Shieleys

Mechanical
Engmeerlng
Design

Ninth Edition

Richard G. Budynas and J. Keith Nisbett



| Conversion Factors A to Convert Input X to Qutput Y Using the Formula Y = AX*

Multiply Input By Factor  To Get Output Multiply Input By Factor To Get OQutput

X A Y X A Y
British thermal 1055 joule, J mile/heur, mi/h 1.461 kilameter/heur, km/h
unit, Bl mile/hour, mi/h 0.447 meter/second, m/s
Btu/second, Btu/s 1.05 kilowatt, kw mement of inerfia, 0.0421 kilogram-meter?,
calorie 419 joule, J lbm -f2 kg - m?
centimeter of 1.333 kilopascal, kPa mement of inerfia, 293 kilogram-millimeter?,
mercury (0°C) lbm - in® kg - mm?
centipoise, cP 0.001 pascal-second, moment of section 41.6 centimeter?, em*

Pa-s [second moment
degree [angle) 0.0174  radian, rad of areal, in*
foot, i 0.305 meler, m ounce-force, oz 0.278 newtan, M
fool?, 2 0.0979 meter?, m2 OUNCE-Mass 0.03N kilogram, kg
foot/minute, 0.0051  meter/second, m/s | pound, IbF 4.45 newton, N
ft/min pound-foot, 1.36 newton-meter,
foot-pound, - |bf 1.35 joule, J IbF- f N-m
foot-pound/ 1.35 watt, W pound/foot?, Ibf/f?  47.9 pascal, Pa
second, ft - IbH/s pound-inch, |kt - in 0113 joule, J
foot/second, R/s 0.305 meter/second, m/s | pound-inch, Ibf - in 0113 newlon-meter,
gallon (U.S.), gal 3785  liter, L N-m
horsepower, hp 0.746 kilowatt, kW pound/inch, lbt/in 175 newton,/ meter, N,/m
inch. in 0.0254 meter. m pound/inch?, psi 6.89 kilopascal, kPa
' ) ' (IbF/in?)
inch, in 254 millimeter, mm .
inch?, in? 645 millimeter?, mm? pound-mass, lbm 0.454 kilogram, kg
;gl::zh :J»f mercury 3.388 kilopascal, kPa xinn{iiﬂﬁxi 0.454 tg?fmmf second,
kilopound, kip 4.45 kilonewton, kN quu_ﬁ (US. ||qu1d;I, qt 946 m”h!lhﬂ'r' mt
. . 13 section modulus, in? 14.4 cenrlme’rera, cm?
kilopound /inch?, 6.89 megapascal, MPa )
kpsi (ksi) (N/mm?) slug 14.6 kilogram, kg
mass, |bF - s2/in 175 kilogram, kg Tunrc[ishurt 2000 lbm) 907 kilogram, kg
mile, mi 1.610 kilometer, km yard, yd 0.914 mefer, m
* Appecimate.

"The U.5. Customnary system enit of the poundHorcs s often obbrevioted o I 1o dssinguish it from the poundmss, which & ableevited o3 lbm.



| Physical Constants of Materials

Modulus of Modulus of
Elasticity E Rigidity G Poisson’s Unit Weight w

Material Mpsi GPa Mpsi GPa Ratio v

Aluminum [all alloys) 10.4 7 i 26.9 0.333 0.078 169 26.6
Beryllium copper 180 1240 7.0 48.3 0.285 0.297 513 80.6
Brass 154  106.0 582 40 0.324 0.309 534 83.8
Carbon steel 300 207.0 11.5 79.3 0.292 0.282 487 765
Cast iron (gray) 145  100.0 6.0 41.4 0.211 0.260 430 70.6
Copper 17.2 1190 649 447 0.326 0.322 556 87.3
Douglas fir 1.6 11.0 0.6 4.1 0.33 0.016 28 4.3
Glass 6.7 46.2 27 18.6 0.245 0.074 162 254
Inconel 31.0 2140 11.0 758 0.290 0.307 530 83.3
Lead 53 36.5 1.9 13.1 0.425 0.411 710 111.5
Magnesium 6.5 44,8 2.4 16.5 0.350 0.065 1z 17.6
Melybdenum 48.0 3310 17.0 117.0 0.307 0.358 636 100.0
Monel metal 260 1790 9.5 &65.5 0.320 0319 551 86.6
Mickel silver 18.5 127.0 7.0 48.3 0.322 0.316 546 85.8
Mickel steel 300 2070 11.5 79.3 0.291 0.280 484 76.0
Phospher bronze 161 111.0 6.0 41.4 0.349 0.295 510 80.1
Stainless steel [18-8) 76 1900 10.6 73.1 0.305 0.280 484 76.0

Titanium alloys 165 1140 6.2 42.4 0.340 0.140 276 43.4
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Joseph Edward Shigley (1909-1994) is undoubtedly one of the most known and
respected contributors in machine design education. He authored or co-authored eight
books, including Theory of Machines and Mechanisms (with John J. Uicker, Jr.), and
Applied Mechanics of Materials. He was Coeditor-in-Chief of the well-known Standard
Handbook of Machine Design. He began Machine Design as sole author in 1956, and
it evolved into Mechanical Engineering Design, setting the model for such textbooks.
He contributed to the first five editions of this text, along with co-authors Larry Mitchell
and Charles Mischke. Uncounted numbers of students across the world got their first
taste of machine design with Shigley’s textbook, which has literally become a classic.
Practically every mechanical engineer for the past half century has referenced termi-
nology, equations, or procedures as being from “Shigley.” McGraw-Hill is honored to
have worked with Professor Shigley for over 40 years, and as a tribute to his lasting
contribution to this textbook, its title officially reflects what many have already come to
call it—Shigley’s Mechanical Engineering Design.

Having received a Bachelor’s Degree in Electrical and Mechanical Engineering
from Purdue University and a Master of Science in Engineering Mechanics from The
University of Michigan, Professor Shigley pursued an academic career at Clemson
College from 1936 through 1954. This lead to his position as Professor and Head of
Mechanical Design and Drawing at Clemson College. He joined the faculty of the
Department of Mechanical Engineering of The University of Michigan in 1956, where
he remained for 22 years until his retirement in 1978.

Professor Shigley was granted the rank of Fellow of the American Society of
Mechanical Engineers in 1968. He received the ASME Mechanisms Committee Award
in 1974, the Worcester Reed Warner Medal for outstanding contribution to the perma-
nent literature of engineering in 1977, and the ASME Machine Design Award in 1985.

Joseph Edward Shigley indeed made a difference. His legacy shall continue.
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Preface

Obijectives

This text is intended for students beginning the study of mechanical engineering
design. The focus is on blending fundamental development of concepts with practi-
cal specification of components. Students of this text should find that it inherently
directs them into familiarity with both the basis for decisions and the standards of
industrial components. For this reason, as students transition to practicing engineers,
they will find that this text is indispensable as a reference text. The objectives of the
text are to:

e Cover the basics of machine design, including the design process, engineering
mechanics and materials, failure prevention under static and variable loading, and
characteristics of the principal types of mechanical elements

e Offer a practical approach to the subject through a wide range of real-world applica-
tions and examples

* Encourage readers to link design and analysis

* Encourage readers to link fundamental concepts with practical component specification.

New to This Edition

Enhancements and modifications to the ninth edition are described in the following
summaries:

* New and revised end-of-chapter problems. This edition includes 1017 end-of-
chapter problems, a 43 percent increase from the previous edition. Of these prob-
lems, 671 are new or revised, providing a fresh slate of problems that do not have
years of previous circulation. Particular attention has been given to adding
problems that provide more practice with the fundamental concepts. With an eye
toward both the instructor and the students, the problems assist in the process of
acquiring knowledge and practice. Multiple problems with variations are available
for the basic concepts, allowing for extra practice and for a rotation of similar
problems between semesters.

* Problems linked across multiple chapters. To assist in demonstrating the linkage of
topics between chapters, a series of multichapter linked problems is introduced.
Table 1-1 on p. 24 provides a guide to these problems. Instructors are encouraged
to select several of these linked problem series each semester to use in homework
assignments that continue to build upon the background knowledge gained in
previous assignments. Some problems directly build upon the results of previous
problems, which can either be provided by the instructor or by the students’ results
from working the previous problems. Other problems simply build upon the back-
ground context of previous problems. In all cases, the students are encouraged to

see the connectivity of a whole process. By the time a student has worked through
XV
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a series of linked problems, a substantial analysis has been achieved, addressing
such things as deflection, stress, static failure, dynamic failure, and multiple
component selection. Since it comes one assignment at a time, it iS no more
daunting than regular homework assignments. Many of the linked problems blend
very nicely with the transmission case study developed throughout the book, and
detailed in Chap. 18.

e Content changes. The bulk of the content changes in this edition falls into categories
of pedagogy and keeping current. These changes include improved examples, clari-
fied presentations, improved notations, and updated references. A detailed list of
content changes is available on the resource website, www.mhhe.com/shigley.

A few content changes warrant particular mention for the benefit of instructors familiar
with previous editions.

* Transverse shear stress is covered in greater depth (Sec. 3—11 and Ex. 3-7).

* The sections on strain energy and Castigliano’s method are modified in presenta-
tion of equations and examples, particularly in the deflections of curved members
(Secs. 4-7 through 4-9).

* The coverage of shock and impact loading is mathematically simplified by using an
energy approach (Sec. 4-17).

e The variable oy is introduced to denote a completely reversed stress, avoiding
confusion with o,, which is the amplitude of alternating stress about a mean stress
(Sec. 6-8).

* The method for determining notch sensitivity for shear loading is modified to be
more consistent with currently available data (Sec. 6-10).

* For tension-loaded bolts, the yielding factor of safety is defined and distinguished
from the load factor (Sec. 8-9).

* The presentation of fatigue loading of bolted joints now handles general fluctuating
stresses, treating repeated loading as a special case (Sec. 8—11).

* The notation for bearing life now distinguishes more clearly and consistently be-
tween life in revolutions versus life in hours (Sec. 11-3).

* The material on tapered roller bearings is generalized to emphasize the concepts
and processes, and to be less dependent on specific manufacturer’s terminology
(Sec. 11-9).

e Streamlining for clarity to the student. There is a fine line between being compre-
hensive and being cumbersome and confusing. It is a continual process to refine
and maintain focus on the needs of the student. This text is first and foremost an
educational tool for the initial presentation of its topics to the developing engi-
neering student. Accordingly, the presentation has been examined with attentive-
ness to how the beginning student would likely understand it. Also recognizing
that this text is a valued reference for practicing engineers, the authors have en-
deavored to keep the presentation complete, accurate, properly referenced, and
straightforward.

Connect Engineering

The 9th edition also features McGraw-Hill Connect Engineering, a Web-based assign-
ment and assessment platform that allows instructors to deliver assignments, quizzes,
and tests easily online. Students can practice important skills at their own pace and on
their own schedule.


www.mhhe.com/shigley

Preface xvii

Additional media offerings available at www.mhhe.com/shigley include:

Student Supplements

* Tutorials—Presentation of major concepts, with visuals. Among the topics covered
are pressure vessel design, press and shrink fits, contact stresses, and design for static
failure.

* MATLAB® for machine design. Includes visual simulations and accompanying source
code. The simulations are linked to examples and problems in the text and demonstrate
the ways computational software can be used in mechanical design and analysis.

e Fundamentals of Engineering (FE) exam questions for machine design. Interactive
problems and solutions serve as effective, self-testing problems as well as excellent
preparation for the FE exam.

Instructor Supplements (under password protection)

* Solutions manual. The instructor’s manual contains solutions to most end-of-chapter
nondesign problems.

* PowerPoint® slides. Slides of important figures and tables from the text are provided
in PowerPoint format for use in lectures.

e C.O.S.M.0.S. A complete online solutions manual organization system that allows
instructors to create custom homework, quizzes, and tests using end-of-chapter
problems from the text.

Electronic Textbooks

Ebooks are an innovative way for students to save money and create a greener environ-
ment at the same time. An ebook can save students about half the cost of a traditional
textbook and offers unique features like a powerful search engine, highlighting, and the
ability to share notes with classmates using ebooks.

McGraw-Hill offers this text as an ebook. To talk about the ebook options, contact
your McGraw-Hill sales rep or visit the site www.coursesmart.com to learn more.
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This is a list of common symbols used in machine design and in this book. Specialized
use in a subject-matter area often attracts fore and post subscripts and superscripts.
To make the table brief enough to be useful, the symbol kernels are listed. See
Table 14-1, pp. 735-736 for spur and helical gearing symbols, and Table 15-1,
pp- 789-790 for bevel-gear symbols.
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Area, coefficient
Area variate
Distance, regression constant
Regression constant estimate
Distance variate
Coefficient
Brinell hardness
Variate
Distance, Weibull shape parameter, range number, regression constant,
width
Regression constant estimate
Distance variate
Basic load rating, bolted-joint constant, center distance, coefficient of
variation, column end condition, correction factor, specific heat capacity,
spring index
Distance, viscous damping, velocity coefficient
Cumulative distribution function
Coefficient of variation
Distance variate
Helix diameter
Diameter, distance
Modulus of elasticity, energy, error
Distance, eccentricity, efficiency, Naperian logarithmic base
Force, fundamental dimension force
Coefficient of friction, frequency, function
Figure of merit
Torsional modulus of elasticity
Acceleration due to gravity, function
Heat, power
Brinell hardness
Rockwell C-scale hardness
Distance, film thickness
Combined overall coefficient of convection and radiation heat transfer
Integral, linear impulse, mass moment of inertia, second moment of area
Index
Unit vector in x-direction
xix
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Mechanical equivalent of heat, polar second moment of area, geometry factor
Unit vector in the y-direction

Service factor, stress-concentration factor, stress-augmentation factor,
torque coefficient

Marin endurance limit modifying factor, spring rate

k variate, unit vector in the z-direction

Length, life, fundamental dimension length

Life in hours

Lognormal distribution

Length

Fundamental dimension mass, moment

Moment vector, moment variate

Mass, slope, strain-strengthening exponent

Normal force, number, rotational speed

Normal distribution

Load factor, rotational speed, safety factor

Design factor

Force, pressure, diametral pitch

DF Probability density function

Pitch, pressure, probability

First moment of area, imaginary force, volume
Distributed load, notch sensitivity

Radius, reaction force, reliability, Rockwell hardness, stress ratio
Vector reaction force

Correlation coefficient, radius

Distance vector

Sommerfeld number, strength

S variate

Distance, sample standard deviation, stress
Temperature, tolerance, torque, fundamental dimension time
Torque vector, torque variate

Distance, Student’s t-statistic, time, tolerance

Strain energy

Uniform distribution

Strain energy per unit volume

Linear velocity, shear force

Linear velocity

Cold-work factor, load, weight

Weibull distribution

Distance, gap, load intensity

Vector distance

Coordinate, truncated number

Coordinate, true value of a number, Weibull parameter
X variate

Coordinate

Coordinate, deflection

y variate

Coordinate, section modulus, viscosity

Standard deviation of the unit normal distribution
Variate of z

Nh.\

B D A

SIszzIzRTg

)

N NN << %xkxggggc <SS AT HN=T LR I ZI/RQT



S

QADTDELSLCT SR 10NN S L

LE DA A QQ

List of Symbols xXi

Coefficient, coefficient of linear thermal expansion, end-condition for
springs, thread angle

Bearing angle, coefficient

Change, deflection

Deviation, elongation

Eccentricity ratio, engineering (normal) strain

Normal distribution with a mean of 0 and a standard deviation of s
True or logarithmic normal strain

Gamma function

Pitch angle, shear strain, specific weight

Slenderness ratio for springs

Unit lognormal with a mean of 1 and a standard deviation equal to COV
Absolute viscosity, population mean

Poisson ratio

Angular velocity, circular frequency

Angle, wave length

Slope integral

Radius of curvature

Normal stress

Von Mises stress

Normal stress variate

Standard deviation

Shear stress

Shear stress variate

Angle, Weibull characteristic parameter

Cost per unit weight

Cost
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Mechanical Engineering Design

Mechanical design is a complex process, requiring many skills. Extensive relationships
need to be subdivided into a series of simple tasks. The complexity of the process
requires a sequence in which ideas are introduced and iterated.

We first address the nature of design in general, and then mechanical engineering
design in particular. Design is an iterative process with many interactive phases. Many
resources exist to support the designer, including many sources of information and an
abundance of computational design tools. Design engineers need not only develop com-
petence in their field but they must also cultivate a strong sense of responsibility and
professional work ethic.

There are roles to be played by codes and standards, ever-present economics, safety,
and considerations of product liability. The survival of a mechanical component is often
related through stress and strength. Matters of uncertainty are ever-present in engineer-
ing design and are typically addressed by the design factor and factor of safety, either
in the form of a deterministic (absolute) or statistical sense. The latter, statistical
approach, deals with a design’s reliability and requires good statistical data.

In mechanical design, other considerations include dimensions and tolerances,
units, and calculations.

The book consists of four parts. Part 1, Basics, begins by explaining some differ-
ences between design and analysis and introducing some fundamental notions and
approaches to design. It continues with three chapters reviewing material properties,
stress analysis, and stiffness and deflection analysis, which are the principles necessary
for the remainder of the book.

Part 2, Failure Prevention, consists of two chapters on the prevention of failure of
mechanical parts. Why machine parts fail and how they can be designed to prevent fail-
ure are difficult questions, and so we take two chapters to answer them, one on pre-
venting failure due to static loads, and the other on preventing fatigue failure due to
time-varying, cyclic loads.

In Part 3, Design of Mechanical Elements, the concepts of Parts 1 and 2 are applied
to the analysis, selection, and design of specific mechanical elements such as shafts,
fasteners, weldments, springs, rolling contact bearings, film bearings, gears, belts,
chains, and wire ropes.

Part 4, Analysis Tools, provides introductions to two important methods used in
mechanical design, finite element analysis and statistical analysis. This is optional study
material, but some sections and examples in Parts 1 to 3 demonstrate the use of these tools.

There are two appendixes at the end of the book. Appendix A contains many use-
ful tables referenced throughout the book. Appendix B contains answers to selected
end-of-chapter problems.

Design

To design is either to formulate a plan for the satisfaction of a specified need or to solve
a specific problem. If the plan results in the creation of something having a physical
reality, then the product must be functional, safe, reliable, competitive, usable, manu-
facturable, and marketable.

Design is an innovative and highly iterative process. It is also a decision-making
process. Decisions sometimes have to be made with too little information, occasion-
ally with just the right amount of information, or with an excess of partially contradictory
information. Decisions are sometimes made tentatively, with the right reserved to adjust
as more becomes known. The point is that the engineering designer has to be personally
comfortable with a decision-making, problem-solving role.
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Design is a communication-intensive activity in which both words and pictures are
used, and written and oral forms are employed. Engineers have to communicate effec-
tively and work with people of many disciplines. These are important skills, and an
engineer’s success depends on them.

A designer’s personal resources of creativeness, communicative ability, and problem-
solving skill are intertwined with the knowledge of technology and first principles.
Engineering tools (such as mathematics, statistics, computers, graphics, and languages)
are combined to produce a plan that, when carried out, produces a product that is func-
tional, safe, reliable, competitive, usable, manufacturable, and marketable, regardless
of who builds it or who uses it.

Mechanical Engineering Design

Mechanical engineers are associated with the production and processing of energy and
with providing the means of production, the tools of transportation, and the techniques
of automation. The skill and knowledge base are extensive. Among the disciplinary
bases are mechanics of solids and fluids, mass and momentum transport, manufactur-
ing processes, and electrical and information theory. Mechanical engineering design
involves all the disciplines of mechanical engineering.

Real problems resist compartmentalization. A simple journal bearing involves fluid
flow, heat transfer, friction, energy transport, material selection, thermomechanical
treatments, statistical descriptions, and so on. A building is environmentally controlled.
The heating, ventilation, and air-conditioning considerations are sufficiently specialized
that some speak of heating, ventilating, and air-conditioning design as if it is separate
and distinct from mechanical engineering design. Similarly, internal-combustion engine
design, turbomachinery design, and jet-engine design are sometimes considered dis-
crete entities. Here, the leading string of words preceding the word design is merely a
product descriptor. Similarly, there are phrases such as machine design, machine-element
design, machine-component design, systems design, and fluid-power design. All of
these phrases are somewhat more focused examples of mechanical engineering design.
They all draw on the same bodies of knowledge, are similarly organized, and require
similar skills.

Phases and Interactions of the Design Process

What is the design process? How does it begin? Does the engineer simply sit down at
a desk with a blank sheet of paper and jot down some ideas? What happens next? What
factors influence or control the decisions that have to be made? Finally, how does the
design process end?

The complete design process, from start to finish, is often outlined as in Fig. 1-1.
The process begins with an identification of a need and a decision to do something
about it. After many iterations, the process ends with the presentation of the plans
for satisfying the need. Depending on the nature of the design task, several design
phases may be repeated throughout the life of the product, from inception to termi-
nation. In the next several subsections, we shall examine these steps in the design
process in detail.

Identification of need generally starts the design process. Recognition of the need
and phrasing the need often constitute a highly creative act, because the need may be
only a vague discontent, a feeling of uneasiness, or a sensing that something is not right.
The need is often not evident at all; recognition can be triggered by a particular adverse
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Figure 1-1

The phases in design,
acknowledging the many
feedbacks and iterations.

I ———
Identification of need
:>| Definition of problem |<—
—|
| Synthesis |:

Analysis and optimization
1

4| Evaluation

| Presentation |

Iteration

circumstance or a set of random circumstances that arises almost simultaneously. For
example, the need to do something about a food-packaging machine may be indicated
by the noise level, by a variation in package weight, and by slight but perceptible vari-
ations in the quality of the packaging or wrap.

