since gear specifications are readily available on the Internet, we might as well
check for commonly available face widths. On www.globalspec.com, entering P = 6
teeth/in and d = 2.67 in, stock spur gears from several sources have face widths
of 1.5 in or 2.0 in. These are also available for the meshing gear 5 with d = 12 in.

Choose F = 2.0 in.

For Km , Cp f = 0.0624 Eq. (14–32), p. 760
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Power Transmission Case Study 941

Cmc = 1 uncrowned teeth Eq. (14–31), p. 760

Cpm = 1 straddle-mounted Eq. (14–33), p. 760

Cma = 0.15 commercial enclosed unit Eq. (14–34), p. 760

Ce = 1 Eq. (14–35), p. 760

Km = 1.21 Eq. (14–30), p. 759

Cp = 2300+ Table 14–8, p. 757

Ko = Ks = Cf = 1

σc = 2300

√
2431(1.18)(1.21)

2.67(2)(0.1315)
= 161 700 psi Eq. (14–16), p. 746

Get factors for σc.all. For life factor Z N , get number of cycles for specified life
of 12 000 h.

L4 = (12 000 h)

(
60

min

h

)(
389

rev

min

)
= 2.8 × 108 rev

Z N = 0.9 Fig. 14–15, p. 763

K R = KT = CH = 1

For a design factor of 1.2,

σc.all = Sc Z N /SH = σc Eq. (14–18), p. 750

Sc = SH σc

Z N
= 1.2(161 700)

0.9
= 215 600 psi

From Table 14–6, p. 751, this strength is achievable with Grade 2 carburized 
and hardened with Sc = 225 000 psi. To find the achieved factor of safety,
nc = σc,all/σc with SH = 1. The factor of safety for wear of gear 4 is

nc = σc,all

σc
= Sc Z N

σc
= 225 000(0.9)

161 700
= 1.25

Gear 4 Bending

J = 0.27 Fig. 14–6, p. 753

K B = 1

Everything else is the same as before.

σ = Wt Kv

Pd

F

Km

J
= (2431)(1.18)

(
6

2

)(
1.21

0.27

)
Eq. (14–15), p. 746

σ = 38 570 psi

YN = 0.9 Fig. 14–14, p. 763
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942 Mechanical Engineering Design

Using Grade 2 carburized and hardened, same as chosen for wear, find St =
65 000 psi (Table 14–3, p. 748).

σall = St YN = 58 500 psi

The factor of safety for bending of gear 4 is

n = σall

σ
= 58 500

38 570
= 1.52

Gear 5 Bending and Wear
Everything is the same as for gear 4, except J, YN , and Z N .

J = 0.41 Fig. 14–6, p. 753

L5 = (12 000h)(60 min/h)(86.4 rev/min) = 6.2 × 107 rev

YN = 0.97 Fig. 14–14, p. 763

Z N = 1.0 Fig. 14–15, p. 763

σc = 2300

√
2431(1.18)(1.21)

2.67(2)(0.1315)
= 161 700 psi

σ = (2431)(1.18)

(
6

2

)(
1.21

0.41

)
= 25 400 psi

Choose Grade 2 carburized and hardened, the same as gear 4 

nc = σc.all

σc
= 225 000

161 700
= 1.39

n = σall

σ
= 65 000(0.97)

25 400
= 2.48

Gear 2 Wear
Gears 2 and 3 are evaluated similarly. Only selected results are shown.

Kν = 1.37

Try F = 1.5 in, since the loading is less on gears 2 and 3.

Km = 1.19

All other factors are the same as those for gear 4.

σc = 2300

√
(539.7)(1.37)(1.19)

2.67(1.5)(0.1315)
= 94 000 psi

L2 = (12 000 h)(60 min/h)(1750 rev/min) = 1.26 × 109 rev Z N = 0.8

Try grade 1 flame-hardened, Sc = 170 000 psi

nc = σc.all

σc
= 170 000(0.8)

94 000
= 1.40

Gear 2 Bending

J = 0.27 YN = 0.88

σ = 539.7(1.37)
(6)(1.19)

(1.5)(0.27)
= 13 040 psi
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n = σall

σ
= 45 000(0.88)

13 040
= 3.04

Gear 3 Wear and Bending

J = 0.41 YN = 0.9 Z N = 0.9

σc = 2300

√
(539.7)(1.37)(1.19)

2.67(1.5)(0.1315)
= 94 000 psi

σ = 539.7(1.37)
(6)(1.19)

1.5(0.41)
= 8584 psi

Try Grade 1 steel, through-hardened to 300 HB . From Fig. 14–2, p. 747, 
St = 36 000 psi and from Fig. 14–5, p. 750, Sc = 126 000 psi.

nc = 126 000(0.9)

94 000
= 1.21

n = σall

σ
= 36 000(0.9)

8584
= 3.77

In summary, the resulting gear specifications are:

All gears, P = 6 teeth/in

Gear 2, Grade 1 flame-hardened, Sc = 170 000 psi and St = 45 000 psi
d2 = 2.67 in, face width = 1.5 in

Gear 3, Grade 1 through-hardened to 300 HB, Sc = 126 000 psi and St = 36 000 psi
d3 = 12.0 in, face width = 1.5 in

Gear 4, Grade 2 carburized and hardened, Sc = 225 000 psi and St = 65 000 psi
d4 = 2.67 in, face width = 2.0 in

Gear 5, Grade 2 carburized and  hardened, Sc = 225 000 psi and St = 65 000 psi
d5 = 12.0 in, face width = 2.0 in

18–4 Shaft Layout
The general layout of the shafts, including axial location of gears and bearings, must now
be specified in order to perform a free-body force analysis and to obtain shear force and
bending moment diagrams. If there is no existing design to use as a starter, then the deter-
mination of the shaft layout may have many solutions. Section 7–3, p. 361, discusses the
issues involved in shaft layout. In this section the focus will be on how the decisions relate
to the overall process.

A free-body force analysis can be performed without knowing shaft diameters, but
can not be performed without knowing axial distances between gears and bearings. It is
extremely important to keep axial distances small. Even small forces can create large
bending moments if the moment arms are large. Also, recall that beam deflection equa-
tions typically include length terms raised to the third power.

It is worth examining the entirety of the gearbox at this time, to determine what
factors drive the length of the shaft and the placement of the components. A rough
sketch, such as shown in Fig. 18–2, is sufficient for this purpose.
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944 Mechanical Engineering Design

CASE STUDY PART 4
SHAFT LAYOUT
Continue the case study by preparing a sketch of the gearbox sufficient to
determine the axial dimensions. In particular, estimate the overall length, and the
distance between the gears of the intermediate shaft, in order to fit with the
mounting requirements of the other shafts.

Solution
Fig. 18–2 shows the rough sketch. It includes all three shafts, with consideration
of how the bearings are to mount in the case. The gear widths are known at this
point. Bearing widths are guessed, allowing a little more space for larger bearings
on the intermediate shaft where bending moments will be greater. Small changes
in bearing widths will have minimal effect on the force analysis, since the location
of the ground reaction force will change very little. The 4-in distance between
the two gears on the countershaft is dictated by the requirements of the input
and output shafts, including the space for the case to mount the bearings. Small
allotments are given for the retaining rings, and for space behind the bearings.
Adding it all up gives the intermediate shaft length as 11.5 in.

Figure 18–2

Sketch for shaft layout. Dimensions are in inches.
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Power Transmission Case Study 945

Wider face widths on gears require more shaft length. Originally, gears with hubs
were considered for this design to allow the use of set screws instead of high-stress-
concentration retaining rings. However, the extra hub lengths added several inches to
the shaft lengths and the gearbox housing.

Several points are worth noting in the layout in Fig. 18–2. The gears and bearings
are positioned against shoulders, with retaining rings to hold them in position. While it
is desirable to place gears near the bearings, a little extra space is provided between
them to accommodate any housing that extends behind the bearing, and to allow for a
bearing puller to have space to access the back of the bearing. The extra change in
diameter between the bearings and the gears allows the shoulder height for the bearing
and the bore size for the gear to be different. This diameter can have loose tolerances
and large fillet radius.

Each bearing is restrained axially on its shaft, but only one bearing on each shaft
is axially fixed in the housing, allowing for slight axial thermal expansion of the
shafts.

18–5 Force Analysis
Once the gear diameters are known, and the axial locations of the components are
set, the free-body diagrams and shear force and bending moment diagrams for the
shafts can be produced. With the known transmitted loads, determine the radial and
axial loads transmitted through the gears (see Secs. 13–14 through 13–17, pp. 705–714).
From summation of forces and moments on each shaft, ground reaction forces at the
bearings can be determined. For shafts with gears and pulleys, the forces and moments
will usually have components in two planes along the shaft. For rotating shafts, usu-
ally only the resultant magnitude is needed, so force components at bearings are
summed as vectors. Shear force and bending moment diagrams are usually obtained
in two planes, then summed as vectors at any point of interest. A torque diagram
should also be generated to clearly visualize the transfer of torque from an input
component, through the shaft, and to an output component.

See the beginning of Ex. 7–2, p. 374, for the force analysis portion of the case study
for the intermediate shaft. The bending moment is largest at gear 4. This is predictable,
since gear 4 is smaller, and must transmit the same torque that entered the shaft through
the much larger gear 3.

While the force analysis is not difficult to perform manually, if beam software is to
be used for the deflection analysis, it will necessarily calculate reaction forces, along
with shear force and bending moment diagrams in the process of calculating deflec-
tions. The designer can enter guessed values for diameters into the software at this
point, just to get the force information, and later enter actual diameters to the same
model to determine deflections.

18–6 Shaft Material Selection
A trial material for the shaft can be selected at any point before the stress design of the
shaft, and can be modified as necessary during the stress design process. Section 7–2,
p. 360, provides details for decisions regarding material selection. For the case study,
an inexpensive steel, 1020 CD, is initially selected. After the stress analysis, a slightly
higher strength 1050 CD is chosen to reduce the critical stresses without further
increasing the shaft diameters.
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946 Mechanical Engineering Design

18–7 Shaft Design for Stress
The critical shaft diameters are to be determined by stress analysis at critical locations.
Section 7–4, p. 366, provides a detailed examination of the issues involved in shaft
design for stress.

CASE STUDY PART 5 
DESIGN FOR STRESS
Proceed with the next phase of the case study design, in which appropriate diam-
eters for each section of the shaft are estimated, based on providing sufficient
fatigue and static stress capacity for infinite life of the shaft, with minimum
safety factor of 1.5.

Solution
The solution to this phase of the design is presented in Ex. 7–2, p. 374.

Since the bending moment is highest at gear 4, potentially critical stress points are
at its shoulder, keyway, and retaining ring groove. It turns out that the keyway is the
critical location. It seems that shoulders often get the most attention. This example
demonstrates the danger of neglecting other stress concentration sources, such as
keyways.

The material choice was changed in the course of this phase, choosing to pay for a
higher strength to limit the shaft diameter to 2 in. If the shaft were to get much bigger,
the small gear would not be able to provide an adequate bore size. If it becomes neces-
sary to increase the shaft diameter any more, the gearing specification will need to be
redesigned.

18–8 Shaft Design for Deflection
Section 7–5, p. 379, provides a detailed discussion of deflection considerations for shafts.
Typically, a deflection problem in a shaft will not cause catastrophic failure of the shaft,
but will lead to excess noise and vibration, and premature failure of the gears or bearings.

CASE STUDY PART 6 
DEFLECTION CHECK
Proceed with the next phase of the case study by checking that deflections and
slopes at the gears and bearings on the intermediate shaft are within acceptable
ranges.

Solution
The solution to this phase of the design is presented in Ex. 7–3, p. 380.
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Power Transmission Case Study 947

It turns out that in this problem all the deflections are within recommended limits
for bearings and gears. This is not always the case, and it would be a poor choice to neg-
lect the deflection analysis. In a first iteration of this case study, with longer shafts due
to using gears with hubs, the deflections were more critical than the stresses.

18–9 Bearing Selection
Bearing selection is straightforward now that the bearing reaction forces and the
approximate bore diameters are known. See Chap. 11 for general details on bearing
selection. Rolling-contact bearings are available with a wide range of load capacities
and dimensions, so it is usually not a problem to find a suitable bearing that is close to
the estimated bore diameter and width.

CASE STUDY PART 7 
BEARING SELECTION
Continue the case study by selecting appropriate bearings for the intermediate
shaft, with a reliability of 99 percent. The problem specifies a design life of 
12 000 h. The intermediate shaft speed is 389 rev/min. The estimated bore size 
is 1 in, and the estimated bearing width is 1 in.

Solution
From the free-body diagram (see Ex. 7–2, p. 374),

RAz = 115.0 lbf RAy = 356.7 lbf RA = 375 lbf

RBz = 1776.0 lbf RBy = 725.3 lbf RB = 1918 lbf

At the shaft speed of 389 rev/min, the design life of 12 000 h correlates to a
bearing life of L D = (12 000 h)(60 min/h)(389 rev/min) = 2.8 × 108 rev.

Start with bearing B since it has the higher loads and will likely raise any 
lurking problems. From Eq. (11–7), p. 578, assuming a ball bearing with a = 3
and L = 2.8 × 106 rev,

FRB = 1918

[
2.8 × 108/106

0.02 + 4.439(1 − 0.99)1/1.483

]1/3

= 20 820 lbf

A check on the Internet for available bearings (www.globalspec.com is one good
starting place) shows that this load is relatively high for a ball bearing with bore
size in the neighborhood of 1 in. Try a cylindrical roller bearing. Recalculating FRB

with the exponent a = 3/10 for roller bearings, we obtain

FRB = 16 400 lbf

Cylindrical roller bearings are available from several sources in this range. A spe-
cific one is chosen from SKF, a common supplier of bearings, with the following
specifications:

Cylindrical roller bearing at right end of shaft

C = 18 658 lbf, ID = 1.181 1 in, OD = 2.834 6 in, W = 1.063 in

Shoulder diameter = 1.45 in to 1.53 in, and maximum fillet radius = 0.043 in
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For bearing A, again assuming a ball bearing,

FR A = 375

[
2.8 × 108/106

0.02 + 4.439(1 − 0.99)1/1.483

]1/3

= 407 lbf

A specific ball bearing is chosen from the SKF Internet catalog.

Deep-groove ball bearing at left end of shaft

C = 5058 lbf, ID = 1.000 in, OD = 2.500 in, W = 0.75 in

Shoulder diameter = 1.3 in to 1.4 in, and maximum fillet radius = 0.08 in

948 Mechanical Engineering Design

CASE STUDY PART 8
KEY DESIGN  
Continue the case study by specifying appropriate keys for the two gears on the
intermediate shaft to provide a factor of safety of 2. The gears are to be
custom bored and keyed to the required specifications. Previously obtained
information includes the following:

Transmitted torque: T = 3240 lbf-in

Bore diameters: d3 = d4 = 1.625 in

Gear hub lengths: l3 = 1.5 in, l4 = 2.0 in

At this point, the actual bearing dimensions can be checked against the initial
assumptions. For bearing B the bore diameter of 1.1811 in is slightly larger than the
original 1.0 in. There is no reason for this to be a problem as long as there is room for
the shoulder diameter. The original estimate for shoulder support diameters was 1.4 in.
As long as this diameter is less than 1.625 in, the next step of the shaft, there should not
be any problem. In the case study, the recommended shoulder support diameters are
within the acceptable range. The original estimates for stress concentration at the bear-
ing shoulder assumed a fillet radius such that r/d = 0.02. The actual bearings selected
have ratios of 0.036 and 0.080. This allows the fillet radii to be increased from the orig-
inal design, decreasing the stress-concentration factors.

The bearing widths are close to the original estimates. Slight adjustments should be
made to the shaft dimensions to match the bearings. No redesign should be necessary.

18–10 Key and Retaining Ring Selection
The sizing and selection of keys is discussed in Sec. 7–7, p. 388, with an example in 
Ex. 7–6, p. 394. The cross-sectional size of the key will be dictated to correlate with the
shaft size (see Tables 7–6 and 7–8, pp. 391, 393), and must certainly match an integral
keyway in the gear bore. The design decision includes the length of the key, and if nec-
essary an upgrade in material choice.

The key could fail by shearing across the key, or by crushing due to bearing stress. For
a square key, it turns out that checking only the crushing failure is adequate, since the shear-
ing failure will be less critical according to the distortion energy failure theory, and equal
according to the maximum shear stress failure theory. Check Ex. 7–6 to investigate why.
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Retaining ring selection is simply a matter of checking catalog specifications. The
retaining rings are listed for nominal shaft diameter, and are available with different
axial load capacities. Once selected, the designer should make note of the depth of the
groove, the width of the groove, and the fillet radius in the bottom of the groove. The
catalog specification for the retaining ring also includes an edge margin, which is the min-
imum distance to the next smaller diameter change. This is to ensure support for the axial
load carried by the ring. It is important to check stress-concentration factors with actual
dimensions, as these factors can be rather large. In the case study, a specific retaining
ring was already chosen during the stress analysis (see Ex. 7–2, p. 374) at the potentially
critical location of gear 4. The other locations for retaining rings were not at points of
high stress, so it is not necessary to worry about the stress concentration due to the
retaining rings in these locations. Specific retaining rings should be selected at this time
to complete the dimensional specifications of the shaft.

For the case study, retaining rings specifications are entered into globalspec, and
specific rings are selected from Truarc Co., with the following specifications:

Solution
From Table 7–6, p. 391, for a shaft diameter of 1.625 in, choose a square key
with side dimension t = 3

8 in. Choose 1020 CD material, with Sy = 57 kpsi. The
force on the key at the surface of the shaft is

F = T

r
= 3240

1.625/2
= 3988 lbf

Checking for failure by crushing, we find the area of one-half the face of the key
is used.

n = Sy

σ
= Sy

F/(tl/2)

Solving for l gives

l = 2Fn

t Sy
= 2(3988)(2)

(0.375)(57000)
= 0.75 in

Since both gears have the same bore diameter and transmit the same 
torque, the same key specification can be used for both.

Both Gears Left Bearing Right Bearing

Nominal Shaft diameter 1.625 in 1.000 in 1.181 in

Groove diameter 1.529 ± 0.005 in 0.940 ± 0.004 in 1.118 ± 0.004 in

Groove width in in in

Nominal groove depth 0.048 in 0.030 in 0.035 in

Max groove fillet radius 0.010 in 0.010 in 0.010 in

Minimum edge margin 0.144 in 0.105 in 0.105 in

Allowable axial thrust 11 850 lbf 6000 lbf 7000 lbf

These are within the estimates used for the initial shaft layout, and should not require
any redesign. The final shaft should be updated with these dimensions.

0.068
+0.004
−0.000

0.046
+0.004
−0.000

0.046
+0.004
−0.000 
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Power Transmission Case Study 951

18–11 Final Analysis
At this point in the design, everything seems to check out. Final details include deter-
mining dimensions and tolerances for appropriate fits with the gears and bearings. See
Section 7–8, p. 395, for details on obtaining specific fits. Any small changes from the
nominal diameters already specified will have negligible effect on the stress and deflec-
tion analysis. However, for manufacturing and assembly purposes, the designer should
not overlook the tolerance specification. Improper fits can lead to failure of the design.
The final drawing for the intermediate shaft is shown in Fig. 18–3.

For documentation purposes, and for a check on the design work, the design
process should conclude with a complete analysis of the final design. Remember that
analysis is much more straightforward than design, so the investment of time for the
final analysis will be relatively small.

PROBLEMS
18–1 For the case study problem, design the input shaft, including complete specification of the gear,

bearings, key, retaining rings, and shaft.

18–2 For the case study problem, design the output shaft, including complete specification of the gear,
bearings, key, retaining rings, and shaft.

18–3 For the case study problem, use helical gears and design the intermediate shaft. Compare your
results with the spur gear design presented in this chapter.

18–4 Perform a final analysis for the resulting design of the intermediate shaft of the case study prob-
lem presented in this chapter. Produce a final drawing with dimensions and tolerances for the
shaft. Does the final design satisfy all the requirements? Identify the critical aspects of the design
with the lowest factor of safety.

18–5 For the case study problem, change the power requirement to 40 horsepower. Design the inter-
mediate shaft, including complete specification of the gears, bearings, keys, retaining rings, and
shaft.
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954 Mechanical Engineering Design

Mechanical components in the form of simple bars, beams, etc., can be analyzed quite
easily by basic methods of mechanics that provide closed-form solutions. Actual com-
ponents, however, are rarely so simple, and the designer is forced to less effective
approximations of closed-form solutions, experimentation, or numerical methods.
There are a great many numerical techniques used in engineering applications for which
the digital computer is very useful. In mechanical design, where computer-aided design
(CAD) software is heavily employed, the analysis method that integrates well with
CAD is finite-element analysis (FEA). The mathematical theory and applications of the
method are vast. There is also a number of commercial FEA software packages that are
available, such as ANSYS, NASTRAN, Algor, etc.

The purpose of this chapter is only to expose the reader to some of the fundamen-
tal aspects of FEA, and therefore the coverage is extremely introductory in nature. For
further detail, the reader is urged to consult the many references cited at the end of
this chapter. Figure 19–1 shows a finite-element model of a connecting rod that was
developed to study the effects of dynamic elastohydrodynamic lubrication on bearing
and structural performance.1

There are a multitude of FEA applications such as static and dynamic, linear and
nonlinear, stress and deflection analysis; free and forced vibrations; heat transfer (which
can be combined with stress and deflection analysis to provide thermally induced
stresses and deflections); elastic instability (buckling); acoustics; electrostatics and

1S. Boedo, “Elastohydrodynamic Lubrication of Conformal Bearing Systems,” Proceedings of 2002 ANSYS
Users Conference, Pittsburgh, PA, April 22–24, 2002.

(a)

XX

ZZ

YY

(b)

XX

ZZ

YY

Figure 19–1

Model of a connecting rod
using ANSYS finite-element
software. (a) Meshed model;
(b) stress contours. Courtesy
of S. Boedo (see footnote 1).
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Finite-Element Analysis 955

magnetics (which can be combined with heat transfer); fluid dynamics; piping analysis;
and multiphysics. For purposes of this chapter, we will limit ourselves to basic mechan-
ics analyses.

An actual mechanical component is a continuous elastic structure (continuum).
FEA divides (discretizes) the structure into small but finite, well-defined, elastic sub-
structures (elements). By using polynomial functions, together with matrix operations,
the continuous elastic behavior of each element is developed in terms of the element’s
material and geometric properties. Loads can be applied within the element (gravity,
dynamic, thermal, etc.), on the surface of the element, or at the nodes of the element. The
element’s nodes are the fundamental governing entities of the element, as it is the node
where the element connects to other elements, where elastic properties of the element are
eventually established, where boundary conditions are assigned, and where forces (con-
tact or body) are ultimately applied. A node possesses degrees of freedom (dof’s). Degrees
of freedom are the independent translational and rotational motions that can exist at a
node. At most, a node can possess three translational and three rotational degrees of free-
dom. Once each element within a structure is defined locally in matrix form, the ele-
ments are then globally assembled (attached) through their common nodes (dof’s) into
an overall system matrix. Applied loads and boundary conditions are then specified and
through matrix operations the values of all unknown displacement degrees of freedom
are determined. Once this is done, it is a simple matter to use these displacements to
determine strains and stresses through the constitutive equations of elasticity.

19–1 The Finite-Element Method
The modern development of the finite-element method began in the 1940s in the field
of structural mechanics with the work of Hrennikoff,2 McHenry,3 and Newmark,4 who
used a lattice of line elements (rods and beams) for the solution of stresses in con-
tinuous solids. In 1943, from a 1941 lecture, Courant5 suggested piecewise polynomial
interpolation over triangular subregions as a method to model torsional problems. With
the advent of digital computers in the 1950s it became practical for engineers to write
and solve the stiffness equations in matrix form.6,7,8 A classic paper by Turner, Clough,
Martin, and Topp published in 1956 presented the matrix stiffness equations for the

2A. Hrennikoff, “Solution of Problems in Elasticity by the Frame Work Method,” Journal of Applied
Mechanics, Vol. 8, No. 4, pp. 169–175, December 1941.
3D. McHenry, “A Lattice Analogy for the Solution of Plane Stress Problems,” Journal of Institution of Civil
Engineers, Vol. 21, pp. 59–82, December 1943.
4N. M. Newmark, “Numerical Methods of Analysis in Bars, Plates, and Elastic Bodies,” Numerical Methods
in Analysis in Engineering (ed. L. E. Grinter), Macmillan, 1949.
5R. Courant, “Variational Methods for the Solution of Problems of Equilibrium and Vibrations,” Bulletin of
the American Mathematical Society, Vol. 49, pp. 1–23, 1943.
6S. Levy, “Structural Analysis and Influence Coefficients for Delta Wings,” Journal of Aeronautical
Sciences, Vol. 20, No. 7, pp. 449–454, July 1953.
7J. H. Argyris, “Energy Theorems and Structural Analysis,” Aircraft Engineering, October, November,
December 1954 and February, March, April, May 1955.
8J. H. Argyris and S. Kelsey, Energy Theorems and Structural Analysis, Butterworths, London, 1960
(reprinted from Aircraft Engineering, 1954–55).
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truss, beam, and other elements.9 The expression finite element is first attributed to
Clough.10 Since these early beginnings, a great deal of effort has been expended in
the development of the finite element method in the areas of element formulations
and computer implementation of the entire solution process. The major advances in
computer technology include the rapidly expanding computer hardware capabilities,
efficient and accurate matrix solver routines, and computer graphics for ease in the visual
preprocessing stages of model building, including automatic adaptive mesh generation,
and in the postprocessing stages of reviewing the solution results. A great abundance
of literature has been presented on the subject, including many textbooks. A partial
list of some textbooks, introductory and more comprehensive, is given at the end of
this chapter.

Since the finite-element method is a numerical technique that discretizes the
domain of a continuous structure, errors are inevitable. These errors are:

1 Computational errors. These are due to round-off errors from the computer
floating-point calculations and the formulations of the numerical integration
schemes that are employed. Most commercial finite-element codes concentrate on
reducing these errors, and consequently the analyst generally is concerned with
discretization factors.

2 Discretization errors. The geometry and the displacement distribution of a true
structure continuously vary. Using a finite number of elements to model the struc-
ture introduces errors in matching geometry and the displacement distribution
due to the inherent mathematical limitations of the elements.

For an example of discretization errors, consider the constant thickness, thin
plate structure shown in Fig. 19–2a. Figure 19–2b shows a finite-element model

(a)
(b)

Figure 19–2

Structural problem. (a) Idealized model; (b) finite-element model.

9M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and Deflection Analysis of Complex
Structures,” Journal of Aeronautical Sciences, Vol. 23, No. 9, pp. 805–824, September 1956.
10R. W. Clough, “The Finite Element Method in Plane Stress Analysis,” Proceedings of the Second Conference
on Electronic Computation, American Society of Civil Engineers, Pittsburgh, PA, pp. 345–378, September 1960.
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of the structure where three-node, plane stress, simplex triangular elements are employed.
This element type has a flaw that creates two basic problems. The element has
straight sides that remain straight after deformation. The strains throughout the plane
stress triangular element are constant. The first problem, a geometric one, is the mod-
eling of curved edges. Note that the surface of the model with a large curvature
appears poorly modeled, whereas the surface of the hole seems to be reasonably
modeled. The second problem, which is much more severe, is that the strains in
various regions of the actual structure are changing rapidly, and the constant strain
element will provide only an approximation of the average strain at the center of the
element. So, in a nutshell, the results predicted by this model will be extremely poor.
The results can be improved by significantly increasing the number of elements
(increased mesh density). Alternatively, using a better element, such as an eight-
node quadrilateral, which is more suited to the application, will provide the improved
results. Because of higher-order interpolation functions, the eight-node quadrilateral
element can model curved edges and provide for a higher-order function for the
strain distribution.

In Fig. 19–2b, the triangular elements are shaded and the nodes of the elements are
represented by the black dots. Forces and constraints can be placed only at the nodes.
The nodes of a simplex triangular plane stress elements have only two degrees of free-
dom, translation in the plane. Thus, the solid black, simple support triangles on the left
edge represent the fixed support of the model. Also, the distributed load can be applied
only to three nodes as shown. The modeled load has to be statically consistent with the
actual load.

19–2 Element Geometries
Many geometric shapes of elements are used in finite-element analysis for specific
applications. The various elements used in a general-purpose commercial FEM soft-
ware code constitute what is referred to as the element library of the code. Elements
can be placed in the following categories: line elements, surface elements, solid ele-
ments, and special-purpose elements. Table 19–1 provides some, but not all, of the

Table 19–1

Sample Finite-Element Library

Element Number
Type None Shape of Nodes Applications

Line

Truss

Beam

Frame

2

2

2

Pin-ended bar in tension or
compression

Bending

Axial, torsional, and bending.
With or without load stiffening.

(continued)
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Surface

Solid†

Special
purpose

4

8

3

6

8

6

4

2

2

Variable

4-node
quadri-
lateral

8-node
quadri-
lateral

3-node
triangular

6-node
triangular

8-node
hexagonal
(brick)

6-node
pentagonal
(wedge)

4-node
tetrahedron
(tet)

Gap

Hook

Rigid

Plane stress or strain, axisymmetry,
shear panel, thin flat plate in
bending

Plane stress or strain, thin plate or
shell in bending

Plane stress or strain, axisymmetry,
shear panel, thin flat plate in
bending. Prefer quad where possible.
Used for transitions of quads.

Plane stress or strain, axisymmetry,
thin plate or shell in bending.
Prefer quad where possible. Used
for transitions of quads.

Solid, thick plate

Solid, thick plate. Used for
transitions.

Solid, thick plate. Used for
transitions.

Free displacement for prescribed
compressive gap

Free displacement for prescribed
extension gap

Rigid constraints between
nodes

Element Number
Type None Shape of Nodes Applications

†These elments are also available with midside nodes.

Table 19–1 (Continued)
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Finite-Element Analysis 959

Figure 19–3

A simple spring element.

types of elements available for finite-element analysis for structural problems. Not
all elements support all degrees of freedom. For example, the 3-D truss element sup-
ports only three translational degrees of freedom at each node. Connecting elements
with differing dof’s generally requires some manual modification. For example, con-
sider connecting a truss element to a frame element. The frame element supports all
six dof’s at each node. A truss member, when connected to it, can rotate freely at the
connection.

19–3 The Finite-Element Solution Process
We will describe the finite-element solution process on a very simple one-dimensional
problem, using the linear truss element. A truss element is a bar loaded in tension or
compression and is of constant cross-sectional area A, length l, and elastic modulus E.
The basic truss element has two nodes, and for a one-dimensional problem, each node
will have only one degree of freedom. A truss element can be modeled as a simple
linear spring with a spring rate, given by Eq. (4–4) as

k = AE

l
(19–1)

Consider a spring element (e) of spring rate ke, with nodes i and j, as shown in 
Fig. 19–3. Nodes and elements will be numbered. So, to avoid confusion as to what a
number corresponds to, elements will be numbered within parentheses. Assuming all
forces f and displacements u directed toward the right as positive, the forces at each
node can be written as

fi,e = ke
(
ui − uj

) = keui − keuj

f j,e = ke
(
uj − ui

) = −keui + keuj

(19–2)

The two equations can be written in matrix form as

{
fi,e

fi,e

}
=

[
ke −ke

−ke ke

]{
ui

uj

}
(19–3)

Next, consider a two-spring system as shown in Fig. 19–4a. Here we have num-
bered the nodes and elements. We have also labeled the forces at each node. However,
these forces are the total external forces at each node, F1, F2, and F3. If we draw
separate free-body diagrams we will expose the internal forces as shown in Fig. 19–4b.

fi,e
i

ke

ui uj

j
fj,e

(e)
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Using Eq. (19–3) for each spring gives

Element 1

{
f1,1

f2,1

}
=

[
k1 −k1

−k1 k1

]{
u1

u2

}
(19–4a)

Element 2

{
f2,2

f3,2

}
=

[
k2 −k2

−k2 k2

]{
u2

u3

}
(19–4b)

The total force at each node is the external force, F1 = f1,1, F2 = f2,1 + f2,2 , and
F3 = f3,2. Combining the two matrices in terms of the external forces gives

{ f1,1

f2,1 + f2,2

f3

}
=

{ F1

F2

F3

}
=

[ k1 − k1 0
−k1 (k1 + k2) − k2

0 − k2 k2

]{ u1

u2

u3

}
(19–5)

If we know the displacement of a node, then the force at the node will be unknown.
For example, in Fig. 19–4a, the displacement of node 1 at the wall is zero, so F1 is the
unknown reaction force (note, up to this point, we have not applied a static solution of
the system). If we do not know the displacement of a node, then we know the force. For
example, in Fig. 19–4a, the displacements at nodes 2 and 3 are unknown, and the forces
F2 and F3 are to be specified. To see how the remainder of the solution process can be
implemented, let us consider the following example.

960 Mechanical Engineering Design

f1,1

u1

k1

f2,1 f2,2

u2

k2

f3,2

u3u2

2 3

F1

k1
F2 k2

F3

u3u2

1 2 3
(1) (2)

(2)

(a)

(b)

1 2

(1)

Figure 19–4

A two-element spring system. (a) System model, (b) separate free-body diagrams.

EXAMPLE 19–1 Consider the aluminum step-shaft shown in Fig. 19–5a. The areas of sections AB
and BC are 0.100 in2 and 0.150 in2, respectively. The lengths of sections AB and BC are 
10 in and 12 in, respectively. A force F = 1000 lbf is applied to B. Initially, a gap of
ε = 0.002 in exists between end C and the right rigid wall. Determine the wall
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Figure 19–5

(a) Step shaft; (b) spring
model.

reactions, the internal forces in the members, and the deflection of point B. Let
E = 10 Mpsi and assume that end C hits the wall. Check the validity of the assumption.

Solution The step-shaft is modeled by the two-spring system of Fig. 19–5b where

k1 =
(

AE

l

)
AB

= 0.1 (10) 106

10
= 1

(
105) lbf/in

k2 =
(

AE

l

)
BC

= 0.15 (10) 106

12
= 1.25

(
105) lbf/in

With u1 = 0, F2 = 1000 lbf and the assumption that u3 = ε = 0.002 in, Eq. (19–5)
becomes

{ F1

1000
F3

}
= 105

[ 1 − 1 0
−1 2.25 − 1.25

0 − 1.25 1.25

]{ 0
u2

0.002

}
(1)

For large problems, there is a systematic method of solving equations like Eq. (1),
called partitioning or the elimination approach.11 However, for this simple problem, the
solution is quite simple. From the second equation of the matrix equation

1000 = 105[−1(0) + 2.25 u2 − 1.25(0.002)]

or,

Answer uB = u2 = 1000/105 + 1.25 (0.002)

2.25
= 5.556

(
10−3) in

Since uB > ε, it is verified that point C hits the wall.
The reactions at the walls are F1 and F3. From the first and third equations of

matrix Eq. (1),

Answer F1 = 105[−1(u2)] = 105[−1(5.556)10−3] = −555.6 lbf

Finite-Element Analysis 961

k1

F

A F B C

k2 u3u2

1 2 3
(b)

(a)

11See T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Elements in Engineering, 3rd ed.,
Prentice Hall, Upper Saddle River, NJ, 2002, pp. 63–68.
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and

Answer F3 = 105[−1.25u2 + 1.25(0.002)]

= 105[−1.25(5.556)10−3 + 1.25(0.002)] = −444.4 lbf

Since F3 is negative, this also verifies that C hits the wall. Note that F1 + F3 =
−555.6 − 444.4 = −1000 lbf, balancing the applied force (with no statics equations
necessary).

For internal forces, it is necessary to return to the individual (local) equations.
From Eq. (19–4a),{

f1,1

f2,1

}
=

[
k1 − k1

−k1 k1

]{
u1

u2

}
= 105

[
1 − 1

−1 1

]{
0
5.556(10−3)

}
=

{−555.6
555.6

}
lbf

Answer Since f1,1 is directed to the left and f2,1 is directed to the right, the element is in tension,
with a force of 555.6 lbf. If the stress is desired, it is simply �AB � f2,1/AAB �
555.6/0.1 = 5556 psi.

For element BC, from Eq. (19.4b),

{
f2,2

f3,2

}
=

[
k2 − k2

−k2 k2

]{
u2

u3

}
= 105

[
1.25 − 1.25

−1.25 1.25

]{
5.556(10−3)

0.002

}
=

{
444.5

−444.5

}
lbf

Answer Since f2,2 is directed to the right and f3,2 is directed to the left, the element is in compres-
sion, with a force of 444.5 lbf. If the stress is desired, it is simply �BC � �f2,2/ABC �
�444.5/0.15 = −2963 psi.
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19–4 Mesh Generation
The network of elements and nodes that discretize a region is referred to as a mesh.
The mesh density increases as more elements are placed within a given region. Mesh
refinement is when the mesh is modified from one analysis of a model to the next
analysis to yield improved results. Results generally improve when the mesh density
is increased in areas of high stress gradients and/or when geometric transition zones
are meshed smoothly. Generally, but not always, the FEA results converge toward
the exact results as the mesh is continuously refined. To assess improvement, in
regions where high stress gradients appear, the structure can be remeshed with a
higher mesh density at this location. If there is a minimal change in the maximum
stress value, it is reasonable to presume that the solution has converged. There are
three basic ways to generate an element mesh, manually, semiautomatically, or fully
automated.

1 Manual mesh generation. This is how the element mesh was created in the
early days of the finite-element method. This is a very labor intensive method
of creating the mesh, and except for some quick modifications of a model is it
rarely done. Note: Care must be exercised in editing an input text file. With
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some FEA software, other files such as the preprocessor binary graphics file
may not change. Consequently, the files may no longer be compatible with
each other.

2 Semiautomatic mesh generation. Over the years, computer algorithms have
been developed that enable the modeler to automatically mesh regions of
the structure that he or she has divided up, using well-defined boundaries. Since
the modeler has to define these regions, the technique is deemed semiauto-
matic. The development of the many computer algorithms for mesh generation
emanates from the field of computer graphics. If the reader desires more infor-
mation on this subject, a review the literature available from this field is
recommended.

3 Fully automated mesh generation. Many software vendors have concentrated
their efforts on developing fully automatic mesh generation, and in some
instances, automatic self-adaptive mesh refinement. The obvious goal is to
significantly reduce the modeler's preprocessing time and effort to arrive at a
final well-constructed FEA mesh. Once the complete boundary of the structure
is defined, without subdivisions as in semiautomatic mesh generation and with
a minimum of user intervention, various schemes are available to discretize
the region with one element type. For plane elastic problems the boundary is
defined by a series of internal and external geometric lines and the element
type to be automeshed would be the plane elastic element. For thin-walled
structures, the geometry would be defined by three-dimensional surface repre-
sentations and the automeshed element type would be the three-dimensional
plate element. For solid structures, the boundary could be constructed by using
constructive solid geometry (CSG) or boundary representation (B-rep) tech-
niques. The finite-element types for automeshing would be the brick and/or
tetrahedron.

Automatic self-adaptive mesh refinement programs estimate the error of the
FEA solution. On the basis of the error, the mesh is automatically revised and rean-
alyzed. The process is repeated until some convergence or termination criterion is
satisfied.

Returning to the thin-plate model of Fig. 19–2, the boundaries of the structure
are constructed as shown in Fig. 19–6a. The boundaries were then automeshed as
shown in Fig. 19–6b, where 294 elements and 344 nodes were generated. Note the
uniformity of the element generation at the boundaries. The finite-element solver
then generated the deflections and von Mises stresses shown in Fig. 19–6c. The
maximum von Mises stress at the location shown is 4110.4 psi. The model was then
automeshed with an increased mesh density as shown in Fig. 19–6d, where the
model has 1008 elements and 1096 nodes. The results are shown in Fig. 19–6e where
the maximum von Mises stress is found to be 4184.9 psi, which is only 1.8 percent
higher. In all likelihood, the solution has nearly converged. Note: The stress contours
of Figs. 19–6c and e are better visualized in color.

When stress concentrations are present, it is necessary to have a very fine mesh
at the stress-concentration region in order to get realistic results. What is important
is that the mesh density needs to be increased only in the region around the stress
concentration and that the transition mesh from the rest of the structure to the stress-
concentration region be gradual. An abrupt mesh transition, in itself, will have the
same effect as a stress concentration. Stress concentration will be discussed further in
Sec. 19–7, Modeling Techniques.
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964 Mechanical Engineering Design

4110.4 psi

4184.9 psi

(a)

(b) (c)

(e)(d)

Von Mises
4184.9 
3588.2 
2991.6 
2394.9 
1798.2 
1201.6 
604.91 
8.2392

Von Mises

4110.4 
3524.8 
2939.2 
2353.6 
1768.1 
1182.5 
596.91 
11.341

Figure 19–6

Automatic meshing the thin-plate model of Fig. 19–2. (a) Model boundaries; (b) automesh with 294 elements and 344 nodes; 
(c) deflected (exaggerated scale) with stress contours; (d) automesh with 1008 elements and 1096 nodes, (e) deflected 
(exaggerated scale) with stress contours.

19–5 Load Application
There are two basic forms of specifying loads on a structure, nodal and element
loading. However, element loads are eventually applied to the nodes by using equiv-
alent nodal loads. One aspect of load application is related to Saint-Venant’s princi-
ple. If one is not concerned about the stresses near points of load application, it is
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not necessary to attempt to distribute the loading very precisely. The net force and/or
moment can be applied to a single node, provided the element supports the dof asso-
ciated with the force and/or moment at the node. However, the analyst should not be
surprised, or concerned, when reviewing the results and the stresses in the vicinity
of the load application point are found to be very large. Concentrated moments can
be applied to the nodes of beam and most plate elements. However, concentrated
moments cannot be applied to truss, two-dimensional plane elastic, axisymmetric, or
brick elements. They do not support rotational degrees of freedom. A pure moment
can be applied to these elements only by using forces in the form of a couple. From
the mechanics of statics, a couple can be generated by using two or more forces act-
ing in a plane where the net force from the forces is zero. The net moment from the
forces is a vector perpendicular to the plane and is the summation of the moments
from the forces taken about any common point.

Element loads include static loads due to gravity (weight), thermal effects, surface
loads such as uniform and hydrostatic pressure, and dynamic loads due to constant
acceleration and steady-state rotation (centrifugal acceleration). As stated earlier, ele-
ment loads are converted by the software to equivalent nodal loads and in the end are
treated as concentrated loads applied to nodes.

For gravity loading, the gravity constant in appropriate units and the direction
of gravity must be supplied by the modeler. If the model length and force units are
inches and lbf, g = 386.1 ips2 . If the model length and force units are meters and
Newtons, g = 9.81 m/s2 . The gravity direction is normally toward the center of the
earth.

For thermal loading, the thermal expansion coefficient � must be given for each
material, as well as the initial temperature of the structure, and the final nodal temper-
atures. Most software packages have the capability of first performing a finite-element
heat transfer analysis on the structure to determine the final nodal temperatures. The
temperature results are written to a file, which can be transferred to the static stress
analysis. Here the heat transfer model should have the same nodes and element type the
static stress analysis model has.

Surface loading can generally be applied to most elements. For example, uniform
or linear transverse line loads (force/length) can be specified on beams. Uniform and
linear pressure can normally be applied on the edges of two-dimensional plane and
axisymmetric elements. Lateral pressure can be applied on plate elements, and pressure
can be applied on the surface of solid brick elements. Each software package has its
unique manner in which to specify these surface loads, usually in a combination of text
and graphic modes.

19–6 Boundary Conditions
The simulation of boundary conditions and other forms of constraint is probably
the single most difficult part of the accurate modeling of a structure for a finite-
element analysis. In specifying constraints, it is relatively easy to make mistakes of
omission or misrepresentation. It may be necessary for the analyst to test different 
approaches to model esoteric constraints such as bolted joints, welds, etc., which
are not as simple as the idealized pinned or fixed joints. Testing should be confined
to simple problems and not to a large, complex structure. Sometimes, when the
exact nature of a boundary condition is uncertain, only limits of behavior may be
possible. For example, we have modeled shafts with bearings as being simply sup-
ported. It is more likely that the support is something between simply supported and
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fixed, and we could analyze both constraints to establish the limits. However, by
assuming simply supported, the results of the solution are conservative for stress
and deflections. That is, the solution would predict stresses and deflections larger
than the actual.

For another example, consider beam 16 in Table A–9. The horizontal beam is
uniformly loaded and is fixed at both ends. Although not explicitly stated, tables
such as these assume that the beams are not restrained in the horizontal direction.
That is, it is assumed that the beam can slide horizontally in the supports. If the ends
were completely or partially restrained, a beam-column solution would be neces-
sary.12 With a finite-element analysis, a special element, a beam with stiffening,
could be used.

Multipoint constraint equations are quite often used to model boundary conditions
or rigid connections between elastic members. When used in the latter form, the equa-
tions are acting as elements and are thus referred to as rigid elements. Rigid elements
can rotate or translate only rigidly.

Boundary elements are used to force specific nonzero displacements on a structure.
Boundary elements can also be useful in modeling boundary conditions that are askew
from the global coordinate system.

19–7 Modeling Techniques
With today’s CAD packages and automatic mesh generators, it is an easy task to cre-
ate a solid model and mesh the volume with finite elements. With today’s comput-
ing speeds and with gobs of computer memory, it is very easy to create a model with
extremely large numbers of elements and nodes. The finite-element modeling tech-
niques of the past now seem passé and unnecessary. However, much unnecessary
time can be spent on a very complex model when a much simpler model will do. The
complex model may not even provide an accurate solution, whereas a simpler one
will. What is important is what solution the analyst is looking for: deflections,
stresses, or both?

For example, consider the steel step-shaft of Ex. 4–7, repeated here as 
Fig. 19–7a. Let the fillets at the steps have a radius of 0.02 in. If only deflections
and slopes were sought at the steps, a highly meshed solid model would not yield
much more than the simple five-element beam model, shown in Fig. 19–7b, would.
The fillets at the steps, which could not be modeled easily with beam elements,
would not contribute much to a difference in results between the two models. Nodes
are necessary wherever boundary conditions, applied forces, and changes in cross
section and/or material occur. The displacement results for the FEA model are
shown in Fig. 19–7c.

The FE model of Fig. 19–7b is not capable of providing the stress at the fillet of the
step at D. Here, a full-blown solid model would have to be developed and meshed, using
solid elements with a high mesh density at the fillet as shown in Fig. 19–8a. Here, the
steps at the bearing supports are not modeled, as we are concerned only with the stress
concentration at x = 8.5 in. The brick and tetrahedron elements do not support rotational
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12See R. B. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New York,
1999, pp. 471–482.
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degrees of freedom. To model the simply supported boundary condition at the left end,
nodes along the z axis were constrained from translating in the x and y directions. Nodes
along the y axis were constrained from translating in the z direction. Nodes on the right
end on an axis parallel with the z axis through the center of the shaft were constrained
from translating in the y direction, and nodes on an axis parallel with the y axis
through the center of the shaft were constrained from translating in the z direction.
This ensures no rigid-body translation or rotation and no overconstraint at the ends. The
maximum tensile stress at the fillet at the beam bottom is found to be σmax = 23.9 kpsi.
Performing an analytical check at the step yields D/d = 1.75/1.5 = 1.167, and
r/d = 0.02/1.5 = 0.0133. Figure A–15–9 is not very accurate for these values.
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y

x

0.5
8
8.5

20
19.5

A
B DC E

F

1

(1) (2) (3) (4) (5)

2 3 4 5 6

R2R1

1.000 dia
1.500 dia

1.750 dia
1.000 dia

600 lbf

(a) Dimensions in inches

(b)

Figure 19–7

(a) Steel step shaft of Ex. 4–7; (b) finite-element model using five beam elements; (c) displacement results for FEA model.

Node x y z �x �y �z
No. Translation Translation Translation Rotation (deg) Rotation (deg) Rotation (deg)

1 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 −9.7930 E − 02

2 0.0000 E + 00 −8.4951 E − 04 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 −9.6179 E − 02

3 0.0000 E + 00 −9.3649 E − 03 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 −7.9874 E − 03

4 0.0000 E + 00 −9.3870 E − 03 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 2.8492 E − 03

5 0.0000 E + 00 −6.0507 E − 04 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 6.8558 E − 02

6 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 0.0000 E + 00 6.9725 E − 02

(c)

Displacements/rotations (degrees) of nodes
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Resorting to another source,13 the stress-concentration factor is found to be Kt = 3.00.
The reaction at the right support is RF = (8/20)600 = 240 lbf. The bending moment at
the start of the fillet is M = 240(11.52) = 2 765 lbf · in = 2.765 kip · in. The analytical
prediction of the maximum stress is thus

σmax = Kt

(
32M

πd3

)
= 3.00

[
32(2.765)

π(1.53)

]
= 25.03 kpsi

The finite-element model is 4.5 percent lower. If more elements were used in the fillet
region, the results would undoubtedly be closer. However, the results are within engi-
neering acceptability.

If we want to check deflections, we should compare the results with the three-
element beam model, not the five-element model. This is because we did not model the
bearing steps in the solid model. The vertical deflection, at x = 8.5 in, for the solid

968 Mechanical Engineering Design

13See, W. D. Pilkey and D. F. Pilkey, Peterson’s Stress-Concentration Factors, 3rd ed. John Wiley & Sons,
New York, 2008, Chart 3.11.

(a)

z

y

x

�max� 23.9 kpsi

(b)

Figure 19–8

(a) Solid model of the step-
shaft of Ex. 4–7 using 
56 384 brick and tetrahedron
elements; (b) view of stress
contours at step, rotated 180°
about x axis, showing
maximum tension.
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model was found to be �0.00981 in. This is 4.6 percent higher in magnitude than the
�0.00938 in deflection for the three-element beam model,. For slopes, the brick ele-
ment does not support rotational degrees of freedom, so the rotation at the ends has to
be computed from the displacements of adjacent nodes at the ends. This results in the
slopes at the ends of θA = −0.103◦ and θF = 0.0732◦; these are 6.7 and 6.6 percent
higher in magnitude than the three-element beam model, respectively. However, the
point of this exercise is, if deflections were the only result desired, which model would
you use?

There are countless modeling situations which could be examined. The reader is
urged to read the literature, and peruse the tutorials available from the software
vendors.14

19–8 Thermal Stresses
A heat transfer analysis can be performed on a structural component including the
effects of heat conduction, convection, and/or radiation. After the heat transfer
analysis is completed, the same model can be used to determine the resulting thermal
stresses. For sake of a simple illustration, we will model a 10 in × 4 in, 0.25-in-thick
steel plate with a centered 1.0-in-diameter hole. The plate is supported as shown in
Fig. 19–9a, and the temperatures of the ends are maintained at temperatures of
100◦F and 0◦F. Other than at the walls, all surfaces are thermally insulated. Before
placing the plate between the walls, the initial temperature of the plate was 0◦F. The
thermal coefficient of expansion for steel is αs = 6.5 × 10−6 ◦F −1. The plate was
meshed with 1312 two-dimensional elements, with the mesh refined along the
border of the hole. Figure 19–9b shows the temperature contours of the steady-state
temperature distribution obtained by the FEA. Using the same elements for a linear
stress analysis, where the temperatures were transferred from the heat transfer analy-
sis, Fig. 19–9c shows the resulting stress contours. As expected, the maximum com-
pressive stresses occurred at the top and bottom of the hole; with a magnitude of
31.9 kpsi.

19–9 Critical Buckling Load
Finite elements can be used to predict the critical buckling load for a thin-walled struc-
ture. An example was shown in Fig. 4–25 (p. 190). Another example can be seen in
Fig. 19–10a, which is a thin-walled aluminum beverage can. A specific pressure was
applied to the top surface. The bottom of the can was constrained in translation verti-
cally, the center node of the bottom of the can was constrained in translation in all
three directions, and one outer node on the can bottom was constrained in translation
tangentially. This prevents rigid-body motion, and provides vertical support for the
bottom of the can with unconstrained motion of the bottom of the can horizontally. The
finite element software returns a value of the load multiplier, which, when multiplied
with the total applied force, indicates the critical buckling load. Buckling analysis is
an eigenvalue problem, and a reader who reviews a basic mechanics of materials
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14See, for example, R. D. Cook, Finite Element Modeling for Stress Analysis, Wiley & Sons, New York, 1995;
and R. G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New York,
1999, Chap. 10.
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100�F 0�F

(a)

(b)

(c)

99.711 
85.508 
71.305 
57.102 
42.898 
28.695 
14.492 
0.28899

31888 
27569 
23249 
18930 
14611 
10292 
5972.2 
1652.9

Temperature

Von Mises

Figure 19–9

(a) Plate supported at ends and maintained at the temperatures shown; (b) steady-state temperature contours; (c) thermal stress contours
where the initial temperature of the plate was 0◦F.
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textbook would find there is a deflection mode shape associated with the critical load.
The buckling mode shape for the buckled beverage can is shown in Fig. 19–10b.

19–10 Vibration Analysis
The design engineer may be concerned as to how a component behaves relative to
dynamic input, which results in vibration. For vibration, most finite element packages
start with a modal analysis of the component. This provides the natural frequencies and
mode shapes that the component naturally vibrates at. These are called the eigenvalues
and eigenvectors of the component. Next, this solution can be transferred (much the
same as for thermal stresses) to solvers for forced vibration analyses, such as frequency
response, transient impact, or random vibration, to see how the component’s modes
behave to dynamic input. The mode shape analysis is primarily based on stiffness and
the resulting deflections. Thus, similar to static stress analysis, simpler models will suf-
fice. However, if, when solving forced response problems, stresses are desired, a more
detailed model is necessary (similar to the shaft illustration given in Sec. 19–7).

A modal analysis of the beam model without the bearing steps was performed for
a 20-element beam model,15 and the 56 384-element brick and tetrahedron model.

Finite-Element Analysis 971

(a)

(b)

Figure 19–10

(a) Thin-walled aluminum beverage container loaded vertically downward on the top surface; (b) isometric view of the buckled can
(deflections greatly exaggerated).

15For static deflection analysis, only three beam elements were necessary. However, because of mass
distribution for the dynamics problem, more beam elements are necessary.
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Needless to say, the beam model took less than 9 seconds to solve, whereas the solid
model took considerably longer. The first (fundamental) vibration mode was bending
and is shown in Fig. 19–11 for both models, together with the respective frequencies.
The difference between the frequencies is about 1.9 percent. Further note that the mode
shape is just that, a shape. The actual magnitudes of the deflections are unknown, only
their relative values are known. Thus, any scale factor can be used to exaggerate the
view of the deflection shape.

The convergence of the 20-element model was checked by doubling the number of
elements. This resulted in no change.

Figure 19–12 provides the frequencies and shapes for the second mode.16 Here, the
difference between the models is 3.6 percent.

As stated earlier, once the mode shapes are obtained, the response of the structure
to various dynamic loadings, such as harmonic, transient, or random input, can be
obtained. This is accomplished by using the mode shapes together with modal super-
position. The method is called modal analysis.17

19–11 Summary
As stated in Sec. 1–4, the mechanical design engineer has many powerful computa-
tional tools available today. Finite-element analysis is one of the most important and
is easily integrated into the computer-aided engineering environment. Solid-modeling
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Figure 19–11

First free vibration mode of step beam. (a) Twenty-element beam model, f1 = 322 Hz; (b) 56 384-element brick and tetrahedron model,
f1 = 316 Hz.

(a)

y

x

y

x

(b)

16Note: Both models exhibited repeated frequencies and mode shapes for each bending mode. Since the
beam and the bearing supports (boundary conditions) are axisymmetric, the bending modes are the same in
all transverse planes. So, the second mode shown in Fig. 19–12 is the next unrepeated mode.
17See S. S. Rao, Mechanical Vibrations, 4th ed., Pearson Prentice Hall, Upper Saddle River, NJ, 2004, 
Sec. 6.14.
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CAD software provides an excellent platform for the easy creation of FEA models.
Several types of analysis have been described in this chapter, using some fairly sim-
ple illustrative problems. The purpose of this chapter, however, was to discuss some
basic considerations of FEA element configurations, parameters, modeling consider-
ations, and solvers, and not to necessarily describe complex geometric situations.
Finite-element theory and applications is a vast subject, and will take years of expe-
rience before one becomes knowledgeable and skilled with the technique. There
are many sources of information on the topic in various textbooks; FEA software
suppliers (such as ANSYS, MSC/NASTRAN, and Algor) provide case studies, user’s
guides, user’s group newsletters, tutorials, etc.; and the Internet provides many
sources. Footnotes 11, 12, and 14 referenced some textbooks on FEA. Additional ref-
erences are cited below.

Additional FEA References

K. J. Bathe, Finite Element Procedures, Prentice Hall, Englewood Cliffs, 
NJ, 1996.
R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and
Applications of Finite Element Analysis, 4th ed., Wiley, New York, 2001.

D. L. Logan, A First Course in the Finite Element Method, 4th ed., Nelson, a
division of Thomson Canada Limited, Toronto, 2007.

J. N. Reddy, An Introduction to the Finite Element Method, 3rd ed., McGraw-Hill,
New York, 2002.

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed., Vols. 1
and 2, McGraw-Hill, New York, 1989 and 1991.

Figure 19–12

Second free-vibration mode of step beam. (a) Twenty-element beam model, f2 = 1296 Hz; (b) 56 384-element brick and tetrahedron model,
f2 = 1249 Hz.

y

x

(a)

(b)

y

x

bud29281_ch19_952-976.qxd  12/22/2009  1:03 pm  Page 973 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:



PROBLEMS
The following problems are to be solved by FEA. It is recommended that you also solve the prob-
lems analytically, compare the two results, and explain any differences.

19–1 Solve Ex. 3–6.

19–2 For Ex. 3–10, apply a torque of 23 730 lbf · in, and determine the maximum shear stress and 
angle of twist. Use 1

8 -in-thick plate elements.

19–3 The steel tube with the cross section shown is transmitting a torsional moment of 100 N · m. The
tube wall thickness is 2.5 mm, all radii are r = 6.25 mm, and the tube is 500 mm long. For steel,
let E = 207 GPa and ν = 0.29. Determine the average shear stress in the wall and the angle of
twist over the given length. Use 2.5-mm-thick plate elements.

974 Mechanical Engineering Design

y

z

r

r

Problem 19–3

19–4 For Fig. A–15–1, let w = 2 in, d = 0.3 in, and estimate Kt . Use 1/4 symmetry and 1/8-in-thick
2-D elements.

19–5 For Fig. A–15–3, let w = 1.5 in, d = 1.0 in, r = 0.10 in, and estimate Kt . Use 1/4 symmetry and
1/8-in-thick 2-D elements.

19–6 For Fig. A–15–5, let D = 3 in, d = 2 in, r = 0.25 in, and estimate Kt . Use 1/2 symmetry and
1/8-in-thick 2-D elements.

19–7 Solve Prob. 3–122, using solid elements. Note: You may omit the top part of the eyebolt above
the applied force.

19–8 Solve Prob. 3–132, using solid elements. Note: Since there is a plane of symmetry, a one-half
model can be constructed. However, be very careful to constrain the plane of symmetry properly
to assure symmetry without overconstraint.

19–9 Solve Ex. 4–11, with F = 10 lbf, d = 1/8 in, a = 0.5 in, b = 1 in, c = 2 in, E = 30 Mpsi, and
ν = 0.29, using beam elements.

19–10 Solve Ex. 4–13, modeling Fig. 4–14b with 2-D elements of 2-in thickness. Since this example
uses symmetry, be careful to constrain the boundary conditions of the bottom horizontal surface
appropriately.
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19–11 Solve Prob. 4–12, using beam elements.

19–12 Solve Prob. 4–47, using beam elements. Pick a diameter, and solve for the slopes. Then, use 
Eq. 7–18, p. 381, to readjust the diameter. Use the new diameter to verify.

19–13 Solve Prob. 4–63, using beam elements.

19–14 Solve Prob. 4–78, using solid elements. Use a one-half model with symmetry. Be very careful to
constrain the plane of symmetry properly to assure symmetry without overconstraint.

19–15 Solve Prob. 4–79, using beam elements. Use a one-half model with symmetry. At the plane of
symmetry, constrain translation and rotation.

19–16 Solve Prob. 4–80, using beam elements. Model the problem two ways: (a) Model the entire wire
form, using, 200 elements. (b) Model half the entire wire form, using 100 elements and symme-
try. That is, model the form from point A to point C. Apply half the force at the top, and constrain
the top horizontally and in rotation in the plane.

19–17 Solve Prob. 4–88, using beam elements.

19–18 Solve Prob. 10–42, using beam elements.

19–19 An aluminum cylinder (Ea = 70 MPa, νu = 0.33 with an outer diameter of 150 mm and inner
diameter of 100 mm is to be press-fitted over a stainless-steel cylinder (Es = 190 MPa,
νs = 0.30) with an outer diameter of 100.20 mm and inner diameter of 50 mm. Determine (a) the
interface pressure p and (b) the maximum tangential stresses in the cylinders.

Solve the press-fit problem, using the following procedure. Using the plane-stress two-
dimensional element, utilizing symmetry, create a quarter model meshing elements in the radial
and tangential directions. The elements for each cylinder should be assigned their unique mater-
ial properties. The interface between the two cylinders should have common nodes. To simulate
the press fit, the inner cylinder will be forced to expand thermally. Assign a coefficient of expan-
sion and temperature increase, α and �T , respectively, for the inner cylinder. Do this according
to the relation δ = α�T b, where δ and b are the radial interference and the outer radius of the
inner member, respectively. Nodes along the straight edges of the quarter model should be fixed
in the tangential directions, and free to deflect in the radial direction.

Finite-Element Analysis 975
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978 Mechanical Engineering Design

Statistics in mechanical design provides a method of dealing with characteristics whose
values are variable. Products manufactured in large quantities—automobiles, watches,
lawnmowers, washing machines, for example—have a life that is variable. One auto-
mobile may have so many defects that it must be repaired repeatedly during the first few
months of operation while another may operate satisfactorily for years, requiring only
minor maintenance.

Methods of quality control are deeply rooted in the use of statistics, and engineer-
ing designers need a knowledge of statistics to conform to quality-control standards.
The variability inherent in limits and fits, in stress and strength, in bearing clearances,
and in a multitude of other characteristics must be described numerically for proper
control. It is not satisfactory to say that a product is expected to have a long and
troublefree life. We must express such things as product life and product reliability in
numerical form in order to achieve a specific quality goal. As noted in Sec. 1–10, uncer-
tainties abound and require quantitative treatment. The algebra of real numbers, by
itself, is not well-suited to describing the presence of variation.

It is clear that consistencies in nature are stable, not in magnitude, but in the pat-
tern of variation. Evidence gathered from nature by measurement is a mixture of sys-
tematic and random effects. It is the role of statistics to separate these, and, through the
sensitive use of data, illuminate the obscure.

Some students will start this book after completing a formal course in statistics
while others may have had brief encounters with statistics in their engineering courses.
This contrast in background, together with space and time constraints, makes it very dif-
ficult to present an extensive integration of statistics with mechanical engineering design
at this stage. Beyond first courses in mechanical design and engineering statistics, the
student can begin to meaningfully integrate the two in a second course in design.

The intent of this chapter is to introduce some statistical concepts associated with
basic reliability goals.

20–1 Random Variables
Consider an experiment to measure strength in a collection of 20 tensile-test specimens
that have been machined from a like number of samples selected at random from a car-
load shipment of, say, UNS G10200 cold-drawn steel. It is reasonable to expect that
there will be differences in the ultimate tensile strengths Sut of each of the individual
test specimens. Such differences may occur because of differences in the sizes of the
specimens, in the strength of the material itself, or both. Such an experiment is called a
random experiment, because the specimens are selected at random. The strength Sut

determined by this experiment is called a random, or a stochastic, variable. So a ran-
dom variable is a variable quantity, such as strength, size, or weight, whose value
depends on the outcome of a random experiment.

Let us define a random variable x as the sum of the numbers obtained when two
dice are tossed. Either die can display any number from 1 to 6. Figure 20–1 displays all
possible outcomes in what is called the sample space. Note that x has a specific value

Figure 20–1

Sample space showing all
possible outcomes of the toss
of two dice.

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6
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Statistical Considerations 979

for each possible outcome—for example, the event 5, 4; x = 5 + 4 = 9. It is useful to
form a table showing the values of x and the corresponding values of the probability of x,
called p = f (x). This is easily done from Fig. 20–1 merely by adding each outcome,
determining how many times a specific value of x arises, and dividing by the total num-
ber of possible outcomes. The results are shown in Table 20–1. Any table like this, list-
ing all possible values of a random variable and with the corresponding probabilities, is
called a probability distribution.

The values of Table 20–1 are plotted in graphical form in Fig. 20–2. Here it is clear
that the probability is a function of x. This probability function p = f (x) is often called
the frequency function or, sometimes, the probability density function (PDF). The prob-
ability that x is less than or equal to a certain value xi can be obtained from the proba-
bility function by summing the probability of all x’s up to and including xi . If we do
this with Table 20–1, letting xi equal 2, then 3, and so on, up to 12, we get Table 20–2,
which is called a cumulative probability distribution. The function F(x) in Table 20–2
is called a cumulative density function (CDF) of x. In terms of f (x) it may be expressed
mathematically in the general form

F(xi ) =
∑
xj ≤xi

f (xj ) (20–1)

The cumulative distribution may also be plotted as a graph (Fig. 20–3).
The variable x of this example is called a discrete random variable, because x has

only discrete values. A continuous random variable is one that can take on any value in
a specified interval; for such variables, graphs like Figs. 20–2 and 20–3 would be
plotted as continuous curves. For a continuous probability density function F(x), the
probability of obtaining an observation equal to or less than x is given by

F(x) =
∫ x

−∞
f (x) dx (20–2)

Table 20–1

A Probability Distribution

x 2 3 4 5 6 7 8 9 10 11 12

f(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

p = f (x)

x

6
36

5
36

4
36

3
36

2
36

1
36

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 20–2

Frequency distribution.

Table 20–2

A Cumulative

Probability Distribution

x 2 3 4 5 6 7 8 9 10 11 12

F(x) 36
36

35
36

33
36

30
36

26
36

21
36

15
36

10
36

6
36

3
36

1
36

bud29281_ch20_0977-1002.qxd  12/22/09  2:55 PM  Page 979 epg 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:
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where f (x) is the probability per unit x. When x → ∞, then∫ ∞

−∞
f (x) dx = 1 (20–3)

Differentiation of Eq. (20–2) gives

d F(x)

dx
= f (x) (20–4)

20–2 Arithmetic Mean, Variance, 
and Standard Deviation 
In studying the variations in the mechanical properties and characteristics of mechani-
cal elements, we shall generally be dealing with a finite number of elements. The total
number of elements, called the population, may in some cases be quite large. In such
cases it is usually impractical to measure the characteristics of each member of the pop-
ulation, because this involves destructive testing in some cases, and so we select a small
part of the group, called a sample, for these determinations. Thus the population is the
entire group, and the sample is a part of the population. 

The arithmetic mean of a sample, called the sample mean, consisting of N elements,
is defined by the equation 

x̄ = x1 + x2 + x3 + · · · + xN

N
= 1

N

N∑
i=1

xi (20–5)

Besides the arithmetic mean, it is useful to have another kind of measure that will tell us
something about the spread, or dispersion, of the distribution. For any random variable x,
the deviation of the ith observation from the mean is xi − x̄. But since the sum of the
deviations so defined is always zero, we square them, and define sample variance as

s2
x = (x1 − x̄)2 + (x2 − x̄)2 + · · · + (xN − x̄)2

N − 1
= 1

N − 1

N∑
i=1

(xi − x̄)2 (20–6)

F(x)

x

36
36

27
36

18
36

9
36

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 20–3

Cumulative frequency
distribution.
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The sample standard deviation, defined as the square root of the sample variance, is

sx =
√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (20–7)

Equation (20–7) is not well-suited for use in a calculator. For such purposes, use the
alternative form

sx =

√√√√√ N∑
i=1

x2
i −

(
N∑

i=1
xi

)2/
N

N − 1
=

√√√√√ N∑
i=1

x2
i − N x̄2

N − 1
(20–8)

for the standard deviation.
It should be observed that some authors define the variance and the standard devi-

ation by using N instead of N − 1 in the denominator. For large values of N, there is
very little difference. For small values, the denominator N − 1 actually gives a better
estimate of the variance of the population from which the sample is taken.

Equations (20–5) to (20–8) apply specifically to the sample of a population. When
an entire population is considered, the same equations apply, but x̄ and sx are replaced
with the symbols μx and, σ̂x respectively. The circumflex accent mark ˆ, or “hat,” is
used to avoid confusion with normal stress. For the population variance and standard
deviation, N weighting is used in the denominators instead of N − 1.

Sometimes we are going to be dealing with the standard deviation of the strength
of an element. So you must be careful not to be confused by the notation. Note that we
are using the capital letter S for strength and the lowercase letter s for standard devia-
tion as shown in the caption of the histogram in Fig. 20–4.

Figure 20–4 is called a discrete frequency histogram, which gives the number of
occurrences, or class frequency fi , within a given range. If the data are grouped in this
fashion, then the mean and standard deviation are given by

x̄ = 1

N

k∑
i=1

fi xi (20–9)

and

sx =

√√√√√ k∑
i=1

fi x2
i −

[( k∑
i=1

fi xi

)2/
N

]
N − 1

=

√√√√√ k∑
i=1

fi x2
i − N x̄2

N − 1
(20–10)

Here xi , fi , and k are class midpoint, frequency of occurrences within the range of the
class, and the total number of classes, respectively. Also, the cumulative density func-
tion that gives the probability of an occurrence at class mark of xi or less is

Fi = fiwi

2
+

i−1∑
j=1

f jwj (20–11)

where wi represents the class width at xi . For Fig. 20–4a, k = 21 and the class width
is constant at w = 1 kpsi.
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982 Mechanical Engineering Design

Notation

In this book, we follow the convention of designating vectors by boldface characters,
indicative of the fact that two or three quantities, such as direction and magnitude, are
necessary to describe them. The same convention is widely used for random variables
that can be characterized by specifying a mean and a standard deviation. We shall there-
fore use boldface characters to designate random variables as well as vectors. No
confusion between the two is likely to arise. 

The terms stochastic variable and variate are also used to mean a random variable.
A deterministic quantity is something that has a single specific value. The mean value
of a population is a deterministic quantity, and so is its standard deviation. A stochastic
variable can be partially described by the mean and the standard deviation, or by the
mean and the coefficient of variation defined by

Cx = sx

x̄
(20–12)

Thus the variate x for the sample can be expressed in the following two ways:

x = X(x̄, sx) = x̄ X(1, Cx) (20–13)

where X represents a variate probability distribution function. Note that the determin-
istic quantities x̄, sx , and Cx are all in normal italic font.
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Figure 20–4

Distribution of tensile
properties of hot-rolled UNS
G10350 steel, as rolled. These
tests were made from round
bars varying in diameter from 1
to 9 in. (a) Tensile-strength
distributions from 930 heats;
S̄u = 86.0 kpsi, sSu = 4.94 kpsi.
(b) Yield-strength distribution
from 899 heats; S̄y = 49.5 kpsi,
sSy = 5.36 kpsi. (From
Metals Handbook, vol. 1, 
8th ed., American Society for
Metals, Materials Park, 
OH 44073-0002, fig. 22, p. 64.
Reprinted by permission of
ASM International®,
www.asminternational.org.)
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Table 20–3

Data Worksheet from

Nine Tensile Test

Specimens Taken from

a Shipment of 1030

Hot-Rolled Steel

Barstock

Sut, kpsi
x x2

62.8 3 943.84

64.4 4 147.36

65.8 4 329.64

66.3 4 395.69

68.1 4 637.61

69.1 4 774.81

69.8 4 872.04

71.5 5 112.25

74.0 5 476.00∑
611.8 41 689.24

EXAMPLE 20–1 Five tons of 2-in round rod of 1030 hot-rolled steel has been received for workpiece
stock. Nine standard-geometry tensile test specimens have been machined from random
locations in various rods. In the test report, the ultimate tensile strength was given in
kpsi. In ascending order (not necessary), these are displayed in Table 20–3. Find the
mean x̄ , the standard deviation sx , and the coefficient of variation Cx from the sample,
such that these are best estimates of the parent population (the stock your plant will
convert to product).

Solution From Eqs. (20–5) and (20–8),

x̄ = 1

N

9∑
i=1

xi

and

sx =
√∑

x2
i − (∑

xi
)2/

N

N − 1

It is computationally efficient to generate 
∑

x and 
∑

x2 before evaluating x̄ and sx .
This has been done in Table 20–3.

Answer x̄ = 1

9
(611.8) = 67.98 kpsi

Answer sx =
√

41 689.24 − 611.82/9

9 − 1
= 3.543 kpsi

From Eq. (20–12),

Answer Cx = sx

x̄
= 3.543

67.98
= 0.0521

All three statistics are estimates of the parent population statistical parameters. Note
that these results are independent of the distribution.
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Table 20–4

Grouped Data of

Ultimate Tensile

Strength from Nine

Tensile Test Specimens

from a Shipment of 

1030 Hot-Rolled Steel

Barstock

Class
Midpoint Class

x, Frequency Extension
kpsi f fx fx2

63.5 2 127 8 064.50

66.5 2 133 8 844.50

69.5 3 208.5 14 480.75

72.5 2 145 10 513.50∑
9 613.5 41 912.25

Multiple data entries may be identical or may be grouped in histographic form to
suggest a distributional shape. If the original data are lost to the designer, the grouped
data can still be reduced, although with some loss in computational precision.

EXAMPLE 20–2 The data in Ex. 20–1 have come to the designer in the histographic form of the first two
columns of Table 20–4. Using the data in this form, find the mean x̄ , standard devia-
tion sx , and the coefficient of variation Cx .

The data in Table 20– 4 have been extended to provide 
∑

fi xi and 
∑

fi x2
i . 

Solution From Eq. (20–9),

Answer x̄ = 1

N

4∑
i=1

fi xi = 1

9
(613.5) = 68.17 kpsi

From Eq. (20–10),

Answer sx =
√

41 912.25 − 613.52/9

9 − 1
= 3.391 kpsi

From Eq. (20–12),

Answer Cx = sx

x̄
= 3.391

68.17
= 0.0497

Note the small changes in x̄, sx , and Cx due to small changes in the summation terms.

The descriptive statistics developed, whether from ungrouped or grouped data,
describe the ultimate tensile strength Sut of the material from which we will form parts.
Such description is not possible with a single number. In fact, sometimes two or three
numbers plus identification or, at least, a robust approximation of the distribution are
needed. As you look at the data in Ex. 20–1, consider the answers to these questions:

• Can we characterize the ultimate tensile strength by the mean, S̄ut?

• Can we take the lowest ultimate tensile strength of 62.8 kpsi as a minimum? If we
do, we will encounter some lesser ultimate strengths, because some of 100 specimens
will be lower.

• Can we find the distribution of the ultimate tensile strength of the 1030 stock in
Ex. 20–1? Yes, but it will take more specimens and require plotting on coordinates
that rectify the data string.

bud29281_ch20_0977-1002.qxd  12/22/09  2:55 PM  Page 984 epg 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Statistical Considerations 985

20–3 Probability Distributions
There are a number of standard discrete and continuous probability distributions that
are commonly applicable to engineering problems. In this section, we will discuss four
important continuous probability distributions; the Gaussian, or normal, distribution;
the lognormal distribution; the uniform distribution; and the Weibull distribution.