There is a distinct difference between the statement of the need and the definition
of the problem. The definition of problem is more specific and must include all the spec-
ifications for the object that is to be designed. The specifications are the input and out-
put quantities, the characteristics and dimensions of the space the object must occupy,
and all the limitations on these quantities. We can regard the object to be designed as
something in a black box. In this case we must specify the inputs and outputs of the box,
together with their characteristics and limitations. The specifications define the cost, the
number to be manufactured, the expected life, the range, the operating temperature, and
the reliability. Specified characteristics can include the speeds, feeds, temperature lim-
itations, maximum range, expected variations in the variables, dimensional and weight
limitations, etc.

There are many implied specifications that result either from the designer’s par-
ticular environment or from the nature of the problem itself. The manufacturing
processes that are available, together with the facilities of a certain plant, constitute
restrictions on a designer’s freedom, and hence are a part of the implied specifica-
tions. It may be that a small plant, for instance, does not own cold-working machin-
ery. Knowing this, the designer might select other metal-processing methods that
can be performed in the plant. The labor skills available and the competitive situa-
tion also constitute implied constraints. Anything that limits the designer’s freedom
of choice is a constraint. Many materials and sizes are listed in supplier’s catalogs,
for instance, but these are not all easily available and shortages frequently occur.
Furthermore, inventory economics requires that a manufacturer stock a minimum
number of materials and sizes. An example of a specification is given in Sec. 1-17.
This example is for a case study of a power transmission that is presented throughout
this text.

The synthesis of a scheme connecting possible system elements is sometimes
called the invention of the concept or concept design. This is the first and most impor-
tant step in the synthesis task. Various schemes must be proposed, investigated, and
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quantified in terms of established metrics.' As the fleshing out of the scheme progresses,
analyses must be performed to assess whether the system performance is satisfactory or
better, and, if satisfactory, just how well it will perform. System schemes that do not
survive analysis are revised, improved, or discarded. Those with potential are optimized
to determine the best performance of which the scheme is capable. Competing schemes
are compared so that the path leading to the most competitive product can be chosen.
Figure 1-1 shows that synthesis and analysis and optimization are intimately and
iteratively related.

We have noted, and we emphasize, that design is an iterative process in which we
proceed through several steps, evaluate the results, and then return to an earlier phase
of the procedure. Thus, we may synthesize several components of a system, analyze and
optimize them, and return to synthesis to see what effect this has on the remaining parts
of the system. For example, the design of a system to transmit power requires attention
to the design and selection of individual components (e.g., gears, bearings, shaft).
However, as is often the case in design, these components are not independent. In order
to design the shaft for stress and deflection, it is necessary to know the applied forces.
If the forces are transmitted through gears, it is necessary to know the gear specifica-
tions in order to determine the forces that will be transmitted to the shaft. But stock
gears come with certain bore sizes, requiring knowledge of the necessary shaft diame-
ter. Clearly, rough estimates will need to be made in order to proceed through the
process, refining and iterating until a final design is obtained that is satisfactory for each
individual component as well as for the overall design specifications. Throughout the
text we will elaborate on this process for the case study of a power transmission design.

Both analysis and optimization require that we construct or devise abstract models
of the system that will admit some form of mathematical analysis. We call these mod-
els mathematical models. In creating them it is our hope that we can find one that will
simulate the real physical system very well. As indicated in Fig. 1-1, evaluation is a
significant phase of the total design process. Evaluation is the final proof of a success-
ful design and usually involves the testing of a prototype in the laboratory. Here we
wish to discover if the design really satisfies the needs. Is it reliable? Will it compete
successfully with similar products? Is it economical to manufacture and to use? Is it
easily maintained and adjusted? Can a profit be made from its sale or use? How likely
is it to result in product-liability lawsuits? And is insurance easily and cheaply
obtained? Is it likely that recalls will be needed to replace defective parts or systems?
The project designer or design team will need to address a myriad of engineering and
non-engineering questions.

Communicating the design to others is the final, vital presentation step in the design
process. Undoubtedly, many great designs, inventions, and creative works have been lost to
posterity simply because the originators were unable or unwilling to properly explain their
accomplishments to others. Presentation is a selling job. The engineer, when presenting a
new solution to administrative, management, or supervisory persons, is attempting to sell
or to prove to them that their solution is a better one. Unless this can be done successfully,
the time and effort spent on obtaining the solution have been largely wasted. When
designers sell a new idea, they also sell themselves. If they are repeatedly successful in
selling ideas, designs, and new solutions to management, they begin to receive salary
increases and promotions; in fact, this is how anyone succeeds in his or her profession.

'An excellent reference for this topic is presented by Stuart Pugh, Total Design—Integrated Methods for
Successful Product Engineering, Addison-Wesley, 1991. A description of the Pugh method is also provided
in Chap. 8, David G. Ullman, The Mechanical Design Process, 3rd ed., McGraw-Hill, 2003.
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Design Considerations

Sometimes the strength required of an element in a system is an important factor in the
determination of the geometry and the dimensions of the element. In such a situation
we say that strength is an important design consideration. When we use the expression
design consideration, we are referring to some characteristic that influences the design
of the element or, perhaps, the entire system. Usually quite a number of such charac-
teristics must be considered and prioritized in a given design situation. Many of the
important ones are as follows (not necessarily in order of importance):

1 Functionality 14 Noise
2 Strength/stress 15  Styling
3 Distortion/deflection/stiffness 16 Shape
4 Wear 17 Size
5 Corrosion 18 Control
6 Safety 19 Thermal properties
7 Reliability 20 Surface
8 Manufacturability 21 Lubrication
9 Utility 22 Marketability
10 Cost 23 Maintenance
11  Friction 24 Volume
12 Weight 25 Liability
13 Life 26 Remanufacturing/resource recovery

Some of these characteristics have to do directly with the dimensions, the material, the
processing, and the joining of the elements of the system. Several characteristics may
be interrelated, which affects the configuration of the total system.

Design Tools and Resources

Today, the engineer has a great variety of tools and resources available to assist in the
solution of design problems. Inexpensive microcomputers and robust computer soft-
ware packages provide tools of immense capability for the design, analysis, and simu-
lation of mechanical components. In addition to these tools, the engineer always needs
technical information, either in the form of basic science/engineering behavior or the
characteristics of specific off-the-shelf components. Here, the resources can range from
science/engineering textbooks to manufacturers’ brochures or catalogs. Here too, the
computer can play a major role in gathering information.”

Computational Tools

Computer-aided design (CAD) software allows the development of three-dimensional
(3-D) designs from which conventional two-dimensional orthographic views with auto-
matic dimensioning can be produced. Manufacturing tool paths can be generated from the
3-D models, and in some cases, parts can be created directly from a 3-D database by using
a rapid prototyping and manufacturing method (stereolithography)—paperless manufac-
turing! Another advantage of a 3-D database is that it allows rapid and accurate calcula-
tions of mass properties such as mass, location of the center of gravity, and mass moments
of inertia. Other geometric properties such as areas and distances between points are
likewise easily obtained. There are a great many CAD software packages available such

2An excellent and comprehensive discussion of the process of “gathering information” can be found in
Chap. 4, George E. Dieter, Engineering Design, A Materials and Processing Approach, 3rd ed.,
McGraw-Hill, New York, 2000.
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as Aries, AutoCAD, CadKey, I-Deas, Unigraphics, Solid Works, and ProEngineer, to
name a few.

The term computer-aided engineering (CAE) generally applies to all computer-
related engineering applications. With this definition, CAD can be considered as a sub-
set of CAE. Some computer software packages perform specific engineering analysis
and/or simulation tasks that assist the designer, but they are not considered a tool for the
creation of the design that CAD is. Such software fits into two categories: engineering-
based and non-engineering-specific. Some examples of engineering-based software for
mechanical engineering applications—software that might also be integrated within a
CAD system—include finite-element analysis (FEA) programs for analysis of stress
and deflection (see Chap. 19), vibration, and heat transfer (e.g., Algor, ANSYS, and
MSC/NASTRAN); computational fluid dynamics (CFD) programs for fluid-flow analy-
sis and simulation (e.g., CFD++, FIDAP, and Fluent); and programs for simulation of
dynamic force and motion in mechanisms (e.g., ADAMS, DADS, and Working Model).

Examples of non-engineering-specific computer-aided applications include software
for word processing, spreadsheet software (e.g., Excel, Lotus, and Quattro-Pro), and
mathematical solvers (e.g., Maple, MathCad, MATLAB,?® Mathematica, and TKsolver).

Your instructor is the best source of information about programs that may be available
to you and can recommend those that are useful for specific tasks. One caution, however:
Computer software is no substitute for the human thought process. You are the driver here;
the computer is the vehicle to assist you on your journey to a solution. Numbers generated
by a computer can be far from the truth if you entered incorrect input, if you misinterpreted
the application or the output of the program, if the program contained bugs, etc. It is your
responsibility to assure the validity of the results, so be careful to check the application and
results carefully, perform benchmark testing by submitting problems with known solu-
tions, and monitor the software company and user-group newsletters.

Acquiring Technical Information

We currently live in what is referred to as the information age, where information is gen-
erated at an astounding pace. It is difficult, but extremely important, to keep abreast of past
and current developments in one’s field of study and occupation. The reference in Footnote
2 provides an excellent description of the informational resources available and is highly
recommended reading for the serious design engineer. Some sources of information are:

 Libraries (community, university, and private). Engineering dictionaries and encyclo-
pedias, textbooks, monographs, handbooks, indexing and abstract services, journals,
translations, technical reports, patents, and business sources/brochures/catalogs.

* Government sources. Departments of Defense, Commerce, Energy, and Transportation;
NASA; Government Printing Office; U.S. Patent and Trademark Office; National
Technical Information Service; and National Institute for Standards and Technology.

e Professional societies. American Society of Mechanical Engineers, Society of
Manufacturing Engineers, Society of Automotive Engineers, American Society for
Testing and Materials, and American Welding Society.

e Commercial vendors. Catalogs, technical literature, test data, samples, and cost
information.

e [Internet. The computer network gateway to websites associated with most of the
categories listed above.*

*MATLAB is a registered trademark of The MathWorks, Inc.

*Some helpful Web resources, to name a few, include www.globalspec.com, www.engnetglobal.com,
www.efunda.com, www.thomasnet.com, and www.uspto.gov.
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www.uspto.gov
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This list is not complete. The reader is urged to explore the various sources of
information on a regular basis and keep records of the knowledge gained.

The Design Engineer’s Professional Responsibilities

In general, the design engineer is required to satisfy the needs of customers (man-
agement, clients, consumers, etc.) and is expected to do so in a competent, responsi-
ble, ethical, and professional manner. Much of engineering course work and practical
experience focuses on competence, but when does one begin to develop engineering
responsibility and professionalism? To start on the road to success, you should start
to develop these characteristics early in your educational program. You need to cul-
tivate your professional work ethic and process skills before graduation, so that
when you begin your formal engineering career, you will be prepared to meet the
challenges.

It is not obvious to some students, but communication skills play a large role here,
and it is the wise student who continuously works to improve these skills—even if it
is not a direct requirement of a course assignment! Success in engineering (achieve-
ments, promotions, raises, etc.) may in large part be due to competence but if you can-
not communicate your ideas clearly and concisely, your technical proficiency may be
compromised.

You can start to develop your communication skills by keeping a neat and clear
journal/logbook of your activities, entering dated entries frequently. (Many companies
require their engineers to keep a journal for patent and liability concerns.) Separate
journals should be used for each design project (or course subject). When starting a
project or problem, in the definition stage, make journal entries quite frequently. Others,
as well as yourself, may later question why you made certain decisions. Good chrono-
logical records will make it easier to explain your decisions at a later date.

Many engineering students see themselves after graduation as practicing engineers
designing, developing, and analyzing products and processes and consider the need of
good communication skills, either oral or writing, as secondary. This is far from the
truth. Most practicing engineers spend a good deal of time communicating with others,
writing proposals and technical reports, and giving presentations and interacting with
engineering and nonengineering support personnel. You have the time now to sharpen
your communication skills. When given an assignment to write or make any presenta-
tion, technical or nontechnical, accept it enthusiastically, and work on improving your
communication skills. It will be time well spent to learn the skills now rather than on
the job.

When you are working on a design problem, it is important that you develop a
systematic approach. Careful attention to the following action steps will help you to
organize your solution processing technique.

e Understand the problem. Problem definition is probably the most significant step in the
engineering design process. Carefully read, understand, and refine the problem statement.

e Identify the knowns. From the refined problem statement, describe concisely what
information is known and relevant.

o Identify the unknowns and formulate the solution strategy. State what must be deter-
mined, in what order, so as to arrive at a solution to the problem. Sketch the compo-
nent or system under investigation, identifying known and unknown parameters.
Create a flowchart of the steps necessary to reach the final solution. The steps may
require the use of free-body diagrams; material properties from tables; equations
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from first principles, textbooks, or handbooks relating the known and unknown
parameters; experimentally or numerically based charts; specific computational tools
as discussed in Sec. 1-4; etc.

e State all assumptions and decisions. Real design problems generally do not have
unique, ideal, closed-form solutions. Selections, such as the choice of materials, and
heat treatments, require decisions. Analyses require assumptions related to the
modeling of the real components or system. All assumptions and decisions should be
identified and recorded.

* Analyze the problem. Using your solution strategy in conjunction with your decisions
and assumptions, execute the analysis of the problem. Reference the sources of all
equations, tables, charts, software results, etc. Check the credibility of your results.
Check the order of magnitude, dimensionality, trends, signs, etc.

 Evaluate your solution. Evaluate each step in the solution, noting how changes in strat-
egy, decisions, assumptions, and execution might change the results, in positive or neg-
ative ways. Whenever possible, incorporate the positive changes in your final solution.

e Present your solution. Here is where your communication skills are important. At
this point, you are selling yourself and your technical abilities. If you cannot skill-
fully explain what you have done, some or all of your work may be misunderstood
and unaccepted. Know your audience.

As stated earlier, all design processes are interactive and iterative. Thus, it may be nec-
essary to repeat some or all of the above steps more than once if less than satisfactory
results are obtained.

In order to be effective, all professionals must keep current in their fields of
endeavor. The design engineer can satisfy this in a number of ways by: being an active
member of a professional society such as the American Society of Mechanical
Engineers (ASME), the Society of Automotive Engineers (SAE), and the Society of
Manufacturing Engineers (SME); attending meetings, conferences, and seminars of
societies, manufacturers, universities, etc.; taking specific graduate courses or programs
at universities; regularly reading technical and professional journals; etc. An engineer’s
education does not end at graduation.

The design engineer’s professional obligations include conducting activities in an
ethical manner. Reproduced here is the Engineers’ Creed from the National Society of
Professional Engineers (NSPE)’:

As a Professional Engineer I dedicate my professional knowledge and skill to the
advancement and betterment of human welfare.
I pledge:
To give the utmost of performance;
To participate in none but honest enterprise;
To live and work according to the laws of man and the highest standards of pro-
fessional conduct;
To place service before profit, the honor and standing of the profession before
personal advantage, and the public welfare above all other considerations.
In humility and with need for Divine Guidance, I make this pledge.

SAdopted by the National Society of Professional Engineers, June 1954. “The Engineer’s Creed.” Reprinted
by permission of the National Society of Professional Engineers. NSPE also publishes a much more extensive
Code of Ethics for Engineers with rules of practice and professional obligations. For the current revision,
July 2007 (at the time of this book’s printing), see the website www.nspe.org/Ethics/CodeofEthics/index.html.
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1-6

Standards and Codes

A standard is a set of specifications for parts, materials, or processes intended to
achieve uniformity, efficiency, and a specified quality. One of the important purposes
of a standard is to limit the multitude of variations that can arise from the arbitrary cre-
ation of a part, material, or process.

A code is a set of specifications for the analysis, design, manufacture, and con-
struction of something. The purpose of a code is to achieve a specified degree of safety,
efficiency, and performance or quality. It is important to observe that safety codes do
not imply absolute safety. In fact, absolute safety is impossible to obtain. Sometimes
the unexpected event really does happen. Designing a building to withstand a 120 mi/h
wind does not mean that the designers think a 140 mi/h wind is impossible; it simply
means that they think it is highly improbable.

All of the organizations and societies listed below have established specifications
for standards and safety or design codes. The name of the organization provides a clue
to the nature of the standard or code. Some of the standards and codes, as well as
addresses, can be obtained in most technical libraries or on the Internet. The organiza-
tions of interest to mechanical engineers are:

Aluminum Association (AA)

American Bearing Manufacturers Association (ABMA)
American Gear Manufacturers Association (AGMA)
American Institute of Steel Construction (AISC)
American Iron and Steel Institute (AISI)

American National Standards Institute (ANSI)
American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE)

American Society of Mechanical Engineers (ASME)
American Society of Testing and Materials (ASTM)
American Welding Society (AWS)

ASM International

British Standards Institution (BSI)

Industrial Fasteners Institute (IFI)

Institute of Transportation Engineers (ITE)

Institution of Mechanical Engineers (IMechE)
International Bureau of Weights and Measures (BIPM)
International Federation of Robotics (IFR)
International Standards Organization (ISO)

National Association of Power Engineers (NAPE)
National Institute for Standards and Technology (NIST)
Society of Automotive Engineers (SAE)

Economics

The consideration of cost plays such an important role in the design decision process
that we could easily spend as much time in studying the cost factor as in the study of
the entire subject of design. Here we introduce only a few general concepts and sim-
ple rules.

First, observe that nothing can be said in an absolute sense concerning costs.
Materials and labor usually show an increasing cost from year to year. But the costs
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of processing the materials can be expected to exhibit a decreasing trend because of
the use of automated machine tools and robots. The cost of manufacturing a single
product will vary from city to city and from one plant to another because of over-
head, labor, taxes, and freight differentials and the inevitable slight manufacturing
variations.

Standard Sizes

The use of standard or stock sizes is a first principle of cost reduction. An engineer who
specifies an AISI 1020 bar of hot-rolled steel 53 mm square has added cost to the prod-
uct, provided that a bar 50 or 60 mm square, both of which are preferred sizes, would
do equally well. The 53-mm size can be obtained by special order or by rolling or
machining a 60-mm square, but these approaches add cost to the product. To ensure that
standard or preferred sizes are specified, designers must have access to stock lists of the
materials they employ.

A further word of caution regarding the selection of preferred sizes is necessary.
Although a great many sizes are usually listed in catalogs, they are not all readily avail-
able. Some sizes are used so infrequently that they are not stocked. A rush order for
such sizes may add to the expense and delay. Thus you should also have access to a list
such as those in Table A—17 for preferred inch and millimeter sizes.

There are many purchased parts, such as motors, pumps, bearings, and fasteners,
that are specified by designers. In the case of these, too, you should make a special
effort to specify parts that are readily available. Parts that are made and sold in large
quantities usually cost somewhat less than the odd sizes. The cost of rolling bearings,
for example, depends more on the quantity of production by the bearing manufacturer
than on the size of the bearing.

Large Tolerances

Among the effects of design specifications on costs, tolerances are perhaps most sig-
nificant. Tolerances, manufacturing processes, and surface finish are interrelated and
influence the producibility of the end product in many ways. Close tolerances may
necessitate additional steps in processing and inspection or even render a part com-
pletely impractical to produce economically. Tolerances cover dimensional variation
and surface-roughness range and also the variation in mechanical properties resulting
from heat treatment and other processing operations.

Since parts having large tolerances can often be produced by machines with
higher production rates, costs will be significantly smaller. Also, fewer such parts will
be rejected in the inspection process, and they are usually easier to assemble. A plot
of cost versus tolerance/machining process is shown in Fig. 1-2, and illustrates the
drastic increase in manufacturing cost as tolerance diminishes with finer machining
processing.

Breakeven Points

Sometimes it happens that, when two or more design approaches are compared for cost,
the choice between the two depends on a set of conditions such as the quantity of pro-
duction, the speed of the assembly lines, or some other condition. There then occurs a
point corresponding to equal cost, which is called the breakeven point.
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Production

As an example, consider a situation in which a certain part can be manufactured at
the rate of 25 parts per hour on an automatic screw machine or 10 parts per hour on a
hand screw machine. Let us suppose, too, that the setup time for the automatic is 3 h and
that the labor cost for either machine is $20 per hour, including overhead. Figure 1-3 is
a graph of cost versus production by the two methods. The breakeven point for this
example corresponds to 50 parts. If the desired production is greater than 50 parts, the
automatic machine should be used.
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Cost Estimates

There are many ways of obtaining relative cost figures so that two or more designs
can be roughly compared. A certain amount of judgment may be required in some
instances. For example, we can compare the relative value of two automobiles by
comparing the dollar cost per pound of weight. Another way to compare the cost of
one design with another is simply to count the number of parts. The design having
the smaller number of parts is likely to cost less. Many other cost estimators can be
used, depending upon the application, such as area, volume, horsepower, torque,
capacity, speed, and various performance ratios.°

Safety and Product Liability

The strict liability concept of product liability generally prevails in the United States.
This concept states that the manufacturer of an article is liable for any damage or harm
that results because of a defect. And it doesn’t matter whether the manufacturer knew
about the defect, or even could have known about it. For example, suppose an article
was manufactured, say, 10 years ago. And suppose at that time the article could not have
been considered defective on the basis of all technological knowledge then available.
Ten years later, according to the concept of strict liability, the manufacturer is still
liable. Thus, under this concept, the plaintiff needs only to prove that the article was
defective and that the defect caused some damage or harm. Negligence of the manu-
facturer need not be proved.

The best approaches to the prevention of product liability are good engineering in
analysis and design, quality control, and comprehensive testing procedures. Advertising
managers often make glowing promises in the warranties and sales literature for a prod-
uct. These statements should be reviewed carefully by the engineering staff to eliminate
excessive promises and to insert adequate warnings and instructions for use.

Stress and Strength

The survival of many products depends on how the designer adjusts the maximum
stresses in a component to be less than the component’s strength at critical locations.
The designer must allow the maximum stress to be less than the strength by a sufficient
margin so that despite the uncertainties, failure is rare.