The Gaussian (Normal) Distribution

When Gauss asked the question, What distribution is the most likely parent to a set of
data?, the answer was the distribution that bears his name. The Gaussian, or normal,
distribution is an important one whose probability density function is expressed in
terms of its mean μx and its standard deviation σ̂x as

f (x) = 1

σ̂x

√
2π

exp

[
−1

2

(
x − μx

σ̂x

)2
]

(20–14)

With the notation described in Sec. 20–2, the normally distributed variate x can be
expressed as

x = N(μx , σ̂x) = μx N(1, Cx) (20–15)

where N represents the normal distribution function given by Eq. (20–14).
Since Eq. (20–14) is a probability density function, the area under it, as required,

is unity. Plots of Eq. (20–14) are shown in Fig. 20–5 for small and large standard devi-
ations. The bell-shaped curve is taller and narrower for small values of σ̂ and shorter
and broader for large values of σ̂ . Integration of Eq. (20–14) to find the cumulative den-
sity function F(x) is not possible in closed form, but must be accomplished numeri-
cally. To avoid the need for many tables for different values of μ and σ̂ , the deviation
from the mean is expressed in units of standard deviation by the transform 

z = x − μx

σ̂x
(20–16)

The integral of the transform is tabulated in Table A–10 and sketched in Fig. 20–6. The
value of the normal cumulative density function is used so often, and manipulated in so

f (x)

x
�

(a)

f (x)

x
�

(b)

Figure 20–5

The shape of the normal
distribution curve: (a) small σ̂ ;
(b) large σ̂ .

f (z)

z
z�

� (z�)

0

�

Figure 20–6

The standard normal
distribution.
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986 Mechanical Engineering Design

many equations, that it has its own particular symbol, �(z). The transformation variate
z is normally distributed, with a mean of zero and a standard deviation and variance of
unity. That is, z = N (0, 1). The probability of an observation less than z is �(z) for
negative values of z and 1 − �(z) for positive values of z in Table A–10.

EXAMPLE 20–3 In a shipment of 250 connecting rods, the mean tensile strength is found to be 45 kpsi
and the standard deviation 5 kpsi. 
(a) Assuming a normal distribution, how many rods can be expected to have a strength

less than 39.5 kpsi? 
(b) How many are expected to have a strength between 39.5 and 59.5 kpsi? 

Solution (a) Substituting in Eq. (20–16) gives the standardized z variable as

z39.5 = x − μx

σ̂x
= S − S̄

σ̂S
= 39.5 − 45

5
= −1.10

The probability that the strength is less than 39.5 kpsi can be designated as F(z) =
�(−1.10). Using Table A–10, and referring to Fig. 20–7, we find �(z39.5) = 0.1357.
So the number of rods having a strength less than 39.5 kpsi is,

f (z)

z

z59.5z39.5

0 +2.9–1.1–

Figure 20–7

Answer N�(z39.5) = 250(0.1357) = 33.9 ≈ 34

because �(z39.5) represents the proportion of the population N having a strength less
than 39.5 kpsi. 
(b) Corresponding to S = 59.5 kpsi, we have

z59.5 = 59.5 − 45

5
= 2.90

Referring again to Fig. 20–7, we see that the probability that the strength is less than
59.5 kpsi is F(z) = �(z59.5). Since the z variable is positive, we need to find the value
complementary to unity. Thus, from Table A–10, 

�(2.90) = 1 − �(−2.90) = 1 − 0.001 87 = 0.998 13

The probability that the strength lies between 39.5 and 59.5 kpsi is the area between the
ordinates at z39.5 and z59.5 in Fig. 20–7. This probability is found to be 

p = �(z59.5) − �(z39.5) = �(2.90) − �(−1.10)

= 0.998 13 − 0.1357 = 0.862 43

Therefore the number of rods expected to have strengths between 39.5 and 59.5 kpsi is 

Answer N p = 250(0.862) = 215.5 ≈ 216
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The Lognormal Distribution

Sometimes random variables have the following two characteristics:

• The distribution is asymmetrical about the mean.

• The variables have only positive values.

Such characteristics rule out the use of the normal distribution. There are several other
distributions that are potentially useful in such situations, one of them being the log-
normal (written as a single word) distribution. Especially when life is involved, such as
fatigue life under stress or the wear life of rolling bearings, the lognormal distribution
may be a very appropriate one to use. 

The lognormal distribution is one in which the logarithms of the variate have a nor-
mal distribution. Thus the variate itself is said to be lognormally distributed. Let this
variate be expressed as

x = LN(μx , σ̂x) (a)

Equation (a) states that the random variable x is distributed lognormally (not a loga-
rithm) and that its mean value is μx and its standard deviation is σ̂x .

Now use the transformation 

y = ln x (b)

Since, by definition, y has a normal distribution, we can write

y = N(μy, σ̂y) (c)

This equation states that the random variable y is normally distributed, its mean value
is μy , and its standard deviation is σ̂y .

It is convenient to think of Eq. (a) as designating the parent, or principal, distribu-
tion while Eq. (b) represents the companion, or subsidiary, distribution.

The probability density function (PDF) for x can be derived from that for y; see
Eq. (20–14), and substitute y for x in that equation. Thus the PDF for the companion
distribution is found to be 

f (x) =
⎧⎨⎩

1

x σ̂y

√
2π

exp

[
−1

2

(
ln x − μy

σ̂y

)2
]

for x > 0

0 for x ≤ 0

(20–17)

The companion mean μy and standard deviation σ̂y in Eq. (20–17) are obtained from

μy = ln μx − ln
√

1 + C2
x ≈ ln μx − 1

2
C2

x (20–18)

σ̂y =
√

ln
(
1 + C2

x

) ≈ Cx (20–19)

These equations make it possible to use Table A–10 for statistical computations and
eliminate the need for a special table for the lognormal distribution.

EXAMPLE 20–4 One thousand specimens of 1020 steel were tested to rupture and the ultimate tensile
strengths were reported as grouped data in Table 20–5. From Eq. (20–9),

x̄ = 63 625

1000
= 63.625 kpsi
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From Eq. (20–10),

sx =
√

4 054 864 − 63 6252/1000

1000 − 1
= 2.594 245 = 2.594 kpsi

Cx = sx

x̄
= 2.594 245

63.625
= 0.040 773 = 0.0408

From Eq. (20–14) the probability density function for a normal distribution with a mean
of 63.625 and a standard deviation of 2.594 245 is

f (x) = 1

2.594 245
√

2π
exp

[
−1

2

(
x − 63.625

2.594 245

)2
]

For example, f (63.625) = 0.1538. The probability density f (x) is evaluated at class
midpoints to form the column of normal density in Table 20–5.

Class Observed Normal Lognormal
Midpoint, Frequency Extension PDF Density Density

kpsi fi xifi x2
i fi fi/(Nw)* f(x) g(x)

56.5 2 113.0 6 384.5 0.002 0.0035 0.0026

57.5 18 1 035.0 59 512.5 0.018 0.0095 0.0082

58.5 23 1 345.5 78 711.75 0.023 0.0218 0.0209

59.5 31 1 844.5 109 747.75 0.031 0.0434 0.0440

60.5 83 5 021.5 303 800.75 0.083 0.0744 0.0773

61.5 109 6 703.5 412 265.25 0.109 0.110 0.1143

62.5 138 8 625.0 539 062.5 0.138 0.140 0.1434

63.5 151 9 588.5 608 869.75 0.151 0.1536 0.1539

64.5 139 8 965.5 578 274.75 0.139 0.1453 0.1424

65.5 130 8 515.0 577 732.5 0.130 0.1184 0.1142

66.5 82 5 453.0 362 624.5 0.082 0.0832 0.0800

67.5 49 3 307.5 223 256.25 0.049 0.0504 0.0493

68.5 28 1 918.0 131 382.0 0.028 0.0263 0.0268

69.5 11 764.5 53 132.75 0.011 0.0118 0.0129

70.5 4 282.0 19 881.0 0.004 0.0046 0.0056

71.5 2 143.0 10 224.5 0.002 0.0015 0.0022∑
1 000 63 625 4 054 864 1.000

*To compare discrete frequency data with continuous probability density functions fi must be divided by Nw. Here, N = sample size = 1000;
w = width of class interval = 1 kpsi.

Table 20–5

Worksheet for Ex. 20–4
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Figure 20–8

Histogram for Ex. 20–4 and
Ex. 20–5 with normal and
lognormal probability density
functions superposed.

EXAMPLE 20–5 Continue Ex. 20–4, but fit a lognormal density function.

Solution From Eqs. (20–18) and (20–19),

μy = ln μx − ln
√

1 + C2
x = ln 63.625 − 1

2 ln(1 + 0.040 7732) = 4.1522

σ̂y =
√

ln
(
1 + C2

x

) =
√

ln(1 + 0.040 7732) = 0.0408

The probability density of a lognormal distribution is given in Eq. (20–17) as

g(x) = 1

x (0.0408)
√

2π
exp

[
−1

2

(
ln x − 4.1522

0.0408

)2
]

for x > 0

For example, g(63.625) = 0.1537. This lognormal density has been added to Table 20–5.
Plot the lognormal PDF superposed on the histogram of Ex. 20–4 along with the normal
density. As seen in Fig. 20–8, both normal and lognormal densities fit well.

The Uniform Distribution

The uniform distribution is a closed-interval distribution that arises when the chance of
an observation is the same as the chance for any other observation. If a is the lower
bound and b is the upper bound, then the probability density function (PDF) for the uni-
form distribution is

f (x) =
{

1/(b − a) a ≤ x ≤ b

0 a > x > b
(20–20)
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The cumulative density function (CDF), the integral of f (x), is thus linear in the range
a ≤ x ≤ b given by

F(x) =
{ 0 x < a

(x − a)/(b − a) a ≤ x ≤ b
1 x > b

(20–21)

The mean and standard deviation are given by

μx = a + b

2
(20–22)

σ̂x = b − a

2
√

3
(20–23)

The uniform distribution arises, among other places in manufacturing, where a
part is mass-produced in an automatic operation and the dimension gradually changes
through tool wear and increased tool forces between setups. If n is the part sequence or
processing number, and n f is the sequence number of the final-produced part before
another setup, then the dimension x graphs linearly when plotted against the sequence
number n. If the last proof part made during the setup has a dimension xi , and the final
part produced has the dimension x f , the magnitude of the dimension at sequence num-
ber n is given by

x = xi + (x f − xi )
n

n f
= xi + (x f − xi )F(x) (a)

since n/n f is a good approximation to the CDF. Solving Eq. (a) for F(x) gives

F(x) = x − xi

x f − xi
(b)

Compare this equation with the middle form of Eq. (20–21).

The Weibull Distribution

The Weibull distribution does not arise from classical statistics and is usually not
included in elementary statistics textbooks. It is far more likely to be discussed and used
in works dealing with experimental results, particularly reliability. It is a chameleon dis-
tribution, asymmetrical, with different values for the mean and the median. It contains
within it a good approximation of the normal distribution as well as an exact represen-
tation of the exponential distribution. Most reliability information comes from labora-
tory and field service data, and because of its flexibility, the Weibull distribution is
widely used.

The expression for reliability is the value of the cumulative density function com-
plementary to unity. For the Weibull this value is both explicit and simple. The reliability
given by the three-parameter Weibull distribution is

R(x) = exp

[
−

(
x − x0

θ − x0

)b
]

x ≥ x0 ≥ 0 (20–24)

where the three parameters are

x0 = minimum, guaranteed, value of x

θ = a characteristic or scale value (θ ≥ x0)

b = a shape parameter (b > 0)
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Figure 20–9

The density function of the
Weibull distribution showing
the effect of skewness of the
shape parameter b.

1To estimate the Weibull parameters from data, see J. E. Shigley and C. R. Mischke, Mechanical
Engineering Design, 5th ed., 1989, McGraw-Hill, New York, Sec. 4–12. The Weibull parameters are
determined for the data given in Ex. 2–4.

For the special case when x0 = 0, Eq. (20–24) becomes the two-parameter Weibull

R(x) = exp

[
−

( x

θ

)b
]

x ≥ 0 (20–25)

The characteristic variate θ serves a role similar to the mean and represents a value of
x below which lie 63.2 percent of the observations.

The shape parameter b controls the skewness of the distribution. Figure 20–9
shows that large b’s skew the distribution to the right and small b’s skew it to the left.
In the range 3.3 < b < 3.5, approximate symmetry is obtained along with a good
approximation to the normal distribution. When b = 1, the distribution is exponential.

Given a specific required reliability, solving Eq. (20–24) for x yields

x = x0 + (θ − x0)

(
ln

1

R

)1/b

(20–26)

To find the probability function, we note that

F(x) = 1 − R(x) (a)

f (x) = d F(x)

dx
= −d R(x)

dx
(b)

Thus, for the Weibull,

f (x) =
⎧⎨⎩

b

θ − x0

(
x − x0

θ − x0

)b−1

exp

[
−

(
x − x0

θ − x0

)b
]

x ≥ x0 ≥ 0

0 x ≤ x0

(20–27)

The mean and standard deviation are given by

μx = x0 + (θ − x0) �(1 + 1/b) (20–28)

σ̂x = (θ − x0)
√

�(1 + 2/b) − �2(1 + 1/b) (20–29)

where � is the gamma function and may be found tabulated in Table A–34. The nota-
tion for a Weibull distribution is1

x = W(x0, θ, b) (20–30)
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EXAMPLE 20–6 The Weibull is used extensively for expressing the reliability of rolling-contact bearings
(see Sec. 11–4). Here, the variate x is put in dimensionless form as x = L/L10 where
L is bearing life, in say, number of cycles; and L10 is the manufacturer’s rated life of the
bearing where 10 percent of the bearings have failed (90 percent reliability).

Construct the distributional properties of a 02–30 mm deep-groove ball bearing if
the Weibull parameters are x0 = 0.0200, θ = 4.459, and b = 1.483. Find the mean,
median, L90, and standard deviation.

Solution From Eq. (20–28) the mean dimensionless life is

Answer μx = x0 + (θ − x0)�(1 + 1/b)

= 0.0200 + (4.459 − 0.0200)�(1 + 1/1.483) = 4.033

This says that the average bearing life is 4.033 L10. The median dimensionless life
corresponds to R = 0.5, or L50, and from Eq. (20–26) is

Answer x0.5 = x0 + (θ − x0)

(
ln

1

0.5

)1/b

= 0.0200 + (4.459 − 0.0200)

(
ln

1

0.5

)1/1.483

= 3.487

For L90, R = 0.1, the dimensionless life x is

Answer x0.90 = 0.0200 + (4.459 − 0.0200)

(
ln

1

0.1

)1/1.483

= 7.810

The standard deviation of the dimensionless life is given by Eq. (20–29):

Answer σ̂x = (θ − x0)
√

�(1 + 2/b) − �2(1 + 1/b)

= (4.459 − 0.0200)
√

�(1 + 2/1.483) − �2(1 + 1/1.483) = 2.753

20–4 Propagation of Error
In the equation for axial stress

σ = F

A
(a)

suppose both the force F and the area A are random variables. Then Eq. (a) is written as

� = F
A

(b)

and we see that the stress � is also a random variable. When Eq. (b) is solved, the errors
inherent in F and in A are said to be propagated to the stress variate �. It is not hard to
think of many other relations where this will occur.

Suppose we wish to add the two variates x and y to form a third variate z. This is
written as

z = x + y (c)

The mean is given as

μz = μx + μy (d)
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Table 20–6

Means and Standard

Deviations for Simple

Algebraic Operations

on Independent

(Uncorrelated) Random

Variables

Note: The coefficient of variation of variate x is Cx = σ̂x/μx . For small COVs their square is small compared
to unity, so the first term in the powers of x expressions are excellent approximations. For correlated
products and quotients see Charles R. Mischke, Mathematical Model Building, 2nd rev. ed., Iowa State
University Press, Ames, 1980, App. C.

2See E. B. Haugen, Probabilistic Mechanical Design, Wiley, New York, 1980, pp. 49–54.

The standard deviation follows the Pythagorean theorem. Thus the standard deviation
for both addition and subtraction of independent variables is

σ̂z =
√

σ̂ 2
x + σ̂ 2

y (e)

Similar relations have been worked out for a variety of functions and are displayed in
Table 20–6. The results shown can easily be combined to form other functions.

An unanswered question here is what is the distribution that results from the vari-
ous operations? For answers to this question, statisticians use closure theorems and the
central limit theorem.2

Function Mean ( ) Standard Deviation ( )

a a 0

x μ x ˆ σx

x + a μ x + a ˆ σx

ax aμ x a ˆ σx

x + y μ x + μ y ˆ σ2
x + ˆ σ2

y

1/2

x − y μ x − μ y ˆ σ2
x + ˆ σ2

y

1/2

xy μ xμ y μ xμ y C2
x + C2

y + C2
x C2

y

1/2

x/y μ x/μ y μ x/μ y C2
x + C2

y 1 + C2
y

1/2

xn μn
x 1 + n(n − 1)

2
C2

x | n| μn
x Cx 1 + (n − 1)2

4
C2

x

1/x
1

μ x
1 + C2

x
Cx

μ x
1 + C2

x

1/x2 1

μ2
x

1 + 3C2
x

2Cx

μ2
x

1 + 9

4
C2

x

1/x3 1

μ3
x

1 + 6C2
x

3Cx

μ3
x

1 + 4C2
x

1/x4 1

μ4
x

1 + 10 C2
x

4Cx

μ4
x

1 + 25

4
C2

x

√
x

√
μ x 1 − 1

8
C2

x

√
μ x

2
Cx 1 + 1

16
C2

x

x2 μ2
x 1 + C2

x 2μ2
x Cx 1 + 1

4
C2

x

x3 μ3
x 1 + 3C2

x 3μ3
x Cx 1 + C2

x

x4 μ4
x 1 + 6C2

x 4μ4
x Cx 1 + 9

4
C2

x

ˆ
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EXAMPLE 20–7 A round bar subject to a bending load has a diameter d = LN(2.000, 0.002) in. This
equivalency states that the mean diameter is μd = 2.000 in and the standard deviation is
σ̂d = 0.002 in. Find the mean and the standard deviation of the second moment of area.

Solution The second moment of area is given by the equation

I = πd4

64

The coefficient of variation of the diameter is

Cd = σ̂d

μd
= 0.002

2
= 0.001

Using Table 20–6, we find

Answer μI = (π/64)μ4
d

(
1 + 6C2

d

) = (π/64)(2.000)4[1 + 6(0.001)2] = 0.785 in4

Answer σ̂I = 4μ4
dCd

[
1 + (9/4)C2

d

] = 4(2.000)4(0.001)[1 + (9/4)(0.001)2] = 0.064 in4

These results can be expressed in the form

I = LN(0.785, 0.064) = 0.785LN(1, 0.0815) in4

20–5 Linear Regression
Statisticians use a process of analysis called regression to obtain a curve that best fits a
set of data points. The process is called linear regression when the best-fitting straight
line is to be found. The meaning of the word best is open to argument, because there
can be many meanings. The usual method, and the one employed here, regards a line as
“best” if it minimizes the squares of the deviations of the data points from the line.

Figure 20–10 shows a set of data points approximated by the line AB. The standard
equation of a straight line is

y = mx + b (20–31)

x

b

y

A

B m
1

Figure 20–10

Set of data points approximated
by regression line AB.
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3From this point on, for economy of notation, the limits of the summation of i(1, N ) will not be displayed.

where m is the slope and b is the y intercept. Consider a set of N data points (xi , yi ). In
general, the best-fit line will not intersect a data point. Thus, we can write

yi = mxi + b + εi (b)

where εi = yi − y is the deviation between the data point and the line. The sum of the
squares of the deviations is given by3

E =
∑

ε2
i =

∑
(yi − mxi − b)2 (c)

Minimizing E , the sum of the squared errors, expecting a stationary point minimum,
requires ∂E/∂m = 0 and ∂E/∂b = 0. This results in two simultaneous equations for
the slope and y intercept denoted as m̂ and b̂, respectively. Solving these equations
results in

m̂ = N
∑

xi yi − ∑
xi

∑
yi

N
∑

x2
i − (∑

xi
)2 =

∑
xi yi − N x̄ ȳ∑
x2

i − N x̄2
(20–32)

b̂ =
∑

yi − m̂
∑

xi

N
= ȳ − m̂x̄ (20–33)

Once you have established a slope and an intercept, the next point of interest is to
discover how well x and y correlate with each other. If the data points are scattered all
over the xy plane, there is obviously no correlation. But if all the data points coincide
with the regression line, then there is perfect correlation. Most statistical data will be in
between these extremes. A correlation coefficient r, having the range −1 ≤ r ≤ +1,
has been devised to answer this question. The formula is

r = m̂
sx

sy
(20–34)

where sx and sy are the standard deviations of the x coordinates and y coordinates of the
data, respectively. If r = 0, there is no correlation; if r = ±1, there is perfect correla-
tion. A positive or negative r indicates that the regression line has a positive or negative
slope, respectively.

The standard deviations for m̂ and b̂ are given by

sm̂ = sy·x√∑
(xi − x̄)2

(20–35)

sb̂ = sy·x

√
1

N
+ x̄2∑

(xi − x̄)2 (20–36)

where

sy·x =
√∑

y2
i − b̂

∑
yi − m̂

∑
xi yi

N − 2
(20–37)

is the standard deviation of the scatter of the data from the regression line.
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Table 20–7

Worksheet for Ex. 20–6

y x
�, psi �

5 033 0.000 20 0.000 000 040 1.006 600 25 330 089 0.000 000 130

10 068 0.000 30 0.000 000 090 3.020 400 101 364 624 0.000 000 069

15 104 0.000 50 0.000 000 250 7.552 000 228 130 816 0.000 000 004

20 143 0.000 65 0.000 000 423 13.092 950 405 740 449 0.000 000 008

35 261 0.001 15 0.000 001 323 40.557 050 1 243 761 289 0.000 000 348∑
85 615 0.002 80 0.000 002 125 65.229 000 2 004 328 267 0.000 000 556

Note: ȳ = 85 615/5 = 17 123 psi, x̄ = 0.002 80/5 = 0.000 56.

EXAMPLE 20–8 A specimen of a medium carbon steel was tested in tension. With an extensometer in
place, the specimen was loaded then unloaded, to see if the extensometer reading returned
to the no-load reading, then the next higher load was applied. The loads and extensometer
elongations were reduced to stress σ and strain ε, producing the following data:

σ, psi 5033 10 068 15 104 20 143 35 267

ε 0.000 20 0.000 30 0.000 50 0.000 65 0.001 15

Find the mean Young’s modulus Ē and its standard deviation. Since the extensometer
seems to have an initial reading at no load, use a y = mx + b regression.

Solution From Table 20–7, x̄ = 0.002 80/5 = 0.000 56, ȳ = 85 615/5 = 17 123. Note that a
regression line always contains the data centroid. From Eq. (20–32)

Answer m̂ = 5(65.229) − 0.0028(85 615)

5(0.000 002 125) − 0.00282
= 31.03(106) psi = Ē

From Eq. (20–33)

b̂ = 0.000 002 125(85 615) − 0.002 80(65.229)

5(0.000 002 125) − 0.00282
= −254.69 psi

From Eq. (20–34), obtaining sx and sy from a statistics calculator routine,

r̂ = m̂sx

sy
= 31 031 597.85(3 162 163 10−4)

11 601.11
= 0.998

From Eq. (20–37), the scatter about the regression line is measured by the standard
deviation sy·x and is equal to

sy·x =
√∑

y2 − b̂
∑

y − m̂
∑

xy

N − 2

=
√

2 004 328 267 − (−254.69)85 615 − 31.03(106)(65.229)

5 − 2

= 811.1 psi

x2 xy y2 (x − x)2
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Figure 20–11

The data from Ex. 20–8 are
plotted. The regression line
passes through the data
centroid and among the data
points, minimizing the squared
deviations.

PROBLEMS
20–1 At a constant amplitude, completely reversed bending stress level, the cycles-to-failure experi-

ence with 69 specimens of 5160H steel from 1.25-in hexagonal bar stock was as follows:

L 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

f 2 1 3 5 8 12 6 10 8 5 2 3 2 1 0 1

where L is the life in thousands of cycles, and f is the class frequency of failures.
(a) Construct a histogram with class frequency f as ordinate.
(b) Estimate the mean and standard deviation of the life for the population from which the sample

was drawn.

20–2 Determinations of the ultimate tensile strength Sut of stainless steel sheet (17-7PH, condition TH
1050), in sizes from 0.016 to 0.062 in, in 197 tests combined into seven classes were

Sut, kpsi 174 182 190 198 206 214 222

Frequency, f 6 9 44 67 53 12 6

where f is the class frequency. Find the mean and standard deviation.

From Eq. (20–35), the standard deviation of m̂ is

Answer sm̂ = sy·x√∑
(x − x̄)2

= 811.1√
0.000 000 558

= 1.086(106) psi = sE

See Fig. 20–11 for the regression plot.
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20–3 A total of 58 AISI 1018 cold-drawn steel bars were tested to determine the 0.2 percent offset yield
strength Sy . The results were

Sy, kpsi 64 68 72 76 80 84 88 92

f 2 6 6 9 19 10 4 2

where Sy is the class midpoint and f is the class frequency. Estimate the mean and standard
deviation of Sy and its PDF assuming a normal distribution.

20–4 The base 10 logarithm of 55 cycles-to-failure observations on specimens subjected to a constant
stress level in fatigue have been classified as follows:

y 5.625 5.875 6.125 6.375 6.625 6.875 7.125 7.375 7.625 7.875 8.125

f 1 0 0 3 3 6 14 15 10 2 1

Here y is the class midpoint and f is the class frequency.
(a) Estimate the mean and standard deviation of the population from which the sample was taken

and establish the normal PDF.
(b) Plot the histogram and superpose the predicted class frequency from the normal fit.

20–5 A 1
2 -in nominal diameter round is formed in an automatic screw machine operation that is

initially set to produce a 0.5000-in diameter and is reset when tool wear produces diameters in
excess of 0.5008 in. The stream of parts is thoroughly mixed and produces a uniform distribution
of diameters.
(a) Estimate the mean and standard deviation of the large batch of parts from setup to reset.
(b) Find the expressions for the PDF and CDF of the population.
(c) If, by inspection, the diameters less than 0.5002 in are removed, what are the new PDF and CDF

as well as the mean and standard deviation of the diameters of the survivors of the inspection?

20–6 The only detail drawing of a machine part has a dimension smudged beyond legibility. The round
in question was created in an automatic screw machine and 1000 parts are in stock. A random sam-
ple of 50 parts gave a mean dimension of d̄ = 0.6241 in and a standard deviation of s = 0.000 581 in.
Toleranced dimensions elsewhere are given in integral thousandths of an inch. Estimate the miss-
ing information on the drawing.

20–7 (a) The CDF of the variate x is F(x) = 0.555x − 33, where x is in millimeters. Find the PDF, the
mean, the standard deviation, and the range numbers of the distribution.

(b) In the expression σ = F/A, the force F = LN(3600, 300) lbf and the area is A =
LN(0.112, 0.001) in2. Estimate the mean, standard deviation, coefficient of variation, and
distribution of �.

20–8 A regression model of the form y = a1 x + a2 x2 is desired. From the normal equations∑
y = a1

∑
x + a2

∑
x2∑

xy = a1

∑
x2 + a2

∑
x3

show that

a1 =
∑

y
∑

x3 − ∑
xy

∑
x2∑

x
∑

x3 − (∑
x2

)2
and a2 =

∑
x

∑
xy − ∑

y
∑

x2∑
x

∑
x3 − (∑

x2
)2
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For the data set

x 0.0 0.2 0.4 0.6 0.8 1.0

y 0.01 0.15 0.25 0.25 0.17 −0.01

find the regression equation and plot the data with the regression model.

20–9 R. W. Landgraf reported the following axial (push–pull) endurance strengths for steels of differ-
ing ultimate strengths:

Su Se
� Su Se

� Su Se
�

65 29.5 325 114 280 96

60 30 238 109 295 99

82 45 130 67 120 48

64 48 207 87 180 84

101 51 205 96 213 75

119 50 225 99 242 106

195 78 325 117 134 60

210 87 355 122 145 64

230 105 225 87 227 116

265 105

(a) Plot the data with S′
e as ordinate and Su as abscissa.

(b) Using the y = mx + b linear regression model, find the regression line and plot.

20–10 In fatigue studies a parabola of the Gerber type

σa

Se
+

(
σm

Sut

)2

= 1

is useful (see Sec. 6–12). Solved for σa the preceding equation becomes

σa = Se − Se

S2
ut

σ 2
m

This implies a regression model of the form y = a0 + a2 x2 . Show that the normal equations are∑
y = na0 + a2

∑
x2∑

xy = a0

∑
x + a2

∑
x3

and that

a0 =
∑

x3
∑

y − ∑
x2

∑
xy

n
∑

x3 − ∑
x

∑
x2

and a2 = n
∑

xy − ∑
x

∑
y

n
∑

x3 − ∑
x

∑
x2

Plot the data

x 20 40 60 80

y 19 17 13 7

superposed on a plot of the regression line.
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20–11 Consider the following data collected on a single helical coil extension spring with an initial
extension Fi and a spring rate k suspected of being related by the equation F = Fi + kx where
x is the deflection beyond initial. The data are

x, in 0.2 0.4 0.6 0.8 1.0 2.0

F, lbf 7.1 10.3 12.1 13.8 16.2 25.2

(a) Estimate the mean and standard deviation of the initial tension Fi .
(b) Estimate the mean and standard deviation of the spring rate k.

20–12 In the expression for uniaxial strain � � �/l, the elongation is specified as �∼ (0.0015,0.000 092)

in and the length as l ∼ (2.0000,0.0081) in. What are the mean, the standard deviation, and the
coefficient of variation of the corresponding strain �.

20–13 In Hooke’s law for uniaxial stress, � � �E, the strain is given as � ∼ (0.0005, 0.000 034) and
Young’s modulus as E ∼ (29.5, 0.885) Mpsi. Find the mean, the standard deviation, and the coef-
ficient of variation of the corresponding stress � in psi.

20–14 The stretch of a uniform rod in tension is given by the formula δ = Fl/AE . Suppose the terms in
this equation are random variables and have parameters as follows:

F ∼ (14.7, 1.3) kip A ∼ (0.226, 0.003) in2

l ∼ (1.5, 0.004) in E ∼ (29.5, 0.885) Mpsi

Estimate the mean, the standard deviation, and the coefficient of variation of the corresponding
elongation � in inches.

20–15 The maximum bending stress in a round bar in flexure occurs in the outer surface and is given by
the equation � = 32M/πd3. If the moment is specified as M ∼ (15 000,1350) lbf · in and the
diameter is d ∼ (2.00,0.005) in, find the mean, the standard deviation, and the coefficient of vari-
ation of the corresponding stress � in psi.

20–16 When a production process is wider than the tolerance interval, inspection rejects a low-end scrap
fraction α with x < x1 and an upper-end scrap fraction β with dimensions x > x2 . The surviving
population has a new density function g(x) related to the original f (x) by a multiplier a. This is
because any two observations xi and xj will have the same relative probability of occurrence as
before. Show that

a = 1

F(x2) − F(x1)
= 1

1 − (α + β)

and

g(x) =
{ f (x)

F(x2) − F(x1)
= f (x)

1 − (α + β)
x1 ≤ x ≤ x2

0 otherwise

20–17 An automatic screw machine produces a run of parts with a uniform distribution d =
U[0.748, 0.751] in because it was not reset when the diameters reached 0.750 in. The square
brackets contain range numbers.
(a) Estimate the mean, standard deviation, and PDF of the original production run if the parts are

thoroughly mixed.
(b) Using the results of Prob. 20–16, find the new mean, standard deviation, and PDF. Superpose

the PDF plots and compare.
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20–18 A springmaker is supplying helical coil springs meeting the requirement for a spring rate k of
10 ± 1 lbf/in. The test program of the springmaker shows that the distribution of spring rate is
well approximated by a normal distribution. The experience with inspection has shown that
8.1 percent are scrapped with k < 9 and 5.5 percent are scrapped with k > 11. Estimate the prob-
ability density function.

20–19 The lives of parts are often expressed as the number of cycles of operation that a specified per-
centage of a population will exceed before experiencing failure. The symbol L is used to desig-
nate this definition of life. Thus we can speak of L10 life as the number of cycles to failure
exceeded by 90 percent of a population of parts. Using the mean and standard deviation for the
data of Prob. 20–1, a normal distribution model, estimate the corresponding L10 life.

20–20 Fit a normal distribution to the histogram of Prob. 20–1. Superpose the probability density func-
tion on the f/(Nw) histographic plot. 

20–21 For Prob. 20–2, plot the histogram with f/(Nw) as ordinate and superpose a normal distribution
density function on the histographic plot.

20–22 For Prob. 20–3, plot the histogram with f/(Nw) as ordinate and superpose a normal distribution
probability density function on the histographic plot.

20–23 A 1018 cold-drawn steel has a 0.2 percent tensile yield strength Sy = N(78.4, 5.90) kpsi. A round
rod in tension is subjected to a load P = N(40, 8.5) kip. If rod diameter d is 1.000 in, what is the
probability that a random static tensile load P from P imposed on the shank with a 0.2 percent
tensile load Sy from Sy will not yield?

20–24 A hot-rolled 1035 steel has a 0.2 percent tensile yield strength Sy = LN(49.6, 3.81) kpsi. A
round rod in tension is subjected to a load P = LN(30, 5.1) kip. If the rod diameter d is 1.000 in,
what is the probability that a random static tensile load P from P on a shank with a 0.2 percent
yield strength Sy from Sy will not yield?

20–25 The tensile 0.2 percent offset yield strength of AISI 1137 cold-drawn steel rounds up to 1 inch in
diameter from 2 mills and 25 heats is reported histographically as follows:

Sy 93 95 97 99 101 103 105 107 109 111

f 19 25 38 17 12 10 5 4 4 2

where Sy is the class midpoint in kpsi and f is the number in each class. Presuming the distribu-
tion is normal, what is the yield strength exceeded by 99 percent of the population? 

20–26 Repeat Prob. 20–25, presuming the distribution is lognormal. What is the yield strength exceeded
by 99 percent of the population? Compare the normal fit of Prob. 20–25 with the lognormal fit by
superposing the PDFs and the histographic PDF.

20–27 A 1046 steel, water-quenched and tempered for 2 h at 1210°F, has a mean tensile strength of
105 kpsi and a yield mean strength of 82 kpsi. Test data from endurance strength testing at
104-cycle life give (S′

f e)104 = W[79, 86.2, 2.60] kpsi. What are the mean, standard deviation,
and coefficient of variation of (S′

f e)104 ?

20–28 An ASTM grade 40 cast iron has the following result from testing for ultimate tensile strength:
Sut = W[27.7, 46.2, 4.38] kpsi. Find the mean and standard deviation of Sut , and estimate the
chance that the ultimate strength is less than 40 kpsi.

20–29 A cold-drawn 301SS stainless steel has an ultimate tensile strength given by Sut = W[151.9,
193.6, 8.00] kpsi. Find the mean and standard deviation.
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20–30 A 100-70-04 nodular iron has tensile and yield strengths described by

Sut = W[47.6, 125.6, 11.84] kpsi

Sy = W[64.1, 81.0, 3.77] kpsi

What is the chance that Sut is less than 100 kpsi? What is the chance that Sy is less than 70 kpsi?

20–31 A 1038 heat-treated steel bolt in finished form provided the material from which a tensile test
specimen was made. The testing of many such bolts led to the description Sut = W[122.3, 134.6,
3.64] kpsi. What is the probability that the bolts meet the SAE grade 5 requirement of a minimum
tensile strength of 120 kpsi? What is the probability that the bolts meet the SAE grade 7 require-
ment of a minimum tensile strength of 133 kpsi?

20–32 A 5160H steel was tested in fatigue and the distribution of cycles to failure at constant stress level
was found to be n = W[36.9,133.6, 2.66] in 103 cycles. Plot the PDF of n and the PDF of the
lognormal distribution having the same mean and standard deviation. What is the L10 life (see
Prob. 20–19) predicted by both distributions?

20–33 A material was tested at steady fully reversed loading to determine the number of cycles to fail-
ure using 100 specimens. The results were

(10�5)L 3.05 3.55 4.05 4.55 5.05 5.55 6.05 6.55 7.05 7.55 8.05 8.55 9.05 9.55 10.05

f 3 7 11 16 21 13 13 6 2 0 4 3 0 0 1

where L is the life in cycles and f is the number in each class. Assuming a lognormal distribution,
plot the theoretical PDF and the histographic PDF for comparison.

20–34 The ultimate tensile strength of an AISI 1117 cold-drawn steel is Weibullian, with Su = W[70.3,
84.4, 2.01]. What are the mean, the standard deviation, and the coefficient of variation?

20–35 A 60-45-15 nodular iron has a 0.2 percent yield strength Sy with a mean of 49.0 kpsi, a standard
deviation of 4.2 kpsi, and a guaranteed yield strength of 33.8 kpsi. What are the Weibull para-
meters θ and b?

20–36 A 35018 malleable iron has a 0.2 percent offset yield strength given by the Weibull distribution
Sy = W[34.7, 39.0, 2.93] kpsi. What are the mean, the standard deviation, and the coefficient of
variation?

20–37 The histographic results of steady load tests on 237 rolling-contact bearings are:

L 1 2 3 4 5 6 7 8 9 10 11 12

f 11 22 38 57 31 19 15 12 11 9 7 5

where L is the life in millions of revolutions and f is the number of failures. Fit a lognormal
distribution to these data and plot the PDF with the histographic PDF superposed. From the log-
normal distribution, estimate the life at which 10 percent of the bearings under this steady load-
ing will have failed.
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Name Symbol Factor

exa E 1 000 000 000 000 000 000 = 1018

peta P 1 000 000 000 000 000 = 1015

tera T 1 000 000 000 000 = 1012

giga G 1 000 000 000 = 109

mega M 1 000 000 = 106

kilo k 1 000 = 103

hecto‡ h 100 = 102

deka‡ da 10 = 101

deci‡ d 0.1 = 10−1

centi‡ c 0.01 = 10−2

milli m 0.001 = 10−3

micro μ 0.000 001 = 10−6

nano n 0.000 000 001 = 10−9

pico p 0.000 000 000 001 = 10−12

femto f 0.000 000 000 000 001 = 10−15

atto a 0.000 000 000 000 000 001 = 10−18

*If possible use multiple and submultiple prefixes in steps of 1000.
†Spaces are used in SI instead of commas to group numbers to avoid confusion with the
practice in some European countries of using commas for decimal points.
‡Not recommended but sometimes encountered.

Table A–1

Standard SI Prefixes*†
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Multiply Input By Factor To Get Output Multiply Input By Factor To Get Output
X A Y X A Y

British thermal 1055 joule, J
unit, Btu

Btu/second, Btu/s 1.05 kilowatt, kW

calorie 4.19 joule, J

centimeter of 1.333 kilopascal, kPa
mercury (0◦C)

centipoise, cP 0.001 pascal-second, 
Pa · s

degree (angle) 0.0174 radian, rad

foot, ft 0.305 meter, m

foot2, ft2 0.0929 meter2, m2

foot/minute, 0.0051 meter/second, m/s
ft/min

foot-pound, ft · lbf 1.35 joule, J

foot-pound/ 1.35 watt, W
second, ft · lbf/s 

foot/second, ft/s 0.305 meter/second, m/s

gallon (U.S.), gal 3.785 liter, L

horsepower, hp 0.746 kilowatt, kW 

inch, in 0.0254 meter, m 

inch, in 25.4 millimeter, mm 

inch2, in2 645 millimeter2, mm2

inch of mercury 3.386 kilopascal, kPa
(32◦F)

kilopound, kip 4.45 kilonewton, kN

kilopound/inch2, 6.89 megapascal, MPa
kpsi (ksi) (N/mm2)

mass, lbf · s2/in 175 kilogram, kg

*Approximate.
†The U.S. Customary system unit of the pound-force is often abbreviated as lbf to distinguish it from the pound-mass, which is abbreviated as lbm.

Table A–2

Conversion Factors A to Convert Input X to Output Y Using the Formula Y = AX*

mile, mi 1.610 kilometer, km

mile/hour, mi/h 1.61 kilometer/hour, km/h

mile/hour, mi/h 0.447 meter/second, m/s

moment of inertia, 0.0421 kilogram-meter2,
lbm · ft2 kg · m2

moment of inertia, 293 kilogram-millimeter2,
lbm · in2 kg · mm2

moment of section 41.6 centimeter4, cm4

(second moment 
of area), in4

ounce-force, oz 0.278 newton, N

ounce-mass 0.0311 kilogram, kg

pound, lbf† 4.45 newton, N

pound-foot, lbf · ft 1.36 newton-meter, N · m

pound/foot2, lbf/ft2 47.9 pascal, Pa

pound-inch, lbf · in 0.113 joule, J

pound-inch, lbf · in 0.113 newton-meter, N · m

pound/inch, lbf/in 175 newton/meter, N/m

pound/inch2, psi 6.89 kilopascal, kPa
(lbf/in2)

pound-mass, lbm 0.454 kilogram, kg

pound-mass/ 0.454 kilogram/second,
second, lbm/s kg/s

quart (U.S. liquid), qt 946 milliliter, mL

section modulus, in3 16.4 centimeter3, cm3

slug 14.6 kilogram, kg

ton (short 2000 lbm) 907 kilogram, kg

yard, yd 0.914 meter, m
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Axial and
Bending and Torsion Direct Shear

M, T I, J c, r �, F A �, 

N · m∗ m4 m Pa N∗ m2 Pa

N · m cm4 cm MPa (N/mm2) N† mm2 MPa (N/mm2)

N · m† mm4 mm GPa kN m2 kPa

kN · m cm4 cm GPa kN† mm2 GPa

N · mm† mm4 mm MPa (N/mm2)

*Basic relation.
†Often preferred.

Bending Deflection Torsional Deflection
F, w l l I E y T l J G �

N* m m4 Pa m N · m* m m4 Pa rad

kN† mm mm4 GPa mm N · m† mm mm4 GPa rad

kN m m4 GPa μm N · mm mm mm4 MPa (N/mm2) rad

N mm mm4 kPa m N · m cm cm4 MPa (N/mm2) rad

∗Basic relation.
†Often preferred.

Table A–4

Optional SI Units for

Bending Deflection

y = f (Fl3/El) or 

y = f (wl4/El) and

Torsional Deflection

θ = Tl/GJ

Table A–3

Optional SI Units for

Bending Stress

σ = Mc/l, Torsion Stress

τ = Tr/J, Axial Stress

σ = F/A, and Direct 

Shear Stress τ = F/A

Table A–5

Physical Constants of Materials

Modulus of Modulus of
Elasticity E Rigidity G Poisson’s Unit Weight w

Material Mpsi GPa Mpsi GPa Ratio � lbf/in3 lbf/ft3 kN/m3

Aluminum (all alloys) 10.4 71.7 3.9 26.9 0.333 0.098 169 26.6

Beryllium copper 18.0 124.0 7.0 48.3 0.285 0.297 513 80.6

Brass 15.4 106.0 5.82 40.1 0.324 0.309 534 83.8

Carbon steel 30.0 207.0 11.5 79.3 0.292 0.282 487 76.5

Cast iron (gray) 14.5 100.0 6.0 41.4 0.211 0.260 450 70.6

Copper 17.2 119.0 6.49 44.7 0.326 0.322 556 87.3

Douglas fir 1.6 11.0 0.6 4.1 0.33 0.016 28 4.3

Glass 6.7 46.2 2.7 18.6 0.245 0.094 162 25.4

Inconel 31.0 214.0 11.0 75.8 0.290 0.307 530 83.3

Lead 5.3 36.5 1.9 13.1 0.425 0.411 710 111.5

Magnesium 6.5 44.8 2.4 16.5 0.350 0.065 112 17.6

Molybdenum 48.0 331.0 17.0 117.0 0.307 0.368 636 100.0

Monel metal 26.0 179.0 9.5 65.5 0.320 0.319 551 86.6

Nickel silver 18.5 127.0 7.0 48.3 0.322 0.316 546 85.8

Nickel steel 30.0 207.0 11.5 79.3 0.291 0.280 484 76.0

Phosphor bronze 16.1 111.0 6.0 41.4 0.349 0.295 510 80.1

Stainless steel (18-8) 27.6 190.0 10.6 73.1 0.305 0.280 484 76.0

Titanium alloys 16.5 114.0 6.2 42.4 0.340 0.160 276 43.4

Useful Tables 1007

bud29281_appa_1003-1058.qxd  12/28/09  5:58 PM  Page 1007



1008 Mechanical Engineering Design

w = weight per foot, lbf/ft
m = mass per meter, kg/m
A = area, in2 (cm2)
I = second moment of area, in4 (cm4)
k = radius of gyration, in (cm)
y = centroidal distance, in (cm)
Z = section modulus, in3, (cm3)

Size, in w A l1�1 k1�1 Z1�1 y k3�3

1 × 1 × 1
8 0.80 0.234 0.021 0.298 0.029 0.290 0.191

× 1
4 1.49 0.437 0.036 0.287 0.054 0.336 0.193

1 1
2 × 1 1

2 × 1
8 1.23 0.36 0.074 0.45 0.068 0.41 0.29

× 1
4 2.34 0.69 0.135 0.44 0.130 0.46 0.29

2 × 2 × 1
8 1.65 0.484 0.190 0.626 0.131 0.546 0.398

× 1
4 3.19 0.938 0.348 0.609 0.247 0.592 0.391

× 3
8 4.7 1.36 0.479 0.594 0.351 0.636 0.389

2 1
2 × 2 1

2 × 1
4 4.1 1.19 0.703 0.769 0.394 0.717 0.491

× 3
8 5.9 1.73 0.984 0.753 0.566 0.762 0.487

3 × 3 × 1
4 4.9 1.44 1.24 0.930 0.577 0.842 0.592

× 3
8 7.2 2.11 1.76 0.913 0.833 0.888 0.587

× 1
2 9.4 2.75 2.22 0.898 1.07 0.932 0.584

3 1
2 × 3 1

2 × 1
4 5.8 1.69 2.01 1.09 0.794 0.968 0.694

× 3
8 8.5 2.48 2.87 1.07 1.15 1.01 0.687

× 1
2 11.1 3.25 3.64 1.06 1.49 1.06 0.683

4 × 4 × 1
4 6.6 1.94 3.04 1.25 1.05 1.09 0.795

× 3
8 9.8 2.86 4.36 1.23 1.52 1.14 0.788

× 1
2 12.8 3.75 5.56 1.22 1.97 1.18 0.782

× 5
8 15.7 4.61 6.66 1.20 2.40 1.23 0.779

6 × 6 × 3
8 14.9 4.36 15.4 1.88 3.53 1.64 1.19

× 1
2 19.6 5.75 19.9 1.86 4.61 1.68 1.18

× 5
8 24.2 7.11 24.2 1.84 5.66 1.73 1.18

× 3
4 28.7 8.44 28.2 1.83 6.66 1.78 1.17

Table A–6

Properties of Structural-

Steel Equal Legs

Angles*†
1 1

3

3

2

2

y 
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Size, mm m A l1�1 k1�1 Z1�1 y k3�3

25 × 25 × 3 1.11 1.42 0.80 0.75 0.45 0.72 0.48

× 4 1.45 1.85 1.01 0.74 0.58 0.76 0.48

× 5 1.77 2.26 1.20 0.73 0.71 0.80 0.48

40 × 40 × 4 2.42 3.08 4.47 1.21 1.55 1.12 0.78

× 5 2.97 3.79 5.43 1.20 1.91 1.16 0.77

× 6 3.52 4.48 6.31 1.19 2.26 1.20 0.77

50 × 50 × 5 3.77 4.80 11.0 1.51 3.05 1.40 0.97

× 6 4.47 5.59 12.8 1.50 3.61 1.45 0.97

× 8 5.82 7.41 16.3 1.48 4.68 1.52 0.96

60 × 60 × 5 4.57 5.82 19.4 1.82 4.45 1.64 1.17

× 6 5.42 6.91 22.8 1.82 5.29 1.69 1.17

× 8 7.09 9.03 29.2 1.80 6.89 1.77 1.16

× 10 8.69 11.1 34.9 1.78 8.41 1.85 1.16

80 × 80 × 6 7.34 9.35 55.8 2.44 9.57 2.17 1.57

× 8 9.63 12.3 72.2 2.43 12.6 2.26 1.56

× 10 11.9 15.1 87.5 2.41 15.4 2.34 1.55

100 ×100 × 8 12.2 15.5 145 3.06 19.9 2.74 1.96

× 12 17.8 22.7 207 3.02 29.1 2.90 1.94

× 15 21.9 27.9 249 2.98 35.6 3.02 1.93

150 × 150 × 10 23.0 29.3 624 4.62 56.9 4.03 2.97

× 12 27.3 34.8 737 4.60 67.7 4.12 2.95

× 15 33.8 43.0 898 4.57 83.5 4.25 2.93

× 18 40.1 51.0 1050 4.54 98.7 4.37 2.92

*Metric sizes also available in sizes of 45, 70, 90, 120, and 200 mm.
†These sizes are also available in aluminum alloy.

Table A–6

Properties of Structural-

Steel Equal Legs

Angles*†

(Continued)
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a, b = size, in (mm)
w = weight per foot, lbf/ft
m = mass per meter, kg/m
t = web thickness, in (mm)

A = area, in2 (cm2)
I = second moment of area, in4 (cm4)
k = radius of gyration, in (cm)
x = centroidal distance, in (cm)
Z = section modulus, in3 (cm3)

a, in b, in t A w l1�1 k1�1 Z1�1 l2�2 k2�2 Z2�2 x

3 1.410 0.170 1.21 4.1 1.66 1.17 1.10 0.197 0.404 0.202 0.436

3 1.498 0.258 1.47 5.0 1.85 1.12 1.24 0.247 0.410 0.233 0.438

3 1.596 0.356 1.76 6.0 2.07 1.08 1.38 0.305 0.416 0.268 0.455

4 1.580 0.180 1.57 5.4 3.85 1.56 1.93 0.319 0.449 0.283 0.457

4 1.720 0.321 2.13 7.25 4.59 1.47 2.29 0.433 0.450 0.343 0.459

5 1.750 0.190 1.97 6.7 7.49 1.95 3.00 0.479 0.493 0.378 0.484

5 1.885 0.325 2.64 9.0 8.90 1.83 3.56 0.632 0.489 0.450 0.478

6 1.920 0.200 2.40 8.2 13.1 2.34 4.38 0.693 0.537 0.492 0.511

6 2.034 0.314 3.09 10.5 15.2 2.22 5.06 0.866 0.529 0.564 0.499

6 2.157 0.437 3.83 13.0 17.4 2.13 5.80 1.05 0.525 0.642 0.514

7 2.090 0.210 2.87 9.8 21.3 2.72 6.08 0.968 0.581 0.625 0.540

7 2.194 0.314 3.60 12.25 24.2 2.60 6.93 1.17 0.571 0.703 0.525

7 2.299 0.419 4.33 14.75 27.2 2.51 7.78 1.38 0.564 0.779 0.532

8 2.260 0.220 3.36 11.5 32.3 3.10 8.10 1.30 0.625 0.781 0.571

8 2.343 0.303 4.04 13.75 36.2 2.99 9.03 1.53 0.615 0.854 0.553

8 2.527 0.487 5.51 18.75 44.0 2.82 11.0 1.98 0.599 1.01 0.565

9 2.430 0.230 3.91 13.4 47.7 3.49 10.6 1.75 0.669 0.962 0.601

9 2.485 0.285 4.41 15.0 51.0 3.40 11.3 1.93 0.661 1.01 0.586

9 2.648 0.448 5.88 20.0 60.9 3.22 13.5 2.42 0.647 1.17 0.583

10 2.600 0.240 4.49 15.3 67.4 3.87 13.5 2.28 0.713 1.16 0.634

10 2.739 0.379 5.88 20.0 78.9 3.66 15.8 2.81 0.693 1.32 0.606

10 2.886 0.526 7.35 25.0 91.2 3.52 18.2 3.36 0.676 1.48 0.617

10 3.033 0.673 8.82 30.0 103 3.43 20.7 3.95 0.669 1.66 0.649

12 3.047 0.387 7.35 25.0 144 4.43 24.1 4.47 0.780 1.89 0.674

12 3.170 0.510 8.82 30.0 162 4.29 27.0 5.14 0.763 2.06 0.674

Table A–7

Properties of Structural-Steel Channels∗

b

x

a

t

1

2

2

1
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a � b, mm m t A I1�1 k1�1 Z1�1 I2�2 k2�2 Z2�2 x

76 × 38 6.70 5.1 8.53 74.14 2.95 19.46 10.66 1.12 4.07 1.19

102 × 51 10.42 6.1 13.28 207.7 3.95 40.89 29.10 1.48 8.16 1.51

127 × 64 14.90 6.4 18.98 482.5 5.04 75.99 67.23 1.88 15.25 1.94

152 × 76 17.88 6.4 22.77 851.5 6.12 111.8 113.8 2.24 21.05 2.21

152 × 89 23.84 7.1 30.36 1166 6.20 153.0 215.1 2.66 35.70 2.86

178 × 76 20.84 6.6 26.54 1337 7.10 150.4 134.0 2.25 24.72 2.20

178 × 89 26.81 7.6 34.15 1753 7.16 197.2 241.0 2.66 39.29 2.76

203 × 76 23.82 7.1 30.34 1950 8.02 192.0 151.3 2.23 27.59 2.13

203 × 89 29.78 8.1 37.94 2491 8.10 245.2 264.4 2.64 42.34 2.65

229 × 76 26.06 7.6 33.20 2610 8.87 228.3 158.7 2.19 28.22 2.00

229 × 89 32.76 8.6 41.73 3387 9.01 296.4 285.0 2.61 44.82 2.53

254 × 76 28.29 8.1 36.03 3367 9.67 265.1 162.6 2.12 28.21 1.86

254 × 89 35.74 9.1 45.42 4448 9.88 350.2 302.4 2.58 46.70 2.42

305 × 89 41.69 10.2 53.11 7061 11.5 463.3 325.4 2.48 48.49 2.18

305 × 102 46.18 10.2 58.83 8214 11.8 539.0 499.5 2.91 66.59 2.66

*These sizes are also available in aluminum alloy.

Table A–7

Properties of Structural-Steel Channels (Continued)
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wa = unit weight of aluminum tubing, lbf/ft
ws = unit weight of steel tubing, lbf/ft
m = unit mass, kg/m
A = area, in2 (cm2)
I = second moment of area, in4 (cm4)
J = second polar moment of area, in4 (cm4)
k = radius of gyration, in (cm)
Z = section modulus, in3 (cm3)

d, t = size (OD) and thickness, in (mm)

Size, in wa ws A l k Z J

1 × 1
8 0.416 1.128 0.344 0.034 0.313 0.067 0.067

1 × 1
4 0.713 2.003 0.589 0.046 0.280 0.092 0.092

1 1
2 × 1

8 0.653 1.769 0.540 0.129 0.488 0.172 0.257

1 1
2 × 1

4 1.188 3.338 0.982 0.199 0.451 0.266 0.399

2 × 1
8 0.891 2.670 0.736 0.325 0.664 0.325 0.650

2 × 1
4 1.663 4.673 1.374 0.537 0.625 0.537 1.074

2 1
2 × 1

8 1.129 3.050 0.933 0.660 0.841 0.528 1.319

2 1
2 × 1

4 2.138 6.008 1.767 1.132 0.800 0.906 2.276

3 × 1
4 2.614 7.343 2.160 2.059 0.976 1.373 4.117

3 × 3
8 3.742 10.51 3.093 2.718 0.938 1.812 5.436

4 × 3
16 2.717 7.654 2.246 4.090 1.350 2.045 8.180

4 × 3
8 5.167 14.52 4.271 7.090 1.289 3.544 14.180

Size, mm m A l k Z J

12 × 2 0.490 0.628 0.082 0.361 0.136 0.163

16 × 2 0.687 0.879 0.220 0.500 0.275 0.440

16 × 3 0.956 1.225 0.273 0.472 0.341 0.545

20 × 4 1.569 2.010 0.684 0.583 0.684 1.367

25 × 4 2.060 2.638 1.508 0.756 1.206 3.015

25 × 5 2.452 3.140 1.669 0.729 1.336 3.338

30 × 4 2.550 3.266 2.827 0.930 1.885 5.652

30 × 5 3.065 3.925 3.192 0.901 2.128 6.381

42 × 4 3.727 4.773 8.717 1.351 4.151 17.430

42 × 5 4.536 5.809 10.130 1.320 4.825 20.255

50 × 4 4.512 5.778 15.409 1.632 6.164 30.810

50 × 5 5.517 7.065 18.118 1.601 7.247 36.226

Table A–8

Properties of Round

Tubing
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Table A–9

Shear, Moment, and

Deflection of Beams

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

1 Cantilever—end load

R1 = V = F M1 = Fl

M = F(x − l)

y = Fx2

6E I
(x − 3l)

ymax = − Fl3

3E I

2 Cantilever—intermediate load

R1 = V = F M1 = Fa

MA B = F(x − a) MBC = 0

yA B = Fx2

6E I
(x − 3a)

yBC = Fa2

6E I
(a − 3x)

ymax = Fa2

6E I
(a − 3l)

x

F

l

y

R1

M1

x

V

+

x

M

–

x

F

CBA

l

y

R1

M1

a b

x

V

+

x

M

–

(continued)
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Table A–9

Shear, Moment, and

Deflection of Beams

(Continued) 

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

3 Cantilever—uniform load

R1 = wl M1 = wl2

2

V = w(l − x) M = −w

2
(l − x)2

y = wx2

24E I
(4lx − x2 − 6l2)

ymax = − wl4

8E I

4 Cantilever—moment load

R1 = V = 0 M1 = M = MB

y = MB x2

2E I
ymax = MBl2

2E I

x

l

w

y

R1

M1

x

V

+

x

M

–

MB

xB

A

l

y

R1

M1

x

V

x

M
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5 Simple supports—center load

R1 = R2 = F

2

VAB = R1 VBC = −R2

MAB = Fx

2
MBC = F

2
(l − x)

yAB = Fx

48E I
(4x2 − 3l2)

ymax = − Fl3

48E I

6 Simple supports—intermediate load

R1 = Fb

l
R2 = Fa

l

VA B = R1 VBC = −R2

MA B = Fbx

l
MBC = Fa

l
(l − x)

yA B = Fbx

6E Il
(x2 + b2 − l2)

yBC = Fa(l − x)

6E Il
(x2 + a2 − 2lx)

Table A–9

Shear, Moment, and

Deflection of Beams

(Continued) 

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

x

F

CBA

l

y

R1 R2

l / 2

x

V

+

–

x

M

+

x

F

CB

a

A

l

y

R1 R2

b

x

V

+

–

x

M

+

(continued)
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7 Simple supports—uniform load

R1 = R2 = wl

2
V = wl

2
− wx

M = wx

2
(l − x)

y = wx

24E I
(2lx2 − x3 − l3)

ymax = − 5wl4

384E I

8 Simple supports—moment load

R1 = R2 = MB

l
V = MB

l

MA B = MB x

l
MBC = MB

l
(x − l)

yA B = MB x

6E Il
(x2 + 3a2 − 6al + 2l2)

yBC = MB

6E Il
[x3 − 3lx2 + x(2l2 + 3a2) − 3a2l]

Table A–9

Shear, Moment, and

Deflection of Beams

(Continued) 

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

x

l

w

y

R1 R2

x

V

+

–

x

M

+

x
C

B
A

a

l

y

R1

R2

b

MB

x

V

+

x

M

+

–
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Table A–9

Shear, Moment, and

Deflection of Beams

(Continued) 

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

9 Simple supports—twin loads

R1 = R2 = F VA B = F VBC = 0

VC D = −F

MA B = Fx MBC = Fa MC D = F(l − x)

yA B = Fx

6E I
(x2 + 3a2 − 3la)

yBC = Fa

6E I
(3x2 + a2 − 3lx)

ymax = Fa

24E I
(4a2 − 3l2)

10 Simple supports—overhanging load

R1 = Fa

l
R2 = F

l
(l + a)

VAB = − Fa

l
VBC = F

MAB = − Fax

l
MBC = F(x − l − a)

yAB = Fax

6E Il
(l2 − x2)

yBC = F(x − l)

6E I
[(x − l)2 − a(3x − l)]

yC = − Fa2

3E I
(l + a)

x

F F

DB C

a

A

l

y

R1 R2

a

x

V

+

–

x

M

+

x

F

CBA

y

R2

R1

al

x

V

+

–

x

M

–

(continued)
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1018 Mechanical Engineering Design

11 One fixed and one simple support—center load

R1 = 11F

16
R2 = 5F

16
M1 = 3Fl

16

VA B = R1 VBC = −R2

MA B = F

16
(11x − 3l) MBC = 5F

16
(l − x)

yA B = Fx2

96E I
(11x − 9l)

yBC = F(l − x)

96E I
(5x2 + 2l2 − 10lx)

12 One fixed and one simple support—intermediate load

R1 = Fb

2l3
(3l2 − b2) R2 = Fa2

2l3
(3l − a)

M1 = Fb

2l2
(l2 − b2)

VA B = R1 VBC = −R2

MA B = Fb

2l3
[b2l − l3 + x(3l2 − b2)]

MBC = Fa2

2l3
(3l2 − 3lx − al + ax)

yA B = Fbx2

12E Il3
[3l(b2 − l2) + x(3l2 − b2)]

yBC = yA B − F(x − a)3

6E I

Table A–9

Shear, Moment, and

Deflection of Beams

(Continued) 

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

x
CA

l
y

R2

B

F

R1

M1

l / 2

x

V

+

–

x

M

+

–

x
CA

l
y

R2

B

F
a b

R1

M1

x

V

+

–

x

M

+

–
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13 One fixed and one simple support—uniform load

R1 = 5wl

8
R2 = 3wl

8
M1 = wl2

8

V = 5wl

8
− wx

M = −w

8
(4x2 − 5lx + l2)

y = wx2

48E I
(l − x)(2x − 3l)

14 Fixed supports—center load

R1 = R2 = F

2
M1 = M2 = Fl

8

VA B = −VBC = F

2

MA B = F

8
(4x − l) MBC = F

8
(3l − 4x)

yA B = Fx2

48E I
(4x − 3l)

ymax = − Fl3

192E I

Table A–9

Shear, Moment, and

Deflection of Beams

(Continued) 

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

x

l

y

R1

R2M1

x

V

+

–

x

M

+

–

x

l

y

A B

F

C

R1 R2

M1 M2

l / 2

x

V

+

–

x

M

+

– –

(continued)
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15 Fixed supports—intermediate load

R1 = Fb2

l3
(3a + b) R2 = Fa2

l3
(3b + a)

M1 = Fab2

l2
M2 = Fa2b

l2

VA B = R1 VBC = −R2

MA B = Fb2

l3
[x(3a + b) − al]

MBC = MA B − F(x − a)

yA B = Fb2 x2

6E Il3
[x(3a + b) − 3al]

yBC = Fa2(l − x)2

6E Il3
[(l − x)(3b + a) − 3bl]

16 Fixed supports—uniform load

R1 = R2 = wl

2
M1 = M2 = wl2

12

V = w

2
(l − 2x)

M = w

12
(6lx − 6x2 − l2)

y = − wx2

24E I
(l − x)2

ymax = − wl4

384E I

Table A–9

Shear, Moment, and

Deflection of Beams

(Continued) 

(Note: Force and

moment reactions are

positive in the directions

shown; equations for

shear force V and

bending moment M

follow the sign

conventions given in

Sec. 3–2.)

l

a

y

A B

F

x
C

R1 R2

M1 M2

b

x

V

+

–

x

M

+

– –

x

l

y

R1 R2

M1 M2

x

V

+

–

M

x
+

– –

bud29281_appa_1003-1058.qxd  12/28/09  2:43 PM  Page 1020



Useful Tables 1021

Z� 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3238 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.3 0.0107 0.0104 0.0102 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842

2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639

2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480

2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357

2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264

2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193

2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139

Table A–10

Cumulative Distribution Function of Normal (Gaussian) Distribution

�(zα ) =
∫ zα

−∞

1√
2π

exp

(
−u2

2

)
du

=
{

α zα ≤ 0
1 − α zα > 0

�(z�)

f (z)

�

0 z�

(continued)
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Table A–10

Cumulative Distribution Function of Normal (Gaussian) Distribution (Continued)

Z� 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 0.00135 0.03968 0.03687 0.03483 0.03337 0.03233 0.03159 0.03108 0.04723 0.04481

4 0.04317 0.04207 0.04133 0.05854 0.05541 0.05340 0.05211 0.05130 0.06793 0.06479

5 0.06287 0.06170 0.07996 0.07579 0.07333 0.07190 0.07107 0.08599 0.08332 0.08182

6 0.09987 0.09530 0.09282 0.09149 0.010777 0.010402 0.010206 0.010104 0.011523 0.011260

zα −1.282 −1.643 −1.960 −2.326 −2.576 −3.090 −3.291 −3.891 −4.417

F(zα) 0.10 0.05 0.025 0.010 0.005 0.001 0.0005 0.0001 0.000005

R(zα) 0.90 0.95 0.975 0.990 0.995 0.999 0.9995 0.9999 0.999995

Basic Tolerance Grades
Sizes IT6 IT7 IT8 IT9 IT10 IT11

0–3 0.006 0.010 0.014 0.025 0.040 0.060

3–6 0.008 0.012 0.018 0.030 0.048 0.075

6–10 0.009 0.015 0.022 0.036 0.058 0.090

10–18 0.011 0.018 0.027 0.043 0.070 0.110

18–30 0.013 0.021 0.033 0.052 0.084 0.130

30–50 0.016 0.025 0.039 0.062 0.100 0.160

50–80 0.019 0.030 0.046 0.074 0.120 0.190

80–120 0.022 0.035 0.054 0.087 0.140 0.220

120–180 0.025 0.040 0.063 0.100 0.160 0.250

180–250 0.029 0.046 0.072 0.115 0.185 0.290

250–315 0.032 0.052 0.081 0.130 0.210 0.320

315–400 0.036 0.057 0.089 0.140 0.230 0.360

Table A–11

A Selection of

International Tolerance

Grades—Metric Series

(Size Ranges Are for

Over the Lower Limit

and Including the Upper

Limit. All Values Are

in Millimeters)

Source: Preferred Metric Limits
and Fits, ANSI B4.2-1978.
See also BSI 4500.
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Table A–12

Fundamental Deviations for Shafts—Metric Series

(Size Ranges Are for Over the Lower Limit and Including the Upper Limit. All Values Are in Millimeters)

Source: Preferred Metric Limits and Fits, ANSI B4.2-1978. See also BSI 4500.

Basic Upper-Deviation Letter Lower-Deviation Letter
Sizes c d f g h k n p s u

0–3 −0.060 −0.020 −0.006 −0.002 0 0 +0.004 +0.006 +0.014 +0.018

3–6 −0.070 −0.030 −0.010 −0.004 0 +0.001 +0.008 +0.012 +0.019 +0.023

6–10 −0.080 −0.040 −0.013 −0.005 0 +0.001 +0.010 +0.015 +0.023 +0.028

10–14 −0.095 −0.050 −0.016 −0.006 0 +0.001 +0.012 +0.018 +0.028 +0.033

14–18 −0.095 −0.050 −0.016 −0.006 0 +0.001 +0.012 +0.018 +0.028 +0.033

18–24 −0.110 −0.065 −0.020 −0.007 0 +0.002 +0.015 +0.022 +0.035 +0.041

24–30 −0.110 −0.065 −0.020 −0.007 0 +0.002 +0.015 +0.022 +0.035 +0.048

30–40 −0.120 −0.080 −0.025 −0.009 0 +0.002 +0.017 +0.026 +0.043 +0.060

40–50 −0.130 −0.080 −0.025 −0.009 0 +0.002 +0.017 +0.026 +0.043 +0.070

50–65 −0.140 −0.100 −0.030 −0.010 0 +0.002 +0.020 +0.032 +0.053 +0.087

65–80 −0.150 −0.100 −0.030 −0.010 0 +0.002 +0.020 +0.032 +0.059 +0.102

80–100 −0.170 −0.120 −0.036 −0.012 0 +0.003 +0.023 +0.037 +0.071 +0.124

100–120 −0.180 −0.120 −0.036 −0.012 0 +0.003 +0.023 +0.037 +0.079 +0.144

120–140 −0.200 −0.145 −0.043 −0.014 0 +0.003 +0.027 +0.043 +0.092 +0.170

140–160 −0.210 −0.145 −0.043 −0.014 0 +0.003 +0.027 +0.043 +0.100 +0.190

160–180 −0.230 −0.145 −0.043 −0.014 0 +0.003 +0.027 +0.043 +0.108 +0.210

180–200 −0.240 −0.170 −0.050 −0.015 0 +0.004 +0.031 +0.050 +0.122 +0.236

200–225 −0.260 −0.170 −0.050 −0.015 0 +0.004 +0.031 +0.050 +0.130 +0.258

225–250 −0.280 −0.170 −0.050 −0.015 0 +0.004 +0.031 +0.050 +0.140 +0.284

250–280 −0.300 −0.190 −0.056 −0.017 0 +0.004 +0.034 +0.056 +0.158 +0.315

280–315 −0.330 −0.190 −0.056 −0.017 0 +0.004 +0.034 +0.056 +0.170 +0.350

315–355 −0.360 −0.210 −0.062 −0.018 0 +0.004 +0.037 +0.062 +0.190 +0.390

355–400 −0.400 −0.210 −0.062 −0.018 0 +0.004 +0.037 +0.062 +0.208 +0.435

bud29281_appa_1003-1058.qxd  12/28/09  2:43 PM  Page 1023



1024 Mechanical Engineering Design

Basic Tolerance Grades
Sizes IT6 IT7 IT8 IT9 IT10 IT11

0–0.12 0.0002 0.0004 0.0006 0.0010 0.0016 0.0024

0.12–0.24 0.0003 0.0005 0.0007 0.0012 0.0019 0.0030

0.24–0.40 0.0004 0.0006 0.0009 0.0014 0.0023 0.0035

0.40–0.72 0.0004 0.0007 0.0011 0.0017 0.0028 0.0043

0.72–1.20 0.0005 0.0008 0.0013 0.0020 0.0033 0.0051

1.20–2.00 0.0006 0.0010 0.0015 0.0024 0.0039 0.0063

2.00–3.20 0.0007 0.0012 0.0018 0.0029 0.0047 0.0075

3.20–4.80 0.0009 0.0014 0.0021 0.0034 0.0055 0.0087

4.80–7.20 0.0010 0.0016 0.0025 0.0039 0.0063 0.0098

7.20–10.00 0.0011 0.0018 0.0028 0.0045 0.0073 0.0114

10.00–12.60 0.0013 0.0020 0.0032 0.0051 0.0083 0.0126

12.60–16.00 0.0014 0.0022 0.0035 0.0055 0.0091 0.0142

Table A–13

A Selection of

International Tolerance

Grades—Inch Series

(Size Ranges Are for

Over the Lower Limit 

and Including the Upper

Limit. All Values Are in

Inches, Converted from

Table A–11)
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1
0
2
5

Basic Upper-Deviation Letter Lower-Deviation Letter
Sizes c d f g h k n p s u

0–0.12 −0.0024 −0.0008 −0.0002 −0.0001 0 0 +0.0002 +0.0002 +0.0006 +0.0007

0.12–0.24 −0.0028 −0.0012 −0.0004 −0.0002 0 0 +0.0003 +0.0005 +0.0007 +0.0009

0.24–0.40 −0.0031 −0.0016 −0.0005 −0.0002 0 0 +0.0004 +0.0006 +0.0009 +0.0011

0.40–0.72 −0.0037 −0.0020 −0.0006 −0.0002 0 0 +0.0005 +0.0007 +0.0011 +0.0013

0.72–0.96 −0.0043 −0.0026 −0.0008 −0.0003 0 +0.0001 +0.0006 +0.0009 +0.0014 +0.0016

0.96–1.20 −0.0043 −0.0026 −0.0008 −0.0003 0 +0.0001 +0.0006 +0.0009 +0.0014 +0.0019

1.20–1.60 −0.0047 −0.0031 −0.0010 −0.0004 0 +0.0001 +0.0007 +0.0010 +0.0017 +0.0024

1.60–2.00 −0.0051 −0.0031 −0.0010 −0.0004 0 +0.0001 +0.0007 +0.0010 +0.0017 +0.0028

2.00–2.60 −0.0055 −0.0039 −0.0012 −0.0004 0 +0.0001 +0.0008 +0.0013 +0.0021 +0.0034

2.60–3.20 −0.0059 −0.0039 −0.0012 −0.0004 0 +0.0001 +0.0008 +0.0013 +0.0023 +0.0040

3.20–4.00 −0.0067 −0.0047 −0.0014 −0.0005 0 +0.0001 +0.0009 +0.0015 +0.0028 +0.0049

4.00–4.80 −0.0071 −0.0047 −0.0014 −0.0005 0 +0.0001 +0.0009 +0.0015 +0.0031 +0.0057

4.80–5.60 −0.0079 −0.0057 −0.0017 −0.0006 0 +0.0001 +0.0011 +0.0017 +0.0036 +0.0067

5.60–6.40 −0.0083 −0.0057 −0.0017 −0.0006 0 +0.0001 +0.0011 +0.0017 +0.0039 +0.0075

6.40–7.20 −0.0091 −0.0057 −0.0017 −0.0006 0 +0.0001 +0.0011 +0.0017 +0.0043 +0.0083

7.20–8.00 −0.0094 −0.0067 −0.0020 −0.0006 0 +0.0002 +0.0012 +0.0020 +0.0048 +0.0093

8.00–9.00 −0.0102 −0.0067 −0.0020 −0.0006 0 +0.0002 +0.0012 +0.0020 +0.0051 +0.0102

9.00–10.00 −0.0110 −0.0067 −0.0020 −0.0006 0 +0.0002 +0.0012 +0.0020 +0.0055 +0.0112

10.00–11.20 −0.0118 −0.0075 −0.0022 −0.0007 0 +0.0002 +0.0013 +0.0022 +0.0062 +0.0124

11.20–12.60 −0.0130 −0.0075 −0.0022 −0.0007 0 +0.0002 +0.0013 +0.0022 +0.0067 +0.0130

12.60–14.20 −0.0142 −0.0083 −0.0024 −0.0007 0 +0.0002 +0.0015 +0.0024 +0.0075 +0.0154

14.20–16.00 −0.0157 −0.0083 −0.0024 −0.0007 0 +0.0002 +0.0015 +0.0024 +0.0082 +0.0171

Table A–14

Fundamental Deviations for Shafts—Inch Series (Size Ranges Are for Over the Lower Limit and Including the Upper Limit. All Values Are in

Inches, Converted from Table A–12)
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*t

Figure A–15–1

Bar in tension or simple
compression with a transverse
hole. σ0 = F/A, where
A = (w − d)t and t is the
thickness.

Kt

d

F F

d/w
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2.0

2.2

2.4

2.6

2.8

3.0

w

Figure A–15–2

Rectangular bar with a
transverse hole in bending.
σ0 = Mc/I , where
I = (w − d)h3/12.

Kt

d

d/w
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.0

1.4

1.8

2.2

2.6

3.0

w

MM
0.25

1.0

2.0

�

d /h = 0

0.5
h

Kt

r

FF

r /d
0

1.5

1.2

1.1

1.05

1.0

1.4

1.8

2.2

2.6

3.0

dw
w /d = 3

0.05 0.10 0.15 0.20 0.25 0.30

Figure A–15–3

Notched rectangular bar in
tension or simple compression.
σ0 = F/A, where A = dt and t
is the thickness.
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*t (Continued)

1.5

1.10

1.05

1.02

w/d = �

Kt

r

r /d
0 0.05 0.10 0.15 0.20 0.25 0.30

1.0

1.4

1.8

2.2

2.6

3.0

dw MM

1.02

Kt

r/d
0 0.05 0.10 0.15 0.20 0.25 0.30

1.0

1.4

1.8

2.2

2.6

3.0

r

dD

D/d = 1.50

1.05

1.10

F F

Kt

r/d
0 0.05 0.10 0.15 0.20 0.25 0.30

1.0

1.4

1.8

2.2

2.6

3.0

r

dD

D/d = 1.02

3

1.31.1

1.05 MM

Figure A–15–4

Notched rectangular bar in
bending. σ0 = Mc/I , where
c = d/2, I = td3/12, and t is
the thickness.