In focusing on the stress-strength comparison at a critical (controlling) location,
we often look for “strength in the geometry and condition of use.” Strengths are the
magnitudes of stresses at which something of interest occurs, such as the proportional
limit, 0.2 percent-offset yielding, or fracture (see Sec. 2—1). In many cases, such events
represent the stress level at which loss of function occurs.

Strength is a property of a material or of a mechanical element. The strength of an
element depends on the choice, the treatment, and the processing of the material.
Consider, for example, a shipment of springs. We can associate a strength with a spe-
cific spring. When this spring is incorporated into a machine, external forces are applied
that result in load-induced stresses in the spring, the magnitudes of which depend on its
geometry and are independent of the material and its processing. If the spring is
removed from the machine unharmed, the stress due to the external forces will return

®For an overview of estimating manufacturing costs, see Chap. 11, Karl T. Ulrich and Steven D. Eppinger,
Product Design and Development, 3rd ed., McGraw-Hill, New York, 2004.
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to zero. But the strength remains as one of the properties of the spring. Remember, then,
that strength is an inherent property of a part, a property built into the part because of
the use of a particular material and process.

Various metalworking and heat-treating processes, such as forging, rolling, and
cold forming, cause variations in the strength from point to point throughout a part. The
spring cited above is quite likely to have a strength on the outside of the coils different
from its strength on the inside because the spring has been formed by a cold winding
process, and the two sides may not have been deformed by the same amount.
Remember, too, therefore, that a strength value given for a part may apply to only a par-
ticular point or set of points on the part.

In this book we shall use the capital letter S to denote strength, with appropriate
subscripts to denote the type of strength. Thus, Sy is a yield strength, S, an ultimate
strength, Sy, a shear yield strength, and S, an endurance strength.

In accordance with accepted engineering practice, we shall employ the Greek let-
ters o (sigma) and 7(tau) to designate normal and shear stresses, respectively. Again,
various subscripts will indicate some special characteristic. For example, o is a princi-
pal normal stress, o, a normal stress component in the y direction, and o, a normal stress
component in the radial direction.

Stress is a state property at a specific point within a body, which is a function of
load, geometry, temperature, and manufacturing processing. In an elementary course in
mechanics of materials, stress related to load and geometry is emphasized with some
discussion of thermal stresses. However, stresses due to heat treatments, molding,
assembly, etc. are also important and are sometimes neglected. A review of stress analy-
sis for basic load states and geometry is given in Chap. 3.

Uncertainty

Uncertainties in machinery design abound. Examples of uncertainties concerning stress
and strength include
* Composition of material and the effect of variation on properties.
e Variations in properties from place to place within a bar of stock.
 Effect of processing locally, or nearby, on properties.
» Effect of nearby assemblies such as weldments and shrink fits on stress conditions.
 Effect of thermomechanical treatment on properties.
* Intensity and distribution of loading.
e Validity of mathematical models used to represent reality.
* Intensity of stress concentrations.
* Influence of time on strength and geometry.
 Effect of corrosion.
 Effect of wear.
e Uncertainty as to the length of any list of uncertainties.
Engineers must accommodate uncertainty. Uncertainty always accompanies change.
Material properties, load variability, fabrication fidelity, and validity of mathematical
models are among concerns to designers.
There are mathematical methods to address uncertainties. The primary techniques

are the deterministic and stochastic methods. The deterministic method establishes a
design factor based on the absolute uncertainties of a loss-of-function parameter and a
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maximum allowable parameter. Here the parameter can be load, stress, deflection, etc.
Thus, the design factor n, is defined as
loss-of-function parameter

ng = . (1-1)
maximum allowable parameter

If the parameter is load, then the maximum allowable load can be found from

loss-of-function load
Maximum allowable load = oss-o-tunction foa (1-2)
nq

Consider that the maximum load on a structure is known with an uncertainty of £20 per-
cent, and the load causing failure is known within £15 percent. If the load causing fail-
ure is nominally 2000 1bf, determine the design factor and the maximum allowable load
that will offset the absolute uncertainties.

To account for its uncertainty, the loss-of-function load must increase to 1/0.85, whereas
the maximum allowable load must decrease to 1/1.2. Thus to offset the absolute uncer-
tainties the design factor, from Eq. (1-1), should be

_1/0.85

M= T

From Eq. (1-2), the maximum allowable load is found to be

. 2000
Maximum allowable load = T4 = 1400 Ibf

Stochastic methods (see Chap. 20) are based on the statistical nature of the design
parameters and focus on the probability of survival of the design’s function (that is, on
reliability). Sections 5-13 and 6—17 demonstrate how this is accomplished.

Design Factor and Factor of Safety

A general approach to the allowable load versus loss-of-function load problem is the
deterministic design factor method, and sometimes called the classical method of
design. The fundamental equation is Eq. (1-1) where ny is called the design factor. All
loss-of-function modes must be analyzed, and the mode leading to the smallest design
factor governs. After the design is completed, the actual design factor may change as
a result of changes such as rounding up to a standard size for a cross section or using
off-the-shelf components with higher ratings instead of employing what is calculated
by using the design factor. The factor is then referred to as the factor of safety, n. The
factor of safety has the same definition as the design factor, but it generally differs
numerically.

Since stress may not vary linearly with load (see Sec. 3—19), using load as the loss-of-
function parameter may not be acceptable. It is more common then to express the design
factor in terms of a stress and a relevant strength. Thus Eq. (1-1) can be rewritten as

loss-of-function strength S

ng = (]_3)

allowable stress " o(or)
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EXAMPLE 1-2

Solution

Answer

Answer

The stress and strength terms in Eq. (1-3) must be of the same type and units. Also, the
stress and strength must apply to the same critical location in the part.

A rod with a cross-sectional area of A and loaded in tension with an axial force of P =
2000 Ibf undergoes a stress of o = P/A. Using a material strength of 24 kpsi and a
design factor of 3.0, determine the minimum diameter of a solid circular rod. Using
Table A—17, select a preferred fractional diameter and determine the rod’s factor of safety.

Since A = nd2/4, o = P/A, and from Eq. (1-3), 0 = S/ny, then

PP S

A mwd*/4 ng
Solving for d yields

4Png\'"? 42 12
d= (A" _ (A0 N
S (24 000)
5

From Table A—17, the next higher preferred size is 3 in = 0.625 in. Thus, when ng is

replaced with 7 in the equation developed above, the factor of safety n is

7Sd> (24 000)0.625
n—= =
4P 4(2000)

Thus rounding the diameter has increased the actual design factor.

=3.68

Reliability
In these days of greatly increasing numbers of liability lawsuits and the need to conform to
regulations issued by governmental agencies such as EPA and OSHA, it is very important
for the designer and the manufacturer to know the reliability of their product. The reliabil-
ity method of design is one in which we obtain the distribution of stresses and the distribu-
tion of strengths and then relate these two in order to achieve an acceptable success rate.
The statistical measure of the probability that a mechanical element will not fail in
use is called the reliability of that element. The reliability R can be expressed by

R=1-ps (1-4)

where pris the probability of failure, given by the number of instances of failures per
total number of possible instances. The value of R falls in the range 0 = R = 1. A reli-
ability of R = 0.90 means that there is a 90 percent chance that the part will perform
its proper function without failure. The failure of 6 parts out of every 1000 manufactured
might be considered an acceptable failure rate for a certain class of products. This rep-
resents a reliability of

=1 =0.994

1000

or 99.4 percent.
In the reliability method of design, the designer’s task is to make a judicious selec-
tion of materials, processes, and geometry (size) so as to achieve a specific reliability
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goal. Thus, if the objective reliability is to be 99.4 percent, as above, what combination
of materials, processing, and dimensions is needed to meet this goal? If a mechanical
system fails when any one component fails, the system is said to be a series system. If
the reliability of component i is R; in a series system of n components, then the relia-

bility of the system is given by
R = Z R; (1-5)
i=1

For example, consider a shaft with two bearings having reliabilities of 95 percent and
98 percent. From Eq. (1-5), the overall reliability of the shaft system is then

R=R; R, =0.95(0.98) =0.93

or 93 percent.

Analyses that lead to an assessment of reliability address uncertainties, or their
estimates, in parameters that describe the situation. Stochastic variables such as stress,
strength, load, or size are described in terms of their means, standard deviations, and
distributions. If bearing balls are produced by a manufacturing process in which a
diameter distribution is created, we can say upon choosing a ball that there is uncertainty
as to size. If we wish to consider weight or moment of inertia in rolling, this size uncer-
tainty can be considered to be propagated to our knowledge of weight or inertia. There
are ways of estimating the statistical parameters describing weight and inertia from
those describing size and density. These methods are variously called propagation of
error, propagation of uncertainty, or propagation of dispersion. These methods are
integral parts of analysis or synthesis tasks when probability of failure is involved.

It is important to note that good statistical data and estimates are essential to per-
form an acceptable reliability analysis. This requires a good deal of testing and valida-
tion of the data. In many cases, this is not practical and a deterministic approach to the
design must be undertaken.

Dimensions and Tolerances

The following terms are used generally in dimensioning:

* Nominal size. The size we use in speaking of an element. For example, we may spec-
ify a 1%-1n pipe or a %-in bolt. Either the theoretical size or the actual measured size
may be quite different. The theoretical size of a lé-in pipe is 1.900 in for the outside
diameter. And the diameter of the %—in bolt, say, may actually measure 0.492 in.

e Limits. The stated maximum and minimum dimensions.

* Tolerance. The difference between the two limits.

e Bilateral tolerance. The variation in both directions from the basic dimension. That
is, the basic size is between the two limits, for example, 1.005 &= 0.002 in. The two
parts of the tolerance need not be equal.

e Unilateral tolerance. The basic dimension is taken as one of the limits, and variation
is permitted in only one direction, for example,

1.005 T390 in
e Clearance. A general term that refers to the mating of cylindrical parts such as a bolt
and a hole. The word clearance is used only when the internal member is smaller than

the external member. The diametral clearance is the measured difference in the two
diameters. The radial clearance is the difference in the two radii.
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EXAMPLE 1-3

Figure 1-4

An assembly of three
cylindrical sleeves of lengths a,
b, and ¢ on a shoulder bolt
shank of length a. The gap w is
of interest.

Solution

Answer

Answer

Answer

 [Interference. The opposite of clearance, for mating cylindrical parts in which the
internal member is larger than the external member (e.g., press-fits).

e Allowance. The minimum stated clearance or the maximum stated interference for
mating parts.

When several parts are assembled, the gap (or interference) depends on the dimen-
sions and tolerances of the individual parts.

A shouldered screw contains three hollow right circular cylindrical parts on the screw
before a nut is tightened against the shoulder. To sustain the function, the gap w must
equal or exceed 0.003 in. The parts in the assembly depicted in Fig. 1-4 have dimen-
sions and tolerances as follows:

a=1750£0.003in 5 =0.750£0.001 in
¢ =0.120£0.005in  d =0.875£0.001 in

a

) [] |

All parts except the part with the dimension d are supplied by vendors. The part con-
taining the dimension d is made in-house.

(a) Estimate the mean and tolerance on the gap w.

(b) What basic value of d will assure that w = 0.003 in?

(a) The mean value of w is given by

W=a—b—¢—d=1.750—0.750 — 0.120 — 0.875 = 0.005 in

For equal bilateral tolerances, the tolerance of the gap is

ty = Zl = 0.003 + 0.001 4 0.005 4 0.001 = 0.010 in
all

Then, w = 0.005 = 0.010 in, and
Wmax = W + f,, = 0.005 + 0.010 = 0.015 in
Wmin = W — t, = 0.005 — 0.010 = —0.005 in
Thus, both clearance and interference are possible.

(b) If Wiy is to be 0.003 in, then, W = Wyin + 1, = 0.003 + 0.010 = 0.013 in. Thus,

d=a—b—¢—w=1.750—-0.750 — 0.120 — 0.013 = 0.867 in
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The previous example represented an absolute tolerance system. Statistically, gap
dimensions near the gap limits are rare events. Using a statistical tolerance system, the
probability that the gap falls within a given limit is determined.” This probability deals
with the statistical distributions of the individual dimensions. For example, if the distri-
butions of the dimensions in the previous example were normal and the tolerances, 7, were
given in terms of standard deviations of the dimension distribution, the standard devia-

tion of the gap w would be ¢, = /Z t2. However, this assumes a normal distribution
all

for the individual dimensions, a rare occurrence. To find the distribution of w and/or the
probability of observing values of w within certain limits requires a computer simulation
in most cases. Monte Carlo computer simulations are used to determine the distribution
of w by the following approach:

1 Generate an instance for each dimension in the problem by selecting the value of
each dimension based on its probability distribution.

2 Calculate w using the values of the dimensions obtained in step 1.

3 Repeat steps 1 and 2 N times to generate the distribution of w. As the number of
trials increases, the reliability of the distribution increases.

Units

In the symbolic units equation for Newton’s second law, F = ma,
F=MLT? (1-6)

F stands for force, M for mass, L for length, and 7 for time. Units chosen for any three
of these quantities are called base units. The first three having been chosen, the fourth
unit is called a derived unit. When force, length, and time are chosen as base units, the
mass is the derived unit and the system that results is called a gravitational system of
units. When mass, length, and time are chosen as base units, force is the derived unit
and the system that results is called an absolute system of units.

In some English-speaking countries, the U.S. customary foot-pound-second system
(fps) and the inch-pound-second system (ips) are the two standard gravitational systems
most used by engineers. In the fps system the unit of mass is

FT?  (pound-force)(second)®

M = = = Ibf - s*/ft = slug (1-7)
L foot

Thus, length, time, and force are the three base units in the fps gravitational system.

The unit of force in the fps system is the pound, more properly the pound-force. We
shall often abbreviate this unit as 1bf; the abbreviation Ib is permissible however, since
we shall be dealing only with the U.S. customary gravitational system. In some branches
of engineering it is useful to represent 1000 Ibf as a kilopound and to abbreviate it as
kip. Note: In Eq. (1-7) the derived unit of mass in the fps gravitational system is the
Ibf - s>/ft and is called a slug; there is no abbreviation for slug.

The unit of mass in the ips gravitational system is

FT* (pound-force)(second)’
L inch

M = = Ibf - s%in (1-8)
The mass unit 1bf - s2/in has no official name.

’See Chapter 20 for a description of the statistical terminology.
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The International System of Units (SI) is an absolute system. The base units
are the meter, the kilogram (for mass), and the second. The unit of force is derived
by using Newton’s second law and is called the newton. The units constituting the
newton (N) are

ML (kilogram)(meter)

F = =
T? (second)?

=kg-mi*=N (1-9)

The weight of an object is the force exerted upon it by gravity. Designating the weight
as W and the acceleration due to gravity as g, we have

W =mg (1-10)

In the fps system, standard gravity is g = 32.1740 ft/s>. For most cases this is rounded
off to 32.2. Thus the weight of a mass of 1 slug in the fps system is

W = mg = (1 slug)(32.2 ft/s?) = 32.2 Ibf

In the ips system, standard gravity is 386.088 or about 386 in/s. Thus, in this system,
a unit mass weighs

W = (1 1bf - s*/in)(386 in/s?) = 386 Ibf

With SI units, standard gravity is 9.806 or about 9.81 m/s. Thus, the weight of a 1-kg
mass is

W = (1kg)(9.81m/s*) = 9.81N

A series of names and symbols to form multiples and submultiples of SI units has
been established to provide an alternative to the writing of powers of 10. Table A-1
includes these prefixes and symbols.

Numbers having four or more digits are placed in groups of three and separated by
a space instead of a comma. However, the space may be omitted for the special case of
numbers having four digits. A period is used as a decimal point. These recommenda-
tions avoid the confusion caused by certain European countries in which a comma
is used as a decimal point, and by the English use of a centered period. Examples of
correct and incorrect usage are as follows:

1924 or 1 924 but not 1,924
0.1924 or 0.192 4 but not 0.192.4
192 423.618 50 but not 192,423.61850

The decimal point should always be preceded by a zero for numbers less than unity.

Calculations and Significant Figures

The discussion in this section applies to real numbers, not integers. The accuracy of a real
number depends on the number of significant figures describing the number. Usually, but
not always, three or four significant figures are necessary for engineering accuracy. Unless
otherwise stated, no less than three significant figures should be used in your calculations.
The number of significant figures is usually inferred by the number of figures given
(except for leading zeros). For example, 706, 3.14, and 0.002 19 are assumed to be
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numbers with three significant figures. For trailing zeros, a little more clarification is nec-
essary. To display 706 to four significant figures insert a trailing zero and display either
706.0, 7.060 x 102, or 0.7060 x 103. Also, consider a number such as 91 600. Scientific
notation should be used to clarify the accuracy. For three significant figures express the
number as 91.6 x 103, For four significant figures express it as 91.60 x 10,

Computers and calculators display calculations to many significant figures. However,
you should never report a number of significant figures of a calculation any greater than
the smallest number of significant figures of the numbers used for the calculation. Of
course, you should use the greatest accuracy possible when performing a calculation. For
example, determine the circumference of a solid shaft with a diameter of d = 0.40 in. The
circumference is given by C = nd. Since d is given with two significant figures, C should
be reported with only two significant figures. Now if we used only two significant figures
for 7 our calculator would give C = 3.1 (0.40) = 1.24 in. This rounds off to two signif-
icant figures as C = 1.2 in. However, using 7 = 3.141 592 654 as programmed in the
calculator, C = 3.141 592 654 (0.40) = 1.256 637 061 in. This rounds off to C = 1.3
in, which is 8.3 percent higher than the first calculation. Note, however, since d is given
with two significant figures, it is implied that the range of d is 0.40 £ 0.005. This means
that the calculation of C is only accurate to within =0.005/0.40 = £0.0125 = £1.25%.
The calculation could also be one in a series of calculations, and rounding each calcula-
tion separately may lead to an accumulation of greater inaccuracy. Thus, it is considered
good engineering practice to make all calculations to the greatest accuracy possible and
report the results within the accuracy of the given input.

Design Topic Interdependencies

One of the characteristics of machine design problems is the interdependencies of the
various elements of a given mechanical system. For example, a change from a spur gear
to a helical gear on a drive shaft would add axial components of force, which would
have implications on the layout and size of the shaft, and the type and size of the bear-
ings. Further, even within a single component, it is necessary to consider many differ-
ent facets of mechanics and failure modes, such as excessive deflection, static yielding,
fatigue failure, contact stress, and material characteristics. However, in order to provide
significant attention to the details of each topic, most machine design textbooks focus
on these topics separately and give end-of-chapter problems that relate only to that
specific topic.

To help the reader see the interdependence between the various design topics, this
textbook presents many ongoing and interdependent problems in the end-of-chapter
problem sections. Each row of Table 1-1 shows the problem numbers that apply to the
same mechanical system that is being analyzed according to the topics being presented
in that particular chapter. For example, in the second row, Probs. 3—40, 5-65, and 5-66
correspond to a pin in a knuckle joint that is to be analyzed for stresses in Chap. 3 and
then for static failure in Chap. 5. This is a simple example of interdependencies, but as
can be seen in the table, other systems are analyzed with as many as 10 separate prob-
lems. It may be beneficial to work through some of these continuing sequences as the
topics are covered to increase your awareness of the various interdependencies.

In addition to the problems given in Table 1-1, Sec. 1-17 describes a power trans-
mission case study where various interdependent analyses are performed throughout
the book, when appropriate in the presentation of the topics. The final results of the case
study are then presented in Chap. 18.
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Table 1-1

Problem Numbers for Linked End-of-Chapter Problems*

3-1 4-50 4-74

340 5-65 5-66

3-68 423 429 4-35 5-39 6-37 77 11-14

3-69 424 4-30 4-36 5-40 6-38 7-8 11-15

3-70  4-25 4-31 437 5-41 6-39 7-9 11-16

3-71 426 4-32 438 5-42 640 7-10  11-17

3-72 427 4-33  4-39 5-43 641 7-11 7-19 720 7-34 11-27 11-28 13-38 14-36
3-73 428 4-34 440 5-44 642 7-12 721 722 7-35 11-29 11-30 13-39 14-37
3-74 545 643 7-13 1141 13-42

3-76 546 644 T-14 11-42 1342

3-77 547 645 7-15 11-18 13-40 14-38

3-79 548 646 7-16 11-19 1341 14-39

3-80 441 4-71 5-49 6-47

3-81 5-50 648

3-82  5-51 649

3-83 5-52 6-50

3-84 443 4-73 5-533 5-56 6-51

3-85 5-54 6-52

3-86 5-55 6-53

3-87 5-56

*Each row corresponds to the same mechanical component repeated for a different design concept.

1-17

Power Transmission Case Study Specifications

A case study incorporating the many facets of the design process for a power transmis-
sion speed reducer will be considered throughout this textbook. The problem will be
introduced here with the definition and specification for the product to be designed.
Further details and component analysis will be presented in subsequent chapters.
Chapter 18 provides an overview of the entire process, focusing on the design sequence,
the interaction between the component designs, and other details pertinent to transmis-
sion of power. It also contains a complete case study of the power transmission speed
reducer introduced here.

Many industrial applications require machinery to be powered by engines or elec-
tric motors. The power source usually runs most efficiently at a narrow range of rota-
tional speed. When the application requires power to be delivered at a slower speed than
supplied by the motor, a speed reducer is introduced. The speed reducer should trans-
mit the power from the motor to the application with as little energy loss as practical,
while reducing the speed and consequently increasing the torque. For example, assume
that a company wishes to provide off-the-shelf speed reducers in various capacities and
speed ratios to sell to a wide variety of target applications. The marketing team has
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determined a need for one of these speed reducers to satisfy the following customer
requirements.

Design Requirements

Power to be delivered: 20 hp

Input speed: 1750 rev/min

Output speed: 85 rev/min

Targeted for uniformly loaded applications, such as conveyor belts, blowers,
and generators

Output shaft and input shaft in-line

Base mounted with 4 bolts

Continuous operation

6-year life, with 8 hours/day, 5 days/wk

Low maintenance

Competitive cost

Nominal operating conditions of industrialized locations
Input and output shafts standard size for typical couplings

In reality, the company would likely design for a whole range of speed ratios for
each power capacity, obtainable by interchanging gear sizes within the same overall
design. For simplicity, in this case study only one speed ratio will be considered.

Notice that the list of customer requirements includes some numerical specifics, but
also includes some generalized requirements, e.g., low maintenance and competitive cost.
These general requirements give some guidance on what needs to be considered in the
design process, but are difficult to achieve with any certainty. In order to pin down these
nebulous requirements, it is best to further develop the customer requirements into a set of
product specifications that are measurable. This task is usually achieved through the work
of a team including engineering, marketing, management, and customers. Various tools
may be used (see footnote 1, p. 7) to prioritize the requirements, determine suitable
metrics to be achieved, and to establish target values for each metric. The goal of this
process is to obtain a product specification that identifies precisely what the product must
satisfy. The following product specifications provide an appropriate framework for this
design task.

Design Specifications
Power to be delivered: 20 hp
Power efficiency: >95%
Steady state input speed: 1750 rev/min
Maximum input speed: 2400 rev/min
Steady-state output speed: 82—-88 rev/min
Usually low shock levels, occasional moderate shock
Input and output shafts extend 4 in outside gearbox
Input and output shaft diameter tolerance: +0.001 in
Input and output shafts in-line: concentricity +0.005 in, alignment £0.001 rad
Maximum allowable loads on input shaft: axial, 50 Ibf; transverse, 100 Ibf
Maximum allowable loads on output shaft: axial, 50 Ibf; transverse, 500 1bf
Maximum gearbox size: 14-in X 14-in base, 22-in height
Base mounted with 4 bolts
Mounting orientation only with base on bottom
100% duty cycle
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Maintenance schedule: lubrication check every 2000 hours; change of lubrica-
tion every 8000 hours of operation; gears and bearing life >12,000 hours;
infinite shaft life; gears, bearings, and shafts replaceable

Access to check, drain, and refill lubrication without disassembly or opening of
gasketed joints.

Manufacturing cost per unit: <$300

Production: 10,000 units per year

Operating temperature range: —10° to 120°F

Sealed against water and dust from typical weather

Noise: <85 dB from 1 meter

PROBLEMS

Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to
your university’s library or the appropriate internet website, and, using the Thomas Register of
American Manufacturers (www.thomasnet.com), report on the information obtained on five
manufacturers or suppliers.

Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to the
Internet, and, using a search engine, report on the information obtained on five manufacturers or
suppliers.

Select an organization listed in Sec. 1-6, go to the Internet, and list what information is available
on the organization.

Go to the Internet and connect to the NSPE website (www.nspe.org/ethics). Read the history of
the Code of Ethics and briefly discuss your reading.

Go to the Internet and connect to the NSPE website (www.nspe.org/ethics). Read the complete
NSPE Code of Ethics for Engineers and briefly discuss your reading.

Go to the Internet and connect to the NSPE website (www.nspe.org/ethics). Go to Ethics Resources
and review one or more of the topics given. A sample of some of the topics may be:

(a) Education Publications

(b) Ethics Case Search

(¢) Ethics Exam

(d) FAQ

(e) Milton Lunch Contest

(f) Other Resources

(g) You Be the Judge

Briefly discuss your reading.

Estimate the relative cost of grinding a steel part to a tolerance of 20.0005 in versus turning it to
a tolerance of £0.003 in.

The costs to manufacture a part using methods A and B are estimated by C4 = 10 + 0.8 P and
Cp =60 + 0.8 P — 0.005 P? respectively, where the cost C is in dollars and P is the number of
parts. Estimate the breakeven point.

A cylindrical part of diameter d is loaded by an axial force P. This causes a stress of P/A, where
A = td? /4. If the load is known with an uncertainty of 10 percent, the diameter is known
within &5 percent (tolerances), and the stress that causes failure (strength) is known within =15
percent, determine the minimum design factor that will guarantee that the part will not fail.


www.thomasnet.com
www.nspe.org/ethics
www.nspe.org/ethics
www.nspe.org/ethics

Problem 1-14
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When one knows the true values x; and x, and has approximations X; and X, at hand, one can
see where errors may arise. By viewing error as something to be added to an approximation to
attain a true value, it follows that the error ¢;, is related to X;, and x; as x; = X; + ¢;

(a) Show that the error in a sum X| + X is

(r+x) - X+ X)) =€ +e
(b) Show that the error in a difference X; — X3 is

x1—x)—X1—X2)=e—e
(c) Show that the error in a product X X> is

X1 X, =XX €1+€2
X1x2 — = — 4+ =
2 e 2 X Xy

(d) Show that in a quotient X/ X, the error is
X1 X1 _ X1 €] ()
0o X X \Xi X»
Use the true values x| = ﬁ and x, = \/g
(a) Demonstrate the correctness of the error equation from Prob. 1-10 for addition if three cor-
rect digits are used for X and X».

(b) Demonstrate the correctness of the error equation for addition using three-digit significant
numbers for X; and X,.

A solid circular rod of diameter d undergoes a bending moment M = 1000 Ibf - in inducing a
stress o = 16M/(d?). Using a material strength of 25 kpsi and a design factor of 2.5, deter-
mine the minimum diameter of the rod. Using Table A—17 select a preferred fractional diameter
and determine the resulting factor of safety.

A mechanical system comprises three subsystems in series with reliabilities of 98, 96, and
94 percent. What is the overall reliability of the system?

Three blocks A, B, and C and a grooved block D have dimensions a, b, ¢, and d as follows:
a=1.500 % 0.001 in b =2.000 % 0.003 in
¢=3.000 £ 0.004 in d=6.520 £ 0.010 in

A B C
D
(a) Determine the mean gap w and its tolerance.
(b) Determine the mean size of d that will assure that w > 0.010 in.

The volume of a rectangular parallelepiped is given by V = xyz. If
x=axAa,y=b=x Ab,z=c =+ Ac, show that
AV Aa Ab Ac

1% a b c
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1-16

Problem 1-16

Dimensions in inches.

1-17

Problem 1-17

1-18 to
1-21

1-22

Use this result to determine the bilateral tolerance on the volume of a rectangular parallelepiped
with dimensions

a = 1.500 £ 0.002 in b =1.875 £ 0.003 in ¢ =3.000 £ 0.004 in

A pivot in a linkage has a pin in the figure whose dimension a = 7, is to be established. The
thickness of the link clevis is 1.500 == 0.005 in. The designer has concluded that a gap of between
0.004 and 0.05 in will satisfactorily sustain the function of the linkage pivot. Determine the
dimension a and its tolerance.

| Clevis

v Pin Snap ring
. ati, —»J [PEE— —J L 0.042 £ 0.002

1.500 + 0.005

A circular cross section O ring has the dimensions shown in the figure. In particular, an AS 568A
standard No. 240 O ring has an inside diameter D; and a cross-section diameter d of

D; = 3.734 £ 0.028 in d =0.139 £ 0.004 in

Estimate the mean outside diameter DU and its bilateral tolerance.

Do

For the table given, repeat Prob. 1-17 for the following O rings, given the AS 568A standard
number. Solve Problems 1-18 and 1-19 using SI units. Solve Problems 1-20 and 1-21 using ips
units. Note: The solutions require research.

Problem number I 1-18  1-19 1-20 1-21

AS 568A No. I 110 220 160 320

Convert the following to appropriate ips units:
(a) A stress, 0 = 150 MPa.

(b) A force, F = 2 kN.

(¢) A moment, M = 150 N - m.

(d) Anarea, A= 1500 mm>.

(e) A second moment of area, I = 750 cm®.
(f) A modulus of elasticity, £ = 145 GPa.
(g) A speed, v =75 km/h.

(h) A volume, V =1 liter.
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Convert the following to appropriate SI units:
(a) Alength, =15 ft.

(b) A stress, o = 90 kpsi.

(c) A pressure, p = 25 psi.

(d) A section modulus, Z = 12 in’.

(e) A unit weight, w = 0.208 Ibf/in.

(f) A deflection, 6 = 0.001 89 in.

(g) A velocity, v =1 200 ft/min.

(h) A unit strain, € = 0.002 15 in/in.

(i) A volume, V= 1830 in’.

Generally, final design results are rounded to or fixed to three digits because the given data can-
not justify a greater display. In addition, prefixes should be selected so as to limit number strings
to no more than four digits to the left of the decimal point. Using these rules, as well as those for
the choice of prefixes, solve the following relations:

(a) 0 = M/Z, where M = 1770 1Ibf - in and Z = 0.934 in’.

(b) 0 = F/A, where F = 9440 Ibf and A = 23.8 in>.

(c) y = FI*/3EI, where F = 270 Ibf, | = 31.5 in, E = 30 Mpsi, and / = 0.154 in*.

(d) 6 =TI/GJ, where T =9 740 Ibf - in, / = 9.85 in, G = 11.3 Mpsi, and d = 1.00 in.

Repeat Prob. 1-24 for the following:

(a) o0 = F/wt, where F = 1 kN, w = 25 mm, and = 5 mm.
(b) I=bh*/12, where b = 10 mm and & = 25 mm.

(¢) 1= md*/64, where d = 25.4 mm.

(d) T =16 T/mtd? where T=25N - m, and d = 12.7 mm.

Repeat Prob. 1-24 for:

(a) T = F/A, where A = wd?/4, F =2 700 Ibf, and d = 0.750 in.

(b) 0 =32 Fa/md?, where F = 180 Ibf, a = 31.5 in, and d = 1.25 in.

(¢) Z=m(dy — di*)/(32 d,) for d, = 1.50 in and d; = 1.00 in.

(d) k= (d* G)/(8 D* N), where d = 0.062 5 in, G = 11.3 Mpsi, D = 0.760 in, and N = 32
(a dimensionless number).
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The selection of a material for a machine part or a structural member is one of the most
important decisions the designer is called on to make. The decision is usually made
before the dimensions of the part are established. After choosing the process of creat-
ing the desired geometry and the material (the two cannot be divorced), the designer can
proportion the member so that loss of function can be avoided or the chance of loss of
function can be held to an acceptable risk.

In Chaps. 3 and 4, methods for estimating stresses and deflections of machine
members are presented. These estimates are based on the properties of the material
from which the member will be made. For deflections and stability evaluations, for
example, the elastic (stiffness) properties of the material are required, and evaluations
of stress at a critical location in a machine member require a comparison with the
strength of the material at that location in the geometry and condition of use. This
strength is a material property found by testing and is adjusted to the geometry and con-
dition of use as necessary.

As important as stress and deflection are in the design of mechanical parts, the
selection of a material is not always based on these factors. Many parts carry no loads
on them whatever. Parts may be designed merely to fill up space or for aesthetic quali-
ties. Members must frequently be designed to also resist corrosion. Sometimes temper-
ature effects are more important in design than stress and strain. So many other factors
besides stress and strain may govern the design of parts that the designer must have the
versatility that comes only with a broad background in materials and processes.

Material Strength and Stiffness

The standard tensile test is used to obtain a variety of material characteristics and
strengths that are used in design. Figure 21 illustrates a typical tension-test specimen
and its characteristic dimensions.! The original diameter dy and the gauge length /o,
used to measure the deflections, are recorded before the test is begun. The specimen is
then mounted in the test machine and slowly loaded in tension while the load P and
deflection are observed. The load is converted to stress by the calculation

P

o = —
Ay

(2-1)

where Ay = %rrdg is the original area of the specimen.

P<€=== kL; 4»1 —f===3p

Figure 2-1

A typical tension-test specimen. Some of the standard
dimensions used for dj are 2.5, 6.25, and 12.5 mm and
0.505 in, but other sections and sizes are in use. Common
gauge lengths Iy used are 10, 25, and 50 mm and 1 and 2 in.

ISee ASTM standards E8 and E-8 m for standard dimensions.



Figure 2-2

Stress-strain diagram obtained
from the standard tensile test
(a) Ductile material; (b) brittle
material.

pl marks the proportional limit;
el, the elastic limit; y, the
offset-yield strength as defined
by offset strain a; u, the
maximum or ultimate strength;
and f, the fracture strength.
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The deflection, or extension of the gauge length, is given by / — [y where [ is the
gauge length corresponding to the load P. The normal strain is calculated from

)
€ =
lo

(2-2)

The results are plotted as a stress-strain diagram. Figure 2-2 depicts typical stress-
strain diagrams for ductile and brittle materials. Ductile materials deform much more
than brittle materials.

Point pl in Fig. 2-2a is called the proportional limit. This is the point at which the
curve first begins to deviate from a straight line. No permanent set will be observable
in the specimen if the load is removed at this point. In the linear range, the uniaxial
stress-strain relation is given by Hooke’s law as

o =Ee (2-3)

where the constant of proportionality E, the slope of the linear part of the stress-strain
curve, is called Young’s modulus or the modulus of elasticity. E is a measure of the
stiffness of a material, and since strain is dimensionless, the units of E are the same as
stress. Steel, for example, has a modulus of elasticity of about 30 Mpsi (207 GPa)
regardless of heat treatment, carbon content, or alloying. Stainless steel is about
27.5 Mpsi (190 GPa).

Point el in Fig. 2-2 is called the elastic limit. If the specimen is loaded beyond this
point, the deformation is said to be plastic and the material will take on a permanent set
when the load is removed. Between pl and el the diagram is not a perfectly straight
line, even though the specimen is elastic.

During the tension test, many materials reach a point at which the strain begins to
increase very rapidly without a corresponding increase in stress. This point is called the
yield point. Not all materials have an obvious yield point, especially for brittle
materials. For this reason, yield strength S, is often defined by an offset method as
shown in Fig. 2-2, where line ay is drawn at slope E. Point a corresponds to a definite
or stated amount of permanent set, usually 0.2 percent of the original gauge length
(e =0.002), although 0.01, 0.1, and 0.5 percent are sometimes used.

The ultimate, or tensile, strength S, or S,, corresponds to point u in Fig. 2-2 and
is the maximum stress reached on the stress-strain diagram.?> As shown in Fig. 2—2a,

2Usage varies. For a long time engineers used the term ultimate strength, hence the subscript u in S, or S,.
However, in material science and metallurgy the term zensile strength is used.
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Figure 2-3

Tension specimen after
necking.

some materials exhibit a downward trend after the maximum stress is reached and frac-
ture at point f on the diagram. Others, such as some of the cast irons and high-strength
steels, fracture while the stress-strain trace is still rising, as shown in Fig. 2-2b, where
points u and f are identical.

As noted in Sec. 1-9, strength, as used in this book, is a built-in property of a mate-
rial, or of a mechanical element, because of the selection of a particular material or
process or both. The strength of a connecting rod at the critical location in the geome-
try and condition of use, for example, is the same no matter whether it is already an ele-
ment in an operating machine or whether it is lying on a workbench awaiting assembly
with other parts. On the other hand, stress is something that occurs in a part, usually as
a result of its being assembled into a machine and loaded. However, stresses may be
built into a part by processing or handling. For example, shot peening produces a com-
pressive stress in the outer surface of a part, and also improves the fatigue strength of
the part. Thus, in this book we will be very careful in distinguishing between strength,
designated by S, and stress, designated by o or 7.

The diagrams in Fig. 2-2 are called engineering stress-strain diagrams because the
stresses and strains calculated in Eqs. (2—1) and (2-2) are not true values. The stress
calculated in Eq. (2-1) is based on the original area before the load is applied. In real-
ity, as the load is applied the area reduces so that the actual or true stress is larger than
the engineering stress. To obtain the true stress for the diagram the load and the cross-
sectional area must be measured simultaneously during the test. Figure 2—2a represents
a ductile material where the stress appears to decrease from points u to f. Typically,
beyond point u the specimen begins to “neck’ at a location of weakness where the area
reduces dramatically, as shown in Fig. 2-3. For this reason, the true stress is much higher
than the engineering stress at the necked section.

The engineering strain given by Eq. (2-2) is based on net change in length from the
original length. In plotting the true stress-strain diagram, it is customary to use a term
called true strain or, sometimes, logarithmic strain. True strain is the sum of the incre-
mental elongations divided by the current gauge length at load P, or

Ldl l
8:/ — =In— (2-4)
n 1 lo

where the symbol ¢ is used to represent true strain. The most important characteristic
of a true stress-strain diagram (Fig. 2—4) is that the true stress continually increases all
the way to fracture. Thus, as shown in Fig. 24, the true fracture stress o is greater than
the true ultimate stress o,,. Contrast this with Fig. 2-2a, where the engineering fracture
strength Sy is less than the engineering ultimate strength S,,.

Compression tests are more difficult to conduct, and the geometry of the test spec-
imens differs from the geometry of those used in tension tests. The reason for this is that
the specimen may buckle during testing or it may be difficult to distribute the stresses
evenly. Other difficulties occur because ductile materials will bulge after yielding.
However, the results can be plotted on a stress-strain diagram also, and the same
strength definitions can be applied as used in tensile testing. For most ductile materials
the compressive strengths are about the same as the tensile strengths. When substantial
differences occur between tensile and compressive strengths, however, as is the case with

L




Figure 2-4

True stress-strain diagram
plotted in Cartesian
coordinates.
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the cast irons, the tensile and compressive strengths should be stated separately, S,
Suc, where S, is reported as a positive quantity.

Torsional strengths are found by twisting solid circular bars and recording the torque
and the twist angle. The results are then plotted as a torque-twist diagram. The shear
stresses in the specimen are linear with respect to radial location, being zero at the cen-
ter of the specimen and maximum at the outer radius r (see Chap. 3). The maximum shear
stress Ty, 18 related to the angle of twist 6 by

T =—=0 (2-5)

where 6 is in radians, r is the radius of the specimen, /; is the gauge length, and G is
the material stiffness property called the shear modulus or the modulus of rigidity. The
maximum shear stress is also related to the applied torque T as
Tmax = 2 (2_6)
J
where J = %nr“ is the polar second moment of area of the cross section.

The torque-twist diagram will be similar to Fig. 2-2, and, using Eqgs. (2-5) and
(2-6), the modulus of rigidity can be found as well as the elastic limit and the torsional
yield strength S;,. The maximum point on a torque-twist diagram, corresponding to
point u on Fig. 2-2, is T,,. The equation

(2-7)

defines the modulus of rupture for the torsion test. Note that it is incorrect to call Sy,
the ultimate torsional strength, as the outermost region of the bar is in a plastic state at
the torque 7, and the stress distribution is no longer linear.

All of the stresses and strengths defined by the stress-strain diagram of Fig. 2-2 and
similar diagrams are specifically known as engineering stresses and strengths or nomi-
nal stresses and strengths. These are the values normally used in all engineering design
calculations. The adjectives engineering and nominal are used here to emphasize that
the stresses are computed by using the original or unstressed cross-sectional area of the
specimen. In this book we shall use these modifiers only when we specifically wish to
call attention to this distinction.
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In addition to providing strength values for a material, the stress-strain diagram
provides insight into the energy-absorbing characteristics of a material. This is because
the stress-strain diagram involves both loads and deflections, which are directly related
to energy. The capacity of a material to absorb energy within its elastic range is called
resilience. The modulus of resilience ug of a material is defined as the energy absorbed per
unit volume without permanent deformation, and is equal to the area under the stress-
strain curve up to the elastic limit. The elastic limit is often approximated by the yield
point, since it is more readily determined, giving

€y
Ug %/ ode (2-8)
0

where €, is the strain at the yield point. If the stress-strain is linear to the yield point,
then the area under the curve is simply a triangular area; thus

1 1 S;
up = ESyey = E(Sy)(Sy/E) =5z (2-9)

This relationship indicates that for two materials with the same yield strength, the
less stiff material (lower E), will have a greater resilience, that is, an ability to absorb
more energy without yielding.

The capacity of a material to absorb energy without fracture is called foughness.
The modulus of toughness ur of a material is defined as the energy absorbed per unit
volume without fracture, which is equal to the total area under the stress-strain curve up
to the fracture point, or

€
ur :/ ode (2-10)
0

where €/ is the strain at the fracture point. This integration is often performed graphi-
cally from the stress-strain data, or a rough approximation can be obtained by using the
average of the yield and ultimate strengths and the strain at fracture to calculate an area;

that is,
Sy + S
ur = (7»‘ ' ) o (2-11)

The units of toughness and resilience are energy per unit volume (Ibf - in/in® or J/m?),
which are numerically equivalent to psi or Pa. These definitions of toughness and
resilience assume the low strain rates that are suitable for obtaining the stress-strain
diagram. For higher strain rates, see Sec. 2-5 for impact properties.

The Statistical Significance of Material Properties

There is some subtlety in the ideas presented in the previous section that should be pon-
dered carefully before continuing. Figure 2—-2 depicts the result of a single tension test
(one specimen, now fractured). It is common for engineers to consider these important
stress values (at points pl, el, y, u, and f) as properties and to denote them as strengths
with a special notation, uppercase S, in lieu of lowercase sigma o, with subscripts
added: S,; for proportional limit, S, for yield strength, S, for ultimate tensile strength
(S, or S, if tensile or compressive sense is important).

If there were 1000 nominally identical specimens, the values of strength obtained
would be distributed between some minimum and maximum values. It follows that the



Class Frequency f; I 2 18

Materials 37

description of strength, a material property, is distributional and thus is statistical in
nature. Chapter 20 provides more detail on statistical considerations in design. Here we
will simply describe the results of one example, Ex. 20—-4. Consider the following table,
which is a histographic report containing the maximum stresses of 1000 tensile tests on
a 1020 steel from a single heat. Here we are seeking the ultimate tensile strength S,,,. The
class frequency is the number of occurrences within a 1 kpsi range given by the class
midpoint. For example, 18 maximum stress values occurred in the range of 57 to 58 kpsi.