Figure A–15–5

Rectangular filleted bar in
tension or simple compression.
σ0 = F/A, where A = dt and 
t is the thickness.

Figure A–15–6

Rectangular filleted bar in
bending. σ0 = Mc/I , where
c = d/2, I = td3/12, t is the
thickness.

*Factors from R. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March
1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, 
a Penton Media Inc. publication.

(continued)
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*t (Continued)

Figure A–15–7

Round shaft with shoulder fillet
in tension. σ0 = F/A, where
A = πd2/4.

Figure A–15–8

Round shaft with shoulder fillet
in torsion. τ0 = T c/J , where
c = d/2 and J = πd4/32.

Figure A–15–9

Round shaft with shoulder fillet
in bending. σ0 = Mc/I , where
c = d/2 and I = πd4/64.

Kt

r/d
0 0.05 0.10 0.15 0.20 0.25 0.30
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1.8

2.2

2.6
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FF

1.05

1.02

1.10

D/d = 1.50

dD

Kts

r/d

0 0.05 0.10 0.15 0.20 0.25 0.30
1.0

1.4

1.8

2.2

2.6

3.0

D/d = 2
1.09

1.20 1.33

r

TT
D d

Kt

r/d

0 0.05 0.10 0.15 0.20 0.25 0.30
1.0

1.4

1.8

2.2

2.6

3.0

D/d = 3

1.02

1.5

1.10

1.05

r

MD dM
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*t (Continued)

Figure A–15–10

Round shaft in torsion with
transverse hole.

Figure A–15–11

Round shaft in bending 
with a transverse hole. σ0 =
M/[(π D3/32) − (d D2/6)],
approximately.

Kts

d /D
0 0.05 0.10 0.15 0.20 0.25 0.30

2.4

2.8

3.2

3.6

4.0

J
c

T
B

d
T

�D3

16
dD2

6
= – (approx)

A
D

Kts, A

Kts, B

Kt

d /D
0 0.05 0.10 0.15 0.20 0.25 0.30

1.0

1.4

1.8

2.2

2.6

3.0
d

D

MM

Figure A–15–12

Plate loaded in tension by a 
pin through a hole. σ0 = F/A,
where A = (w − d)t . When
clearance exists, increase Kt

35 to 50 percent. (M. M. Frocht
and H. N. Hill, “Stress-
Concentration Factors around
a Central Circular Hole in a
Plate Loaded through a Pin in
Hole,” J. Appl. Mechanics, 
vol. 7, no. 1, March 1940,
p. A-5.)

d
h

t

Kt

d /w
0 0.1 0.2 0.3 0.4 0.60.5 0.80.7

1

3

5

7

9

11

w

h/w = 0.35

h/w � 1.0

h/w = 0.50

F

F/2 F/2

(continued)

*Factors from R. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March
1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a
Penton Media Inc. publication.
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Charts of Theoretical Stress-Concentration Factors K*t (Continued)

*Factors from R. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March 1951,
p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a Penton
Media Inc. publication.
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Figure A–15–13

Grooved round bar in tension.
σ0 = F/A, where A = πd2/4.

Figure A–15–14

Grooved round bar in bending.
σ0 = Mc/ l , where c = d/2
and I = πd4/64.

Figure A–15–15

Grooved round bar in torsion.
τ0 = T c/J, where c = d/2 and
J = πd4/32.
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*t (Continued)

Figure A–15–16

Round shaft with flat-bottom
groove in bending and/or
tension.

σ0 = 4F

πd 2
+ 32M

πd 3

Source: W. D. Pilkey, Peterson’s
Stress-Concentration Factors,
2nd ed. John Wiley & Sons,
New York, 1997, p. 115.

Kt

2.0
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1.00
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a/t
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d
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t
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(continued)
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*t (Continued)

Figure A–15–17

Round shaft with flat-bottom
groove in torsion.

τ0 = 16T

πd3

Source: W. D. Pilkey, Peterson’s
Stress-Concentration Factors,
2nd ed. John Wiley & Sons,
New York, 1997, p. 133
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Table A–16

Approximate Stress-

Concentration Factor Kt

for Bending of a Round

Bar or Tube with a

Transverse Round Hole

Source: R. E. Peterson, Stress-
Concentration Factors, Wiley,
New York, 1974, pp. 146, 235.

The nominal bending stress is σ0 = M/Znet where Znet is a reduced
value of the section modulus and is defined by

Znet = π A

32D
(D4 − d4)

Values of A are listed in the table. Use d = 0 for a solid bar

d/D

0.9 0.6 0
a/D A Kt A Kt A Kt

0.050 0.92 2.63 0.91 2.55 0.88 2.42

0.075 0.89 2.55 0.88 2.43 0.86 2.35

0.10 0.86 2.49 0.85 2.36 0.83 2.27

0.125 0.82 2.41 0.82 2.32 0.80 2.20

0.15 0.79 2.39 0.79 2.29 0.76 2.15

0.175 0.76 2.38 0.75 2.26 0.72 2.10

0.20 0.73 2.39 0.72 2.23 0.68 2.07

0.225 0.69 2.40 0.68 2.21 0.65 2.04

0.25 0.67 2.42 0.64 2.18 0.61 2.00

0.275 0.66 2.48 0.61 2.16 0.58 1.97

0.30 0.64 2.52 0.58 2.14 0.54 1.94

M M

D d

a

(continued)
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Table A–16 (Continued)

Approximate Stress-Concentration Factors Kts for a Round Bar or Tube Having a Transverse Round Hole and

Loaded in Torsion Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 148, 244.

T
TD a d

The maximum stress occurs on the inside of the hole, slightly below the shaft surface. The nominal shear stress is τ0 = T D/2Jnet,
where Jnet is a reduced value of the second polar moment of area and is defined by

Jnet = π A(D4 − d4)

32

Values of A are listed in the table. Use d = 0 for a solid bar.

d/D

0.9 0.8 0.6 0.4 0
a/D A Kts A Kts A Kts A Kts A Kts

0.05 0.96 1.78 0.95 1.77

0.075 0.95 1.82 0.93 1.71

0.10 0.94 1.76 0.93 1.74 0.92 1.72 0.92 1.70 0.92 1.68

0.125 0.91 1.76 0.91 1.74 0.90 1.70 0.90 1.67 0.89 1.64

0.15 0.90 1.77 0.89 1.75 0.87 1.69 0.87 1.65 0.87 1.62

0.175 0.89 1.81 0.88 1.76 0.87 1.69 0.86 1.64 0.85 1.60

0.20 0.88 1.96 0.86 1.79 0.85 1.70 0.84 1.63 0.83 1.58

0.25 0.87 2.00 0.82 1.86 0.81 1.72 0.80 1.63 0.79 1.54

0.30 0.80 2.18 0.78 1.97 0.77 1.76 0.75 1.63 0.74 1.51

0.35 0.77 2.41 0.75 2.09 0.72 1.81 0.69 1.63 0.68 1.47

0.40 0.72 2.67 0.71 2.25 0.68 1.89 0.64 1.63 0.63 1.44
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Table A–17

Preferred Sizes and

Renard (R-Series)

Numbers 

(When a choice can be

made, use one of these

sizes; however, not all

parts or items are

available in all the sizes

shown in the table.)

Fraction of Inches

1
64 , 1

32 , 1
16 , 3

32 , 1
8 , 5

32 , 3
16 , 1

4 , 5
16 , 3

8 , 7
16 , 1

2 , 9
16 , 5

8 , 11
16 , 3

4 , 7
8 , 1, 1 1

4 , 1 1
2 , 1 3

4 , 2, 2 1
4 , 2 1

2 , 2 3
4 , 3, 

3 1
4 , 3 1

2 , 3 3
4 , 4, 4 1

4 , 4 1
2 , 4 3

4 , 5, 5 1
4 , 5 1

2 , 5 3
4 , 6, 6 1

2 , 7, 7 1
2 , 8, 8 1

2 , 9, 9 1
2 , 10, 10 1

2 , 11, 11 1
2 , 12, 

12 1
2 , 13, 13 1

2 , 14, 14 1
2 , 15, 15 1

2 , 16, 16 1
2 , 17, 17 1

2 , 18, 18 1
2 , 19, 19 1

2 , 20

Decimal Inches

0.010, 0.012, 0.016, 0.020, 0.025, 0.032, 0.040, 0.05, 0.06, 0.08, 0.10, 0.12, 0.16, 0.20, 0.24, 0.30,

0.40, 0.50, 0.60, 0.80, 1.00, 1.20, 1.40, 1.60, 1.80, 2.0, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2,

4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 7.0, 7.5, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 

13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20

Millimeters

0.05, 0.06, 0.08, 0.10, 0.12, 0.16, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.0, 1.1, 1.2,

1.4, 1.5, 1.6, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10, 11, 12, 14,

16, 18, 20, 22, 25, 28, 30, 32, 35, 40, 45, 50, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300

Renard Numbers*

1st choice, R5: 1, 1.6, 2.5, 4, 6.3, 10

2d choice, R10: 1.25, 2, 3.15, 5, 8

3d choice, R20: 1.12, 1.4, 1.8, 2.24, 2.8, 3.55, 4.5, 5.6, 7.1, 9

4th choice, R40: 1.06, 1.18, 1.32, 1.5, 1.7, 1.9, 2.12, 2.36, 2.65, 3, 3.35, 3.75, 4.25, 4.75, 5.3, 6,
6.7, 7.5, 8.5, 9.5

*May be multiplied or divided by powers of 10.
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Part 1 Properties of Sections

A = area

G = location of centroid

Ix =
∫

y2 d A = second moment of area about x axis

Iy =
∫

x2 d A = second moment of area about y axis

Ix y =
∫

xy d A = mixed moment of area about x and y axes

JG =
∫

r2 d A =
∫

(x2 + y2) d A = Ix + Iy

= second polar moment of area about axis through G

k2
x = Ix /A = squared radius of gyration about x axis

Rectangle

A = bh Ix = bh3

12
Iy = b3h

12
Ix y = 0

Circle

A = π D2

4
Ix = Iy = π D4

64
Ixy = 0 JG = π D4

32

Hollow circle

A = π

4
(D2 − d2) Ix = Iy = π

64
(D4 − d4) Ixy = 0 JG = π

32
(D4 − d4)

Table A–18

Geometric Properties

b

h x

y
b
2

h
2

G

x

y

G

D

x

y

G

Dd
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Table A–18

Geometric Properties

(Continued)
Right triangles

A = bh

2
Ix = bh3

36
Iy = b3h

36
Ix y = −b2h2

72

Right triangles

A = bh

2
Ix = bh3

36
Iy = b3h

36
Ix y = b2h2

72

Quarter-circles

A = πr2

4
Ix = Iy = r4

(
π

16
− 4

9π

)
Ix y = r4

(
1

8
− 4

9π

)
Quarter-circles

A = πr2

4
Ix = Iy = r4

(
π

16
− 4

9π

)
Ix y = r4

(
4

9π
− 1

8

)

x

x

G

Gh h

b

b

y y

h
3

b
3

b
3

h
3

h

x

x
h

b

b

y y

h
3

b
3

b
3

h
3

G

G

r

y

x

4r
3�

4r
3�

r

y

x

4r
3�

4r
3�

G
G

r

y

x

4r
3�

4r
3�

r

y

x

4r
3�

4r
3�

G

G

(continued)
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Table A–18

Geometric Properties

(Continued)

Part 2 Properties of Solids (� � Density, Weight per Unit Volume)

Rods

m = πd2lρ

4g
Iy = Iz = ml2

12

Round disks

m = πd2tρ

4g
Ix = md2

8
Iy = Iz = md2

16

Rectangular prisms

m = abcρ

g
Ix = m

12
(a2 + b2) Iy = m

12
(a2 + c2) Iz = m

12
(b2 + c2)

Cylinders

m = πd2lρ

4g
Ix = md2

8
Iy = Iz = m

48
(3d2 + 4l2)

Hollow cylinders

m = π
(
d2

o − d2
i

)
lρ

4g
Ix = m

8

(
d2

o + d2
i

)
Iy = Iz = m

48

(
3d2

o + 3d2
i + 4l2

)

y

z

x

d
l

y

t
d

z
x

c
a

b

x
z

y

y

z
x

d

l

y

z
x

do

di

l
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Table A–19

American Standard Pipe

Wall Thickness, in
Nominal Outside Extra Double

Size, Diameter, Threads Standard Strong Extra
in in per inch No. 40 No. 80 Strong

1
8 0.405 27 0.070 0.098
1
4 0.540 18 0.090 0.122
3
8 0.675 18 0.093 0.129
1
2 0.840 14 0.111 0.151 0.307
3
4 1.050 14 0.115 0.157 0.318

1 1.315 11 1
2 0.136 0.183 0.369

1 1
4 1.660 11 1

2 0.143 0.195 0.393

1 1
2 1.900 11 1

2 0.148 0.204 0.411

2 2.375 11 1
2 0.158 0.223 0.447

2 1
2 2.875 8 0.208 0.282 0.565

3 3.500 8 0.221 0.306 0.615

3 1
2 4.000 8 0.231 0.325

4 4.500 8 0.242 0.344 0.690

5 5.563 8 0.263 0.383 0.768

6 6.625 8 0.286 0.441 0.884

8 8.625 8 0.329 0.510 0.895
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Table A–20

Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels 

[The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm ( 3
4 to 1 1

4 in). These

strengths are suitable for use with the design factor defined in Sec. 1–10, provided the materials conform to ASTM

A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a

specification.] Source: 1986 SAE Handbook, p. 2.15.

1 2 3 4 5 6 7 8
Tensile Yield

SAE and/or Process- Strength, Strength, Elongation in Reduction in Brinell
UNS No. AISI No. ing MPa (kpsi) MPa (kpsi) 2 in, % Area, % Hardness

G10060 1006 HR 300 (43) 170 (24) 30 55 86

CD 330 (48) 280 (41) 20 45 95

G10100 1010 HR 320 (47) 180 (26) 28 50 95

CD 370 (53) 300 (44) 20 40 105

G10150 1015 HR 340 (50) 190 (27.5) 28 50 101

CD 390 (56) 320 (47) 18 40 111

G10180 1018 HR 400 (58) 220 (32) 25 50 116

CD 440 (64) 370 (54) 15 40 126

G10200 1020 HR 380 (55) 210 (30) 25 50 111

CD 470 (68) 390 (57) 15 40 131

G10300 1030 HR 470 (68) 260 (37.5) 20 42 137

CD 520 (76) 440 (64) 12 35 149

G10350 1035 HR 500 (72) 270 (39.5) 18 40 143

CD 550 (80) 460 (67) 12 35 163

G10400 1040 HR 520 (76) 290 (42) 18 40 149

CD 590 (85) 490 (71) 12 35 170

G10450 1045 HR 570 (82) 310 (45) 16 40 163

CD 630 (91) 530 (77) 12 35 179

G10500 1050 HR 620 (90) 340 (49.5) 15 35 179

CD 690 (100) 580 (84) 10 30 197

G10600 1060 HR 680 (98) 370 (54) 12 30 201

G10800 1080 HR 770 (112) 420 (61.5) 10 25 229

G10950 1095 HR 830 (120) 460 (66) 10 25 248
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Table A–21

Mean Mechanical Properties of Some Heat-Treated Steels

[These are typical properties for materials normalized and annealed. The properties for quenched and tempered

(Q&T) steels are from a single heat. Because of the many variables, the properties listed are global averages. In all

cases, data were obtained from specimens of diameter 0.505 in, machined from 1-in rounds, and of gauge length 

2 in. unless noted, all specimens were oil-quenched.] Source: ASM Metals Reference Book, 2d ed., American Society for Metals,

Metals Park, Ohio, 1983.

1 2 3 4 5 6 7 8
Tensile Yield

Temperature Strength Strength, Elongation, Reduction Brinell
AISI No. Treatment °C (°F) MPa (kpsi) MPa (kpsi) % in Area, % Hardness

1030 Q&T* 205 (400) 848 (123) 648 (94) 17 47 495

Q&T* 315 (600) 800 (116) 621 (90) 19 53 401

Q&T* 425 (800) 731 (106) 579 (84) 23 60 302

Q&T* 540 (1000) 669 (97) 517 (75) 28 65 255

Q&T* 650 (1200) 586 (85) 441 (64) 32 70 207

Normalized 925 (1700) 521 (75) 345 (50) 32 61 149

Annealed 870 (1600) 430 (62) 317 (46) 35 64 137

1040 Q&T 205 (400) 779 (113) 593 (86) 19 48 262

Q&T 425 (800) 758 (110) 552 (80) 21 54 241

Q&T 650 (1200) 634 (92) 434 (63) 29 65 192

Normalized 900 (1650) 590 (86) 374 (54) 28 55 170

Annealed 790 (1450) 519 (75) 353 (51) 30 57 149

1050 Q&T* 205 (400) 1120 (163) 807 (117) 9 27 514

Q&T* 425 (800) 1090 (158) 793 (115) 13 36 444

Q&T* 650 (1200) 717 (104) 538 (78) 28 65 235

Normalized 900 (1650) 748 (108) 427 (62) 20 39 217

Annealed 790 (1450) 636 (92) 365 (53) 24 40 187

1060 Q&T 425 (800) 1080 (156) 765 (111) 14 41 311

Q&T 540 (1000) 965 (140) 669 (97) 17 45 277

Q&T 650 (1200) 800 (116) 524 (76) 23 54 229

Normalized 900 (1650) 776 (112) 421 (61) 18 37 229

Annealed 790 (1450) 626 (91) 372 (54) 22 38 179

1095 Q&T 315 (600) 1260 (183) 813 (118) 10 30 375

Q&T 425 (800) 1210 (176) 772 (112) 12 32 363

Q&T 540 (1000) 1090 (158) 676 (98) 15 37 321

Q&T 650 (1200) 896 (130) 552 (80) 21 47 269

Normalized 900 (1650) 1010 (147) 500 (72) 9 13 293

Annealed 790 (1450) 658 (95) 380 (55) 13 21 192

1141 Q&T 315 (600) 1460 (212) 1280 (186) 9 32 415

Q&T 540 (1000) 896 (130) 765 (111) 18 57 262

(continued)
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1042 Mechanical Engineering Design

1 2 3 4 5 6 7 8
Tensile Yield

Temperature Strength Strength, Elongation, Reduction Brinell
AISI No. Treatment °C (°F) MPa (kpsi) MPa (kpsi) % in Area, % Hardness

4130 Q&T* 205 (400) 1630 (236) 1460 (212) 10 41 467

Q&T* 315 (600) 1500 (217) 1380 (200) 11 43 435

Q&T* 425 (800) 1280 (186) 1190 (173) 13 49 380

Q&T* 540 (1000) 1030 (150) 910 (132) 17 57 315

Q&T* 650 (1200) 814 (118) 703 (102) 22 64 245

Normalized 870 (1600) 670 (97) 436 (63) 25 59 197

Annealed 865 (1585) 560 (81) 361 (52) 28 56 156

4140 Q&T 205 (400) 1770 (257) 1640 (238) 8 38 510

Q&T 315 (600) 1550 (225) 1430 (208) 9 43 445

Q&T 425 (800) 1250 (181) 1140 (165) 13 49 370

Q&T 540 (1000) 951 (138) 834 (121) 18 58 285

Q&T 650 (1200) 758 (110) 655 (95) 22 63 230

Normalized 870 (1600) 1020 (148) 655 (95) 18 47 302

Annealed 815 (1500) 655 (95) 417 (61) 26 57 197

4340 Q&T 315 (600) 1720 (250) 1590 (230) 10 40 486

Q&T 425 (800) 1470 (213) 1360 (198) 10 44 430

Q&T 540 (1000) 1170 (170) 1080 (156) 13 51 360

Q&T 650 (1200) 965 (140) 855 (124) 19 60 280

*Water-quenched

Table A–21 (Continued)

Mean Mechanical Properties of Some Heat-Treated Steels

[These are typical properties for materials normalized and annealed. The properties for quenched and tempered

(Q&T) steels are from a single heat. Because of the many variables, the properties listed are global averages. In all

cases, data were obtained from specimens of diameter 0.505 in, machined from 1-in rounds, and of gauge length 

2 in. Unless noted, all specimens were oil-quenched.] Source: ASM Metals Reference Book, 2d ed., American Society for Metals,

Metals Park, Ohio, 1983.
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Table A–22

Results of Tensile Tests of Some Metals* Source: J. Datsko, “Solid Materials,” chap. 32 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. 

(eds.-in-chief), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004, pp. 32.49–32.52.

Strength (Tensile)
Yield Ultimate Fracture, Coefficient Strain
Sy, Su, �f, �0, Strength, Fracture

Number Material Condition MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) Exponent m Strain �f

1018 Steel Annealed 220 (32.0) 341 (49.5) 628 (91.1)† 620 (90.0) 0.25 1.05

1144 Steel Annealed 358 (52.0) 646 (93.7) 898 (130)† 992 (144) 0.14 0.49

1212 Steel HR 193 (28.0) 424 (61.5) 729 (106)† 758 (110) 0.24 0.85

1045 Steel Q&T 600°F 1520 (220) 1580 (230) 2380 (345) 1880 (273)† 0.041 0.81

4142 Steel Q&T 600°F 1720 (250) 1930 (210) 2340 (340) 1760 (255)† 0.048 0.43

303 Stainless Annealed 241 (35.0) 601 (87.3) 1520 (221)† 1410 (205) 0.51 1.16
steel

304 Stainless Annealed 276 (40.0) 568 (82.4) 1600 (233)† 1270 (185) 0.45 1.67
steel

2011 Aluminum T6 169 (24.5) 324 (47.0) 325 (47.2)† 620 (90) 0.28 0.10
alloy

2024 Aluminum T4 296 (43.0) 446 (64.8) 533 (77.3)† 689 (100) 0.15 0.18
alloy

7075 Aluminum T6 542 (78.6) 593 (86.0) 706 (102)† 882 (128) 0.13 0.18
alloy

*Values from one or two heats and believed to be attainable using proper purchase specifications. The fracture strain may vary as much as 100 percent.
†Derived value.

1
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Table A–23

Mean Monotonic and Cyclic Stress-Strain Properties of Selected Steels Source: ASM Metals Reference Book, 2nd ed., American Society for Metals, Metals Park, 

Ohio, 1983, p. 217.

True Fatigue
Tensile Strain Strength Fatigue Fatigue Fatigue

Hard- Strength Reduction at Modulus of Coefficient Strength Ductility Ductility
Orienta- Description ness Sut in Area Fracture Elasticity E � ′

f Exponent Coefficient Exponent
Grade (a) tion (e) (f) HB MPa ksi % eef GPa 106 psi MPa ksi b ee ′

F c

A538A (b) L STA 405 1515 220 67 1.10 185 27 1655 240 −0.065 0.30 −0.62

A538B (b) L STA 460 1860 270 56 0.82 185 27 2135 310 −0.071 0.80 −0.71

A538C (b) L STA 480 2000 290 55 0.81 180 26 2240 325 −0.07 0.60 −0.75

AM-350 (c) L HR, A 1315 191 52 0.74 195 28 2800 406 −0.14 0.33 −0.84

AM-350 (c) L CD 496 1905 276 20 0.23 180 26 2690 390 −0.102 0.10 −0.42

Gainex (c) LT HR sheet 530 77 58 0.86 200 29.2 805 117 −0.07 0.86 −0.65

Gainex (c) L HR sheet 510 74 64 1.02 200 29.2 805 117 −0.071 0.86 −0.68

H-11 L Ausformed 660 2585 375 33 0.40 205 30 3170 460 −0.077 0.08 −0.74

RQC-100 (c) LT HR plate 290 940 136 43 0.56 205 30 1240 180 −0.07 0.66 −0.69

RQC-100 (c) L HR plate 290 930 135 67 1.02 205 30 1240 180 −0.07 0.66 −0.69

10B62 L Q&T 430 1640 238 38 0.89 195 28 1780 258 −0.067 0.32 −0.56

1005-1009 LT HR sheet 90 360 52 73 1.3 205 30 580 84 −0.09 0.15 −0.43

1005-1009 LT CD sheet 125 470 68 66 1.09 205 30 515 75 −0.059 0.30 −0.51

1005-1009 L CD sheet 125 415 60 64 1.02 200 29 540 78 −0.073 0.11 −0.41

1005-1009 L HR sheet 90 345 50 80 1.6 200 29 640 93 −0.109 0.10 −0.39

1015 L Normalized 80 415 60 68 1.14 205 30 825 120 −0.11 0.95 −0.64

1020 L HR plate 108 440 64 62 0.96 205 29.5 895 130 −0.12 0.41 −0.51

1040 L As forged 225 620 90 60 0.93 200 29 1540 223 −0.14 0.61 −0.57

1045 L Q&T 225 725 105 65 1.04 200 29 1225 178 −0.095 1.00 −0.66

1045 L Q&T 410 1450 210 51 0.72 200 29 1860 270 −0.073 0.60 −0.70

1045 L Q&T 390 1345 195 59 0.89 205 30 1585 230 −0.074 0.45 −0.68

1045 L Q&T 450 1585 230 55 0.81 205 30 1795 260 −0.07 0.35 −0.69

1045 L Q&T 500 1825 265 51 0.71 205 30 2275 330 −0.08 0.25 −0.68

1045 L Q&T 595 2240 325 41 0.52 205 30 2725 395 −0.081 0.07 −0.60

1144 L CDSR 265 930 135 33 0.51 195 28.5 1000 145 −0.08 0.32 −0.58
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1144 L DAT 305 1035 150 25 0.29 200 28.8 1585 230 −0.09 0.27 −0.53

1541F L Q&T forging 290 950 138 49 0.68 205 29.9 1275 185 −0.076 0.68 −0.65

1541F L Q&T forging 260 890 129 60 0.93 205 29.9 1275 185 −0.071 0.93 −0.65

4130 L Q&T 258 895 130 67 1.12 220 32 1275 185 −0.083 0.92 −0.63

4130 L Q&T 365 1425 207 55 0.79 200 29 1695 246 −0.081 0.89 −0.69

4140 L Q&T, DAT 310 1075 156 60 0.69 200 29.2 1825 265 −0.08 1.2 −0.59

4142 L DAT 310 1060 154 29 0.35 200 29 1450 210 −0.10 0.22 −0.51

4142 L DAT 335 1250 181 28 0.34 200 28.9 1250 181 −0.08 0.06 −0.62

4142 L Q&T 380 1415 205 48 0.66 205 30 1825 265 −0.08 0.45 −0.75

4142 L Q&T and 400 1550 225 47 0.63 200 29 1895 275 −0.09 0.50 −0.75
deformed

4142 L Q&T 450 1760 255 42 0.54 205 30 2000 290 −0.08 0.40 −0.73

4142 L Q&T and 475 2035 295 20 0.22 200 29 2070 300 −0.082 0.20 −0.77
deformed

4142 L Q&T and 450 1930 280 37 0.46 200 29 2105 305 −0.09 0.60 −0.76
deformed

4142 L Q&T 475 1930 280 35 0.43 205 30 2170 315 −0.081 0.09 −0.61

4142 L Q&T 560 2240 325 27 0.31 205 30 2655 385 −0.089 0.07 −0.76

4340 L HR, A 243 825 120 43 0.57 195 28 1200 174 −0.095 0.45 −0.54

4340 L Q&T 409 1470 213 38 0.48 200 29 2000 290 −0.091 0.48 −0.60

4340 L Q&T 350 1240 180 57 0.84 195 28 1655 240 −0.076 0.73 −0.62

5160 L Q&T 430 1670 242 42 0.87 195 28 1930 280 −0.071 0.40 −0.57

52100 L SH, Q&T 518 2015 292 11 0.12 205 30 2585 375 −0.09 0.18 −0.56

9262 L A 260 925 134 14 0.16 205 30 1040 151 −0.071 0.16 −0.47

9262 L Q&T 280 1000 145 33 0.41 195 28 1220 177 −0.073 0.41 −0.60

9262 L Q&T 410 565 227 32 0.38 200 29 1855 269 −0.057 0.38 −0.65

950C (d) LT HR plate 159 565 82 64 1.03 205 29.6 1170 170 −0.12 0.95 −0.61

950C (d) L HR bar 150 565 82 69 1.19 205 30 970 141 −0.11 0.85 −0.59

950X (d) L Plate channel 150 440 64 65 1.06 205 30 625 91 −0.075 0.35 −0.54

950X (d) L HR plate 156 530 77 72 1.24 205 29.5 1005 146 −0.10 0.85 −0.61

950X (d) L Plate channel 225 695 101 68 1.15 195 28.2 1055 153 −0.08 0.21 −0.53

Notes: (a) AISI/SAE grade, unless otherwise indicated. (b) ASTM designation. (c) Proprietary designation. (d) SAE HSLA grade. (e) Orientation of axis of specimen, relative to rolling direction;
L is longitudinal (parallel to rolling direction); LT is long transverse (perpendicular to rolling direction). (f) STA, solution treated and aged; HR, hot rolled; CD, cold drawn; Q&T, quenched and
tempered; CDSR, cold drawn strain relieved; DAT, drawn at temperature; A, annealed. From ASM Metals Reference Book, 2nd edition, 1983; ASM International, Materials Park, OH 44073-0002;
table 217. Reprinted by permission of ASM International®, www.asminternational.org.
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Fatigue
Shear Stress-

Tensile Compressive Modulus Modulus of Endurance Brinell Concentration
ASTM Strength Strength of Rupture Elasticity, Mpsi Limit* Hardness Factor

Number Sut, kpsi Suc, kpsi Ssu, kpsi Tension† Torsion Se, kpsi HB Kf

20 22 83 26 9.6–14 3.9–5.6 10 156 1.00

25 26 97 32 11.5–14.8 4.6–6.0 11.5 174 1.05

30 31 109 40 13–16.4 5.2–6.6 14 201 1.10

35 36.5 124 48.5 14.5–17.2 5.8–6.9 16 212 1.15

40 42.5 140 57 16–20 6.4–7.8 18.5 235 1.25

50 52.5 164 73 18.8–22.8 7.2–8.0 21.5 262 1.35

60 62.5 187.5 88.5 20.4–23.5 7.8–8.5 24.5 302 1.50

*Polished or machined specimens.
†The modulus of elasticity of cast iron in compression corresponds closely to the upper value in the range given for tension and is a more constant value than that for tension.

Table A–24

Mechanical Properties of Three Non-Steel Metals

(a) Typical Properties of Gray Cast Iron

[The American Society for Testing and Materials (ASTM) numbering system for gray cast iron is such that the numbers correspond to the minimum

tensile strength in kpsi. Thus an ASTM No. 20 cast iron has a minimum tensile strength of 20 kpsi. Note particularly that the tabulations are

typical of several heats.]
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Table A–24

Mechanical Properties of Three Non-Steel Metals (Continued)

(b) Mechanical Properties of Some Aluminum Alloys 

[These are typical properties for sizes of about 1
2 in; similar properties can be obtained by using proper purchase

specifications. The values given for fatigue strength correspond to 50(107) cycles of completely reversed stress.

Alluminum alloys do not have an endurance limit. Yield strengths were obtained by the 0.2 percent offset method.]

Aluminum Strength Elongation Brinell
Association Yield, Sy, Tensile, Su, Fatigue, Sf, in 2 in, Hardness

Number Temper MPa (kpsi) MPa (kpsi) MPa (kpsi) % HB

Wrought:

2017 O 70 (10) 179 (26) 90 (13) 22 45

2024 O 76 (11) 186 (27) 90 (13) 22 47

T3 345 (50) 482 (70) 138 (20) 16 120

3003 H12 117 (17) 131 (19) 55 (8) 20 35

H16 165 (24) 179 (26) 65 (9.5) 14 47

3004 H34 186 (27) 234 (34) 103 (15) 12 63

H38 234 (34) 276 (40) 110 (16) 6 77

5052 H32 186 (27) 234 (34) 117 (17) 18 62

H36 234 (34) 269 (39) 124 (18) 10 74

Cast:

319.0* T6 165 (24) 248 (36) 69 (10) 2.0 80

333.0† T5 172 (25) 234 (34) 83 (12) 1.0 100

T6 207 (30) 289 (42) 103 (15) 1.5 105

335.0* T6 172 (25) 241 (35) 62 (9) 3.0 80

T7 248 (36) 262 (38) 62 (9) 0.5 85

*Sand casting.
†Permanent-mold casting.

(c) Mechanical Properties of Some Titanium Alloys 

Yield, Sy Strength Elongation Hardness
(0.2% offset) Tensile, Sut in 2 in, (Brinell or

Titanium Alloy Condition MPa (kpsi) MPa (kpsi) % Rockwell)

Ti-35A† Annealed 210 (30) 275 (40) 30 135 HB

Ti-50A† Annealed 310 (45) 380 (55) 25 215 HB

Ti-0.2 Pd Annealed 280 (40) 340 (50) 28 200 HB

Ti-5 Al-2.5 Sn Annealed 760 (110) 790 (115) 16 36 HRC

Ti-8 Al-1 Mo-1 V Annealed 900 (130) 965 (140) 15 39 HRC

Ti-6 Al-6 V-2 Sn Annealed 970 (140) 1030 (150) 14 38 HRC

Ti-6Al-4V Annealed 830 (120) 900 (130) 14 36 HRC

Ti-13 V-11 Cr-3 Al Sol. � aging 1207 (175) 1276 (185) 8 40 HRC

†Commercially pure alpha titanium.
1047
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Table A–25

Stochastic Yield and Ultimate Strengths for Selected Materials Source: Data compiled from “Some Property Data and

Corresponding Weibull Parameters for Stochastic Mechanical Design,” Trans. ASME Journal of Mechanical Design, vol. 114 
(March 1992), pp. 29–34.

Material �Sut �Sut x0 � b �Sy �Sy x0 � b CSut CSy

1018 CD 87.6 5.74 30.8 90.1 12 78.4 5.90 56 80.6 4.29 0.0655 0.0753

1035 HR 86.2 3.92 72.6 87.5 3.86 49.6 3.81 39.5 50.8 2.88 0.0455 0.0768

1045 CD 117.7 7.13 90.2 120.5 4.38 95.5 6.59 82.1 97.2 2.14 0.0606 0.0690

1117 CD 83.1 5.25 73.0 84.4 2.01 81.4 4.71 72.4 82.6 2.00 0.0632 0.0579

1137 CD 106.5 6.15 96.2 107.7 1.72 98.1 4.24 92.2 98.7 1.41 0.0577 0.0432

12L14 CD 79.6 6.92 70.3 80.4 1.36 78.1 8.27 64.3 78.8 1.72 0.0869 0.1059

1038 HT bolts 133.4 3.38 122.3 134.6 3.64 0.0253

ASTM40 44.5 4.34 27.7 46.2 4.38 0.0975

35018 Malleable 53.3 1.59 48.7 53.8 3.18 38.5 1.42 34.7 39.0 2.93 0.0298 0.0369

32510 Malleable 53.4 2.68 44.7 54.3 3.61 34.9 1.47 30.1 35.5 3.67 0.0502 0.0421

Malleable Pearlitic 93.9 3.83 80.1 95.3 4.04 60.2 2.78 50.2 61.2 4.02 0.0408 0.0462

604515 Nodular 64.8 3.77 53.7 66.1 3.23 49.0 4.20 33.8 50.5 4.06 0.0582 0.0857

100-70-04 Nodular 122.2 7.65 47.6 125.6 11.84 79.3 4.51 64.1 81.0 3.77 0.0626 0.0569

201SS CD 195.9 7.76 180.7 197.9 2.06 0.0396

301SS CD 191.2 5.82 151.9 193.6 8.00 166.8 9.37 139.7 170.0 3.17 0.0304 0.0562

A 105.0 5.68 92.3 106.6 2.38 46.8 4.70 26.3 48.7 4.99 0.0541 0.1004

304SS A 85.0 4.14 66.6 86.6 5.11 37.9 3.76 30.2 38.9 2.17 0.0487 0.0992

310SS A 84.8 4.23 71.6 86.3 3.45 0.0499

403SS 105.3 3.09 95.7 106.4 3.44 78.5 3.91 64.8 79.9 3.93 0.0293 0.0498

17-7PSS 198.8 9.51 163.3 202.3 4.21 189.4 11.49 144.0 193.8 4.48 0.0478 0.0607

AM350SS A 149.1 8.29 101.8 152.4 6.68 63.0 5.05 38.0 65.0 5.73 0.0556 0.0802

Ti-6AL-4V 175.4 7.91 141.8 178.5 4.85 163.7 9.03 101.5 167.4 8.18 0.0451 0.0552

2024 0 28.1 1.73 24.2 28.7 2.43 0.0616

2024 T4 64.9 1.64 60.2 65.5 3.16 40.8 1.83 38.4 41.0 1.32 0.0253 0.0449

T6 67.5 1.50 55.9 68.1 9.26 53.4 1.17 51.2 53.6 1.91 0.0222 0.0219

7075 T6 .025� 75.5 2.10 68.8 76.2 3.53 63.7 1.98 58.9 64.3 2.63 0.0278 0.0311

1
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Table A–26

Stochastic Parameters for Finite Life Fatigue Tests in Selected Metals Source: E. B. Haugen, Probabilistic Mechanical Design, Wiley, New York, 1980, 

Appendix 10–B.