23 31 8 109 138 151 139 130 82 49 28 11 4 2

Class Midpoint | 56.5 57.5
X;, kpsi

Figure 2-5

Histogram for 1000 tensile
tests on a 1020 steel from a
single heat.

585 595 605 615 625 635 645 655 665 675 685 695 70.5 715

The probability density is defined as the number of occurrences divided by the total
sample number. The bar chart in Fig. 2-5 depicts the histogram of the probability den-
sity. If the data is in the form of a Gaussian or normal distribution, the probability
density function determined in Ex. 204 is

fo= —L e _1<x—63.62)2
T 250427 P72\ 2504

where the mean stress is 63.62 kpsi and the standard deviation is 2.594 kpsi. A plot
of f(x) is also included in Fig. 2-5. The description of the strength S,, is then
expressed in terms of its statistical parameters and its distribution type. In this case
S.: = N(63.62, 2.594) kpsi, indicating a normal distribution with a mean stress of
63.62 kpsi and a standard deviation of 2.594 kpsi.

Note that the test program has described 1020 property S,;, for only one heat of
one supplier. Testing is an involved and expensive process. Tables of properties are
often prepared to be helpful to other persons. A statistical quantity is described by its

02—

\/f(X)

AN
A

Probability density
o
[

50 60 70
Ultimate tensile strength, kpsi
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Figure 2-6

(a) Stress-strain diagram
showing unloading and
reloading at point 7 in the
plastic region; (b) analogous
load-deformation diagram.

mean, standard deviation, and distribution type. Many tables display a single number,
which is often the mean, minimum, or some percentile, such as the 99th percentile.
Always read the foonotes to the table. If no qualification is made in a single-entry table,
the table is subject to serious doubt.

Since it is no surprise that useful descriptions of a property are statistical in nature,
engineers, when ordering property tests, should couch the instructions so the data gen-
erated are enough for them to observe the statistical parameters and to identify the dis-
tributional characteristic. The tensile test program on 1000 specimens of 1020 steel is
a large one. If you were faced with putting something in a table of ultimate tensile
strengths and constrained to a single number, what would it be and just how would your
footnote read?

Strength and Cold Work

Cold working is the process of plastic straining below the recrystallization temperature
in the plastic region of the stress-strain diagram. Materials can be deformed plastically
by the application of heat, as in forging or hot rolling, but the resulting mechanical
properties are quite different from those obtained by cold working. The purpose of this
section is to explain what happens to the significant mechanical properties of a material
when that material is cold worked.

Consider the stress-strain diagram of Fig. 2—6a. Here a material has been stressed
beyond the yield strength at y to some point i, in the plastic region, and then the load
removed. At this point the material has a permanent plastic deformation €. If the load
corresponding to point i is now reapplied, the material will be elastically deformed by
the amount €,.. Thus at point i the total unit strain consists of the two components €, and
€, and is given by the equation

e=¢€,+e (a)
This material can be unloaded and reloaded any number of times from and to point i,
and it is found that the action always occurs along the straight line that is approximately
parallel to the initial elastic line Oy. Thus
(b)

Gl
€ = —
E

fi

Nominal stress, o
s
S &
~
Load, P

. . ,
<, *‘ <€, Unit strain, € Ay A’} A; A/

Area deformation (reduction)
~—— € —>

(a) (@]
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The material now has a higher yield point, is less ductile as a result of a reduction in
strain capacity, and is said to be strain-hardened. If the process is continued, increasing
€,,, the material can become brittle and exhibit sudden fracture.

It is possible to construct a similar diagram, as in Fig. 2-6b, where the abscissa is
the area deformation and the ordinate is the applied load. The reduction in area corre-
sponding to the load Py, at fracture, is defined as

_ A=A A

R _
Ag Ag

(2-12)

where Ay is the original area. The quantity R in Eq. (2—-12) is usually expressed in per-
cent and tabulated in lists of mechanical properties as a measure of ductility. See
Appendix Table A-20, for example. Ductility is an important property because it mea-
sures the ability of a material to absorb overloads and to be cold-worked. Thus such
operations as bending, drawing, heading, and stretch forming are metal-processing
operations that require ductile materials.

Figure 2-6b can also be used to define the quantity of cold work. The cold-work
factor W is defined as

Ag— Al Ag— A
== e =

W

(2-13)

where A} corresponds to the area after the load P; has been released. The approxima-
tion in Eq. (2-13) results because of the difficulty of measuring the small diametral
changes in the elastic region. If the amount of cold work is known, then Eq. (2-13) can
be solved for the area A;. The result is

Al =Ag(1 —W) (2-14)

Cold working a material produces a new set of values for the strengths, as can
be seen from stress-strain diagrams. Datsko® describes the plastic region of the true
stress—true strain diagram by the equation

o = ope™ (2-15)

where o = true stress
oy = a strength coefficient, or strain-strengthening coefficient
& = true plastic strain

m = strain-strengthening exponent

It can be shown* that
m =g, (2-16)

provided that the load-deformation curve exhibits a stationary point (a place of zero
slope).

3Joseph Datsko, “Solid Materials,” Chap. 32 in Joseph E. Shigley, Charles R. Mischke, and Thomas

H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004. See also
Joseph Datsko, “New Look at Material Strength,” Machine Design, vol. 58, no. 3, Feb. 6, 1986, pp. 81-85.
“See Sec. 5-2, I. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed., McGraw-Hill,
New York, 2001.
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EXAMPLE 2-1

Solution

Difficulties arise when using the gauge length to evaluate the true strain in the
plastic range, since necking causes the strain to be nonuniform. A more satisfactory
relation can be obtained by using the area at the neck. Assuming that the change in vol-
ume of the material is small, Al = Agly. Thus, I/ly = Ag/A, and the true strain is
given by

l A
g=In— =1In 2 (2-17)
lo A

Returning to Fig. 2-6b, if point i is to the left of point u, that is, P, < P,, then the

new yield strength is

g = b

\=a =l PP (2-18)

1

Because of the reduced area, that is, because A; < Ay, the ultimate strength also
changes, and is

PL{
S, = @ (c)
Since P, = S, Ay, we find, with Eq. (2-14), that
SuA Su
' o _ & < &, (2-19)

T A —W)  1—W =

which is valid only when point i is to the left of point u.
For points to the right of u, the yield strength is approaching the ultimate strength,
and, with small loss in accuracy,

S, =S, = ooef" & > &y (2-20)

A little thought will reveal that a bar will have the same ultimate load in tension after
being strain-strengthened in tension as it had before. The new strength is of interest
to us not because the static ultimate load increases, but—since fatigue strengths
are correlated with the local ultimate strengths—because the fatigue strength im-
proves. Also the yield strength increases, giving a larger range of sustainable elastic
loading.

An annealed AISI 1018 steel (see Table A-22) has S, = 32.0 kpsi, S, = 49.5 kpsi,
or =91.1 kpsi, o9 = 90 kpsi, m = 0.25, and &7 = 1.05 in/in. Find the new values of
the strengths if the material is given 15 percent cold work.

From Eq. (2-16), we find the true strain corresponding to the ultimate strength to be
en =m =0.25
The ratio Ag/A; is, from Eq. (2—13),

A 1 1
=0 = =1.176
A, I—W 1-015
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The true strain corresponding to 15 percent cold work is obtained from Eq. (2-17). Thus

Ao
& =In— =1In1.176 = 0.1625

Since ¢; < ¢, Eqs. (2-18) and (2—-19) apply. Therefore,
S, = ooe!" = 90(0.1625)"* = 57.1 kpsi

.S, 49.5
S = =
“T1-W  1-0.15

= 58.2 kpsi

Hardness

The resistance of a material to penetration by a pointed tool is called hardness. Though
there are many hardness-measuring systems, we shall consider here only the two in
greatest use.

Rockwell hardness tests are described by ASTM standard hardness method E-18
and measurements are quickly and easily made, they have good reproducibility, and
the test machine for them is easy to use. In fact, the hardness number is read directly
from a dial. Rockwell hardness scales are designated as A, B, C, ..., etc. The inden-
ters are described as a diamond, a ll—ﬁ-in—diameter ball, and a diamond for scales A, B,
and C, respectively, where the load applied is either 60, 100, or 150 kg. Thus the
Rockwell B scale, designated Rp, uses a 100-kg load and a No. 2 indenter, which is
a %—in-diameter ball. The Rockwell C scale R¢ uses a diamond cone, which is the
No. 1 indenter, and a load of 150 kg. Hardness numbers so obtained are relative.
Therefore a hardness Rc = 50 has meaning only in relation to another hardness num-
ber using the same scale.

The Brinell hardness is another test in very general use. In testing, the indenting
tool through which force is applied is a ball and the hardness number Hp is found as
a number equal to the applied load divided by the spherical surface area of the inden-
tation. Thus the units of Hp are the same as those of stress, though they are seldom
used. Brinell hardness testing takes more time, since Hp must be computed from the
test data. The primary advantage of both methods is that they are nondestructive in
most cases. Both are empirically and directly related to the ultimate strength of the
material tested. This means that the strength of parts could, if desired, be tested part
by part during manufacture.

Hardness testing provides a convenient and nondestructive means of estimating the
strength properties of materials. The Brinell hardness test is particularly well known for
this estimation, since for many materials the relationship between the minimum
ultimate strength and the Brinell hardness number is roughly linear. The constant of
proportionality varies between classes of materials, and is also dependent on the load
used to determine the hardness. There is a wide scatter in the data, but for rough approx-

imations for steels, the relationship is generally accepted as

0.5H3p kpsi
S, = (2-21)
3.4Hp MPa
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EXAMPLE 2-2

Solution

Answer

Similar relationships for cast iron can be derived from data supplied by Krause.’
The minimum strength, as defined by the ASTM, is found from these data to be

0.23Hp — 12.5 kpsi
uz{ ’ pel (2-22)

1.58 Hy — 86 MPa

Walton® shows a chart from which the SAE minimum strength can be obtained, which
is more conservative than the values obtained from Eq. (2-22).

It is necessary to ensure that a certain part supplied by a foundry always meets or
exceeds ASTM No. 20 specifications for cast iron (see Table A—24). What hardness
should be specified?

From Eq. (2-22), with (S,)min = 20 kpsi, we have

S.+125 204125 "
023 023

B =

If the foundry can control the hardness within 20 points, routinely, then specify
145 < Hp < 165. This imposes no hardship on the foundry and assures the designer
that ASTM grade 20 will always be supplied at a predictable cost.

Impact Properties

An external force applied to a structure or part is called an impact load if the time of
application is less than one-third the lowest natural period of vibration of the part or
structure. Otherwise it is called simply a static load.

The Charpy (commonly used) and Izod (rarely used) notched-bar tests utilize bars of
specified geometries to determine brittleness and impact strength. These tests are helpful
in comparing several materials and in the determination of low-temperature brittleness. In
both tests the specimen is struck by a pendulum released from a fixed height, and the
energy absorbed by the specimen, called the impact value, can be computed from the
height of swing after fracture, but is read from a dial that essentially “computes” the result.

The effect of temperature on impact values is shown in Fig. 2-7 for a material
showing a ductile-brittle transition. Not all materials show this transition. Notice the
narrow region of critical temperatures where the impact value increases very rapidly. In
the low-temperature region the fracture appears as a brittle, shattering type, whereas the
appearance is a tough, tearing type above the critical-temperature region. The critical
temperature seems to be dependent on both the material and the geometry of the notch.
For this reason designers should not rely too heavily on the results of notched-bar tests.

The average strain rate used in obtaining the stress-strain diagram is about
0.001 in/(in - s) or less. When the strain rate is increased, as it is under impact conditions,

3D. E. Krause, “Gray Iron—A Unique Engineering Material,” ASTM Special Publication 455, 1969,
pp. 3-29, as reported in Charles F. Walton (ed.), fron Castings Handbook, Iron Founders Society, Inc.,
Cleveland, 1971, pp. 204, 205.

°Tbid.



Figure 2-7

A mean trace shows the effect
of temperature on impact
values. The result of interest is
the brittle-ductile transition
temperature, often defined as
the temperature at which the
mean trace passes through the
15 ft - Ibf level. The critical
temperature is dependent on
the geometry of the notch,
which is why the Charpy

V notch is closely defined.

Figure 2-8

Influence of strain rate on
tensile properties.
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the strengths increase, as shown in Fig. 2-8. In fact, at very high strain rates the yield
strength seems to approach the ultimate strength as a limit. But note that the curves show
little change in the elongation. This means that the ductility remains about the same.
Also, in view of the sharp increase in yield strength, a mild steel could be expected to
behave elastically throughout practically its entire strength range under impact conditions.

The Charpy and Izod tests really provide toughness data under dynamic, rather than
static, conditions. It may well be that impact data obtained from these tests are as depen-
dent on the notch geometry as they are on the strain rate. For these reasons it may be bet-
ter to use the concepts of notch sensitivity, fracture toughness, and fracture mechanics,
discussed in Chaps. 5 and 6, to assess the possibility of cracking or fracture.

Temperature Effects

Strength and ductility, or brittleness, are properties affected by the temperature of the
operating environment.

The effect of temperature on the static properties of steels is typified by the
strength versus temperature chart of Fig. 2-9. Note that the tensile strength changes
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Figure 2-9

A plot of the results of 145 tests
of 21 carbon and alloy steels
showing the effect of operating
temperature on the yield
strength S, and the ultimate
strength S,,;. The ordinate is
the ratio of the strength at the
operating temperature to the
strength at room temperature.
The standard deviations were
0.0442 < 65y < 0.152 for S,
and 0.099 < 65, < 0.11 for
Sur. (Data source: E. A.
Brandes (ed.), Smithells Metal
Reference Book, 6th ed.,
Butterworth, London, 1983
pp. 22-128 to 22-131.)

Figure 2-10

Creep-time curve.
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only a small amount until a certain temperature is reached. At that point it falls off
rapidly. The yield strength, however, decreases continuously as the environmental tem-
perature is increased. There is a substantial increase in ductility, as might be expected,
at the higher temperatures.

Many tests have been made of ferrous metals subjected to constant loads for long
periods of time at elevated temperatures. The specimens were found to be permanently
deformed during the tests, even though at times the actual stresses were less than the
yield strength of the material obtained from short-time tests made at the same temper-
ature. This continuous deformation under load is called creep.

One of the most useful tests to have been devised is the long-time creep test under
constant load. Figure 2-10 illustrates a curve that is typical of this kind of test. The
curve is obtained at a constant stated temperature. A number of tests are usually run
simultaneously at different stress intensities. The curve exhibits three distinct regions.
In the first stage are included both the elastic and the plastic deformation. This stage shows
a decreasing creep rate, which is due to the strain hardening. The second stage shows
a constant minimum creep rate caused by the annealing effect. In the third stage the
specimen shows a considerable reduction in area, the true stress is increased, and a
higher creep eventually leads to fracture.

When the operating temperatures are lower than the transition temperature
(Fig. 2-7), the possibility arises that a part could fail by a brittle fracture. This subject
will be discussed in Chap. 5.

Of course, heat treatment, as will be shown, is used to make substantial changes in
the mechanical properties of a material.

1st stage
4—)'

2nd stage — - 3rd stage —>-|

Creep deformation

Time
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Heating due to electric and gas welding also changes the mechanical properties.
Such changes may be due to clamping during the welding process, as well as heating;
the resulting stresses then remain when the parts have cooled and the clamps have been
removed. Hardness tests can be used to learn whether the strength has been changed by
welding, but such tests will not reveal the presence of residual stresses.

Numbering Systems

The Society of Automotive Engineers (SAE) was the first to recognize the need, and to
adopt a system, for the numbering of steels. Later the American Iron and Steel Institute
(AISI) adopted a similar system. In 1975 the SAE published the Unified Numbering
System for Metals and Alloys (UNS); this system also contains cross-reference num-
bers for other material specifications.” The UNS uses a letter prefix to designate the
material, as, for example, G for the carbon and alloy steels, A for the aluminum alloys,
C for the copper-base alloys, and S for the stainless or corrosion-resistant steels. For
some materials, not enough agreement has as yet developed in the industry to warrant
the establishment of a designation.

For the steels, the first two numbers following the letter prefix indicate the compo-
sition, excluding the carbon content. The various compositions used are as follows:

G10 Plain carbon G46 Nickel-molybdenum
Gl11 Free-cutting carbon steel with G48 Nickel-molybdenum
more sulfur or phosphorus G50 Chromium
G13 Manganese G51 Chromium
G23 Nickel G52 Chromium
G25 Nickel Go61 Chromium-vanadium
G31 Nickel-chromium G86 Chromium-nickel-molybdenum
G33 Nickel-chromium G87 Chromium-nickel-molybdenum
G40 Molybdenum G92 Manganese-silicon
G4l Chromium-molybdenum G94 Nickel-chromium-molybdenum
G43 Nickel-chromium-molybdenum

The second number pair refers to the approximate carbon content. Thus, G10400 is a
plain carbon steel with a nominal carbon content of 0.40 percent (0.37 to 0.44 percent).
The fifth number following the prefix is used for special situations. For example, the old
designation AISI 52100 represents a chromium alloy with about 100 points of carbon.
The UNS designation is G52986.

The UNS designations for the stainless steels, prefix S, utilize the older AISI des-
ignations for the first three numbers following the prefix. The next two numbers are
reserved for special purposes. The first number of the group indicates the approximate
composition. Thus 2 is a chromium-nickel-manganese steel, 3 is a chromium-nickel
steel, and 4 is a chromium alloy steel. Sometimes stainless steels are referred to by their
alloy content. Thus S30200 is often called an 18-8 stainless steel, meaning 18 percent
chromium and 8 percent nickel.

"Many of the materials discussed in the balance of this chapter are listed in the Appendix tables. Be sure to
review these.



46 | Mechanical Engineering Design

Table 2-1

Aluminum Alloy
Designations

2-8

Aluminum 99.00% pure and greater Ax1xxx
Copper alloys AX2xXX
Manganese alloys AX3xxx
Silicon alloys Ax4xxx
Magnesium alloys Ax5xxx
Magnesium-silicon alloys AX6XXX
Zinc alloys AxTxxx

The prefix for the aluminum group is the letter A. The first number following the
prefix indicates the processing. For example, A9 is a wrought aluminum, while A0 is
a casting alloy. The second number designates the main alloy group as shown in
Table 2—1. The third number in the group is used to modify the original alloy or to
designate the impurity limits. The last two numbers refer to other alloys used with the
basic group.

The American Society for Testing and Materials (ASTM) numbering system for
cast iron is in widespread use. This system is based on the tensile strength. Thus ASTM
A18 speaks of classes; e.g., 30 cast iron has a minimum tensile strength of 30 kpsi. Note
from Appendix A-24, however, that the typical tensile strength is 31 kpsi. You should
be careful to designate which of the two values is used in design and problem work
because of the significance of factor of safety.

Sand Casting

Sand casting is a basic low-cost process, and it lends itself to economical production
in large quantities with practically no limit to the size, shape, or complexity of the part
produced.

In sand casting, the casting is made by pouring molten metal into sand molds. A
pattern, constructed of metal or wood, is used to form the cavity into which the molten
metal is poured. Recesses or holes in the casting are produced by sand cores introduced
into the mold. The designer should make an effort to visualize the pattern and casting
in the mold. In this way the problems of core setting, pattern removal, draft, and solid-
ification can be studied. Castings to be used as test bars of cast iron are cast separately
and properties may vary.

Steel castings are the most difficult of all to produce, because steel has the highest
melting temperature of all materials normally used for casting. This high temperature
aggravates all casting problems.

The following rules will be found quite useful in the design of any sand casting:

p—

All sections should be designed with a uniform thickness.

2 The casting should be designed so as to produce a gradual change from section to
section where this is necessary.

Adjoining sections should be designed with generous fillets or radii.

4 A complicated part should be designed as two or more simple castings to be
assembled by fasteners or by welding.

()

Steel, gray iron, brass, bronze, and aluminum are most often used in castings. The
minimum wall thickness for any of these materials is about 5 mm, though with partic-
ular care, thinner sections can be obtained with some materials.
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Shell Molding

The shell-molding process employs a heated metal pattern, usually made of cast iron,
aluminum, or brass, which is placed in a shell-molding machine containing a mixture
of dry sand and thermosetting resin. The hot pattern melts the plastic, which, together
with the sand, forms a shell about 5 to 10 mm thick around the pattern. The shell is then
baked at from 400 to 700°F for a short time while still on the pattern. It is then stripped
from the pattern and placed in storage for use in casting.

In the next step the shells are assembled by clamping, bolting, or pasting; they are
placed in a backup material, such as steel shot; and the molten metal is poured into the
cavity. The thin shell permits the heat to be conducted away so that solidification takes
place rapidly. As solidification takes place, the plastic bond is burned and the mold col-
lapses. The permeability of the backup material allows the gases to escape and the cast-
ing to air-cool. All this aids in obtaining a fine-grain, stress-free casting.

Shell-mold castings feature a smooth surface, a draft that is quite small, and close
tolerances. In general, the rules governing sand casting also apply to shell-mold casting.

Investment Casting

Investment casting uses a pattern that may be made from wax, plastic, or other material.
After the mold is made, the pattern is melted out. Thus a mechanized method of casting a
great many patterns is necessary. The mold material is dependent upon the melting point
of the cast metal. Thus a plaster mold can be used for some materials while others would
require a ceramic mold. After the pattern is melted out, the mold is baked or fired; when
firing is completed, the molten metal may be poured into the hot mold and allowed to cool.

If a number of castings are to be made, then metal or permanent molds may be suit-
able. Such molds have the advantage that the surfaces are smooth, bright, and accurate,
so that little, if any, machining is required. Metal-mold castings are also known as die
castings and centrifugal castings.

Powder-Metallurgy Process

The powder-metallurgy process is a quantity-production process that uses powders from
a single metal, several metals, or a mixture of metals and nonmetals. It consists essen-
tially of mechanically mixing the powders, compacting them in dies at high pressures, and
heating the compacted part at a temperature less than the melting point of the major
ingredient. The particles are united into a single strong part similar to what would be
obtained by melting the same ingredients together. The advantages are (1) the elimina-
tion of scrap or waste material, (2) the elimination of machining operations, (3) the low
unit cost when mass-produced, and (4) the exact control of composition. Some of the dis-
advantages are (1) the high cost of dies, (2) the lower physical properties, (3) the higher
cost of materials, (4) the limitations on the design, and (5) the limited range of materials
that can be used. Parts commonly made by this process are oil-impregnated bearings,
incandescent lamp filaments, cemented-carbide tips for tools, and permanent magnets.
Some products can be made only by powder metallurgy: surgical implants, for example.
The structure is different from what can be obtained by melting the same ingredients.

Hot-Working Processes

By hot working are meant such processes as rolling, forging, hot extrusion, and hot
pressing, in which the metal is heated above its recrystallation temperature.
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Figure 2-11
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Hot rolling is usually used to create a bar of material of a particular shape and
dimension. Figure 2—11 shows some of the various shapes that are commonly produced
by the hot-rolling process. All of them are available in many different sizes as well as
in different materials. The materials most available in the hot-rolled bar sizes are steel,
aluminum, magnesium, and copper alloys.

Tubing can be manufactured by hot-rolling strip or plate. The edges of the strip are
rolled together, creating seams that are either butt-welded or lap-welded. Seamless tub-
ing is manufactured by roll-piercing a solid heated rod with a piercing mandrel.

Extrusion is the process by which great pressure is applied to a heated metal billet
or blank, causing it to flow through a restricted orifice. This process is more common
with materials of low melting point, such as aluminum, copper, magnesium, lead, tin,
and zinc. Stainless steel extrusions are available on a more limited basis.

Forging is the hot working of metal by hammers, presses, or forging machines. In
common with other hot-working processes, forging produces a refined grain structure
that results in increased strength and ductility. Compared with castings, forgings have
greater strength for the same weight. In addition, drop forgings can be made smoother
and more accurate than sand castings, so that less machining is necessary. However, the
initial cost of the forging dies is usually greater than the cost of patterns for castings,
although the greater unit strength rather than the cost is usually the deciding factor
between these two processes.

Cold-Working Processes

By cold working is meant the forming of the metal while at a low temperature (usually
room temperature). In contrast to parts produced by hot working, cold-worked parts
have a bright new finish, are more accurate, and require less machining.

Cold-finished bars and shafts are produced by rolling, drawing, turning, grinding,
and polishing. Of these methods, by far the largest percentage of products are made by
the cold-rolling and cold-drawing processes. Cold rolling is now used mostly for the
production of wide flats and sheets. Practically all cold-finished bars are made by cold
drawing but even so are sometimes mistakenly called “cold-rolled bars.” In the drawing
process, the hot-rolled bars are first cleaned of scale and then drawn by pulling them
through a die that reduces the size about % to % in. This process does not remove
material from the bar but reduces, or “draws” down, the size. Many different shapes of
hot-rolled bars may be used for cold drawing.

Cold rolling and cold drawing have the same effect upon the mechanical proper-
ties. The cold-working process does not change the grain size but merely distorts it.
Cold working results in a large increase in yield strength, an increase in ultimate
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strength and hardness, and a decrease in ductility. In Fig. 2—12 the properties of a cold-
drawn bar are compared with those of a hot-rolled bar of the same material.

Heading is a cold-working process in which the metal is gathered, or upset. This
operation is commonly used to make screw and rivet heads and is capable of producing a
wide variety of shapes. Roll threading is the process of rolling threads by squeezing and
rolling a blank between two serrated dies. Spinning is the operation of working sheet mate-
rial around a rotating form into a circular shape. Stamping is the term used to describe
punch-press operations such as blanking, coining, forming, and shallow drawing.

The Heat Treatment of Steel

Heat treatment of steel refers to time- and temperature-controlled processes that relieve
residual stresses and/or modifies material properties such as hardness (strength), duc-
tility, and toughness. Other mechanical or chemical operations are sometimes grouped
under the heading of heat treatment. The common heat-treating operations are anneal-
ing, quenching, tempering, and case hardening.

Annealing

When a material is cold- or hot-worked, residual stresses are built in, and, in addition, the
material usually has a higher hardness as a result of these working operations. These oper-
ations change the structure of the material so that it is no longer represented by the equi-
librium diagram. Full annealing and normalizing is a heating operation that permits the
material to transform according to the equilibrium diagram. The material to be annealed
is heated to a temperature that is approximately 100°F above the critical temperature. It is
held at this temperature for a time that is sufficient for the carbon to become dissolved and
diffused through the material. The object being treated is then allowed to cool slowly, usu-
ally in the furnace in which it was treated. If the transformation is complete, then it is said
to have a full anneal. Annealing is used to soften a material and make it more ductile, to
relieve residual stresses, and to refine the grain structure.

The term annealing includes the process called normalizing. Parts to be normalized
may be heated to a slightly higher temperature than in full annealing. This produces a
coarser grain structure, which is more easily machined if the material is a low-carbon steel.
In the normalizing process the part is cooled in still air at room temperature. Since this
cooling is more rapid than the slow cooling used in full annealing, less time is available for
equilibrium, and the material is harder than fully annealed steel. Normalizing is often used
as the final treating operation for steel. The cooling in still air amounts to a slow quench.
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Quenching

Eutectoid steel that is fully annealed consists entirely of pearlite, which is obtained
from austenite under conditions of equilibrium. A fully annealed hypoeutectoid steel
would consist of pearlite plus ferrite, while hypereutectoid steel in the fully annealed
condition would consist of pearlite plus cementite. The hardness of steel of a given
carbon content depends upon the structure that replaces the pearlite when full anneal-
ing is not carried out.

The absence of full annealing indicates a more rapid rate of cooling. The rate of
cooling is the factor that determines the hardness. A controlled cooling rate is called
quenching. A mild quench is obtained by cooling in still air, which, as we have seen, is
obtained by the normalizing process. The two most widely used media for quenching
are water and oil. The oil quench is quite slow but prevents quenching cracks caused by
rapid expansion of the object being treated. Quenching in water is used for carbon steels
and for medium-carbon, low-alloy steels.

The effectiveness of quenching depends upon the fact that when austenite is cooled
it does not transform into pearlite instantaneously but requires time to initiate and com-
plete the process. Since the transformation ceases at about 800°F, it can be prevented
by rapidly cooling the material to a lower temperature. When the material is cooled
rapidly to 400°F or less, the austenite is transformed into a structure called martensite.
Martensite is a supersaturated solid solution of carbon in ferrite and is the hardest and
strongest form of steel.

If steel is rapidly cooled to a temperature between 400 and 800°F and held there
for a sufficient length of time, the austenite is transformed into a material that is gener-
ally called bainite. Bainite is a structure intermediate between pearlite and martensite.
Although there are several structures that can be identified between the temperatures
given, depending upon the temperature used, they are collectively known as bainite. By
the choice of this transformation temperature, almost any variation of structure may be
obtained. These range all the way from coarse pearlite to fine martensite.

Tempering
When a steel specimen has been fully hardened, it is very hard and brittle and has high
residual stresses. The steel is unstable and tends to contract on aging. This tendency
is increased when the specimen is subjected to externally applied loads, because the
resultant stresses contribute still more to the instability. These internal stresses can
be relieved by a modest heating process called stress relieving, or a combination of
stress relieving and softening called tempering or drawing. After the specimen has been
fully hardened by being quenched from above the critical temperature, it is reheated to
some temperature below the critical temperature for a certain period of time and then
allowed to cool in still air. The temperature to which it is reheated depends upon the
composition and the degree of hardness or toughness desired.® This reheating operation
releases the carbon held in the martensite, forming carbide crystals. The structure
obtained is called fempered martensite. It is now essentially a superfine dispersion of
iron carbide(s) in fine-grained ferrite.

The effect of heat-treating operations upon the various mechanical properties of a
low alloy steel is shown graphically in Fig. 2—13.

8For the quantitative aspects of tempering in plain carbon and low-alloy steels, see Charles R. Mischke, “The
Strength of Cold-Worked and Heat-Treated Steels,” Chap. 33 in Joseph E. Shigley, Charles R. Mischke, and
Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.
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The effect of thermal-
mechanical history on the
mechanical properties of AISI
4340 steel. (Prepared by the
International Nickel Company.)
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Case Hardening

The purpose of case hardening is to produce a hard outer surface on a specimen of low-
carbon steel while at the same time retaining the ductility and toughness in the core.
This is done by increasing the carbon content at the surface. Either solid, liquid, or
gaseous carburizing materials may be used. The process consists of introducing the part
to be carburized into the carburizing material for a stated time and at a stated tempera-
ture, depending upon the depth of case desired and the composition of the part. The part
may then be quenched directly from the carburization temperature and tempered, or in
some cases it must undergo a double heat treatment in order to ensure that both the core
and the case are in proper condition. Some of the more useful case-hardening processes
are pack carburizing, gas carburizing, nitriding, cyaniding, induction hardening, and
flame hardening. In the last two cases carbon is not added to the steel in question, gen-
erally a medium carbon steel, for example SAE/AISI 1144.

Quantitative Estimation of Properties of Heat-Treated Steels

Courses in metallurgy (or material science) for mechanical engineers usually present
the addition method of Crafts and Lamont for the prediction of heat-treated properties
from the Jominy test for plain carbon steels.” If this has not been in your prerequisite
experience, then refer to the Standard Handbook of Machine Design, where the addi-
tion method is covered with examples.!” If this book is a textbook for a machine

9W. Crafts and J. L. Lamont, Hardenability and Steel Selection, Pitman and Sons, London, 1949.

10Charles R. Mischke, Chap. 33 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.),
Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004, p. 33.9.
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elements course, it is a good class project (many hands make light work) to study the
method and report to the class.
For low-alloy steels, the multiplication method of Grossman'' and Field!? is
explained in the Standard Handbook of Machine Design (Secs. 29.6 and 33.6).
Modern Steels and Their Properties Handbook explains how to predict the Jominy
curve by the method of Grossman and Field from a ladle analysis and grain size.
Bethlehem Steel has developed a circular plastic slide rule that is convenient to the purpose.

Alloy Steels

Although a plain carbon steel is an alloy of iron and carbon with small amounts of
manganese, silicon, sulfur, and phosphorus, the term alloy steel is applied when one or
more elements other than carbon are introduced in sufficient quantities to modify its
properties substantially. The alloy steels not only possess more desirable physical
properties but also permit a greater latitude in the heat-treating process.

Chromium

The addition of chromium results in the formation of various carbides of chromium that
are very hard, yet the resulting steel is more ductile than a steel of the same hardness pro-
duced by a simple increase in carbon content. Chromium also refines the grain structure
so that these two combined effects result in both increased toughness and increased hard-
ness. The addition of chromium increases the critical range of temperatures and moves
the eutectoid point to the left. Chromium is thus a very useful alloying element.

Nickel

The addition of nickel to steel also causes the eutectoid point to move to the left and
increases the critical range of temperatures. Nickel is soluble in ferrite and does not
form carbides or oxides. This increases the strength without decreasing the ductility.
Case hardening of nickel steels results in a better core than can be obtained with plain
carbon steels. Chromium is frequently used in combination with nickel to obtain the
toughness and ductility provided by the nickel and the wear resistance and hardness
contributed by the chromium.

Manganese

Manganese is added to all steels as a deoxidizing and desulfurizing agent, but if the sul-
fur content is low and the manganese content is over 1 percent, the steel is classified as a
manganese alloy. Manganese dissolves in the ferrite and also forms carbides. It causes
the eutectoid point to move to the left and lowers the critical range of temperatures. It
increases the time required for transformation so that oil quenching becomes practicable.

Silicon

Silicon is added to all steels as a deoxidizing agent. When added to very-low-carbon
steels, it produces a brittle material with a low hysteresis loss and a high magnetic
permeability. The principal use of silicon is with other alloying elements, such as
manganese, chromium, and vanadium, to stabilize the carbides.

M. A. Grossman, AIME, February 1942,
123, Field, Metals Progress, March 1943.
BModern Steels and Their Properties, 7th ed., Handbook 2757, Bethlehem Steel, 1972, pp. 46-50.
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Molybdenum

While molybdenum is used alone in a few steels, it finds its greatest use when combined
with other alloying elements, such as nickel, chromium, or both. Molybdenum forms
carbides and also dissolves in ferrite to some extent, so that it adds both hardness and
toughness. Molybdenum increases the critical range of temperatures and substantially
lowers the transformation point. Because of this lowering of the transformation point,
molybdenum is most effective in producing desirable oil-hardening and air-hardening
properties. Except for carbon, it has the greatest hardening effect, and because it also
contributes to a fine grain size, this results in the retention of a great deal of toughness.

Vanadium

Vanadium has a very strong tendency to form carbides; hence it is used only in small
amounts. It is a strong deoxidizing agent and promotes a fine grain size. Since some vana-
dium is dissolved in the ferrite, it also toughens the steel. Vanadium gives a wide harden-
ing range to steel, and the alloy can be hardened from a higher temperature. It is very
difficult to soften vanadium steel by tempering; hence, it is widely used in tool steels.

Tungsten

Tungsten is widely used in tool steels because the tool will maintain its hardness even
at red heat. Tungsten produces a fine, dense structure and adds both toughness and hard-
ness. Its effect is similar to that of molybdenum, except that it must be added in greater
quantities.

Corrosion-Resistant Steels

Iron-base alloys containing at least 12 percent chromium are called stainless steels.
The most important characteristic of these steels is their resistance to many, but not all,
corrosive conditions. The four types available are the ferritic chromium steels, the
austenitic chromium-nickel steels, and the martensitic and precipitation-hardenable
stainless steels.

The ferritic chromium steels have a chromium content ranging from 12 to 27 per-
cent. Their corrosion resistance is a function of the chromium content, so that alloys
containing less than 12 percent still exhibit some corrosion resistance, although they
may rust. The quench-hardenability of these steels is a function of both the chromium
and the carbon content. The very high carbon steels have good quench hardenability up
to about 18 percent chromium, while in the lower carbon ranges it ceases at about
13 percent. If a little nickel is added, these steels retain some degree of hardenability up
to 20 percent chromium. If the chromium content exceeds 18 percent, they become dif-
ficult to weld, and at the very high chromium levels the hardness becomes so great that
very careful attention must be paid to the service conditions. Since chromium is expen-
sive, the designer will choose the lowest chromium content consistent with the corro-
sive conditions.

The chromium-nickel stainless steels retain the austenitic structure at room tem-
perature; hence, they are not amenable to heat treatment. The strength of these steels
can be greatly improved by cold working. They are not magnetic unless cold-worked.
Their work hardenability properties also cause them to be difficult to machine. All
the chromium-nickel steels may be welded. They have greater corrosion-resistant prop-
erties than the plain chromium steels. When more chromium is added for greater cor-
rosion resistance, more nickel must also be added if the austenitic properties are to be
retained.
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Casting Materials

Gray Cast Iron

Of all the cast materials, gray cast iron is the most widely used. This is because it has
a very low cost, is easily cast in large quantities, and is easy to machine. The principal
objections to the use of gray cast iron are that it is brittle and that it is weak in tension.
In addition to a high carbon content (over 1.7 percent and usually greater than 2 percent),
cast iron also has a high silicon content, with low percentages of sulfur, manganese,
and phosphorus. The resultant alloy is composed of pearlite, ferrite, and graphite, and
under certain conditions the pearlite may decompose into graphite and ferrite. The
resulting product then contains all ferrite and graphite. The graphite, in the form of
thin flakes distributed evenly throughout the structure, darkens it; hence, the name gray
cast iron.

Gray cast iron is not readily welded, because it may crack, but this tendency may
be reduced if the part is carefully preheated. Although the castings are generally used in
the as-cast condition, a mild anneal reduces cooling stresses and improves the machin-
ability. The tensile strength of gray cast iron varies from 100 to 400 MPa (15 to 60 kpsi),
and the compressive strengths are 3 to 4 times the tensile strengths. The modulus of
elasticity varies widely, with values extending all the way from 75 to 150 GPa (11 to
22 Mpsi).

Ductile and Nodular Cast Iron

Because of the lengthy heat treatment required to produce malleable cast iron, engineers
have long desired a cast iron that would combine the ductile properties of malleable
iron with the ease of casting and machining of gray iron and at the same time would
possess these properties in the as-cast conditions. A process for producing such a material
using magnesium-containing material seems to fulfill these requirements.

Ductile cast iron, or nodular cast iron, as it is sometimes called, is essentially the
same as malleable cast iron, because both contain graphite in the form of spheroids.
However, ductile cast iron in the as-cast condition exhibits properties very close to
those of malleable iron, and if a simple 1-h anneal is given and is followed by a slow
cool, it exhibits even more ductility than the malleable product. Ductile iron is made by
adding MgFeSi to the melt; since magnesium boils at this temperature, it is necessary
to alloy it with other elements before it is introduced.

Ductile iron has a high modulus of elasticity (172 GPa or 25 Mpsi) as compared
with gray cast iron, and it is elastic in the sense that a portion of the stress-strain
curve is a straight line. Gray cast iron, on the other hand, does not obey Hooke’s law,
because the modulus of elasticity steadily decreases with increase in stress. Like
gray cast iron, however, nodular iron has a compressive strength that is higher than
the tensile strength, although the difference is not as great. In 40 years it has become
extensively used.

White Cast Iron

If all the carbon in cast iron is in the form of cementite and pearlite, with no graphite
present, the resulting structure is white and is known as white cast iron. This may be
produced in two ways. The composition may be adjusted by keeping the carbon and
silicon content low, or the gray-cast-iron composition may be cast against chills in order
to promote rapid cooling. By either method, a casting with large amounts of cementite
is produced, and as a result the product is very brittle and hard to machine but also very
resistant to wear. A chill is usually used in the production of gray-iron castings in order
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to provide a very hard surface within a particular area of the casting, while at the same
time retaining the more desirable gray structure within the remaining portion. This pro-
duces a relatively tough casting with a wear-resistant area.

Malleable Cast Iron

If white cast iron within a certain composition range is annealed, a product called
malleable cast iron is formed. The annealing process frees the carbon so that it is pres-
ent as graphite, just as in gray cast iron but in a different form. In gray cast iron the
graphite is present in a thin flake form, while in malleable cast iron it has a nodular
form and is known as temper carbon. A good grade of malleable cast iron may have
a tensile strength of over 350 MPa (50 kpsi), with an elongation of as much as 18 per-
cent. The percentage elongation of a gray cast iron, on the other hand, is seldom over
1 percent. Because of the time required for annealing (up to 6 days for large and
heavy castings), malleable iron is necessarily somewhat more expensive than gray
cast 1ron.

Alloy Cast Irons

Nickel, chromium, and molybdenum are the most common alloying elements used in
cast iron. Nickel is a general-purpose alloying element, usually added in amounts up to
5 percent. Nickel increases the strength and density, improves the wearing qualities, and
raises the machinability. If the nickel content is raised to 10 to 18 percent, an austenitic
structure with valuable heat- and corrosion-resistant properties results. Chromium
increases the hardness and wear resistance and, when used with a chill, increases the
tendency to form white iron. When chromium and nickel are both added, the hardness
and strength are improved without a reduction in the machinability rating. Molybdenum
added in quantities up to 1.25 percent increases the stiffness, hardness, tensile strength,
and impact resistance. It is a widely used alloying element.

Cast Steels

The advantage of the casting process is that parts having complex shapes can be man-
ufactured at costs less than fabrication by other means, such as welding. Thus the
choice of steel castings is logical when the part is complex and when it must also have
a high strength. The higher melting temperatures for steels do aggravate the casting
problems and require closer attention to such details as core design, section thicknesses,
fillets, and the progress of cooling. The same alloying elements used for the wrought
steels can be used for cast steels to improve the strength and other mechanical proper-
ties. Cast-steel parts can also be heat-treated to alter the mechanical properties, and,
unlike the cast irons, they can be welded.

Nonferrous Metals

Aluminum

The outstanding characteristics of aluminum and its alloys are their strength-weight
ratio, their resistance to corrosion, and their high thermal and electrical conductivity.
The density of aluminum is about 2770 kg/m? (0.10 1bf/in®), compared with 7750 kg/m?
(0.28 1bf/in®) for steel. Pure aluminum has a tensile strength of about 90 MPa (13 kpsi),
but this can be improved considerably by cold working and also by alloying with other
materials. The modulus of elasticity of aluminum, as well as of its alloys, is 71.7 GPa
(10.4 Mpsi), which means that it has about one-third the stiffness of steel.
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Considering the cost and strength of aluminum and its alloys, they are among the
most versatile materials from the standpoint of fabrication. Aluminum can be processed
by sand casting, die casting, hot or cold working, or extruding. Its alloys can be machined,
press-worked, soldered, brazed, or welded. Pure aluminum melts at 660°C (1215°F),
which makes it very desirable for the production of either permanent or sand-mold
castings. It is commercially available in the form of plate, bar, sheet, foil, rod, and tube
and in structural and extruded shapes. Certain precautions must be taken in joining
aluminum by soldering, brazing, or welding; these joining methods are not recommended
for all alloys.

The corrosion resistance of the aluminum alloys depends upon the formation of a
thin oxide coating. This film forms spontaneously because aluminum is inherently very
reactive. Constant erosion or abrasion removes this film and allows corrosion to take
place. An extra-heavy oxide film may be produced by the process called anodizing. In
this process the specimen is made to become the anode in an electrolyte, which may be
chromic acid, oxalic acid, or sulfuric acid. It is possible in this process to control the
color of the resulting film very accurately.