1 2 3 4 5 6 7 8 9
TS YS Distri- Stress Cycles to Failure

Number Condition MPa (kpsi) MPa (kpsi) bution 104 105 106 107

1046 WQ&T, 1210°F 723 (105) 565 (82) W x0 544 (79) 462 (67) 391 (56.7)

θ 594 (86.2) 503 (73.0) 425 (61.7)

b 2.60 2.75 2.85

2340 OQ&T 1200°F 799 (116) 661 (96) W x0 579 (84) 510 (74) 420 (61)

θ 699 (101.5) 588 (85.4) 496 (72.0)

b 4.3 3.4 4.1

3140 OQ&T, 1300°F 744 (108) 599 (87) W x0 510 (74) 455 (66) 393 (57)

θ 604 (87.7) 528 (76.7) 463 (67.2)

b 5.2 5.0 5.5

2024 T-4 489 (71) 365 (53) N σ 26.3 (3.82) 21.4 (3.11) 17.4 (2.53) 14.0 (2.03)

Aluminum μ 143 (20.7) 116 (16.9) 95 (13.8) 77 (11.2)

Ti-6A1-4V HT-46 1040 (151) 992 (144) N σ 39.6 (5.75) 38.1 (5.53) 36.6 (5.31) 35.1 (5.10)

μ 712 (108) 684 (99.3) 657 (95.4) 493 (71.6)

Statistical parameters from a large number of fatigue tests are listed. Weibull distribution is denoted W and the parameters are x0, “guaranteed” fatigue strength; θ, characteristic fatigue
strength; and b, shape factor. Normal distribution is denoted N and the parameters are μ, mean fatigue strength; and σ, standard deviation of the fatigue strength. The life is in stress-
cycles-to-failure. TS = tensile strength, YS = yield strength. All testing by rotating-beam specimen.
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Table A–27

Finite Life Fatigue Strengths of Selected Plain Carbon Steels Source: Compiled from Table 4 in H. J. Grover, S. A. Gordon, and

L. R. Jackson, Fatigue of Metals and Structures, Bureau of Naval Weapons Document NAVWEPS 00-25-534, 1960.

Tensile Yield
Strength Strength Stress Cycles to Failure

Material Condition BHN* kpsi kpsi RA* 104 4(104) 105 4(105) 106 4(106) 107 108

1020 Furnace 58 30 0.63 37 34 30 28 25
cooled

1030 Air-cooled 135 80 45 0.62 51 47 42 38 38 38

1035 Normal 132 72 35 0.54 44 40 37 34 33 33

WQT 209 103 87 0.65 80 72 65 60 57 57 57

1040 Forged 195 92 53 0.23 40 47 33 33

1045 HR, N 107 63 0.49 80 70 56 47 47 47 47

1050 N, AC 164 92 47 0.40 50 48 46 40 38 34 34

WQT

1200 196 97 70 0.58 60 57 52 50 50 50 50

.56 MN N 193 98 47 0.42 61 55 51 47 43 41 41 41

WQT 277 111 84 0.57 94 81 73 62 57 55 55 55

1200

1060 As Rec. 67 Rb 134 65 0.20 65 60 55 50 48 48 48

1095 162 84 33 0.37 50 43 40 34 31 30 30 30

OQT 227 115 65 0.40 77 68 64 57 56 56 56 56

1200

10120 224 117 59 0.12 60 56 51 50 50 50

OQT 369 180 130 0.15 102 95 91 91 91 91

860

*BHN = Brinell hardness number; RA = fractional reduction in area.

1
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Table A–28

Decimal Equivalents of Wire and Sheet-Metal Gauges* (All Sizes Are Given in Inches)

Steel Wire
Name American Birmingham United Manu- or Stubs

of or Brown or Stubs States facturers Washburn Music Steel Twist
Gauge: & Sharpe Iron Wire Standard† Standard & Moen Wire Wire Drill

Tubing,
Ferrous Ferrous Ferrous

Nonferrous Strip, Flat Sheet and Wire Steel Twist
Principal Sheet, Wire, Wire, and Plate, Ferrous Except Music Drill Drills and

Use: and Rod Spring Steel 480 lbf/ft3 Sheet Music Wire Wire Rod Drill Steel

7/0 0.500 0.490
6/0 0.580 0 0.468 75 0.461 5 0.004
5/0 0.516 5 0.437 5 0.430 5 0.005
4/0 0.460 0 0.454 0.406 25 0.393 8 0.006
3/0 0.409 6 0.425 0.375 0.362 5 0.007
2/0 0.364 8 0.380 0.343 75 0.331 0 0.008

0 0.324 9 0.340 0.312 5 0.306 5 0.009
1 0.289 3 0.300 0.281 25 0.283 0 0.010 0.227 0.228 0
2 0.257 6 0.284 0.265 625 0.262 5 0.011 0.219 0.221 0
3 0.229 4 0.259 0.25 0.239 1 0.243 7 0.012 0.212 0.213 0
4 0.204 3 0.238 0.234 375 0.224 2 0.225 3 0.013 0.207 0.209 0
5 0.181 9 0.220 0.218 75 0.209 2 0.207 0 0.014 0.204 0.205 5

6 0.162 0 0.203 0.203 125 0.194 3 0.192 0 0.016 0.201 0.204 0
7 0.144 3 0.180 0.187 5 0.179 3 0.177 0 0.018 0.199 0.201 0
8 0.128 5 0.165 0.171 875 0.164 4 0.162 0 0.020 0.197 0.199 0
9 0.114 4 0.148 0.156 25 0.149 5 0.148 3 0.022 0.194 0.196 0

10 0.101 9 0.134 0.140 625 0.134 5 0.135 0 0.024 0.191 0.193 5

11 0.090 74 0.120 0.125 0.119 6 0.120 5 0.026 0.188 0.191 0
12 0.080 81 0.109 0.109 357 0.104 6 0.105 5 0.029 0.185 0.189 0
13 0.071 96 0.095 0.093 75 0.089 7 0.091 5 0.031 0.182 0.185 0
14 0.064 08 0.083 0.078 125 0.074 7 0.080 0 0.033 0.180 0.182 0
15 0.057 07 0.072 0.070 312 5 0.067 3 0.072 0 0.035 0.178 0.180 0

16 0.050 82 0.065 0.062 5 0.059 8 0.062 5 0.037 0.175 0.177 0
17 0.045 26 0.058 0.056 25 0.053 8 0.054 0 0.039 0.172 0.173 0

(continued)
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Table A–28

Decimal Equivalents of Wire and Sheet-Metal Gauges* (All Sizes Are Given in Inches) (Continued)

Steel Wire
Name American Birmingham United Manu- or Stubs

of or Brown or Stubs States facturers Washburn Music Steel Twist
Gauge: & Sharpe Iron Wire Standard† Standard & Moen Wire Wire Drill

Tubing,
Ferrous Ferrous Ferrous

Nonferrous Strip, Flat Sheet and Wire Steel Twist
Principal Sheet, Wire, Wire, and Plate, Ferrous Except Music Drill Drills and

Use: and Rod Spring Steel 480 lbf/ft3 Sheet Music Wire Wire Rod Drill Steel

18 0.040 30 0.049 0.05 0.047 8 0.047 5 0.041 0.168 0.169 5
19 0.035 89 0.042 0.043 75 0.041 8 0.041 0 0.043 0.164 0.166 0
20 0.031 96 0.035 0.037 5 0.035 9 0.034 8 0.045 0.161 0.161 0

21 0.028 46 0.032 0.034 375 0.032 9 0.031 7 0.047 0.157 0.159 0
22 0.025 35 0.028 0.031 25 0.029 9 0.028 6 0.049 0.155 0.157 0
23 0.022 57 0.025 0.028 125 0.026 9 0.025 8 0.051 0.153 0.154 0
24 0.020 10 0.022 0.025 0.023 9 0.023 0 0.055 0.151 0.152 0
25 0.017 90 0.020 0.021 875 0.020 9 0.020 4 0.059 0.148 0.149 5

26 0.015 94 0.018 0.018 75 0.017 9 0.018 1 0.063 0.146 0.147 0
27 0.014 20 0.016 0.017 187 5 0.016 4 0.017 3 0.067 0.143 0.144 0
28 0.012 64 0.014 0.015 625 0.014 9 0.016 2 0.071 0.139 0.140 5
29 0.011 26 0.013 0.014 062 5 0.013 5 0.015 0 0.075 0.134 0.136 0
30 0.010 03 0.012 0.012 5 0.012 0 0.014 0 0.080 0.127 0.128 5

31 0.008 928 0.010 0.010 937 5 0.010 5 0.013 2 0.085 0.120 0.120 0
32 0.007 950 0.009 0.010 156 25 0.009 7 0.012 8 0.090 0.115 0.116 0
33 0.007 080 0.008 0.009 375 0.009 0 0.011 8 0.095 0.112 0.113 0
34 0.006 305 0.007 0.008 593 75 0.008 2 0.010 4 0.110 0.111 0
35 0.005 615 0.005 0.007 812 5 0.007 5 0.009 5 0.108 0.110 0

36 0.005 000 0.004 0.007 031 25 0.006 7 0.009 0 0.106 0.106 5
37 0.004 453 0.006 640 625 0.006 4 0.008 5 0.103 0.104 0
38 0.003 965 0.006 25 0.006 0 0.008 0 0.101 0.101 5
39 0.003 531 0.007 5 0.099 0.099 5
40 0.003 145 0.007 0 0.097 0.098 0

*Specify sheet, wire, and plate by stating the gauge number, the gauge name, and the decimal equivalent in parentheses.
†Reflects present average and weights of sheet steel.
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Table A–29

Dimensions of Square and Hexagonal Bolts

Head Type

Nominal Square Regular Hexagonal Heavy Hexagonal Structural Hexagonal
Size, in W H W H Rmin W H Rmin W H Rmin

1
4

3
8

11
64

7
16

11
64 0.01

5
16

1
2

13
64

1
2

7
32 0.01

3
8

9
16

1
4

9
16

1
4 0.01

7
16

5
8

19
64

5
8

19
64 0.01

1
2

3
4

21
64

3
4

11
32 0.01 7

8
11
32 0.01 7

8
5

16 0.009

5
8

15
16

27
64

15
16

27
64 0.02 1 1

16
27
64 0.02 1 1

16
25
64 0.021

3
4 1 1

8
1
2 1 1

8
1
2 0.02 1 1

4
1
2 0.02 1 1

4
15
32 0.021

1 1 1
2

21
32 1 1

2
43
64 0.03 1 5

8
43
64 0.03 1 5

8
39
64 0.062

1 1
8 1 11

16
3
4 1 11

16
3
4 0.03 1 13

16
3
4 0.03 1 13

16
11
16 0.062

1 1
4 1 7

8
27
32 1 7

8
27
32 0.03 2 27

32 0.03 2 25
32 0.062

1 3
8 2 1

16
29
32 2 1

16
29
32 0.03 2 3

16
29
32 0.03 2 3

16
27
32 0.062

1 1
2 2 1

4 1 2 1
4 1 0.03 2 3

8 1 0.03 2 3
8

15
16 0.062

Nominal
Size, mm

M5 8 3.58 8 3.58 0.2

M6 10 4.38 0.3

M8 13 5.68 0.4

M10 16 6.85 0.4

M12 18 7.95 0.6 21 7.95 0.6

M14 21 9.25 0.6 24 9.25 0.6

M16 24 10.75 0.6 27 10.75 0.6 27 10.75 0.6

M20 30 13.40 0.8 34 13.40 0.8 34 13.40 0.8

M24 36 15.90 0.8 41 15.90 0.8 41 15.90 1.0

M30 46 19.75 1.0 50 19.75 1.0 50 19.75 1.2

M36 55 23.55 1.0 60 23.55 1.0 60 23.55 1.5

H

R

W
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Table A–30

Dimensions of

Hexagonal Cap Screws

and Heavy Hexagonal

Screws (W = Width

across Flats; H = Height

of Head; See Figure

in Table A–29)

Minimum Type of Screw
Nominal Fillet Cap Heavy Height
Size, in Radius W W H

1
4 0.015 7

16
5

32
5

16 0.015 1
2

13
64

3
8 0.015 9

16
15
64

7
16 0.015 5

8
9

32
1
2 0.015 3

4
7
8

5
16

5
8 0.020 15

16 1 1
16

25
64

3
4 0.020 1 1

8 1 1
4

15
32

7
8 0.040 1 5

16 1 7
16

35
64

1 0.060 1 1
2 1 1

8
39
64

1 1
4 0.060 1 7

8 2 25
32

1 3
8 0.060 2 1

16 2 3
16

27
32

1 1
2 0.060 2 1

4 2 3
8

15
16

Nominal
Size, mm

M5 0.2 8 3.65

M6 0.3 10 4.15

M8 0.4 13 5.50

M10 0.4 16 6.63

M12 0.6 18 21 7.76

M14 0.6 21 24 9.09

M16 0.6 24 27 10.32

M20 0.8 30 34 12.88

M24 0.8 36 41 15.44

M30 1.0 46 50 19.48

M36 1.0 55 60 23.38
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Table A–31

Dimensions of

Hexagonal Nuts

Height H
Nominal Width Regular Thick or
Size, in W Hexagonal Slotted JAM

1
4

7
16

7
32

9
32

5
32

5
16

1
2

17
64

21
64

3
16

3
8

9
16

21
64

13
32

7
32

7
16

11
16

3
8

29
64

1
4

1
2

3
4

7
16

9
16

5
16

9
16

7
8

31
64

39
64

5
16

5
8

15
16

35
64

23
32

3
8

3
4 1 1

8
41
64

13
16

27
64

7
8 1 5

16
3
4

29
32

31
64

1 1 1
2

55
64 1 35

64

1 1
8 1 11

16
31
32 1 5

32
39
64

1 1
4 1 7

8 1 1
16 1 1

4
23
32

1 3
8 2 1

16 1 11
64 1 3

8
25
32

1 1
2 2 1

4 1 9
32 1 1

2
27
32

Nominal
Size, mm

M5 8 4.7 5.1 2.7

M6 10 5.2 5.7 3.2

M8 13 6.8 7.5 4.0

M10 16 8.4 9.3 5.0

M12 18 10.8 12.0 6.0

M14 21 12.8 14.1 7.0

M16 24 14.8 16.4 8.0

M20 30 18.0 20.3 10.0

M24 36 21.5 23.9 12.0

M30 46 25.6 28.6 15.0

M36 55 31.0 34.7 18.0
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Table A–32

Basic Dimensions of

American Standard

Plain Washers (All

Dimensions in Inches)

Fastener Washer Diameter
Size Size ID OD Thickness

#6 0.138 0.156 0.375 0.049

#8 0.164 0.188 0.438 0.049

#10 0.190 0.219 0.500 0.049

#12 0.216 0.250 0.562 0.065
1
4 N 0.250 0.281 0.625 0.065
1
4 W 0.250 0.312 0.734 0.065
5

16 N 0.312 0.344 0.688 0.065
5

16 W 0.312 0.375 0.875 0.083
3
8 N 0.375 0.406 0.812 0.065
3
8 W 0.375 0.438 1.000 0.083
7

16 N 0.438 0.469 0.922 0.065
7

16 W 0.438 0.500 1.250 0.083
1
2 N 0.500 0.531 1.062 0.095
1
2 W 0.500 0.562 1.375 0.109
9

16 N 0.562 0.594 1.156 0.095
9

16 W 0.562 0.625 1.469 0.109
5
8 N 0.625 0.656 1.312 0.095
5
8 W 0.625 0.688 1.750 0.134
3
4 N 0.750 0.812 1.469 0.134
3
4 W 0.750 0.812 2.000 0.148
7
8 N 0.875 0.938 1.750 0.134
7
8 W 0.875 0.938 2.250 0.165

1 N 1.000 1.062 2.000 0.134

1 W 1.000 1.062 2.500 0.165

1 1
8 N 1.125 1.250 2.250 0.134

1 1
8 W 1.125 1.250 2.750 0.165

1 1
4 N 1.250 1.375 2.500 0.165

1 1
4 W 1.250 1.375 3.000 0.165

1 3
8 N 1.375 1.500 2.750 0.165

1 3
8 W 1.375 1.500 3.250 0.180

1 1
2 N 1.500 1.625 3.000 0.165

1 1
2 W 1.500 1.625 3.500 0.180

1 5
8 1.625 1.750 3.750 0.180

1 3
4 1.750 1.875 4.000 0.180

1 7
8 1.875 2.000 4.250 0.180

2 2.000 2.125 4.500 0.180

2 1
4 2.250 2.375 4.750 0.220

2 1
2 2.500 2.625 5.000 0.238

2 3
4 2.750 2.875 5.250 0.259

3 3.000 3.125 5.500 0.284

N = narrow; W = wide; use W when not specified.
1056
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Table A–33

Dimensions of Metric Plain Washers (All Dimensions in Millimeters)

Washer Minimum Maximum Maximum Washer Minimum Maximum Maximum
Size* ID OD Thickness Size* ID OD Thickness

1.6 N 1.95 4.00 0.70 10 N 10.85 20.00 2.30

1.6 R 1.95 5.00 0.70 10 R 10.85 28.00 2.80

1.6 W 1.95 6.00 0.90 10 W 10.85 39.00 3.50

2 N 2.50 5.00 0.90 12 N 13.30 25.40 2.80

2 R 2.50 6.00 0.90 12 R 13.30 34.00 3.50

2 W 2.50 8.00 0.90 12 W 13.30 44.00 3.50

2.5 N 3.00 6.00 0.90 14 N 15.25 28.00 2.80

2.5 R 3.00 8.00 0.90 14 R 15.25 39.00 3.50

2.5 W 3.00 10.00 1.20 14 W 15.25 50.00 4.00

3 N 3.50 7.00 0.90 16 N 17.25 32.00 3.50

3 R 3.50 10.00 1.20 16 R 17.25 44.00 4.00

3 W 3.50 12.00 1.40 16 W 17.25 56.00 4.60

3.5 N 4.00 9.00 1.20 20 N 21.80 39.00 4.00

3.5 R 4.00 10.00 1.40 20 R 21.80 50.00 4.60

3.5 W 4.00 15.00 1.75 20 W 21.80 66.00 5.10

4 N 4.70 10.00 1.20 24 N 25.60 44.00 4.60

4 R 4.70 12.00 1.40 24 R 25.60 56.00 5.10

4 W 4.70 16.00 2.30 24 W 25.60 72.00 5.60

5 N 5.50 11.00 1.40 30 N 32.40 56.00 5.10

5 R 5.50 15.00 1.75 30 R 32.40 72.00 5.60

5 W 5.50 20.00 2.30 30 W 32.40 90.00 6.40

6 N 6.65 13.00 1.75 36 N 38.30 66.00 5.60

6 R 6.65 18.80 1.75 36 R 38.30 90.00 6.40

6 W 6.65 25.40 2.30 36 W 38.30 110.00 8.50

8 N 8.90 18.80 2.30

8 R 8.90 25.40 2.30

8 W 8.90 32.00 2.80

N = narrow; R = regular; W = wide.
*Same as screw or bolt size.
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Table A–34

Gamma Function*

Source: Reprinted with
permission from William H.
Beyer (ed.), Handbook of
Tables for Probability and
Statistics, 2nd ed., 1966.
Copyright CRC Press, Boca
Raton, Florida.

Values of 	(n) =
∫ ∞

0
e−x xn−1dx;	(n + 1) = n	(n)

n �(n) n �(n) n �(n) n �(n)

1.00 1.000 00 1.25 .906 40 1.50 .886 23 1.75 .919 06

1.01 .994 33 1.26 .904 40 1.51 .886 59 1.76 .921 37

1.02 .988 84 1.27 .902 50 1.52 .887 04 1.77 .923 76

1.03 .983 55 1.28 .900 72 1.53 .887 57 1.78 .926 23

1.04 .978 44 1.29 .899 04 1.54 .888 18 1.79 .928 77

1.05 .973 50 1.30 .897 47 1.55 .888 87 1.80 .931 38

1.06 .968 74 1.31 .896 00 1.56 .889 64 1.81 .934 08

1.07 .964 15 1.32 .894 64 1.57 .890 49 1.82 .936 85

1.08 .959 73 1.33 .893 38 1.58 .891 42 1.83 .939 69

1.09 .955 46 1.34 .892 22 1.59 .892 43 1.84 .942 61

1.10 .951 35 1.35 .891 15 1.60 .893 52 1.85 .945 61

1.11 .947 39 1.36 .890 18 1.61 .894 68 1.86 .948 69

1.12 .943 59 1.37 .889 31 1.62 .895 92 1.87 .951 84

1.13 .939 93 1.38 .888 54 1.63 .897 24 1.88 .955 07

1.14 .936 42 1.39 .887 85 1.64 .898 64 1.89 .958 38

1.15 .933 04 1.40 .887 26 1.65 .900 12 1.90 .961 77

1.16 .929 80 1.41 .886 76 1.66 .901 67 1.91 .965 23

1.17 .936 70 1.42 .886 36 1.67 .903 30 1.92 .968 78

1.18 .923 73 1.43 .886 04 1.68 .905 00 1.93 .972 40

1.19 .920 88 1.44 .885 80 1.69 .906 78 1.94 .976 10

1.20 .918 17 1.45 .885 65 1.70 .908 64 1.95 .979 88

1.21 .915 58 1.46 .885 60 1.71 .910 57 1.96 .983 74

1.22 .913 11 1.47 .885 63 1.72 .912 58 1.97 .987 68

1.23 .910 75 1.48 .885 75 1.73 .914 66 1.98 .991 71

1.24 .908 52 1.49 .885 95 1.74 .916 83 1.99 .995 81

2.00 1.000 00

*For large positive values of x, 	(x) approximates the asymptotic series

xx e−x

√
2x

x

[
1 + 1

12x
+ 1

288x2
− 139

51 840x3
− 571

2 488 320x4
+ · · ·

]
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Answers to Selected Problems AppendixB

1059

B–1 Chapter 1
1–8 P � 100 units

1–11 (a) e1 = 0.005 751 311 1, e2 = 0.008 427 124 7,
e = 0.014 178 435 8, (b) e1 = �0.004 248 688 9,
e2 = �0.001 572 875 3, e = �0.005 821 564 2

1–14 (a) w = 0.020 ± 0.018 in, (b) d̄ = 6.528 in

1–16 a = 1.569 ± 0.016 in

1–17 Do = 4.012 ± 0.036 in

1–24 (a) σ = 1.90 kpsi, (b) σ = 397 psi, (c) y = 0.609 in,
(d) � = 4.95°

B–2 Chapter 2
2–6 E = 30 Mpsi, Sy = 45.5 kpsi, Sut = 85.5 kpsi, area

reduction = 45.8 percent

2–9 (a) Before: Sy = 32 kpsi, Su = 49.5 kpsi, After: 
S′

y = 61.8 kpsi, 93% increase, S′
u = 61.9 kpsi, 25%

increase, (b) Before: Su/Sy = 1.55, After: S′
u/S′

y = 1

2–15 S̄u = 117 kpsi, sSu = 1.28 kpsi

2–17 (a) uR =̇ 34.5 in � lbf/in3,
(b) uT =̇ 66.7 (103) in � lbf/in3

2–26 Aluminum alloys have greatest potential followed
closely by high carbon heat-treated steel. Warrants
further discussion.

2–34 Steel, titanium, aluminum, and composites

B–3   Chapter 3
3–1 RB = 33.3 lbf, RO = 66.6 lbf, RC = 33.3 lbf

3–6 RO = 740 lbf, MO = 8080 lbf � in

3–14 (a) Mmax = 253 lbf � in, (b) amin = 2.07 in,
Mmin = 215 lbf � in

3–15 (a) σ1 = 22 kpsi, σ2 = �12 kpsi, σ3 = 0 kpsi,
�p = 14.0° cw, τ1 = 17 kpsi, σave = 5 kpsi,
�s = 31.0° ccw,
(b) σ1 = 18.6 kpsi, σ2 = 6.4 kpsi, σ3 = 0 kpsi,
�p = 27.5° ccw, τ1 = 6.10 kpsi, σave = 12.5 kpsi,
�s = 17.5° cw,

(c) σ1 = 26.2 kpsi, σ2 = 7.78 kpsi, σ3 = 0 kpsi,
�p = 69.7° ccw, τ1 = 9.22 kpsi, σave = 17 kpsi,
�s = 24.7° ccw,
(d) σ1 = 25.8 kpsi, σ2 = −15.8 kpsi, σ3 = 0 kpsi,
�p = 72.4° cw, τ1 = 20.8 kpsi, σave = 5 kpsi,
�s = 27.4° ccw

3–20 σ1 = 24.0 kpsi, σ2 = 0.819 kpsi,
σ3 = −24.8 kpsi, τmax = 24.4 kpsi

3–23 σ = 34.0 kpsi, � = 0.0679 in, ε1 = 1.13(10−3),
ε2 = −3.30(10−4), �d = −2.48(10−4) in

3–27 � = 5.9 mm

3–29 σx = 382 MPa, σy = −37.4 MPa

3–35 σmax = 84.3 MPa, τmax = 5.63 MPa

3–40 (a) σ = 17.8 kpsi, τ = 3.4 kpsi, (b) σ = 25.5 kpsi,
τ = 3.4 kpsi, (c) σ = 17.8 kpsi, τ = 3.4 kpsi

3–51 (a) T = 1318 lbf � in, � = 4.59°, 
(b) T = 1287 lbf � in, � = 4.37°

3–53 (a) Tl = 1.47 N � m, T2 = 7.45 N � m,
T3 = 0 N � m, T = 8.92 N � m, 
(b) �1 = 0.00348 rad/mm

3–59 H = 55.5 kW

3–66 dc = 1.4 in

3–69 (a) T1 = 2880 N, T2 = 432 N, (b) RO = 1794 N,
RC = 3036 N, (d) σ = 263 MPa, τ = 57.7 MPa,
(e) σ1 = 276 MPa, σ 2 = �12.1 MPa, τmax = 144 MPa

3–72 (a) FB = 750 lbf, (b) RCy = 183 lbf, RCz = 861 lbf,
ROy = 209 lbf, ROz = 259 lbf, (d) σ = 35.2 kpsi,
τ = 7.35 kpsi, (e) σ1 = 36.7 kpsi, σ2 = −1.47 kpsi,
τmax = 19.1 kpsi

3–80 (a) Critical at the wall at top or bottom of rod.
(b) σx = 16.3 kpsi, τxz = 5.09 kpsi, 
(c) σ1 = 17.8 kpsi, σ 2 = �1.46 kpsi,
τmax = 9.61 kpsi

3–84 (a) Critical at the top or bottom. (b) σ x = 28.0 kpsi,
τxz = 15.3 kpsi, (c) σ1 = 34.7 kpsi, σ2 = −6.72 kpsi,
τmax = 20.7 kpsi

3–95 xmin = 8.3 mm
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3–97 xmax = 1.9 kpsi

3–100 po = 82.8 MPa

3–104 σl = −18.6 psi, σt = 5710 psi, σr = −23.8 psi,
τ1/3 = 2870 psi, τ1/2 = 2860 psi, τ2/3 = 2.6 psi

3–108 τmax = 2.66 kpsi

3–110 �max = 0.021 mm, �min = 0.0005 mm,
pmax = 65.2 MPa, pmin = 1.55 MPa

3–116 � = 0.001 in, p = 11.5 kpsi, (σt )i = �11.5 kpsi,
(σt )o = 30.0 kpsi

3–120 σi = 300 MPa, σo = −195 MPa

3–126 (a) σ = ±8.02 kpsi, (b) σi = −10.1 kpsi,
σo = 6.62 kpsi, (c) ki = 1.255, ko = 0.825

3–129 σi = 182 MPa, σo = −47.8 MPa

3–133 σmax = 353F1/3 MPa, τmax = 106F1/3 MPa

3–138 F = 117 lbf

3–141 σx = −35.0 MPa, σy = −22.9 MPa,
σz = −96.9 MPa, τmax = 37.0 MPa

B–4   Chapter 4

4–3 (a) k = πd4G

32

(
1

x
+ 1

l − x

)
,

T1 = 1500
l − x

l
, T2 = 1500

x

l
,

(b) k = 28.2 (103) lbf � in/rad, T1 = T2 = 750 lbf � in,
τmax = 30.6 kpsi

4–7 � = 5.26 in, % elongation due to weight = 3.22%

4–10 ymax = �25.4 mm, σmax = −163 MPa

4–13 yO = yC = �3.72 mm, y |x=550mm = 1.11 mm

4–16 dmin = 32.3 mm

4–24 yA = 7.99 mm, �A = �0.0304 rad

4–27 yAy = 0.0805 in, yAz = �0.1169 in,
�Ay = �0.00144 rad, �Az = �0.000861 rad

4–30 �Oz = 0.0131 rad, �Cz = �0.0191 rad

4–33 �Oy = 0.0143 rad, �Oz = 0.0118 rad,
�Cy = �0.0254 rad, �Cz = �0.0151 rad

4–36 d = 62.0 mm

4–39 d = 2.88 in

4–41 y = �0.1041 in

4–43 Stepped bar: � = 0.026 rad, simplified bar:
� = 0.035 rad, 34.6% difference, �0.848 in

1060 Mechanical Engineering Design

4–46 d = 38.1 mm

4–51 yB = �0.0155 in

4–52 k = 8.10 N/mm

4–69 � = 0.0102 in

4–73 Stepped bar: � = 0.706 in, 
uniform bar: � = 0.848 in, 20.1% difference

4–76 � = 0.0338 mm

4–78 � = 0.009 in

4–81 � = 0.551 in

4–85 � = 0.618 mm

4–90 (a) σb = 48.8 kpsi, σc = −13.9 kpsi,
(b) σb = 50.6 kpsi, σc = −12.1 kpsi

4–92 RB = 1.6 kN, RO = 2.4 kN, �A = 22.3 mm

4–97 RC = 1.33 kips, RO = 4.67 kips, 
�A = 0.0062 in, σAB = 14.7 kpsi

4–101 σB E = 20.2 kpsi, σDF = 10.3 kpsi,
yB = −0.0255 in, yC = −0.0865 in, 
yD = −0.0129 in

4–106 (a) t = 11 mm, (b) No

4–112 Fmax = 143.6 lbf, �max = 1.436 in

B–5   Chapter 5
5–1 (a) MSS: n = 3.5, DE: n = 3.5, (b) MSS: n = 3.5,

DE: n = 4.04, (c) MSS: n = 1.94, DE: n = 2.13,
(d) MSS: n = 3.07, DE: n = 3.21,
(e) MSS: n = 3.34, DE: n = 3.57

5–3 (a) MSS: n = 1.5, DE: n = 1.72, (b) MSS: n = 1.25,
DE: n = 1.44, (c) MSS: n = 1.33, DE: n = 1.42, 
(d) MSS: n = 1.16, DE: n = 1.33, 
(e) MSS: n = 0.96, DE: n = 1.06

5–7 (a) n = 3.03

5–12 (a) n = 2.40, (b) n = 2.22, (c) n = 2.19,
(d) n = 2.03, (e) n = 1.92

5–17 (a) n = 1.81

5–19 (a) BCM: n = 1.2, MM: n = 1.2, 
(b) BCM: n = 1.5, MM: n = 2.0, (c) BCM: n = 1.18,
MM: n = 1.24, (d) BCM: n = 1.23, MM: n = 1.60,
(e) BCM: n = 2.57, MM: n = 2.57

5–24 (a) BCM: n = 3.63, MM: n = 3.63

5–29 (a) n = 1.54

5–34 (a) n = 1.54
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5–40 MSS: n = 1.28, DE: n = 1.31

5–48 MSS: n = 12.5, DE: n = 10.1

5–53 MSS: n = 2.25, DE: n = 4.55

5–58 For yielding: p = 1.08 kpsi, 
For rupture: p = 1.29 kpsi

5–63 d = 1.12 in

5–65 Model c: n = 1.80, Model d: n = 1.25, 
Model e: n = 1.80

5–67 Fx = 2π f T/(0.2d)

5–68 (a) Fi = 16.7 kN, (b) pi = 111.3 MPa,
(c) σt = 185.5 MPa, σr = −111.3 MPa 
(d) τmax = 148.4 MPa, σ ′ = 259.7 MPa, 
(e) MSS: n = 1.52, DE: n = 1.73

5–74 no = 2.58, ni = 2.38

5–76 n = 1.91

5–84 (a) F = 1140 kN, (b) F = 329.4 kN

5–86 �it = N(�31 000, 2899) psi, 
�ot = N(48 760, 3445) psi

B–6   Chapter 6
6–1 Se = 435 MPa

6–3 N = 116 700 cycles

6–5 Sf = 117.0 kpsi

6–9 (Sf)ax = 162 N�0.0851 kpsi for 103 ≤ N ≤ 106

6–15 nf = 1.42, ny = 1.51

6–17 nf = 0.49, N = 4600 cycles

6–20 ny = 1.66, (a) nf = 1.05, (b) nf = 1.31, 
(c) nf = 1.31

6–24 ny = 2.0, (a) nf = 1.19, (b) nf = 1.43, (c) nf = 1.44

6–25 ny = 3.3, using Goodman: nf = 0.64, 
N = 34 000 cycles 

6–28 (a) nf = 0.94, N = 637 000 cycles, 
(b) nf = 1.16 for infinite life

6–30 The design is controlled by fatigue at the hole,
nf = 1.48

6–33 (a) T = 23.1 lbf � in, (b) T = 28.3 lbf � in,
(c) ny = 2.18

6–35 nf = 1.21, ny = 1.43

6–38 nf = 0.56

6–46 nf = 5.45

6–47 nf = 1.40

6–51 nf = 0.72, N = 7500 cycles

6–57 P = 4.12 kips, ny = 5.28

6–59 (a) n2 = 7 000 cycles, (b) n2 = 10 000 cycles

6–66 R = 0.994

6–68 R = 0.824

B–7   Chapter 7
7–1 (a) DE-Gerber: d = 25.85 mm, (b) DE-Elliptic:

d = 25.77 mm, (c) DE-Soderberg: d = 27.70 mm,
(d) DE-Goodman: d = 27.27 mm

7–2 Using DE-Elliptic, d = 0.94 in, D = 1.25 in,
r = 0.063 in

7–6 These answers are a partial assessment of potential
failure. Deflections: �O = 5.47(10)�4 rad, 
�A = 7.09(10)�4 rad, �B = 1.10(10)�3 rad. Compared
to Table 7–2 recommendations, �B is high for an
uncrowned gear. Strength: Using DE-Elliptic at the
shoulder at A, nf = 3.91

7–18 (a) Fatigue strength using DE-Elliptic: Left
keyway nf = 3.5, right bearing shoulder nf = 4.2,
right keyway nf = 2.7. Yielding: Left keyway 
ny = 4.3, right keyway ny = 2.7, (b) Deflection
factors compared to minimum recommended in
Table 7–2: Left bearing n = 3.5, right bearing
n = 1.8, gear slope n = 1.6

7–28 (a) ω = 883 rad/s (b) d = 50 mm 
(c) ω = 1766 rad/s (doubles)

7–30 (b) ω = 466 rad/s = 4450 rev/min

7–34 1
4 -in square key, 7

8 -in long, AISI 1020 CD

7–36 dmin = 14.989 mm, dmax = 15.000 mm, 
Dmin = 15.000 mm, Dmax = 15.018 mm

7–42 (a) dmin = 35.043 mm, dmax = 35.059 mm, 
Dmin = 35.000 mm, Dmax = 35.025 mm, 
(b) pmin = 35.1 MPa, pmax = 115 MPa, 
(c) Shaft: n = 3.4, hub: n = 1.9, 
(d) Assuming f = 0.3, T = 1010 N � m

B–8   Chapter 8
8–1 (a) Thread depth 2.5 mm, thread width 2.5 mm,

dm = 22.5 mm, dr = 20 mm, l = p = 5 mm

8–4 TR = 15.85 N � m, TL = 7.827 N � m, e = 0.251

8–8 F = 182 lbf
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8–11 (a) L = 45 mm, (b) kb = 874.6 MN/m,
(c) km = 3 116.5 MN/m

8–14 (a) L = 3.5 in, (b) kb = 1.79 Mlbf/in,
(c) km = 7.67 Mlbf/in

8–19 (a) L = 60 mm, (b) kb = 292.1 MN/m,
(c) km = 692.5 MN/m

8–25 From Eqs. (8–20) and (8–22), km = 2 762 MN/m.
From Eq. (8–23), km = 2 843 MN/m

8–29 (a) np = 1.10, (b) nL = 1.60, (c) n0 = 1.20

8–33 L = 55 mm, np = 1.30, nL = 11.77, n0 = 11.58

8–37 np = 1.30, nL = 12.53, n0 = 11.36

8–41 Bolt sizes of diameters 8, 10, 12, and 14 mm were
evaluated and all were found acceptable. For d = 8 mm,
km = 926 MN/m, L = 50 mm, kb = 233.9 MN/m,
C = 0.202, N = 20 bolts, Fi = 6.18 kN, 
P = 2.71 kN/bolt, np = 1.23, nL = 3.77, np = 2.86

8–46 (a) T = 823 N � m, (b) np = 1.10, nL = 17.7,
n0 = 57.7

8–51 (a) Goodman: nf = 8.04, (b) Gerber: nf = 12.1,
(c) ASME-elliptic: nf = 10.4

8–55 Goodman: nf = 12.7

8–60 (a) np = 1.16, (b) nL = 2.96, (c) n0 = 6.70,
(d) nf = 4.56

8–63 np = 1.24, nL = 4.62, n0 = 5.39, nf = 4.75

8–67 Bolt shear, n = 2.30; bolt bearing, n = 4.06;
member bearing, n = 1.31; member tension, n = 3.68

8–70 Bolt shear, n = 1.70; bolt bearing, n = 4.69;
member bearing, n = 2.68; member tension, n = 6.68

8–75 F = 2.32 kN based on channel bearing

8–77 Bolt shear, n = 4.78; bolt bearing, n = 10.55;
member bearing, n = 5.70; member bending, n = 4.13

B–9   Chapter 9
9–1 F = 49.5 kN

9–5 F = 51.0 kN

9–9 F = 31.1 kN

9–14 τ = 22.6 kpsi

9–18 (a) F = 2.71 kips, (b) F = 1.19 kips

9–22 F = 5.41 kips

9–26 F = 5.89 kips

9–29 F = 12.5 kips

9–31 F = 5.04 kN

9–34 All-around square, four beads each h = 6 mm,
75 mm long, Electrode E6010

9–45 τmax = 25.6 kpsi

9–47 τmax = 45.3 MPa

9–48 n = 3.48

9–51 F = 61.2 kN

B–10 Chapter 10
10–3 (a) L0 = 162.8 mm, (b) Fs = 167.9 N,

(c) k = 1.314 N/mm, (d) (L0)cr = 149.9 mm, spring
needs to be supported

10–5 (a) Ls = 2.6 in, (b) Fs = 69.6 lbf, (c) ns = 1.78

10–7 (a) L0 = 1.78 in, (b) p = 0.223 in, (c) Fs =
18.78 lbf, (d) k = 16.43 lbf/in, (e) (L0)cr = 4.21 in

10–11 Spring is solid safe, ns = 1.28

10–17 Spring is solid safe, but for ns = 1.2, 
L0 ≤ 66.7 mm

10–20 (a) Na = 12 turns, Ls = 1.755 in, p = 0.396 in,
(b) k = 6.08 lbf/in, (c) Fs = 18.2 lbf, (d) τs = 38.5 kpsi

10–23 With d = 2 mm, L0 = 48 mm, k = 4.286 N/mm,
D = 13.25 mm, Na = 15.9 coils, ns = 2.63 > 1.2, ok.
No other d works.

10–28 (a) d = 0.2375 in, (b) D = 1.663 in, (c) k =
150 lbf/in, (d) Nt = 8.46 turns, (e) L0 = 3.70 in

10–30 Use A313 stainless wire, d = 0.0915 in, 
OD = 0.971 in, Nt = 15.59 turns, L0 = 3.606 in

10–36 (a) L0 = 16.12 in, (b) τi = 14.95 kpsi,
(c) k = 4.855 lbf/in, (d) F = 85.8 lbf, (e) y = 14.4 in

10–39 � = 31.3° (see Fig. 10–9), Fmax = 87.3 N

10–42 k = EI{4l3 � 3R[2�l2 � 4(� � 2) l R �
(3� � 8) R2]}�1, (b) k = 3.02 lbf/in, (c) F = 3.24 lbf

B–11 Chapter 11
11–1 xD = 525, FD = 3.0 kN, C10 = 24.2 kN,

02–35 mm deep-groove ball bearing, R = 0.920

11–6 xD = 456, C10 = 145 kN

11–8 C10 = 20 kN

11–15 C10 = 26.1 kN

11–21 (a) Fe = 5.4 kN, (b) �D = 430 h
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11–24 60 mm deep-groove

11–27 (a) C10 = 12.8 kips

11–33 C10 = 5.7 kN, 02–12 mm deep-groove ball bearing

11–34 RO = 112 lbf, RC = 298 lbf, deep-groove
02–17 mm at O, deep-groove 02–35 mm at C

11–38 l2 = 0.267(106) rev

11–43 FRA = 35.4 kN, FRB = 17.0 kN

B–12 Chapter 12
12–1 cmin = 0.015 mm, r = 12.5 mm, r/c = 833,

Nj = 18.3 r/s, S = 0.182, h0/c = 0.3, r f/c = 5.4,
Q/(rcNl) = 5.1, Qs/Q = 0.81, h0 = 0.0045 mm,
Hloss = 11.2 W, Q = 219 mm3/s,
Qs = 177 mm3/s

12–3 SAE 10: h0 = 0.000 275 in, pmax = 847 psi,
cmin = 0.0025 in

12–7 h0 = 0.00069 in, f = 0.007 87,
Q = 0.0802 in3/s

12–9 h0 = 0.011 mm, H = 48.1 W, 
Q = 1426 mm3/s, Qs = 1012 mm3/s

12–11 Tav = 154◦F, h0 = 0.00113 in,

Hloss = 0.0750 Btu/s, Qs = 0.0802 in3/s

12–20 Approx: 45.6 mPa · s, Fig. 12–13: 40 mPa · s

B–13 Chapter 13
13–1 35 teeth, 3.25 in

13–2 400 rev/min, p = 3π mm, C = 112.5 mm

13–4 a = 0.3333 in, b = 0.4167 in, c = 0.0834 in,
p = 1.047 in, t = 0.523 in, d1 = 7 in, d1b =
6.578 in, d2 = 9.333 in, d2b = 8.77 in, 
pb = 0.984 in, mc = 1.55

13–5 dP = 2.333 in, dG = 5.333 in, γ = 23.63◦ ,
� = 66.37◦ , A0 = 2.910 in, F = 0.873 in

13–10 (a) 13, (b) 15, 16, (c) 18

13–12 10:20 and higher

13–15 (a) pn = 3π mm, pt = 10.40 mm, px =
22.30 mm, (b) mt = 3.310 mm, φt = 21.88◦ ,
(c) dp = 59.58 mm, dG = 105.92 mm

13–17 e = 4/51, nd = 47.06 rev/min cw

13–24 N2 = N4 = 15 teeth, N3 = N5 = 44 teeth

13–29 n A = 68.57 rev/min cw

13–36 (a) d2 = d4 = 2.5 in, d3 = d5 = 7.33 in,
(b) Vi = 1636 ft/min, Vo = 558 ft/min,
(c) Wti = 504 lbf, Wri = 184 lbf, Wi = 537 lbf,
Wto = 1478 lbf, Wro = 538 lbf, Wo = 1573 lbf,
(d) Ti = 630 lbf � in, To = 5420 lbf � in

13–38 (a) Npmin = 15 teeth, (b) P = 1.875 teeth/in,
(c) FA = 311 lbf, FB = 777.6 lbf

13–41 (a) NF = 30 teeth, NC = 15 teeth,
(b) P = 3 teeth/in, (c) T = 900 lbf � in,
(d) Wr = 65.5 lbf, Wt = 180 lbf, W = 191.6 lbf

13–43 FA = 71.5 i + 53.4 j + 350.5 k lbf,
FB = −178.4 i − 678.8 k lbf

13–50 FC = 1565 i + 672 j lbf,
FD = 1610 i − 425 j + 154 k lbf

B–14 Chapter 14
14–1 σ = 7.63 kpsi

14–4 σ = 32.6 MPa

14–7 F = 2.5 in

14–10 m = 2 mm, F = 25 mm

14–14 σc = −617 MPa

14–17 W t = 16 890 N, H = 97.2 kW
(pinion bending); W t = 3433 N, H = 19.8 kW
(pinion and gear wear)

14–18 W t = 1283 lbf, H = 32.3 hp (pinion bending);
W t = 1510 lbf, H = 38.0 hp (gear bending);
W t = 265 lbf, H = 6.67 hp (pinion and gear wear)

14–22 W t = 775 lbf, H = 19.5 hp (pinion bending);
W t = 300 lbf, H = 7.55 hp (pinion wear), AGMA
method accounts for more conditions

14–24 Rating power = min(157.5, 192.9, 53.0, 59.0) =
53 hp

14–28 Rating power = min(270, 335, 240, 267) =
240 hp

14–34 H = 69.7 hp

B–15 Chapter 15
15–1 W t

P = 690 lbf, H1 = 16.4 hp, W t
G = 620 lbf,

H2 = 14.8 hp

15–2 W t
P = 464 lbf, H3 = 11.0 hp, W t

G = 531 lbf,
H4 = 12.6 hp

15–8 Pinion core 300 Bhn, case, 373 Bhn; gear core
339 Bhn, case, 345 Bhn
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15–9 All four W t = 690 lbf

15–11 Pinion core 180 Bhn, case, 266 Bhn; gear core,
180 Bhn, case, 266 Bhn

B–16 Chapter 16
16–1 (a) Right shoe: pa = 711 kPa cw rotation,

(b) Right shoe: T = 277.6 N � m; left shoe: 
144.4 N � m; total T = 422 N � m, (c) RH shoe:
Rx = −1.01 kN, Ry = 3.94 kN, R = 4.06 kN, 
LH shoe: Rx = 597 N, Ry = 793 N, R = 993 N

16–3 LH shoe: T = 2.265 kip · in, pa = 133.1 psi, 
RH shoe: T = 0.816 kip � in, pa = 47.93 psi, 
Ttotal = 3.09 kip � in

16–5 pa = 27.4 psi, T = 348.7 lbf · in

16–8 a′ = 1.209r , a = 1.170r

16–10 P = 1.25 kips, T = 25.52 kip · in

16–14 (a) T = 8200 lbf � in, P = 504 lbf, H = 26 hp,
(b) R = 901 lbf, (c) p|θ=0 = 70 psi,
p|

θ=270◦ = 27.3 psi

16–17 (a) F = 1885 lbf, T = 7125 lbf � in,
(c) torque capacity exhibits a stationary point
maximum

16–18 (a) d∗ = D/
√

3, (b) d∗ = 3.75 in, T ∗ = 7173
lbf � in, (c) (d/D)∗ = 1/

√
3 = 0.577

16–19 (a) Uniform wear: pa = 14.04 psi, F = 243 lbf,
(b) Uniform pressure: pa = 13.42 psi, F = 242 lbf

16–23 Cs = 0.08, t = 143 mm

16–26 (b) Ie = IM + IP + n2 IP + IL/n2,
(c) Ie = 10 + 1 + 102(1) + 100/102 = 112

16–27 (c) n∗ = 2.430, m∗ = 4.115, which are
independent of IL

B–17 Chapter 17
17–1 (a) Fc = 0.913 lbf, Fi = 101.1 lbf, F1a = 147 lbf,

F2 = 57 lbf, (b) Ha = 2.5 hp, n fs = 1.0,

(c) 0.151 in

17–3 A-3 polyamide belt, b = 6 in, Fc = 77.4 lbf,
T = 10 946 lbf � in, F1 = 573.7 lbf, F2 = 117.6 lbf,
Fi = 268.3 lbf, dip = 0.562 in

17–5 (a) T = 742.8 lbf � in, Fi = 148.1 lbf,
(b) b = 4.13 in, (c) F1a = 289.1 lbf, Fc = 17.7 lbf,
Fi = 147.6 lbf, F2 = 41.5 lbf, H = 20.6 hp,
n f s = 1.1

17–7 Rx = (F1 + F2){1 − 0.5[(D − d)/(2C)]2},
Ry = (F1 − F2)(D − d)/(2C). From Ex. 17–2,
Rx = 1214.4 lbf, Ry = 34.6 lbf

17–14 With d = 2 in, D = 4 in, life of 106 passes,
b = 4.5 in, n fs = 1.05

17–17 Select one B90 belt

17–20 Select nine C270 belts, life > 109 passes, 
life > 150 000 h

17–24 (b) n1 = 1227 rev/min. Table 17–20 confirms
this point occurs in the range 1200 ± 200 rev/min,
(c) Eq. (17–40) applicable at speeds exceeding 
1227 rev/min for No. 60 chain

17–25 (a) Ha = 7.91 hp; (b) C = 18 in, 
(c) T = 1164 lbf � in, F = 744 lbf

17–27 Four-strand No. 60 chain, N1 = 17 teeth,
N2 = 84 teeth, rounded L/p = 134, n fs = 1.17, life
15 000 h (pre-extreme)

B–20 Chapter 20
20–1 x̄ = 122.9 kilocycles, sx = 30.3 kilocycles

20–2 x̄ = 198.55 kpsi, sx = 9.55 kpsi

20–3 x̄ = 78.4 kpsi, sx = 6.57 kpsi

20–11 (a) F̄i = 5.979 lbf, sFi = 0.396 lbf,
(b) k̄ = 9.766 lbf/in, sk = 0.390 lbf/in

20–19 L10 = 84.1 kcycles

20–23 R = 0.987

20–25 x0.01 � 88.3 kpsi

20–32 78.1 kcycles, 82.7 kcycles

1064 Mechanical Engineering Design

bud29281_appb_1059-1064.qxd  12/31/09  2:35 PM  Page 1064 epg Disk1:Desktop Folder:TEMPWORK:Don't-Delete Jobs:MHDQ196/Budynas:



Index

A
Abrasion, 743
Abrasive wear, 328
Absolute safety, 12
Absolute system of units, 21
Absolute tolerance system, 21
Absolute viscosity, 620
Acme threads, 412
Addendum, 676
Addendum distances, 680
Adhesive bonding

about, 498
adhesive types, 499–501
joint design, 504–506
stress distributions, 501–504

Admiralty metal, 58
AGMA equation factors

allowable bending stress
numbers, 747–749, 800

allowable contact stress, 750–752,
799–800

bending strength geometry factor,
751–754, 793–794

crowning factor for pitting, 793
dynamic factor, 756, 758, 791–792
elastic coefficient, 744, 756–757,

798–799
geometry factors, 751–756, 

793–794
hardness-ratio factor, 761, 796
lengthwise curvature factor for

bending strength, 793
load-distribution factor, 759–760, 793
overload factor, 758, 791
pitting resistance geometry factor,

751, 754–756, 793
reliability factors, 763, 

797–798
reversed loading, 800
rim-thickness factor, 764
safety factors, 765, 791

size factor, 759, 793
stress-cycle factor, 762, 795–796
surface condition factor, 758
temperature factor, 764, 796

AGMA gear method 
bevel gears, 788, 801–802
helical gears, 745–750
spur gears, 745–750, 766–767
worm gears, 809

AGMA transmission accuracy-level
number, 756

Alignment, 607
Allowance, 20
Alloy cast irons, 55
Alloying, 33
Alloy steels

chromium, 52
manganese, 52
molybdenum, 53
nickel, 52
numbering system, 45
quenching, 50
silicon, 52
tempering, 50
tungsten, 53
vanadium, 53

Alternating and midrange von Mises
stresses, 318, 367

Alternating stresses, 266, 301
Aluminum, 55–56
Aluminum brass, 58
Aluminum bronze, 58, 817
American Bearing Manufacturers

Association (ABMA), 12
standard, 573

American Gear Manufacturers
Association (AGMA), 12

approach, 734
American Institute of Steel Construction

(AISC), 12
code, 489–490

American Iron and Steel Institute
(AISI), 12, 45

American National (Unified) thread
standard, 410

American Society for Testing and
Materials (ASTM), 12

numbering system, 46
American Society of Mechanical

Engineers (ASME), 12, 620
American Welding Society (AWS),

476–478
American Welding Society (AWS), 12

code, 490
Amplitude ratio, 302
Anaerobic adhesives, 500
Angle of action, 682
Angle of approach, 682
Angle of articulation, 908
Angle of recess, 682
Angle of twist, 101–102
Angular-contact bearing, 572
Angular-velocity ratios, 677, 683,

880, 882
Annealing, 49
Annealing effect, 44
Antifriction bearing lubrication, 604
Antifriction bearings, 570
Arc of action, 684
Arc of approach, 684
Arc of recess, 684
Area principal axes, 93
Area reduction, 39
Arithmetic mean, 980–984
Arrow side (weld symbol), 477
ASME-elliptic failure criteria, 305–306,

308, 338, 346, 369
ASM Metals Handbook 

(ASM), 269
ASTM fastener specifications, 432
Austenite, 50
Average factor of safety, 249
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Average film temperature, 645
Average life, 574
Average strain rate, 42
Average tangential stress, 114, 116
Axial clutches, 845
Axial fatigue, 332
Axial layout of components, 363
Axial load support, 363
Axial pitch, 692, 695
Axle, defined, 360

B
B10 life, 574
Babbit, 657
Backlash, 676
Back-to-back (DB) mounting, 606
Bainite, 50
Bairstow, I., 276
Ball bearings, 570
Ball bearings selection, 588–590
Band-type clutches and brakes, 844–845
Barth equation, 739
Base circles, 678, 680
Base pitch, 682
Basic dynamic load rating, 574
Basic load rating, 574
Basic size, 395
Basic static load rating, 580
Baushinger’s theory, 276
Beach marks, 266
Beams

in bending, normal stresses, 89–94
in bending, shear stresses, 94–100
curved beams in bending, 118–122
deflection methods, 152–153
deflections by singularity functions,

156–162
deflections by superposition, 153–156
load and stress analysis, 75–76,

89–100
shear force and bending moments in,

75–76
shear stresses in bending, 93–94
shear stress in rectangular, 95

Bearing alloy characteristics, 657
Bearing characteristic number, 622
Bearing fatigue failure criteria, 573
Bearing film pressure, 625
Bearing housing heat dissipation, 645

Bearing life
life measure of an individual

bearing, 573
recommendations for various classes

of machinery, 583
reliability-life relationship, 570
rolling-contact bearings, 573–574

Bearing load life at rated reliability,
574–575

Bearings
boundary dimensions for, 580
direct mountings of, 591
indirect mountings of, 591
parts of, 570
reliability, 600–603
selection of, 936, 947
shields, 572
stress, 452
suppliers, 591
supports, 372
types, 570–573, 658–659

Belleville springs, 557
Belting equation, 887
Belts, 880–883

centrifugal tension in, 884
tension, 903

Bending factor, 794
Bending moment, 75
Bending strain energy, 163
Bergsträsser factor, 519
Beryllium bronze, 58
Bevel and worm gears

AGMA equation factors, 791–795
bevel gearing, general, 786–788
bevel-gear stresses and strengths,

788–791
Buckingham wear load, 820–821
designing a worm-gear mesh,

817–820
design of a straight-bevel gear mesh,

806–808
straight-bevel gear analysis,

803–805
worm-gear analysis, 813–816
worm gearing-AGMA equation,

809–812
Bevel gearing

force analysis, 709–712
general, 786–788

Bevel-gear mounting, 788

Bevel gears, 674
straight, 690–691
terminology of, 690
tooth forces, 709

Bevel-gear stresses and strengths,
788–791

bending stress, 791
fundamental contact stress equation,

788–790
permissible bending stress

equation, 791
permissible contact stress number

(strength) equation, 791
Bilateral tolerance, 19
Blanking, 49
Bolted and riveted joints loaded in

shear, 451–459
Bolt elongation, 441
Bolt preload, 425
Bolts, loosening of, 448
Bolt spacing, 444
Bolt strength, 432–435
Bolt tension, 437–440
Bolt torque and bolt tension, 437–440
Bottom land, 676
Boundary conditions

axisymmetric beam and the bearing
supports, 972

critical speeds, 383
finite-element analysis, 965–966
geometric, 151
long columns with central

loading, 181
multipoint constraint equations, 966
simply supported beams, 152
superposition, 153

Boundary dimensions for
bearings, 580

Boundary elements, 966
Boundary-lubricated bearings, 660–668

bushing wear, 663–666
linear sliding wear, 661–663
temperature rise, 666–668

Boundary lubrication, 619, 660–661
Boundary representative (B-rep)

techniques, 963
Brake bands and flexible clutch, 844
Brake lining wear, 840
Brakes, operating mechanisms, 840
Brake shoes, self-deenergizing, 827
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Brass, 57
5 to 15 percent zinc, 57
20 to 36 percent zinc, 57–58
36 to 40 percent zinc, 58

Breakeven points, 13–14
Brinell hardness, 41, 761
Brittle Coulomb-Mohr (BCM theory),

235–236
Brittle fracture, 44
Brittle materials, 33, 111

fatigue failure criteria, 314
maximum-normal-stress theory

for, 235
meaning of, 238
modifications of the Mohr theory for,

235–237
Smith-Dolan focus, 314
Smith-Dolan fracture criteria for,

338–339
Brittle metal behavior, 218
Bronze, 57, 58
Buckingham Lewis equation, 812
Buckingham method, 848
Buckingham wear equation, 821
Buckingham wear load, 820–821
Buckling, 149
Burnishing, 690
Bushed-pin bearings, 661
Bushings, 618
Bushing wear, 663–666
Butt welds, 478–481

C
Calculations and significant figures,

22–23
Caliper brakes, 849
Cams, 677
Cap screws, 423
Carbon content, 33
Carburization, 51
Cartesian stress components,

79–80
Cartridge brass, 57
Case hardening, 51
Case study

bearing selection, 947–948
deflection check, 946–947
design for stress, 946
gear specification, 939–943

key design, 948–949
problem specification, 934–935
shaft layout, 944–946
speed, torque, and gear ratios,

937–939
Castigliano’s theorem, 164–168, 169,

176, 553, 559
Casting alloys, 56
Casting materials

alloy cast irons, 55
cast steels, 55
ductile and nodular cast iron, 54
gray cast iron, 54
malleable cast iron, 55
white cast iron, 54–55

Cast iron, 283
Cast steels, 55
Catalog load rating, 574
Catastrophic failure, 190
Catenary theory, 892
Cementite, 54
Center distance, 682–683
Centipoise, 620
Centrifugal castings, 47
Centrifugal clutches, 832
Centrifugal extrusions, 687
Centrifugal force, 837
Centrifugal tension in belt, 884
Centroidal axis, 90, 119
Cermet pads, 863
Chain velocity, 909
Charpy notched-bar test, 42
Chevron lines, 267
Chordal speed variation, 910
Chromium, 52
Circular (button or puck) pad caliper

brake, 852–853
Circular pitch, 675, 692
Clamshell marks, 266
Clearance, 19, 648–650, 676
Clearance circle, 676
Closed ends, 520
Closed thin-walled tubes, 107–108
Close running fit, 397
Close-wound springs, 544
Clutch capacity, 856
Clutches

cone, 832
disk, 832
friction materials for, 864

multiple-plate, 832
operating mechanisms, 840
types of, 832

Clutches, brakes, couplings, and
flywheels, 826–887

about, 827–831
band-type clutches and brakes,

844–845
cone clutches and brakes, 853–855
disk brakes, 849–853
energy considerations, 856–857
external contracting rim clutches and

brakes, 840–844
flywheels, 866–871
frictional-contact axial clutches,

845–848
friction materials, 861–864
internal expanding rim clutches and

brakes, 832–840
miscellaneous clutches and

couplings, 864–865
temperature rise, 857–861

Clutches and couplings, 864–865
Codes, 12
Coefficient of friction

of bearing, 625
elements affecting, 438
gears, general, 715–717
Petroff’s equation, 638–639
of power screws, 421
variance of, 837

Coefficient of speed fluctuation, 867
Coefficient of variance (COV), 251, 982
Coining, 49
Cold drawing, 48
Cold forming, 687
Cold rolling, 48, 687
Cold-work factor, 39
Cold working, 38
Cold-working processes, 48–49
Columns

defined, 181
with eccentric loading, 184–188
Euler column formula, 181
intermediate-length, with central

loading, 184
long, with central loading, 

181–184
secant column formula, 186
unstable, 181
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Combinations of loading modes, 273,
317–321, 347

Combined radial and thrust loading,
579–584

Commercial bronze, 57
Commercial FEA packages, 954
Commercial seals, 607
Commercial vendor sources, 8–9
Companion distribution, 987
Completely reversed stress, 275, 285,

301, 317
Completely reversing simple loading,

344–346
Composite materials, 60
Compound gear ratio, 699
Compound reverted gear train, 701
Compression coil springs, 522
Compression members, general, 181
Compression springs, 520–521
Compressive stress, 79, 186, 190
Computational errors, 956
Computational tools, 8–9
Computer-aided design (CAD)

software, 8
Computer-aided engineering 

(CAE), 9
Concept design, 6
Cone, 853
Cone angle, 853
Cone clutches, 832, 845, 853
Cone clutches and brakes, 853–855

uniform pressure, 855
uniform wear, 854–855

Conical springs, 558
Conjugate action, 677–678
Constant angular-velocity ratio, 906
Constant-force springs, 558
Constant-life curves, 303
Constructive solid geometry (CSG)

techniques, 963
Contact adhesives, 500
Contact area, 691
Contact fatigue strength, 328
Contact-geometry factor, 794
Contact ratio, 684–685, 738
Contact strength, 328
Contact stresses, 122–126

cylindrical contact, 124–126
spherical contact, 123–124

Contact stress factor, 795

Contact-stress fatigue, AGMA 
strength, 762

Contact-stress fatigue failure, 
762, 765

Continuous periodic load rotation, 586
Continuous random variable, 979
Continuous varying cyclic load, 587
Coordinate transformation equations, 86
Copper-base alloys

brass with 5 to 15 percent zinc, 57
brass with 20 to 36 percent zinc,

57–58
brass with 36 to 40 percent zinc, 58
bronze, 58

Correlation coefficient, 995
Corrosion, 294
Corrosion-resistant steels, 53
Cost estimates, 15
Coulomb-Mohr theory, 228–230, 255
Counter-rotating rotation, self-

energization for, 842
Counting method for cycles, 322
Coupling clutches, 865
Crack extension, 278
Crack growth, 241, 279, 280–281
Crack modes, and stress intensity factor,

241–245
Cracks

crack stages, 266
cycles to failure at initial crack, 280
fatigue crack growth, 281
fatigue cracks, 267
fracture mechanism, 239
growth of, 267–268, 279
metal spraying and, 294
nucleation, 279
opening crack propagation mode, 241
quasi-static fracture, 240
quenching, 50
rotary fatigue, 327
sliding mode, 241
tearing mode, 241

Creep, 44
Critical buckling load, 969–971
Critical frequency of helical springs,

534–536
Critical load, 181
Critical locations, 366–379
Critical speeds, 383
Critical speeds for shafts, 383–388

Critical stress intensity factor, 245
Critical unit load, 182
Crowned pulleys, 880, 888–889
Crowning factor for pitting, 793
Crystal slip, 278
Cumulative density function (CDF), 979
Cumulative fatigue damage, 273,

321–327
Cumulative probability distribution, 979
Cups, 853
Current gauge length, 34
Curvature effect, 519–520
Curved beams in bending, 118–122
Curved beams in bending, alternative

calculations, 120–122
Cycles, 280, 322
Cyclic frequency, 294
Cyclic plastic strains, 276
Cylindrical contact, 124–126
Cylindrical materials, 317
Cylindrical roller bearings selection,

588–590

D
Damping coefficients, 191
Dedendum, 676
Dedendum distances, 680
Definition of problem, 6
Deflection, 33

critical, 522
modes of, 156
and spring rate, 552–554
vs. strength, 66

Deflection and stiffness, 148–192
beam deflection methods,

152–153
beam deflections by singularity

functions, 156–162
beam deflections by superposition,

153–156
Castigliano’s theorem, 164–168
columns with eccentric loading,

184–188
compression members, general, 181
deflection due to bending, 

150–152
deflection of curved members, 

168–175
elastic stability, 190
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intermediate-length columns with
central loading, 184

long columns with central loading,
181–184

shock and impact, 191–192
spring rates, 148–149
statically indeterminate problems,

175–181
strain energy, 162–164
struts or short compression members,

188–189
tension, compression, and 

torsion, 149
Deflection considerations, 379–383
Deflection due to bending, 150–152
Deflection of curved members, 

168–175
DE-ASME elliptic, 368–369
DE-Gerber equation, 368–369
DE-Goodman equation, 368–369
DE-Soderberg, 368–369
Degrees of freedom (dof’s), 955
Design, 4–5
Design assessment for rolling-contact

bearings, 599–603
Design assessment for selected rolling-

contact bearings, 599–603
bearing reliability, 600–603
matters of fit, 603

Design categories, 216
Design considerations, 8
Design engineer’s professional

responsibilities, 10–11
Design factors, 16

and factor of safety, 17–18
in fatigue, 342–343
for static design, 282

Design Manual for Cylindrical
Wormgearing (ANSI/AGMA),
810, 817

Design of a gear mesh, 775–780
gear bending, 776
gear tooth bending, 779
gear tooth wear, 779
gear wear, 776
pinion bending, 776
pinion tooth bending, 778–779
pinion tooth wear, 779
pinion wear, 776
rim, 780

straight-bevel gear mesh, 806–808
worm-gear mesh, 817–820

Design requirements, 25
Design sequence for power

transmission, 935–936
bearing selection, 936
final analysis, 936
force analysis, 935
gear specification, 935
key and retaining ring selection, 936
power and torque requirements, 935
shaft design for deflection, 936
shaft design for stress (fatigue and

static), 935
shaft layout, 935
shaft material selection, 935

Design specifications, 25–26
Design tools and resources, 8–10
Design topic interdependencies, 

23–24
Deterministic failure curves for ductile

materials, 338
Deterministic quantity, 982
Deviation, 395
Diameter series, 580
Diametral clearance, 19
Diametral interferences, 399
Diametral pitch, 676
Die castings, 47
Differential damage, 586
Dimensionless multiple of rating 

life, 575
Dimensions and tolerances, 19–21
Dimension-series code, 580
Dip, 892
Directional characteristics, 293
Direct load, 456
Direct mountings of bearings, 591
Direct shear, 89
Discontinuities, 110, 267
Discrete frequency histogram, 981
Discrete random variable, 979
Discretization errors, 956
Disk brakes, 849

circular (button or puck) pad caliper
brake, 852–853

uniform pressure, 851–852
uniform wear, 850–851

Disk clutches, 832, 845
Displacement, 165

Distance constraint, 701
Distortion-energy (DE) failure theory,

221–227, 254–255, 368, 523
Distribution curve

lognormal, 576
Weibull, 576

Double-enveloping worm gear sets, 675
Double helical gear (herringbone), 691
Double-lap joints, 501
Double-row bearings, 572
Double-threaded screw, 410
Dowel pins, 391
Dowling method for ductile materials, 302
Drawing, 50
Drive pins, 391
Drum brake, 832
Ductile and nodular cast iron, 54
Ductile cast iron, 54
Ductile materials, 33, 111, 317

ASME-elliptic line for, 338
Coulomb-Mohr theory for, 228–230
deterministic failure curves for, 338
distortion-energy theory for, 221–227
Dowling method for, 302
maximum-shear-stress theory for,

219–221
static loading in, 218

Ductile metal behavior, 218
Ductility, 39
Dunkerley’s equation, 386
Duplexing, 606
Dynamic effects, 734–743
Dynamic equivalent loads, 598
Dynamic factor, 738, 756–758, 791–792
Dynamic loading, 112
Dynamic viscosity, 620
Dyne, 620

E
Eccentricity, 120, 625
Eccentricity ratio, 186
Economics, 12–15

breakeven points, 13–14
cost estimates, 15
large tolerances, 13
standard sizes, 13

Effective arc, 883
Effective coefficient of friction, 900
Effective slenderness ratio, 522
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Effective stress, 222
Efficiency

belt drive gears, 883
defined, 716

Egs units (special names), 620
Eigenvalues, 971
Elastic coefficient, 744, 756
Elastic coefficient for pitting resistance,

798–799
Elastic creep, 883
Elastic deformation of power

screws, 419
Elasticity, 148
Elastic limit, 33, 36
Elastic loading, 40
Elastic stability, 190
Elastic strain, 87–88
Elastic-strain line, 278
Elastrohydrodynamic lubrication

(EHDL), 604, 619
Electrolytic plating, 294
Element geometries, 957–959
Element library, 957
Element loading, 964
Elimination approach, 961
Enclosures, 607–608
End-condition constant, 182, 522
Endurance limit, 272, 275, 282–283,

330–331
Endurance limit modifying factors

corrosion, 294
cyclic frequency, 294
electrolytic plating, 294
frettage corrosion, 294
loading factor, 290
Marin equation, 331–334
metal spraying, 294
miscellaneous-effects factor, 293–294
reliability factor, 292–293
rotating-beam specimen used,

286–294
size factor, 288–290
surface factor, 287–288
temperature factor, 290–292
types of, 272

Endurance strength Marin equation, 287
Energy considerations of clutches,

brakes, couplings, and flywheels,
856–857

Energy-dissipation rate, 857
Energy method. See Castigliano’s

theorem
Engineering strengths, 35
Engineering stress, 34, 35
Engineering stress-strain diagrams, 34
Engineer’s Creed (National Society of

Professional Engineers), 11
Engraver’s brass, 57
Epicyclic gear trains, 703
Equation of motion of flywheel, 865
Equilibrium, 72
Equilibrium and free-body diagrams,

72–75
Equivalent bending load, 917, 922
Equivalent diameter, 289
Equivalent radial load, 579
Equivalent steady radial load, 584
Equivalent stress, 222
Equivalent von Mises stresses, 318
Euler column formula, 181
Euler columns, 183
Euler’s equation for inertia, 869
Evaluation, 7
Expanding-ring clutches, 832
Extension springs, 542–550
External contracting rim clutches and

brakes, 840–844
External loads, tension joints,

435–437
Extreme-pressure (EP) lubricants, 660
Extrusion, 48, 687

F
Face, 83
Face-contact ratio, 695
Face load distribution factor, 759
Face-to-face mounting (DF), 606
Face width, 698
Factor of safety

average factor of safety, 249
and defects, 183
and design factor, 4, 17–18
fatigue, 446–447, 539, 922
MSS theory vs. DE theory, 183
in shear, 220
significance of, 46
static, 922

strength-to-stress ratio, 247
in wear, 776
of wire rope, 918, 920–921

Failure criteria, 306
Failures

of brittle materials summary, 238
defined, 214
of ductile materials summary,

231–234
Mohr theory of, 228

Failures resulting from static loading,
214–263

about, 214–215
Coulomb-Mohr theory for ductile

materials, 228–230
distortion-energy theory for ductile

materials, 221–227
failure of brittle materials

summary, 238
failure of ductile materials summary,

231–234
failure theories, 219
introduction to fracture mechanics,

239–248
maximum-normal-stress theory for

brittle materials, 235
maximum-shear-stress theory for

ductile materials, 219–221
modifications of the Mohr theory for

brittle materials, 235–237
selection of failure criteria, 

238–239
static strength, 216–217
stochastic analysis, 248–254
stress concentration, 27–28

Failure theories, 219
Failure theory flowchart, 255
Failure zone, 342
Fastener specifications, 432
Fastener stiffness, 424–427
Fastening methods, 410
Fatigue axial loading, 432
Fatigue cracks

computer programs and growth, 281
formation and propagation, 267

Fatigue ductile coefficient, 277
Fatigue ductility exponent, 277
Fatigue factor of safety, 446–447,

539, 922
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Fatigue failure
appearance of, 266
approach in analysis and design,

267–271
from bending, 762
from contact-stress, 762
stages, 266–267
from variable loading, 54
of wire rope, 921

Fatigue failure criteria
brittle materials, 314
fluctuating simple loading, 346
for fluctuating stress, 303–316
for modified Goodman line, 368

Fatigue failure from variable loading
characterizing fluctuating stresses,

300–302
combinations of loading modes,

317–321
cumulative fatigue damage, 

321–327
endurance limit, 282–283
endurance limit modifying factors,

286–294
fatigue failure criteria for fluctuating

stress, 303–316
fatigue-life methods, 273
fatigue strength, 283–286
introduction to fatigue in metals,

266–271
linear-elastic fracture mechanics

method, 278–282
road maps and important design

equations for the stress-life
method, 344–347

stochastic analysis, 330–344
strain-life method, 276–278
stress concentration and notch

sensitivity, 295–300
surface fatigue strength, 327–330
torsional fatigue strength under

fluctuating stresses, 317
varying, fluctuating stresses, 

321–327
Fatigue in metals, introduction, 

266–271
combinations of loading 

modes, 273
cumulative fatigue damage, 273

endurance limit modifying
factors, 272

fatigue-life methods, 272
fatigue strength and the endurance

limit, 272
fluctuating stresses, 273
stress concentration and notch

sensitivity, 273
varying, fluctuating stresses, 273

Fatigue-life methods, 272, 273
Fatigue limit. See also endurance 

limit
at high temperature, 291

Fatigue loading, 496–497
of helical compression springs,

536–539
of tension joints, 444–451

Fatigue of springs, 521
Fatigue ratio, 330
Fatigue strength, 274, 283–286

coefficients, 277
and endurance limit, 272
exponents, 278
helical coil torsion springs, 

554–557
SAE approximation of, 284

Fatigue-stress concentration factors,
295, 490, 752

Fatigue-testing machine, 274
Felt seals, 607
Ferrite, 50
Figure of merit

for belts, 894
for gears, 776, 780, 808
for springs, 528–529, 532, 540

Fillers, 60
Fillet radius of shoulders, 372
Fillet welds, 478–481
Filling notch, 572
Film pressure, 641–642
Final analysis, 936
Finishing, 690
Finite element (FE) programs, 175
Finite element (term), 956
Finite-element analysis (FEA), 218,

954–974
about, 954–955
boundary conditions, 965–966
critical buckling load, 969–971

element geometries, 957–959
finite-element method, 

955–957
finite-element solution process,

959–962
load application, 964–965
mesh generation, 962–964
modeling techniques, 966–969
thermal stresses, 969
vibration analysis, 971–972

Finite-element method, 955–957
Finite-element solution process,

959–962
Finite life, 296
Finite-life region, 275
First-cycle localizing yielding, 318
Fit, 603
Fitted bearing, 625
Flat-belt drives, 883–898
Flat belts, 882
Flat metal belts, 895–898
Flat springs, 518
Flexibility, 518
Flexible clutch and brake bands, 844
Flexible mechanical elements

belts, 880–883
flat- and round-belt drives, 

883–898
flat metal belts, 895–898
flexible shafts, 924–925
roller chain, 907–915
timing belts, 906–907
V belts, 898–906
wire rope, 916–924

Flexible shafts, 924–925
Flexural endurance limit, 327
Flexure formula, 94
Floating caliper brakes, 849
Fluctuating loads, 317
Fluctuating simple loading, 

346–347
Fluctuating stresses, 266, 273

characterization of, 300–302
fatigue failure criteria for, 

303–316
stochastic analysis, 338–342
torsional fatigue strength under, 317
varying, 321–327

Fluid lubrication, 618
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Flywheels, 866–871
equation of motion, 865
function of, 826
inertia, 868
work-input and output, 866–867

Force, 165
Force analysis, 935

bevel gearing, 709–712
helical gearing, 712–714
power transmission case study, 945
spur gearing, 705–706
worm gearing, 714–720

Force-contact ratio, 751
Forced-feed lubrication, 657
Force fit, 397
Forging, 48
Form cutters, 687
Forming, 49
Formulas for sections of curved

beams, 121
Fracture mechanics

about, 239–240
crack modes and the stress intensity

factor, 241–245
design equations, 256
fracture toughness, 245–248
quasi-static fracture, 240–241

Fracture toughness, 245–248
Free-body diagrams, 73
Free-cutting brass, 57
Free running fit, 397
Free-wheeling clutches, 865
Frequency function, 979
Frettage corrosion, 294
Frictional coefficients, 191
Frictional-contact axial clutches, 845–848

uniform pressure, 847–848
uniform wear, 846–847

Friction drives, 895
Friction materials

characteristics of, 861–862
for clutches, 864
clutches, brakes, couplings, and

flywheels, 861–864
Friction variables, 638
Full bearing, 625
Full-film lubrication, 618
Functional products, 4
Fundamental contact stress equation,