The most useful alloying elements for aluminum are copper, silicon, manganese,
magnesium, and zinc. Aluminum alloys are classified as casting alloys or wrought
alloys. The casting alloys have greater percentages of alloying elements to facilitate
casting, but this makes cold working difficult. Many of the casting alloys, and some of
the wrought alloys, cannot be hardened by heat treatment. The alloys that are heat-
treatable use an alloying element that dissolves in the aluminum. The heat treatment
consists of heating the specimen to a temperature that permits the alloying element to
pass into solution, then quenching so rapidly that the alloying element is not precipi-
tated. The aging process may be accelerated by heating slightly, which results in even
greater hardness and strength. One of the better-known heat-treatable alloys is duralu-
minum, or 2017 (4 percent Cu, 0.5 percent Mg, 0.5 percent Mn). This alloy hardens in
4 days at room temperature. Because of this rapid aging, the alloy must be stored under
refrigeration after quenching and before forming, or it must be formed immediately
after quenching. Other alloys (such as 5053) have been developed that age-harden much
more slowly, so that only mild refrigeration is required before forming. After forming,
they are artificially aged in a furnace and possess approximately the same strength and
hardness as the 2024 alloys. Those alloys of aluminum that cannot be heat-treated can
be hardened only by cold working. Both work hardening and the hardening produced
by heat treatment may be removed by an annealing process.

Magnesium

The density of magnesium is about 1800 kg/m? (0.065 1b/in’), which is two-thirds that
of aluminum and one-fourth that of steel. Since it is the lightest of all commercial met-
als, its greatest use is in the aircraft and automotive industries, but other uses are now
being found for it. Although the magnesium alloys do not have great strength, because
of their light weight the strength-weight ratio compares favorably with the stronger
aluminum and steel alloys. Even so, magnesium alloys find their greatest use in appli-
cations where strength is not an important consideration. Magnesium will not withstand
elevated temperatures; the yield point is definitely reduced when the temperature is
raised to that of boiling water.

Magnesium and its alloys have a modulus of elasticity of 45 GPa (6.5 Mpsi) in ten-
sion and in compression, although some alloys are not as strong in compression as in
tension. Curiously enough, cold working reduces the modulus of elasticity. A range of
cast magnesium alloys are also available.
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Titanium

Titanium and its alloys are similar in strength to moderate-strength steel but weigh half
as much as steel. The material exhibits very good resistence to corrosion, has low ther-
mal conductivity, is nonmagnetic, and has high-temperature strength. Its modulus of
elasticity is between those of steel and aluminum at 16.5 Mpsi (114 GPa). Because of
its many advantages over steel and aluminum, applications include: aerospace and mil-
itary aircraft structures and components, marine hardware, chemical tanks and process-
ing equipment, fluid handling systems, and human internal replacement devices. The
disadvantages of titanium are its high cost compared to steel and aluminum and the dif-
ficulty of machining it.

Copper-Base Alloys

When copper is alloyed with zinc, it is usually called brass. If it is alloyed with another
element, it is often called bronze. Sometimes the other element is specified too, as, for ex-
ample, tin bronze or phosphor bronze. There are hundreds of variations in each category.

Brass with 5 to 15 Percent Zinc

The low-zinc brasses are easy to cold work, especially those with the higher zinc con-
tent. They are ductile but often hard to machine. The corrosion resistance is good. Alloys
included in this group are gilding brass (5 percent Zn), commercial bronze (10 percent Zn),
and red brass (15 percent Zn). Gilding brass is used mostly for jewelry and articles to
be gold-plated; it has the same ductility as copper but greater strength, accompanied by
poor machining characteristics. Commercial bronze is used for jewelry and for forgings
and stampings, because of its ductility. Its machining properties are poor, but it has
excellent cold-working properties. Red brass has good corrosion resistance as well as
high-temperature strength. Because of this it is used a great deal in the form of tubing or
piping to carry hot water in such applications as radiators or condensers.

Brass with 20 to 36 Percent Zinc

Included in the intermediate-zinc group are low brass (20 percent Zn), cartridge brass
(30 percent Zn), and yellow brass (35 percent Zn). Since zinc is cheaper than copper,
these alloys cost less than those with more copper and less zinc. They also have better
machinability and slightly greater strength; this is offset, however, by poor corrosion
resistance and the possibility of cracking at points of residual stresses. Low brass is very
similar to red brass and is used for articles requiring deep-drawing operations. Of the
copper-zinc alloys, cartridge brass has the best combination of ductility and strength.
Cartridge cases were originally manufactured entirely by cold working; the process
consisted of a series of deep draws, each draw being followed by an anneal to place the
material in condition for the next draw, hence the name cartridge brass. Although the
hot-working ability of yellow brass is poor, it can be used in practically any other fab-
ricating process and is therefore employed in a large variety of products.

When small amounts of lead are added to the brasses, their machinability is greatly
improved and there is some improvement in their abilities to be hot-worked. The
addition of lead impairs both the cold-working and welding properties. In this group are
low-leaded brass (32% percent Zn, % percent Pb), high-leaded brass (34 percent Zn,
2 percent Pb), and free-cutting brass (35% percent Zn, 3 percent Pb). The low-leaded
brass is not only easy to machine but has good cold-working properties. It is used for
various screw-machine parts. High-leaded brass, sometimes called engraver’s brass, is
used for instrument, lock, and watch parts. Free-cutting brass is also used for screw-
machine parts and has good corrosion resistance with excellent mechanical properties.
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Admiralty metal (28 percent Zn) contains 1 percent tin, which imparts excellent cor-
rosion resistance, especially to saltwater. It has good strength and ductility but only fair
machining and working characteristics. Because of its corrosion resistance it is used in
power-plant and chemical equipment. Aluminum brass (22 percent Zn) contains 2 percent
aluminum and is used for the same purposes as admiralty metal, because it has nearly the
same properties and characteristics. In the form of tubing or piping, it is favored over
admiralty metal, because it has better resistance to erosion caused by high-velocity water.

Brass with 36 to 40 Percent Zinc

Brasses with more than 38 percent zinc are less ductile than cartridge brass and cannot
be cold-worked as severely. They are frequently hot-worked and extruded. Muntz metal
(40 percent Zn) is low in cost and mildly corrosion-resistant. Naval brass has the same
composition as Muntz metal except for the addition of 0.75 percent tin, which con-
tributes to the corrosion resistance.

Bronze

Silicon bronze, containing 3 percent silicon and 1 percent manganese in addition to the
copper, has mechanical properties equal to those of mild steel, as well as good corro-
sion resistance. It can be hot- or cold-worked, machined, or welded. It is useful wher-
ever corrosion resistance combined with strength is required.

Phosphor bronze, made with up to 11 percent tin and containing small amounts of
phosphorus, is especially resistant to fatigue and corrosion. It has a high tensile strength
and a high capacity to absorb energy, and it is also resistant to wear. These properties
make it very useful as a spring material.

Aluminum bronze is a heat-treatable alloy containing up to 12 percent aluminum. This
alloy has strength and corrosion-resistance properties that are better than those of brass, and
in addition, its properties may be varied over a wide range by cold working, heat treating,
or changing the composition. When iron is added in amounts up to 4 percent, the alloy has
a high endurance limit, a high shock resistance, and excellent wear resistance.

Beryllium bronze is another heat-treatable alloy, containing about 2 percent beryl-
lium. This alloy is very corrosion resistant and has high strength, hardness, and resis-
tance to wear. Although it is expensive, it is used for springs and other parts subjected
to fatigue loading where corrosion resistance is required.

With slight modification most copper-based alloys are available in cast form.

Plastics

The term thermoplastics is used to mean any plastic that flows or is moldable when heat
is applied to it; the term is sometimes applied to plastics moldable under pressure. Such
plastics can be remolded when heated.

A thermoset is a plastic for which the polymerization process is finished in a hot
molding press where the plastic is liquefied under pressure. Thermoset plastics cannot
be remolded.

Table 2-2 lists some of the most widely used thermoplastics, together with some
of their characteristics and the range of their properties. Table 23, listing some of the
thermosets, is similar. These tables are presented for information only and should not
be used to make a final design decision. The range of properties and characteristics that
can be obtained with plastics is very great. The influence of many factors, such as cost,
moldability, coefficient of friction, weathering, impact strength, and the effect of fillers
and reinforcements, must be considered. Manufacturers’ catalogs will be found quite
helpful in making possible selections.
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Table 2-2

The Thermoplastics ~ Source: These data have been obtained from the Machine Design Materials Reference Issue, published by Penton/TPC,
Cleveland. These reference issues are published about every 2 years and constitute an excellent source of data on a great variety of materials.

S, E Hardness Elongation Dimensional Heat Chemical
kpsi Mpsi Rockwell % Stability Resistance Resistance Processing
ABS group 2-8 0.10-0.37 60-110R 3-50 Good * Fair EMST
Acetal group 8-10 0.41-0.52 80-94M 40-60 Excellent Good High M
Acrylic 5-10 0.20-0.47 92-110M 3-75 High * Fair EMS
Fluoroplastic ~ 0.50-7 ce 50-80D 100-300 High Excellent Excellent MPR
group
Nylon 8-14 0.18-0.45  112-120R 10-200 Poor Poor Good CEM
Phenylene 7-18 0.35-0.92 115R, 106L 5-60 Excellent Good Fair EFM
oxide
Polycarbonate 8-16 0.34-0.86 62-91M 10-125 Excellent Excellent Fair EMS
Polyester 8-18 0.28-1.6 65-90M 1-300 Excellent Poor Excellent CLMR
Polyimide 6-50 ce 88-120M  Very low Excellent Excellent Excellent” CLMP
Polyphenylene 14-19 0.11 122R 1.0 Good Excellent Excellent M
sulfide
Polystyrene 1.5-12 0.14-0.60 10-90M 0.5-60 e Poor Poor EM
group
Polysulfone 10 0.36 120R 50-100 Excellent Excellent Excellent” EFM
Polyvinyl 1.5-7.5  0.35-0.60 65-85D 40450 e Poor Poor EFM
chloride

*Heat-resistant grades available.

"With exceptions.
C Coatings L Laminates R Resins E Extrusions M Moldings S Sheet F Foams P Press and sinter methods T Tubing

Table 2-3

The Thermosets  Source: These data have been obtained from the Machine Design Materials Reference Issue, published by Penton/IPC,
Cleveland. These reference issues are published about every 2 years and constitute an excellent source of data on a great variety of materials.

S E Hardness Elongation Dimensional Heat Chemical

kpusi Mpsi Rockwell % Stability Resistance Resistance Processing

Alkyd 3-9 0.05-0.30 99M* .- Excellent Good Fair M
Allylic 4-10 e 105-120M ce Excellent Excellent Excellent CM
Amino 5-8 0.13-0.24 110-120M 0.30-0.90 Good Excellent* Excellent* LR

group
Epoxy 5-20  0.03-0.30* 80-120M 1-10 Excellent Excellent Excellent CMR
Phenolics  5-9 0.10-0.25 70-95E e Excellent Excellent Good EMR
Silicones  5-6 e 80-90M e e Excellent Excellent CLMR

*With exceptions.
C Coatings L Laminates R Resins E Extrusions M Moldings S Sheet F Foams P Press and sinter methods T Tubing
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Figure 2-14
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Composites categorized by

type of reinforcement.
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Composite Materials'4

Composite materials are formed from two or more dissimilar materials, each of which
contributes to the final properties. Unlike metallic alloys, the materials in a composite
remain distinct from each other at the macroscopic level.

Most engineering composites consist of two materials: a reinforcement called a
filler and a matrix. The filler provides stiffness and strength; the matrix holds the mate-
rial together and serves to transfer load among the discontinuous reinforcements. The
most common reinforcements, illustrated in Fig. 2—14, are continuous fibers, either
straight or woven, short chopped fibers, and particulates. The most common matrices
are various plastic resins although other materials including metals are used.

Metals and other traditional engineering materials are uniform, or isotropic, in nature.
This means that material properties, such as strength, stiffness, and thermal conductivity,
are independent of both position within the material and the choice of coordinate system.
The discontinuous nature of composite reinforcements, though, means that material prop-
erties can vary with both position and direction. For example, an epoxy resin reinforced
with continuous graphite fibers will have very high strength and stiffness in the direction
of the fibers, but very low properties normal or transverse to the fibers. For this reason,
structures of composite materials are normally constructed of multiple plies (laminates)
where each ply is oriented to achieve optimal structural stiffness and strength performance.

High strength-to-weight ratios, up to 5 times greater than those of high-strength
steels, can be achieved. High stiffness-to-weight ratios can also be obtained, as much as
8 times greater than those of structural metals. For this reason, composite materials are
becoming very popular in automotive, marine, aircraft, and spacecraft applications
where weight is a premium.

The directionality of properties of composite materials increases the complexity of
structural analyses. Isotropic materials are fully defined by two engineering constants:
Young’s modulus £ and Poisson’s ratio v. A single ply of a composite material, however,
requires four constants, defined with respect to the ply coordinate system. The constants
are two Young’s moduli (the longitudinal modulus in the direction of the fibers, £, and
the transverse modulus normal to the fibers, E5), one Poisson’s ratio (v}, called the major
Poisson’s ratio), and one shear modulus (G ). A fifth constant, the minor Poisson’s ratio,
V1, is determined through the reciprocity relation, v,;/E, = vj»/E;. Combining this
with multiple plies oriented at different angles makes structural analysis of complex struc-
tures unapproachable by manual techniques. For this reason, computer software is avail-
able to calculate the properties of a laminated composite construction.!

- T
e £y taey o £y 2@
- -v as

Woven fabric
composite

Unidirectional continuous
fiber composite

Particulate
composite

Randomly oriented
short fiber composite

14For references see 1. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford
University Press, 1994, and ASM Engineered Materials Handbook: Composites, ASM International,
Materials Park, OH, 1988.

15 About Composite Materials Software listing, http://composite.about.com/cs/software/index.htm.
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Table 2-4

Material Families and
Classes
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Materials Selection

As stated earlier, the selection of a material for a machine part or structural member is
one of the most important decisions the designer is called on to make. Up to this point
in this chapter we have discussed many important material physical properties, various
characteristics of typical engineering materials, and various material production pro-
cesses. The actual selection of a material for a particular design application can be an
easy one, say, based on previous applications (1020 steel is always a good candidate
because of its many positive attributes), or the selection process can be as involved and
daunting as any design problem with the evaluation of the many material physical, eco-
nomical, and processing parameters. There are systematic and optimizing approaches
to material selection. Here, for illustration, we will only look at how to approach some
material properties. One basic technique is to list all the important material properties
associated with the design, e.g., strength, stiffness, and cost. This can be prioritized by
using a weighting measure depending on what properties are more important than
others. Next, for each property, list all available materials and rank them in order begin-
ning with the best material; e.g., for strength, high-strength steel such as 4340 steel
should be near the top of the list. For completeness of available materials, this might
require a large source of material data. Once the lists are formed, select a manageable
amount of materials from the top of each list. From each reduced list select the materi-
als that are contained within every list for further review. The materials in the reduced
lists can be graded within the list and then weighted according to the importance of
each property.

M. F. Ashby has developed a powerful systematic method using materials selec-
tion charts.'® This method has also been implemented in a software package called
CES Edupack.!” The charts display data of various properties for the families and
classes of materials listed in Table 2—4. For example, considering material stiffness
properties, a simple bar chart plotting Young’s modulus £ on the y axis is shown

°lnl U] = gle NCAIME

Metals Aluminum alloys Al alloys

(the metals and alloys of Copper alloys Cu alloys

engineering) Lead alloys Lead alloys
Magnesium alloys Mg alloys
Nickel alloys Ni alloys
Carbon steels Steels
Stainless steels Stainless steels
Tin alloys Tin alloys
Titanium alloys Ti alloys
Tungsten alloys W alloys
Lead alloys Pb alloys
Zinc alloys Zn alloys

(continued)

I16M. F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-Heinemann,
Oxford, 2005.

17Produced by Granta Design Limited. See www.grantadesign.com.
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| Table 2-4 (continued)

Family Classes

Ceramics Alumina
Technical ceramics (fine Aluminum nitride
ceramics capable of Boron carbide

load-bearing application) Silicon carbide

Silicon nitride
Tungsten carbide

Nontechnical ceramics Brick
(porous ceramics of Concrete
construction) Stone

Glasses Soda-lime glass

Borosilicate glass
Silica glass
Glass ceramic

Polymers Acrylonitrile butadiene styrene
(the thermoplastics and Cellulose polymers
thermosets of engineering) Tonomers

Epoxies

Phenolics

Polyamides (nylons)
Polycarbonate
Polyesters
Polyetheretherkeytone
Polyethylene
Polyethylene terephalate
Polymethylmethacrylate
Polyoxymethylene(Acetal)
Polypropylene
Polystyrene
Polytetrafluorethylene
Polyvinylchloride

Elastomers Butyl rubber

(engineering rubbers, natural EVA

and synthetic) Isoprene
Natural rubber
Polychloroprene (Neoprene)
Polyurethane
Silicon elastomers

Hybrids Carbon-fiber reinforced polymers
Composites Glass-fiber reinforced polymers
SiC reinforced aluminum
Foams Flexible polymer foams
Rigid polymer foams
Natural materials Cork
Bamboo
Wood

Short Name

AL O3
AIN
B4C

SiC
Si3Ny
WwC
Brick
Concrete
Stone

Soda-lime glass
Borosilicate glass
Silica glass

Glass ceramic

ABS

CA
Tonomers
Epoxy
Phenolics
PA

PC
Polyester
PEEK
PE

PET or PETE
PMMA
POM

PP

PS

PTFE
pPVC

Butyl rubber
EVA

Isoprene
Natural rubber
Neoprene

PU

Silicones

CFRP

GFRP

Al-SiC
Flexible foams
Rigid foams
Cork

Bamboo
Wood

From M. F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-Heinemann,

Oxford, 2005. Table 4-1, pp. 49-50.
62
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Young’s modulus E for various materials. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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in Fig. 2-15. Each vertical line represents the range of values of E for a particular
material. Only some of the materials are labeled. Now, more material information
can be displayed if the x axis represents another material property, say density.
Figure 2-16, called a “bubble” chart, represents Young’s modulus E plotted against
density p. The line ranges for each material property plotted two-dimensionally now
form ellipses, or bubbles. Groups of bubbles outlined according to the material families
of Table 2—4 are also shown. This plot is more useful than the two separate bar charts
of each property. Now, we also see how stiffness/weight for various materials relate.
The ratio of Young’s modulus to density, E/p, is known as the specific modulus, or
specific stiffness. This ratio is of particular interest when it is desired to minimize
weight where the primary design limitation is deflection, stiffness, or natural frequency,
rather than strength. Machine parts made from materials with higher specific modulus
will exhibit lower deflection, higher stiffness, and higher natural frequency.

In the lower right corner of the chart in Figure 2—16, dotted lines indicate ratios of
EP/p. Several parallel dotted lines are shown for 8= 1 that represent different values of
the specific modulus E/p. This allows simple comparison of the specific modulus
between materials. It can be seen, for example, that some woods and aluminum alloys have
about the same specific modulus as steels. Different values of 8 allow comparisons for
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Figure 2-16

Young’s modulus E versus density
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p for various materials. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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various relationships between stiffness and weight, such as in different loading
conditions. The relationship is linear (8 = 1) for axial loading, but nonlinear (8 = 1/2)
for bending loading [see Eq. (2-31) and its development]. Since the plot is on a log-log
scale, the exponential functions still plot as straight lines. The § = 1 lines can also be
used to represent constant values of the speed of sound in a material, since the rela-
tionship between E and p is linear in the equation for the speed of sound in a material,
¢ = (E/p)"/2. The same can be shown for natural frequency, which is a function of the
ratio of stiffness to mass.

To see how f fits into the mix, consider the following. The performance metric P
of a structural element depends on (1) the functional requirements, (2) the geometry,
and (3) the material properties of the structure. That is,

) (geometric
F)> \parameters G

(functional

) (material
requirements ’

properties M )]
or, symbolically,

P = f(F,G, M) (2-23)
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If the function is separable, which it often is, we can write Eq. (2-23) as

P = fi(F)- f2(G) - f3(M) (2-24)

For optimum design, we desire to maximize or minimize P. With regards to material
properties alone, this is done by maximizing or minimizing f3(M), called the material
efficiency coefficient.

For illustration, say we want to design a light, stiff, end-loaded cantilever beam with
a circular cross section. For this we will use the mass m of the beam for the performance
metric to minimize. The stiffness of the beam is related to its material and geometry. The
stiffness of a beam is given by k = F/§, where F and § are the end load and deflection,
respectively (see Chap. 4). The end deflection of an end-loaded cantilever beam is given
in Table A-9, beam 1, as § = ymax = (Fl3)/(3EI), where E is Young’s modulus, I the
second moment of the area, and / the length of the beam. Thus, the stiffness is given by

F 3E1
k=—=— 2-25
5 B ( )
From Table A—18, the second moment of the area of a circular cross section is
aD* A2
I=—=— 2-26
64 47 ( )

where D and A are the diameter and area of the cross section, respectively. Substituting
Eq. (2-26) in (2-25) and solving for A, we obtain

amki3\ '
A:( T ) (2-27)

The mass of the beam is given by
m = Alp (2-28)
Substituting Eq. (2-27) into (2-28) and rearranging yields

7 p
m= 2\/; k21572 (W) (2-29)

Equation (2-29) is of the form of Eq. (2-24). The term 2/ /3 is simply a constant and
can be associated with any function, say fi(F). Thus, f(F) = 2./ /3(k'/?) is the func-
tional requirement, stiffness; f>(G) = °'?), the geometric parameter, length; and the
material efficiency coefficient

0

f3(M) = Zi

(2-30)
is the material property in terms of density and Young’s modulus. To minimize m we
want to minimize f3(M), or maximize

1/2
M = ﬂ (2-31)
P

where M is called the material index, and B = % Returning to Fig. 2—-16, draw lines of
various values of E'/?/p as shown in Fig. 2—17. Lines of increasing M move up and to
the left as shown. Thus, we see that good candidates for a light, stiff, end-loaded can-
tilever beam with a circular cross section are certain woods, composites, and ceramics.
Other limits/constraints may warrant further investigation. Say, for further illustra-
tion, the design requirements indicate that we need a Young’s modulus greater than
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Figure 2-17

A schematic E versus p chart
showing a grid of lines for
various values the material
index M = E'/2/p. (From

M. F. Ashby, Materials Selection
in Mechanical Design, 3rd ed.,
Elsevier Butterworth-
Heinemann, Oxford, 2005.)

Figure 2-18

The search region of Fig. 2-16
further reduced by restricting
E > 50 GPa, (From M. F.
Ashby, Materials Selection in
Mechanical Design, 3rd ed.,
Elsevier Butterworth-
Heinemann, Oxford, 2005.)
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50 GPa. Figure 2—18 shows how this further restricts the search region. This eliminates
woods as a possible material.