788–790

Fundamental critical frequencies, 536
Fundamental deviation, 395–396
Fundamental division, 395
Fundamental frequencies, 535
Fundamentals, 678–684

G
Gamma function, 991, 1058
Gasketed joints, 444
Gauge length, 34
Gaussian (normal) distribution, 37,

985–986
Gear hobbing, 687
Gear mesh. See also design of a gear

mesh
bevel and worm gears, 806–808,

817–820
design decisions for, 775–776

Gears, general, 674–732
AGMA factors, See AGMA equation

factors
conjugate action, 677–678
contact ratio, 684–685
force analysis, bevel gearing, 709–712
force analysis, helical gearing, 712–714
force analysis, spur gearing, 705–706
force analysis, worm gearing,

714–720
fundamentals, 678–684
gear teeth formation, 687–690
gear trains, 698–705
interference, 685–687
involute properties, 678
nomenclature, 675–676
parallel helical gears, 691–695
straight bevel gears, 690–691
tooth systems, 696–698
types of gears, 674–675
worm gears, 695–696

Gear specification, 935, 936–937
Gear supports, shoulders at, 372
Gear teeth, 937

bending strength of, 739
maximum teeth on, 687

Gear teeth formation, 687–690
finishing, 690
hobbing, 689
milling, 688
shaping, 688–689

Gear tooth bending, 770, 773, 779
Gear tooth wear, 770, 773, 779
Gear trains, 698–705
Gear wear, 776, 808
Gear wear equations, 767
General three-dimensional stress, 86–87
Generating centers, 687
Generating line, 679, 682
Geometric stress-concentration

factors, 111
Geometry factors, 751–756
Gerber fatigue failure criteria, 305–307,

342, 346, 368–369, 447
Gib-head key, 392
Gilding brass, 57
Goodman fatigue failure criteria, 305–307,

342, 346, 368–369, 447
Goodman line, 305
Government sources, 8–9
Gravity loading, 965
Gray cast iron, 54
Griffith, A. A., 240–241
Grinding, 690
Grip, 425, 437
Grooved pulleys, 880
Guest theory, 219

H
Hagen-Poiseulle law, 620
Hardness, 41–42
Hardness-ratio factor, 796, 797
Harmonic frequencies, 535
Harmonics, 383
Heading, 49
Heat dissipation of bearing housing, 645
Heat generation, 856
Heat generation rate, 646
Heat treatment, 33
Heat treatment of steel

annealing, 49
case hardening, 51
quenching, 50
tempering, 50–51

Helical coil torsion springs, 550–557
bending stress, 552
deflection and spring rate, 552–554
describing the end location, 551–552
fatigue strength, 554–557
static strength, 554

1072 Mechanical Engineering Design

bud29281_ndx_1065-1082.qxd  1/1/10  12:39 AM  Page 1072 epg Disk1:Desktop Folder:



Helical compression springs
design for fatigue loading, 539–542
design for static service, 528–534
fatigue loading of, 536–539

Helical gearing force analysis, 712–714
Helical gears, 674, 691

parallel, 691–695
Helical springs, 853

critical frequency of, 534–536
deflection, 520

Helix angle, 692
Hertzian endurance strength, 328
Hertzian stresses, 122
Hexagonal nuts, 423
Hexagon-head cap screws, 423
Hidden cycles, 321–322
High-cycle fatigue, 273, 275
High-leaded brass, 57
High temperature, fatigue limit at, 291
Hobbing, 689
Holding power, 388
Hole basis, 395
Hook ends, 542
Hooke’s Law, 33, 87
Hoop stress, 114
Horizontal shear stress, 96
Hot melts, 500
Hot milling, 48
Hot-working processes, 47–48
Hydraulic clutches, 832
Hydrodynamic lubrication, 618
Hydrodynamic theory, 625–629
Hydrostatic lubrication, 619
Hyperbolic stress distribution, 119
Hypoid gears, 674, 787

I
Identification of knowns and

unknowns, 10
Identification of need, 5
Idle arc, 884
Idler pulleys, 880, 892
Impact properties, 42–43
Impact value, 42
Important design equations

Coulomb-Mohr theory, 255
distortion-energy theory, 254–255
failure theory flowchart, 255
fracture mechanics, 256

lognormal-lognormal case, 256
maximum shear theory, 254
modified Mohr (plane stress), 255
normal-normal case, 256
stochastic analysis, 256

Inch-pound-second system (ips), 21
Indirect mountings of bearings, 591
Influence coefficients, 384
Initial crack, cycles to failure at, 280
Initial belt tension, 885, 892
Injection molding, 688
In-line condition shafts, 702
Interference, 20, 249, 397

of gears, 685–687
general, 253–254

Intermediate-length columns with
central loading, 184

Internal expanding rim clutches and
brakes, 832–840

Internal friction theory, 228
Internal gears, 682
Internal shear force, 75
Internal-shoe brake, 832
International Committee of Weights and

Measures (CIPM), 620
International System of Units (SI), 22
International tolerance grade

numbers, 395
Interpolation, 644–645
Intersecting and offset-shaft bevel

gearing, 788
Invention of the concept, 6
Investment casting, 47, 687
Involute curve construction, 679
Involute curves, 678
Involute generating line, 678
Involute helicoil, 691
Involute profile, 677
Involute properties, 678
Isotropic materials, 60
IT numbers, 396
Izod notched-bar test, 42

J
J. B. Johnson formula, 184
Joints

bolted and riveted, 455–459
design, 504–506
fastener stiffness, 424–427

gasketed, 444
member, 427–432
separation, 440–441
shear, with eccentric loading,

455–459
stiffness constant of, 436

Journal bearings
loading on, 631
lubrication for, 618

K
Keys, 364

design safety factors, 391
and pins, 390–394
and retaining ring selection, 936,

948–950
Keyseats, 392
Keyways and stress concentration, 372
Kinematic viscosity, 620
Kinetic energy, 856
Kips, 21

L
L10 life, 574
Labyrinth seals, 607
Laminates, 60
Landgraf, R. W., 276
Langer first-cycle yielding criteria,

306–308
Lapping, 690
Lap-shear joints, 501
Large tolerances, 13
Lead-bronze, 817
Leakage. See side flow
Length/diameter ratio, 664
Lengthwise curvature factor for bending

strength, 793
Lewis bending equation, 734–743
Lewis form factor, 737
Libraries, 8–9
Limits, 19
Limits and fits, 395–400
Linear damage hypothesis, 586
Linear damage rule, 323
Linear elastic fracture mechanics

(LEFM), 239, 273, 278–282
Linear regression, 994–997
Linear sliding wear, 661–663
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Linear spring, 148
Line elements, 957
Line of action, 677, 679, 682
Line of action and reaction, 73
Line of contact, 125
Load, life and reliability of bearings,

577–579
Load and stress analysis, 410

Cartesian stress components, 79–80
contact stresses, 122–126
curved beams in bending, 118–122
elastic strain, 87–88
equilibrium and free-body diagrams,

72–75
general three-dimensional stress,

86–87
Mohr’s circle for plane stress, 80–86
normal stresses for beams in bending,

89–94
press and shrink fits, 115–117
shear force and bending moments in

beams, 75–76
shear stresses for beams in bending,

94–100
singularity functions, 77–79
stress, 79
stress concentration, 110–113
stresses in pressurized cylinders,

113–115
stresses in rotating rings, 115–116
temperature effects, 117
torsion, 101–110
uniformly distributed stresses, 88–89

Load application, 964–965
Load application factors, 578
Load cycle factors, 762
Load-distribution factor, 759–760, 793
Load eccentricity, 504
Load factor, 440
Loading factor, 290
Loading modes, combination of, 347
Load intensity, 75
Load line, 221, 445
Loads and materials, 656–658
Load-sharing ratio, 752
Load-stress factor, 328
Load zone, 592
Local geometry, 360
Locational clearance fit, 397
Locational interference fit, 397

Logarithmic strain, 34
Lognormal distribution, 987–989
Lognormal distribution curve, 576
Lognormal-lognormal case,

250–251, 256
Long bar, 149
Long columns with central loading,

181–184
Long structural members in

compression, 190
Loose running fit, 397
Loose-side tension, 884
Low-contact-ratio (LCR) helical

gears, 752
Low-cycle fatigue, 273, 275
Lower deviation, 395–396
Lowest critical speed, 383
Low-leaded brass, 57
Lubricants

deterioration of, 631
flow of, 639–641
temperature rise, 642–644
velocity, 652

Lubrication
roller chain, 915
rolling-contact bearings, 603–604
selection, 657
viscosity, 632

Lubrication and journal bearings
bearing types, 658–659
boundary-lubricated bearings,

660–668
clearance, 648–650
design considerations, 629
hydrodynamic theory, 625–629
loads and materials, 656–658
Petroff’s equation, 621–623
pressure-fed bearings, 650–656
relations of the variables, 631–645
stable lubrication, 623–624
steady-state conditions in self-

contained bearings, 645–648
thick-film lubrication, 624–625
thrust bearings, 659–660
types of lubrication, 618–619
viscosity, 619–621

Lubrication types, 618–619
Lüder lines, 219
Lumped masses, Rayleigh’s model

for, 383

M
Macaulay functions, 72, 76
Machine screws, 423
Magnesium, 56
Magnetic clutches, 832
Major diameter, 410
Malleable cast iron, 55
Manganese, 52
Manson-Coffin relationship, 278
Manson’s approach, 325–326
Manual mesh generation, 962–963
Manufacturable products, 5
Margin of safety, defined, 249
Marin equation, 286–287
Marin factors, 287–294
Marin, Joseph, 231
Marin size factor, 759
Marketable products, 5
Martensite, 50, 283
Material efficiency coefficient, 65
Material index, 65
Materials

selection, 61–67
for shafts, 361
strength and stiffness, 32–36
worm gears, 817–820

Material selection charts, 61
Mating materials, 327
Matrix, 60
Maximum film pressure, 653
Maximum-normal-stress theory for

brittle materials, 235
Maximum-shear-stress theory for

ductile materials, 219–221
Maximum shear theory, 254
Maxwells’ reciprocity theorem, 384
McKee abscissa, 623
Mean coil diameter, 518
Mean design failure and probability of

failure, 338
Mean ultimate tensile strength, 331
Mechanical efficiency, 813
Mechanical engineering design, 5
Mechanical springs. See springs
Mechanics of power screws, 

414–422
Median life, 574
Medium drive fit, 397
Member joints, 427–432
Mesh, 962
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Mesh generation, 962–964
manual mesh generation, 962–963
semiautomatic mesh generation, 963

Mesh refinement, 962
Metal-mold castings, 47
Metal spraying, 293, 294
Metric fastener specifications, 

412, 432, 435
Metric M and MJ profiles, 410
Metric threads, 411
Microdiscontinuity stress 

concentration, 218
Midspan compressive stress, 186
Milling, 688
Miner’s rule, 322
Minimum film thickness, 624, 625,

637–638
Minimum film thickness curve, 650
Minimum life, 574
Minimum proof load, 432
Minimum proof strength, 432
Minimum tensile strength, 282, 432
Minor diameter, 410
Misalignment, 572
Miscellaneous-effects factor, 293–294
Miscellaneous springs, 558–560
Mixed-film lubrication, 660
Model analysis, 971, 972
Modeling techniques, 966–969
Moderate applications, 740
Modern Steels and Their Properties

Handbook (Bethlehem Steel), 52
Modes of deflection, 156
Modifications of the Mohr theory for

brittle materials
brittle-Coulomb-Mohr, 235–236
modified Mohr, 235–237

Modified Goodman criteria, 370
Modified Goodman diagrams, 303–304
Modified Goodman fatigue failure

criteria, 305–307, 342, 346,
368–369, 447

Modified Goodman line, 306
Modified Mohr theory, 235–237, 255
Modified Neuber equation, 335
Module, 676
Modulus of elasticity, 33, 87

of rope in wire rope, 916
and slenderness ratio, 182

Modulus of resilience, 36

Modulus of rigidity, 35, 88
Modulus of roughness, 36
Modulus of rupture, 35
Mohr’s circle diagram, 82
Mohr’s circle for plane stress, 80–86
Mohr’s circle shear convention, 

82–84
Mohr theory of failure, 228
Molded-woven-asbestos lining, 863
Molded-woven-asbestos pads, 863
Molybdenum, 53
Moment connection, 482
Moment load, 456
Moments, 76
Monte Carlo computer simulation, 21
Moperay, 223
Mounting and enclosure

alignment, 607
enclosures, 607–608
preloading, 607
rolling-contact bearings, 604–608

Multiple-plate clutches, 832
Multiple-threaded product, 410
Multiple-thread worms, 813
Multiplication method, 52
Multipoint constraint equations, 966
Muntz metal, 58

N
N (factor of safety), 46
Natural frequencies, 535
Naval brass, 58
Needle bearings, 573
Neuber constant, 296
Neuber equation, 296
Neutral axis, 89
Neutral plane, 90
Newtonian fluids, 620
Newtonian heat transfer equation,

858–859
Newton’s cooling model, 858
Newton’s equation for viscous flow, 651
Newton’s third law, 73
Newton’s viscous effect, 619
Nickel, 52
Nickel-bronze, 817
Nodes, 955
Noise, vibration and harshness

(NVH), 499

Nomenclature of gears, 675–676
Nominal mean stress method, 302
Nominal size, 19
Nominal strengths, 35
Nominal stresses, 35, 111
Noncircular cross sections, 92
Nonferrous metals

aluminum, 55–56
copper-base alloys, 57
magnesium, 56
titanium, 57

Noninvolute flank, 685
Nonlinear softening spring, 149
Nonlinear stiffening spring, 148
Normal circular pitch, 692
Normal coupling equation, 250
Normal diametral pitch, 692
Normal distribution, 37, 985–986
Normalizing, 49
Normal-normal case, 249–250, 256
Normal stress, 79
Normal stresses for beams in bending

beams with asymmetrical, 93–94
load and stress analysis, 89–94
two-plane bending, 92

Normal tooth force components, 712
Notch-free materials, 317
Notch sensitivity

defined, 295
and stress concentration, 295–300,

334–335, 338
Notch sensitivity equations, 296
Notch summary, 43
Numbering systems, 45–46
Number of cycles vs. stress

reversals, 277
Nuts

grades of, 433
reuse of, 423

O
Octahedral-shear-stress theory, 223–224
Offset method, 33
Oiles bearings, 661
Oiliness agents, 660
Oilite bearings, 661
Oil outlet temperature, 632
Opening crack propagation mode, 241
Open thin-walled sections, 109–110
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Optimization, 7
Original area, 35
Other side (weld symbol), 477
Output power of worm gears, 814
Overconstrained systems, 175
Overload factors, 758, 765, 791, 792
Overload release clutches, 864
Overrunning clutch, 865

P
Palmgren linear damage rule, 327
Palmgren-Miner cycle-ratio summation

rule, 322
Parabolic formula, 184
Parallel-axis theorem, 91, 483
Parallel helical gears, 691–695
Parent distribution, 987
Paris equation, 280
Partial bearing, 625
Partitioning approach, 961
Pattern of variation, 978
Pearlite, 54
Pedestal bearings, 645
Peel stresses, 504
Performance factors, 630
Permanent joint design

adhesive bonding, 498–506
butt and fillet welds, 478–481
fatigue loading, 496–497
references, 507
resistance welding, 498
static loading, 492–495
welded joints, strength of, 489–491
welded joints in torsion, stresses in,

482–486
welding symbols, 476–478

Permanent-mold castings, 687
Permissible bending stress equation, 791
Permissible contact stress number

(strength) equation, 791
Peterson, R. E., 218
Petroff’s equation, 621–623
Phases and interactions of the design

process, 5–8
Phosphor bronze, 57, 58
Photoelastic analysis, 480
Piecewise continuous cycle, 585
Pillow-block bearings, 645
Pinion, 675, 682

Pinion bending, 776, 808
Pinion teeth, smallest number of, 687
Pinion tooth bending, 770, 772–773,

778–779
Pinion tooth wear, 770, 773, 779
Pinion wear, 776, 808
Pins, 364
Pitch, 410
Pitch circles, 675, 677
Pitch cones, 690
Pitch diameters, 675, 679
Pitch length, 900
Pitch-line velocity, 679, 707, 792
Pitch point, 677, 679
Pitch radius, 677
Pitting, 743
Pitting failure, 327
Pitting resistance

geometry factor, 754, 793
stress-cycle factor for, 795

Plain ends, 520
Plane of analysis, 220
Plane slider bearing, 626
Plane strain fracture toughness, 245
Plane stress, 80, 220, 254
Plane-stress transformation equations, 80
Planetary gear trains, 703
Planet carrier gears, 703
Planet gears, 703
Plastics, 58–59
Plastic-strain line, 278
Pneumatic clutches, 832
Point of contact, 678
Poise, 620
Poisson’s ratio, 88
Polished materials, 317
Polymeric adhesives, 498
Population, 980
Positioning drives, 895
Positive-contact clutches, 864
Positive lubrication, 657
Potential energy, 162
Pound-force, 21
Powder-metallurgy bushings, 657
Powder-metallurgy process, 47, 687
Power and speed relationship, 707
Power and torque requirements, 935, 936
Power in equals power out

concept, 936
Power ratings, 900

Power screws, 414
coefficient of friction of, 421
elastic deformation of, 419
mechanics of, 414–422

Power takeoff (PTO), 365
Power transmission case study

about, 934
bearing selection, 947–948
deflection check, 946–947
design for stress, 946
design sequence for power

transmission, 935–936
force analysis, 945
gear specification, 936–937, 939–943
key and retaining ring selection,

948–950
key design, 948–949
power and torque requirements, 936
problem specification, 934–935
shaft design for deflection, 946
shaft design for stress, 946
shaft layout, 943
shaft material selection, 945
speed, torque, and gear ratios, 

937–939
Power transmission case study

specifications
design requirements, 25
design specifications, 25–26

Preload, 435, 442
Preloading, 607
Presentation, 7
Presetting process, 521
Press and shrink fits, 115–117
Press fits, 365
Pressure angle, 679
Pressure-cone method for stiffness

calculations, 428
Pressure-fed bearings, 650–656
Pressure line, 679, 682
Pressure-sensitive adhesives, 500
Pretension, 425
Primary shear, 456, 482
Principal directions, 81
Principal distribution, 987
Principal shear stresses, 87
Principal straight-bevel gear bending

equations, 801
Principal straight-bevel gearwear

equations, 801
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Principal stresses, 81, 254
Probability density, 37
Probability density function (PDF), 37,

979, 989
Probability distributions

cumulative, 979
Gaussian (normal) distribution,

985–986
linear regression, 994–997
lognormal distribution, 987–989
propagation of error, 992–994
uniform distribution, 989–990
Weibull distribution, 990–992

Probability function, 979, 991
Probability of failure

and mean design failure, 338
reliability and, 18

Problem analysis, 11
Problem definition, 6, 10
Professional societies, 8–9
Proof load, 432
Proof strength, 432
Propagation of dispersion, 19
Propagation of error, 19, 

992–994
Propagation of uncertainty, 19
Proportional limit, 33
Pulley correction factor, 887
Punch presses, 869
Pure, defined, 88
Pure compression, 88
Pure rolling, 715
Pure shear, 88
Pure sliding, 715
Pure tension, 88

Q
Quality numbers, 756
Quasi-static fracture, 240–241
Quench-hardenability, 53
Quenching, 50

R
Rack, 682
Radial clearance, 19, 624
Radial clearance ratio, 622
Rain-flow counting techniques, 322
Random experiments, 978

Random variables, 978–980, 982
Rate of shear, 620
Rating life, 574, 575
Rayleigh’s model for lumped masses, 383
Rectangular beam, shear stress in, 95
Red brass, 57
Redundant systems, 175
Regression, 994
Relations of the variables

coefficient of friction, 638–639
film pressure, 641–642
interpolation, 644–645
iteration technique, 631–632
lubricant flow, 639–641
lubricant temperature rise, 642–644
minimum film thickness, 637–638
viscosity charts, 632–638

Relatively brittle condition, 240
Relative velocity, 716
Reliability, 4, 18–19, 249, 990
Reliability factors, 292–293, 763–764,

797–798
Reliability goal, 579
Reliability-life relationship, 570
Reliability method of design, 18
Reliability versus life, 576–577
Reliable products, 5
Repeated stresses, 266
Residual stresses, 293
Residual stress methods, 302
Resilience, 36
Resistance welding, 498
Resultant forces, 456
Retaining rings, 394–395
Retaining ring selection, 949
Reversed loading, 800
Reversing pulley, 880
Reyn (ips viscosity unit), 620
Reynolds equation for one-dimensional

flow, 629
Right-hand rule

for gears, 698, 718
threaded fasteners, 410
for vectors, 101

Rigid elements, 966
Rim, 780
Rim-thickness factor, 764–765
Ring gears, 682, 703
Rivet joints, 453
Road maps

for bending fatigue failure, 765
for contact-stress fatigue failure, 765

Roadmaps
of gear bending equations, 766
of gear wear equations, 767
of principal straight-bevel gear

bending equations, 801
of principal straight-bevel gearwear

equations, 801
for straight-bevel gear bending, 800
for straight-bevel gearwear

relations, 767
for straight-bevel gear wear

relations, 800
Road maps and important design

equations for the stress-life method
combination of loading modes, 347
completely reversing simple loading,

344–346
fluctuating simple loading, 346–347

Roark’s formulas, 153
Rockwell hardness, 41, 761
Rolled threads, 444
Roller chain, 907–915
Roller chain lubrication, 915
Rolling bearings, 570
Rolling-contact bearings, 570

ball bearings selection, 588–590
bearing life, 573–574
bearing load life at rated reliability,

574–575
bearing survival, 576–577
bearing types, 570–573
combined radial and thrust loading,

579–584
cylindrical roller bearings selection,

588–590
design assessment for, 599–603
lubrication, 603–604
mounting and enclosure, 604–608
relating load, life and reliability,

577–579
reliability versus life, 576–577
tapered roller bearings selection,

590–599
variable loading, 584–588

Roll threading, 49
Root diameter, 410
Rope in wire rope, 916
Rotary fatigue, 327
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Rotating-beam machine, 274
Rotating-beam specimens, 282
Rotating-beam test, 274
Rotational degrees of freedom, 955
Rotation factor, 580
Roughness, 36
Round-belt drives, 883–898
Running fits, 648

S
SAE approximation of fatigue

strength, 284
SAE fastener specifications, 432
Safety, 765
Safety and product liability, 4, 15
Safety factors

AGMA equation factors, 791
in key design, 391

Saint Venant’s principle, 964–965
Sample, 980–981
Sample mean, 980
Sample space, 978
Sample standard deviation, 981
Sample variance, 980
Sand casting, 46, 687
Saybolt Universal Viscosimeter, 620
Saybolt universal viscosity (SUV)

seconds, 620
Scoring, 743
Screws, self-locking, 416
Seam welding, 498
Secant column formula, 186
Second-area moments, 93
Secondary shear, 456, 482
Section median line, 108
Section modulus, 90
Seireg curve, 655
Selection of failure criteria, 238–239
Self-acting phenomena, 829
Self-aligning bearings, 572, 580, 607
Self-deenergizing brake shoe, 827
Self-energization for counter-rotating

rotation, 842
Self-energizing design, 849
Self-energizing shoes, 840
Self-locking phenomena, 829
Self-locking screws, 416
Semiautomatic mesh generation, 963
Separators, 571
Set removal process, 521

Setscrews, 364, 388–390
Shaft basis, 396
Shaft components, miscellaneous

keys and pins, 390–394
retaining rings, 394–395
setscrews, 388–390

Shaft design for deflection, 936, 946
Shaft design for stress

critical locations, 366–379
fatigue and static, 935
power transmission case study, 946
shaft stresses, 367–372
stress-concentration estimation,

372–378
Shaft layout, 361–366, 935

assembly and disassembly, 
365–366

axial layout of components, 363
axial load support, 363
case study gear specification,

944–946
power transmission case study, 943
torque transmission provision,

363–365
Shaft materials, 360–361
Shaft material selection, 935, 945
Shafts, defined, 360
Shafts and shaft components

about, 360
critical speeds for shafts, 383–388
deflection considerations, 379–383
limits and fits, 395–400
shaft components, miscellaneous,

388–395
shaft design for stress, 366–379
shaft layout, 361–366
shaft materials, 360–361

Shaft shoulders, 605
Shaft stresses, 367–372
Shallow drawing, 49
Shaping, 688–689
Shear, yield strength in, 220
Shear energy theory, 223
Shear force, 76
Shear force and bending moments in

beams, 75–76
Shear-lag model, 501
Shear loading, strain energy due to, 163
Shear loading failure, 452–453
Shear modulus, 35

Shear modulus of elasticity, 88
Shear-stress correction factor, 519
Shear stresses

beams in bending, 94–100
rectangular beams, 95

Shear yield strength, 225
Sheave diameters, 899–900
Sheaves, 880
Shell molding, 47, 687
Shock, 191
Shock and impact, 191–192
Short compression members, 

188–189
Shot peening, 536
Shoulders

at bearing supports, 372
fillet radius of, 372
at gear supports, 372

Shrink fits, 365
Side flow, 632, 639, 653
Significant angular speed, 630
Silicon, 52
Silicon bronze, 58, 817
Simple, defined, 88
Sines failure criterion of torsional

fatigue, 536, 539
Single-enveloping worm gear sets, 675
Single-lap joints, 501
Single-row bearings, 572
Single stress, 222
Singularity functions, 72, 76, 77–79
Sintered-metal pads, 863
Size factor, 288–290, 759
Size factor for bending, 793
Size factor for pitting resistance, 793
Sleeves, 618
Slenderness ratio, 182
Sliding bearings design decisions, 629
Sliding fits, 396, 397
Sliding velocity, 716
Slip lines, 219–220
Slug, 21
Smith-Dolan focus, 314
Smith-Dolan fracture criteria, 338–339
Snug-tight condition, 437
Society of Automotive Engineers

(SAE), 12, 45
Socket setscrews, 388
Soderberg criteria, 369
Soderberg fatigue failure criteria, 346
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Soderberg line, 305
Software, 8–9
Solid circular cross sections, 92
Solid elements, 957
Solid-film lubricants, 619
Solution processing technique, 10
Sommerfield number, 622, 630, 637–642
Special-purpose elements, 957
Specification-grade bolts, 432
Specific modulus, 63
Specific stiffness, 63
Specific strength, 66
Speed ratio, 754
Spherical ball bearings, 607
Spherical contact, 123–124
Spherical-roller thrust bearings, 573
Spiral angle, 786
Spiral bevel gears, 674, 786
Spiroid gearing, 787
Splines, 365
Spot welding, 498
Spring, 148
Spring ends, 520
Spring index, 519
Spring materials, 523–528
Spring rates, 148–149, 425, 552–554.

See also stiffness
Springs, 518–560

Belleville springs, 557
compression springs, 520–521
critical frequency of helical springs,

534–536
curvature effect, 519–520
extension springs, 542–550
fatigue loading of helical

compression springs, 536–539
fatigue of, 521
helical coil torsion springs, 

550–557
helical compression spring design for

fatigue loading, 539–542
helical compression spring design for

static service, 528–534
helical springs, deflection of, 520
with hook ends, 542, 549
miscellaneous springs, 558–560
spring materials, 523–528
stability, 522–523
stresses in helical springs, 518–519

Spring surge, 534

Spring types, 518
Sprockets, 880
Spur and helical gears

AGMA stress equations, 745–746
design of a gear mesh, 775–780
geometry factors, 751–756
Lewis bending equation, 734–743
surface durability, 743–745
symbols, 735–736

Spur gearing force analysis, 705–706
Spur gears

described, 674
minimum teeth on, 685
tooth systems, 696

Spur pinion, 685
Squared ends, 520
Square-jaw clutches, 864
Square keys, 391
Square threads, 412
Stability in springs, 522–523
Stable lubrication, 623–624
Stage I fatigue, 278
Stage II fatigue, 278
Stage III fatigue, 279
Stamping, 49
Standard deviation, 980–984
Standard Handbook of Machine Design

(Shigley, Mischke and Brown,
eds.), 51, 52

Standards, 12
Standards and codes, 12
Standard sizes, 13
Statically indeterminate problems,

175–181
Statically loaded tension joint with

preload, 440–444
Static conditions, 266
Static design, 282
Static equilibrium, 72
Static factor of safety, 922
Static load, 42
Static loading, 111, 218, 492–495
Static loads, defined, 214
Static strength, 216–217, 554
Static stress, 301
Statistical considerations

arithmetic mean, variance and
standard deviation, 980–984

probability distributions, 985–992
random variables, 978–980

Statistical significance of material
properties, 36–38

Statistical tolerance system, 21
Steady equivalent load, 587
Steady-state conditions in self-

contained bearings, 645–648
Steady stress, 301
Steel castings, 46
Steels

hardness and strengths, 41
temperature effects on static

properties of, 43
Stiffness

of bolts in clamped zone, 425
pressure-cone method for

calculation, 428
Stiffness constant, 427, 436
Stochastic analysis

about, 248–249
design factor in fatigue, 342–344
endurance limit, 330–331
endurance limit modifying factors,

331–334
fluctuating stresses, 338–342
important design equations, 

254–256
interference, general, 253–254
lognormal-lognormal case, 

250–251
normal-normal case, 249–250
stress concentration and notch

sensitivity, 334–335, 338
Stochastic variables, 978, 982
Stokes, 620
Straight-bevel gear analysis, 

803–805
Straight-bevel gear bending, 800
Straight bevel gears, 690–691
Straight-bevel gearwear relations, 767
Straight-bevel gear wear relations, 800
Straight-tooth bevel gears, 674
Strain concentration factors, 278
Strain energy, 162–164

of bending, 163
due to shear loading, 163
of torsion, 162

Strain hardened material, 39
Strain hardening, 44
Strain-life method, 273, 276–278
Strain strengthening, 217

Index 1079
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Strength, 34
and cold work, 38–41
defined, 214
vs. deflection, 66
property defined, 15

Strength life diagram, 272
Strength-to-stress ratio, 247
Stress, 34, 79

in helical springs, 518–519
in pressurized cylinders, 

113–115
property defined, 16
in rotating rings, 115–116
and strength, 15–16
in thin-walled vessels, 114–115
and torque capacity in interference

fits, 398–400
Stress components, 80
Stress concentration, 27–28, 110–113

FEA analysis, 963
and keyways, 373
and notch sensitivity, 273, 295–300,

334–335, 338
of threaded fasteners, 422–424

Stress-concentration effect, 452
Stress-concentration estimation, 372–378
Stress-concentration factors, 217, 218,

240, 295, 753
Stress-cycle factors, 762–763, 774

of bending strength, 795
for bending strength, 795–796
for pitting resistance, 795

Stress distributions, 501–504
Stress intensity factor, 242

and crack modes, 241–245
Stress intensity modification factor, 243
Stress-life method, 273, 344–347
Stress raisers, 110
Stress ratio, 302
Stress relieving, 50
Stress reversals vs. number of cycles, 277
Stress-strain diagram, 33
Stress values, 36
Stress yield envelope, 220
Structural adhesives, 499–500
Structural instabilities (buckling), 190
Struts or short compression members,

188–189
Studs, 425

Subsidiary distribution, 987
Suddenly applied loading, 191–192
Sun gears, 703
Superposition, 153
Surface compression stress, 744
Surface condition factor, 758
Surface durability, 743–745
Surface elements, 957
Surface endurance shear, 327
Surface endurance strength, 328
Surface factor, 287–288
Surface fatigue strength, 327–330
Surface-strength geometry factor,

754–756
Synthesis, 6, 7

T
Tandem (DT) mounting, 606
Tangential shear stress, 79
Tangential stress, 114
Tape drives, 895
Tapered fits, 365
Tapered roller bearings, 573

components of, 591
selection, 590–599

Tearing mode, 241
Technical societies/organizations, 12
Temperature

average film, 645
high, fatigue limit at, 291
oil outlet, 632

Temperature effects, 43–45
load and stress analysis, 117
on static properties of steels, 43

Temperature factor
AGMA equation factors, 796
endurance limit modifying factors,

290–292
geometry factors, 764

Temperature rise
boundary-lubricated bearings, 666–668
clutches, brakes, couplings, and

flywheels, 857–861
lubricants, 642–644
pressure fed bearings, 650

Temper carbon, 55
Tempered martensite, 50
Tempering, 50–51

Tensile strength, 33
Tensile strength correlation method, 330
Tensile-stress area, 411
Tension, compression, and torsion, 149
Tension joints

external load, 435–437
fatigue loading of, 444–451
statically loaded, with preload,

440–444
Tension pulley, 880
Tension tests, 36
Tension-test specimen, 32
Testing statistics, 539
Theoretical stress-concentration

factors, 111
Thermal loading, 965
Thermal stresses, 117, 969
Thermoplastics, 58, 59
Thermosets, 58, 59
Thick-film lubrication, 624–625
Thin-film lubrication, 660. See also

boundary lubrication
Thin structural members in

compression, 190
Thin-walled vessels, 114–115
Threaded fasteners, 422–424
Thread series, 411
Thread standards and definitions,

410–414
Three-dimensional state of stress, 220
Three-parameter Weibull

distribution, 990
Throat design, 631
Thrust bearings, 659–660
Tight-side tension, 884
Timing belts, 882, 906–907
Timing drives, 895
Timken bearings, 595, 597
Tin bronzes, 57, 817
Titanium, 57
Tolerance, 19, 395
Tolerance position letters, 396
Toothed wheels, 880
Tooth force, 712
Tooth systems, 696–698
Tooth thickness, 675, 681
Top land, 676
Torque, 102
Torque coefficient, 438
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Torque transmission provision, 
363–365

Torque-twist diagram, 35
Torque vector, 101
Torsion, 101–110

closed thin-walled tubes, 107–108
fluctuating stresses, 347
open thin-walled sections, 109–110
strain energy of, 162

Torsional fatigue, 536
Torsional fatigue strength under

fluctuating stresses, 317
Torsional stress, 545
Torsional yield strength, 523
Torsion springs, 550
Torsion stress, 367
Total film pressure, 653
Total-strain amplitude, 278
Total tooth force components, 712
Train value, 699
Translational degrees of freedom, 955
Transmission accuracy numbers, 792
Transmission error, 756
Transmitted load, 706
Transverse circular pitch, 692, 695
Transverse shear stress, 95, 97–98
Tresca theory, 219
Triple-threaded screw, 410
True strain, 34, 39
True stress, 34
True stress-strain diagrams, 34
Trumpler’s design criteria for journal

bearings, 630–631
Tungsten, 53
Turbines and brake bands, 844
Turn-the-nut method, 437
Two-dimensional principal stresses, 254
Two-parameter Weibull distribution, 991
Two-parameter Weibull model, 597
Two-plane bending, 92
Two-way (reversed) loading, 751

U
Ultimate strength, 33
Ultimate tensile strength of wire rope,

919–920
Unbraced parts, 190
Uncertainty, 16–17

Uncorrected torsional stress, 545
Undamaged material, 323
Undercutting, 685
Unified Numbering System for Metals

and Alloys (UNS), 45
Uniform distribution, 989–990
Uniformly distributed stresses, 88–89
Uniform pressure

cone clutches and brakes, 855
disk brakes, 851–852
frictional-contact axial clutches,

847–848
Uniform-section cantilever springs,

558–559
Uniform wear

cone clutches and brakes, 854–855
disk brakes, 850–851
frictional-contact axial clutches,

846–847
Unilateral tolerance, 19
Unit loads, 656
Units, 21–22
Unit second polar moment of area, 483
UNR thread series, 411
Unstable columns, 181
Unstable equilibrium, 182
Unstable lubrication, 623
Unstressed cross-sectional area, 35
UN thread series, 411
Upper deviation, 395–396
Usable products, 5
U.S. customary foot-pound-second

system (fps), 21

V
Vanadium, 53
Variable loading, 584–588
Variable-speed drives, 882
Variable stresses, 266
Variance, 980–984
Variate, 982
Varying, fluctuating stresses, 273,

321–327
V belts, 882, 898–906
Velocity factor, 738, 739
Velocity gradient, 620
V-groove weld, 478
Vibration analysis, 971–972

Virgin material, 323
Virtual number of teeth, 691, 693
Viscosity, 619–621, 632
Viscosity charts, 632–638
Volute springs, 558
von Mises, Richard, 223
von Mises-Hencky theory, 223
von Mises maximum stress vs. yield

strength, 370
von Mises stress, 224

W
Wahl factor, 519
Washers, 422, 429, 433
Wear, 743
Wear factor. See also load-stress 

factor
Wear factor of safety, 776
Wear failure, 328
Weibull distribution, 570, 990–992

three-parameter, 990
two-parameter, 991

Weibull distribution curve, 576
Weibull parameters, 578

three-parameter, 990
two-parameter, 991

Weld bonding, 505
Welded joints

strength, 489–491
stress in torsion, 482–486

Welding symbols, 476–478
Welds, torsion of, 482
White cast iron, 54–55
Whole depth, 676
Width of space, 675
Width series, 580
Wire diameter, 518
Wire rope, 916–924

factor of safety, 918, 920–921
fatigue failure of, 921
long lay, 916
regular lay, 916
tension, 917
ultimate tensile strength of, 

919–920
Wire springs, 518
Woodruff key, 392
Worm axis direction, 715
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Worm gearing
AGMA equation, 809–812
cooling, 813
force analysis, 714–720

Worm gears, 675, 695–696
analysis, 813–816
coefficient of friction, 717
materials, 817–820
output power, 814

Worms, 675

Woven-asbestos lining, 863
Woven cotton lining, 863
Wrought alloys, 56

Y
Yellow brass, 57
Yield point, 33, 36
Yield strength, 35, 40

in shear, 220
vs. von Mises maximum stress, 370

Yield stress, 33
Young’s modulus of elasticity,

65, 87

Z
Zerol bevel gear, 786
Zero shear stress, 81
Zimmerli data, 539
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