Another commonly useful chart, shown in Fig. 2-19, represents strength versus
density for the material families. The ratio of strength to density is known as specific
strength, and is particularly useful when it is desired to minimize weight where the pri-
mary design limitation is strength, rather than deflection. The guidelines in the lower
right corner represent different relationships between strength and density, in the form
of S#/p. Following an approach similar to that used before, it can be shown that for
axial loading, B8 = 1, and for bending loading, B8 = 2/3.

Certainly, in a given design exercise, there will be other considerations such as
environment, cost, availability, and machinability, and other charts may be necessary to
investigate. Also, we have not brought in the material process selection part of the pic-
ture. If done properly, material selection can result in a good deal of bookkeeping. This
is where software packages such as CES Edupack become very effective.
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Strength S versus density p for various materials. For metals, S is the 0.2 percent offset yield strength. For polymers, S is the 1 percent yield
strength. For ceramics and glasses, S is the compressive crushing strength. For composites, S is the tensile strength. For elastomers, S is the tear
strength. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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PROBLEMS

Determine the tensile and yield strengths for the following materials:
(a) UNS G10200 hot-rolled steel.

(b) SAE 1050 cold-drawn steel.

(c) AISI 1141 steel quenched and tempered at 540°C.

(d) 2024-T4 aluminum alloy.

(e) Ti-6Al-4V annealed titanium alloy.

Assume you were specifying an AISI 1060 steel for an application. Using Table A-21,
(a) how would you specify it if you desired to maximize the yield strength?
(b) how would you specify it if you desired to maximize the ductility?

Determine the yield strength-to-weight density ratios (specific strength) in units of kN - m/kg for
AISI 1018 CD steel, 2011-T6 aluminum, Ti-6Al-4V titanium alloy, and ASTM No. 40 gray cast iron.

Determine the stiffness-to-weight density ratios (specific modulus) in units of inches for AISI 1018
CD steel, 2011-T6 aluminum, Ti-6A1-4V titanium alloy, and ASTM No. 40 gray cast iron.

Poisson’s ratio v is a material property and is the ratio of the lateral strain and the longitudinal
strain for a member in tension. For a homogeneous, isotropic material, the modulus of rigidity G
is related to Young’s modulus as

E

G:2(1+v)
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2-6

2-8

2-9

2-10
2-11
2-12

Using the tabulated values of G and E in Table A-S5, calculate Poisson’s ratio for steel, aluminum,
beryllium copper, and gray cast iron. Determine the percent difference between the calculated
values and the values tabulated in Table A-5.

A specimen of steel having an initial diameter of 0.503 in was tested in tension using a gauge
length of 2 in. The following data were obtained for the elastic and plastic states:

Load P Elongation
Ibf in
1 000 0.0004 8 800 0.1984
2 000 0.0006 9200 0.1978
3 000 0.0010 9 100 0.1963
4 000 0.0013 13 200 0.1924
7 000 0.0023 15 200 0.1875
8 400 0.0028 17 000 0.1563
8 800 0.0036 16 400 0.1307
9200 0.0089 14 800 0.1077

Note that there is some overlap in the data.

(a) Plot the engineering or nominal stress-strain diagram using two scales for the unit strain €,
one scale from zero to about 0.02 in/in and the other scale from zero to maximum strain.

(b) From this diagram find the modulus of elasticity, the 0.2 percent offset yield strength, the ulti-
mate strength, and the percent reduction in area.

(c) Characterize the material as ductile or brittle. Explain your reasoning.

(d) Identify a material specification from Table A-20 that has a reasonable match to the data.

Compute the true stress and the logarithmic strain using the data of Prob. 2—6 and plot the results on
log-log paper. Then find the plastic strength coefficient o and the strain-strengthening exponent .
Find also the yield strength and the ultimate strength after the specimen has had 20 percent cold work.

The stress-strain data from a tensile test on a cast-iron specimen are

Engineering
5 10 16 19 26 32 40 46 49 54

stress, kpsi

Engineering strain, | 0.20 0.44 0.80 1.0 1.5 2.0 2.8 34 4.0 5.0
€ - 1073 in/in

Plot the stress-strain locus and find the 0.1 percent offset yield strength, and the tangent modulus
of elasticity at zero stress and at 20 kpsi.

A part made from annealed AISI 1018 steel undergoes a 20 percent cold-work operation.

(a) Obtain the yield strength and ultimate strength before and after the cold-work operation.
Determine the percent increase in each strength.

(b) Determine the ratios of ultimate strength to yield strength before and after the cold-work
operation. What does the result indicate about the change of ductility of the part?

Repeat Prob. 2-9 for a part made from hot-rolled AISI 1212 steel.
Repeat Prob. 2-9 for a part made from 2024-T4 aluminum alloy.

A steel member has a Brinell of Hz = 275. Estimate the ultimate strength of the steel in MPa.
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A gray cast iron part has a Brinell hardness number of Hz = 200. Estimate the ultimate strength
of the part in kpsi. Make a reasonable assessment of the likely grade of cast iron by comparing
both hardness and strength to material options in Table A—24.

A part made from 1040 hot-rolled steel is to be heat treated to increase its strength to approxi-
mately 100 kpsi. What Brinell hardness number should be expected from the heat-treated part?

Brinell hardness tests were made on a random sample of 10 steel parts during processing. The
results were Hp values of 230, 232(2), 234, 235(3), 236(2), and 239. Estimate the mean and
standard deviation of the ultimate strength in kpsi.

Repeat Prob. 2—15 assuming the material to be cast iron.

For the material in Prob. 2-6: (a) Determine the modulus of resilience, and (b) Estimate the mod-
ulus of toughness, assuming that the last data point corresponds to fracture.

Some commonly used plain carbon steels are AISI 1010, 1018, and 1040. Research these steels
and provide a comparative summary of their characteristics, focusing on aspects that make each
one unique for certain types of application. Product application guides provided on the Internet
by steel manufacturers and distributors are one source of information.

Repeat Prob. 2-18 for the commonly used alloy steels, AISI 4130 and 4340.

An application requires the support of an axial load of 100 kips with a round rod without exceed-
ing the yield strength of the material. Assume the current cost per pound for round stock is given
in the table below for several materials that are being considered. Material properties are avail-
able in Tables A-5, A-20, A-21, and A-24. Select one of the materials for each of the following
additional design goals.

(a) Minimize diameter.

(b) Minimize weight.

(¢) Minimize cost.

(d) Minimize axial deflection.

Material Cost/Ibf

1020 HR $0.27
1020 CD $0.30
1040 Q&T @800°F $0.35
4140 Q&T @800°F $0.80
Wrought Al 2024 T3 $1.10
Titanium alloy (Ti-6Al-4V) $7.00

A l-in-diameter rod, 3 ft long, of unknown material is found in a machine shop. A variety of

inexpensive nondestructive tests are readily available to help determine the material, as described

below:

(a) Visual inspection.

(b) Scratch test: Scratch the surface with a file; observe color of underlying material and depth
of scratch.

(c) Check if it is attracted to a magnet.

(d) Measure weight (£0.05 1bf).

(e) Inexpensive bending deflection test: Clamp one end in a vise, leaving 24 in cantilevered.
Apply a force of 100 Ibf (£1 1bf). Measure deflection of the free end (within 2=1/32 in).

(f) Brinell hardness test.
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2-24

2-25

2-26

2-27

2-28

2-29

2-30
2-31
2-32
2-33
2-34

Choose which tests you would actually perform, and in what sequence, to minimize time and
cost, but to determine the material with a reasonable level of confidence. The table below pro-
vides results that would be available to you if you choose to perform a given test. Explain your
process, and include any calculations. You may assume the material is one listed in Table A-5. If
it is carbon steel, try to determine an approximate specification from Table A-20.

Results if test were made

(a) Dark gray, rough surface Silvery gray, smooth surface Reddish-brown, tarnished,
finish, moderate scale finish, slightly tarnished smooth surface finish

(b) Metallic gray, moderate Silvery gray, deep scratch Shiny brassy color, deep
scratch scratch

(c) Magnetic Not magnetic Not magnetic

d) W =17.95 Ibf W =2.90 Ibf W =9.00 Ibf

(e) §=5/161in §=7/8in §=17/32in

f) Hp =200 Hp =95 Hg="10

Search the website noted in Sec. 2-20 (http://composite.about.com/cs/software/) and report your
findings. Your instructor may wish to elaborate on the level of this report. The website contains a
large variety of resources. The activity for this problem can be divided among the class.

Research the material Inconel, briefly described in Table A-5. Compare it to various carbon and
alloy steels in stiffness, strength, ductility, and toughness. What makes this material so special?

Consider a rod transmitting a tensile force. The following materials are being considered: tung-
sten carbide, high-carbon heat-treated steel, polycarbonate polymer, aluminum alloy. Using the
Ashby charts, recommend one or two of the materials for a design situation in which failure is by
exceeding the strength of the material, and it is desired to minimize the weight.

Repeat Prob. 2-26, except that the design situation is failure by excessive deflection, and it is
desired to minimize the weight.

Consider a cantilever beam that is loaded with a transverse force at its tip. The following materials
are being considered: tungsten carbide, high-carbon heat-treated steel, polycarbonate polymer,
aluminum alloy. Using the Ashby charts, recommend one or two of the materials for a design
situation in which failure is by exceeding the strength of the material and it is desired to minimize
the weight.

Repeat Prob. 2-28, except that the design situation is failure by excessive deflection, and it is
desired to minimize the weight.

For an axially loaded rod, prove that 8 = 1 for the E®/p guidelines in Fig. 2-16.
For an axially loaded rod, prove that 8 = 1 for the S#/p guidelines in Fig. 2-19.
For a cantilever beam loaded in bending, prove that 8 = 1/2 for the E#/p guidelines in Fig. 2—16.
For a cantilever beam loaded in bending, prove that 8 = 2/3 for the S#/p guidelines in Fig. 2—19.

Consider a tie rod transmitting a tensile force F. The corresponding tensile stress is given by
o = F /A, where A is the area of the cross section. The deflection of the rod is given by Eq. (4-3),
which is § = (FI)/(AE), where [ is the length of the rod. Using the Ashby charts of Figs. 2-16
and 2-19, explore what ductile materials are best suited for a light, stiff, and strong tie rod.
Hint: Consider stiffness and strength separately.
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One of the main objectives of this book is to describe how specific machine components
function and how to design or specify them so that they function safely without failing
structurally. Although earlier discussion has described structural strength in terms of
load or stress versus strength, failure of function for structural reasons may arise from
other factors such as excessive deformations or deflections.

Here it is assumed that the reader has completed basic courses in statics of rigid
bodies and mechanics of materials and is quite familiar with the analysis of loads, and
the stresses and deformations associated with the basic load states of simple prismatic
elements. In this chapter and Chap. 4 we will review and extend these topics briefly.
Complete derivations will not be presented here, and the reader is urged to return to
basic textbooks and notes on these subjects.

This chapter begins with a review of equilibrium and free-body diagrams associated
with load-carrying components. One must understand the nature of forces before
attempting to perform an extensive stress or deflection analysis of a mechanical com-
ponent. An extremely useful tool in handling discontinuous loading of structures
employs Macaulay or singularity functions. Singularity functions are described in
Sec. 3-3 as applied to the shear forces and bending moments in beams. In Chap. 4, the
use of singularity functions will be expanded to show their real power in handling
deflections of complex geometry and statically indeterminate problems.

Machine components transmit forces and motion from one point to another. The
transmission of force can be envisioned as a flow or force distribution that can be fur-
ther visualized by isolating internal surfaces within the component. Force distributed
over a surface leads to the concept of stress, stress components, and stress transforma-
tions (Mohr’s circle) for all possible surfaces at a point.

The remainder of the chapter is devoted to the stresses associated with the basic
loading of prismatic elements, such as uniform loading, bending, and torsion, and topics
with major design ramifications such as stress concentrations, thin- and thick-walled
pressurized cylinders, rotating rings, press and shrink fits, thermal stresses, curved beams,
and contact stresses.

Equilibrium and Free-Body Diagrams

Equilibrium

The word system will be used to denote any isolated part or portion of a machine or
structure—including all of it if desired—that we wish to study. A system, under this
definition, may consist of a particle, several particles, a part of a rigid body, an entire
rigid body, or even several rigid bodies.

If we assume that the system to be studied is motionless or, at most, has constant
velocity, then the system has zero acceleration. Under this condition the system is said
to be in equilibrium. The phrase static equilibrium is also used to imply that the system
is at rest. For equilibrium, the forces and moments acting on the system balance such
that

Y F=0 (3-1)
ZM =0 (3-2)

which states that the sum of all force and the sum of all moment vectors acting upon a
system in equilibrium is zero.
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Free-Body Diagrams
We can greatly simplify the analysis of a very complex structure or machine by suc-
cessively isolating each element and studying and analyzing it by the use of free-body
diagrams. When all the members have been treated in this manner, the knowledge
obtained can be assembled to yield information concerning the behavior of the total sys-
tem. Thus, free-body diagramming is essentially a means of breaking a complicated
problem into manageable segments, analyzing these simple problems, and then, usually,
putting the information together again.

Using free-body diagrams for force analysis serves the following important purposes:

* The diagram establishes the directions of reference axes, provides a place to record
the dimensions of the subsystem and the magnitudes and directions of the known
forces, and helps in assuming the directions of unknown forces.

* The diagram simplifies your thinking because it provides a place to store one thought
while proceeding to the next.

* The diagram provides a means of communicating your thoughts clearly and unam-
biguously to other people.

e Careful and complete construction of the diagram clarifies fuzzy thinking by bringing
out various points that are not always apparent in the statement or in the geometry
of the total problem. Thus, the diagram aids in understanding all facets of the problem.

* The diagram helps in the planning of a logical attack on the problem and in setting
up the mathematical relations.

e The diagram helps in recording progress in the solution and in illustrating the
methods used.

* The diagram allows others to follow your reasoning, showing all forces.

Figure 3—1a shows a simplified rendition of a gear reducer where the input and output
shafts AB and CD are rotating at constant speeds w; and w,, respectively. The input and
output torques (torsional moments) are 7; = 240 1bf - in and 7, respectively. The shafts
are supported in the housing by bearings at A, B, C, and D. The pitch radii of gears G
and G, are r; = 0.75 in and r, = 1.5 in, respectively. Draw the free-body diagrams of
each member and determine the net reaction forces and moments at all points.

First, we will list all simplifying assumptions.

1 Gears G| and G, are simple spur gears with a standard pressure angle ¢ = 20°
(see Sec. 13-5).

2 The bearings are self-aligning and the shafts can be considered to be simply
supported.

3 The weight of each member is negligible.

4 Friction is negligible.

5 The mounting bolts at E, F, H, and I are the same size.

The separate free-body diagrams of the members are shown in Figs. 3—1b—d. Note that
Newton’s third law, called the law of action and reaction, is used extensively where
each member mates. The force transmitted between the spur gears is not tangential but
at the pressure angle ¢. Thus, N = F tan ¢.
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(a) Gear reducer (b) Gear box

(c) Input shaft (d) Output shaft

Figure 3-1

(a) Gear reducer; (b—d) free-body diagrams. Diagrams are not drawn to scale.

Summing moments about the x axis of shaft AB in Fig. 3—1d gives
> M, =F(0.75 —240 =0
F =320 Ibf

The normal force is N = 320 tan 20° = 116.5 Ibf.

Using the equilibrium equations for Figs. 3—1c¢ and d, the reader should verify that:
Ray = 192 1bf, Ry, = 69.9 Ibf, Rp, = 128 Ibf, Rp, = 46.6 Ibf, Rcy = 192 Ibf, R¢, =
69.9Ibf, Rp, = 128 Ibf, Rp, = 46.61bf, and 7, = 480 Ibf - in. The direction of the output
torque 7, is opposite w, because it is the resistive load on the system opposing the motion w,,

Note in Fig. 3—1b the net force from the bearing reactions is zero whereas the net
moment about the x axis is (1.5 + 0.75) (192) + (1.5 4+ 0.75) (128) = 720 1bf - in. This
value is the same as T; + T, = 240 4 480 = 720 Ibf - in, as shown in Fig. 3—1a. The
reaction forces Rg, Rp, Ry, and R;, from the mounting bolts cannot be determined
from the equilibrium equations as there are too many unknowns. Only three equations
are available, )" F, = ) F, = > M, = 0. In case you were wondering about assump-
tion 5, here is where we will use it (see Sec. 8—12). The gear box tends to rotate about
the x axis because of a pure torsional moment of 720 Ibf - in. The bolt forces must provide



3-2

Figure 3-2

Free-body diagram of simply-
supported beam with V and M
shown in positive directions.

Figure 3-3

Sign conventions for bending
and shear.

Figure 3-4

Distributed load on beam.
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an equal but opposite torsional moment. The center of rotation relative to the bolts lies at
the centroid of the bolt cross-sectional areas. Thus if the bolt areas are equal: the center
of rotation is at the center of the four bolts, a distance of /(4/2)% + (5/2)% = 3.202 in
from each bolt; the bolt forces are equal (R = R = Ry = R; = R), and each bolt force
is perpendicular to the line from the bolt to the center of rotation. This gives a net torque
from the four bolts of 4R (3.202) = 720. Thus, R = Rr = Ry = R; = 56.22 Ibf.

Shear Force and Bending Moments in Beams

Figure 3-2a shows a beam supported by reactions R and R, and loaded by the con-
centrated forces Fi, F>, and F5. If the beam is cut at some section located at x = x; and
the left-hand portion is removed as a free body, an internal shear force V and bending
moment M must act on the cut surface to ensure equilibrium (see Fig. 3-2b). The shear
force is obtained by summing the forces on the isolated section. The bending moment is
the sum of the moments of the forces to the left of the section taken about an axis through
the isolated section. The sign conventions used for bending moment and shear force in this
book are shown in Fig. 3-3. Shear force and bending moment are related by the equation

_am

V="
dx

(3-3)

Sometimes the bending is caused by a distributed load g (x), as shown in Fig. 3—4;
q(x) is called the load intensity with units of force per unit length and is positive in the

Positive bending Negative bending
Positive shear Negative shear
q(x)
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Table 3-1

Singularity (Macaulay™)
Functions

positive y direction. It can be shown that differentiating Eq. (3-3) results in
av. a’*m
dx  dx?

=q (3-4)

Normally the applied distributed load is directed downward and labeled w (e.g., see
Fig. 3-6). In this case, w = —q.

Equations (3-3) and (3-4) reveal additional relations if they are integrated. Thus,
if we integrate between, say, x4 and xp, we obtain

Ve Xp
/ dV:VB—VAzf qdx (3-5)
v

A XA
which states that the change in shear force from A to B is equal to the area of the load-
ing diagram between x4 and xp.
In a similar manner,

MB XB
/ dM:MB—MA=/ Vdx (3-6)

My XA

which states that the change in moment from A to B is equal to the area of the shear-
force diagram between x4 and xp.

Function Graph of f, (x) Meaning
Concentrated (x—a)? (x—a)?=0 x+#a
moment x—a) =400 x=ua
(unit doublet)

) /(x—a)*zdx= (x—a)™!

\ L 2 X

o]

Concentrated (x—a)™ (x — a)_1 =0 x#a
force

x—a)y =400 x=ua

/(x —a)fldx = (x —a)o

(unit impulse)

. (x—a)° 0 0 x<a
Unit step (x—a)y’ =
ﬁ_ 1 x>a
i /(x—a)odxz(x—a)l
L 2 X
L*d‘?]
1 0 x<a
Ramp fe=a) (x—a)! :{

xX—a x>a
1 (x —a)?
_/4/x /(x—a)‘dx: 5

TW. H. Macaulay, “Note on the deflection of beams,” Messenger of Mathematics, vol. 48, pp. 129-130, 1919.
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EXAMPLE 3-2

Figure 3-5

(a) Loading diagram for a
simply-supported beam.

(b) Shear-force diagram.

(c) Bending-moment diagram.

Solution

Answer

Answer

Answer
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Singularity Functions

The four singularity functions defined in Table 31, using the angle brackets ( ), consti-
tute a useful and easy means of integrating across discontinuities. By their use, general
expressions for shear force and bending moment in beams can be written when the beam
is loaded by concentrated moments or forces. As shown in the table, the concentrated
moment and force functions are zero for all values of x not equal to a. The functions are
undefined for values of x = a. Note that the unit step and ramp functions are zero only
for values of x that are less than a. The integration properties shown in the table con-
stitute a part of the mathematical definition too. The first two integrations of g (x) for
V(x) and M (x) do not require constants of integration provided all loads on the beam
are accounted for in g (x). The examples that follow show how these functions are used.

Derive the loading, shear-force, and bending-moment relations for the beam of Fig. 3—5a.

20in
200 1bf 100 Ibf

(a) X

A 4in \
=~ "J 10 in
R] RZ

V (Ibf)

210

®) s x
—90 + I—I

M (Ibf - in)

900 +
840 -

(c) ] x

Using Table 3—1 and ¢g(x) for the loading function, we find

g = Ri(x)"! —200(x —4)~' — 100(x — 10)~! + Ry(x —20)~! (1)
Integrating successively gives
V= /q dx = R (x)° —200(x — 4)° — 100(x — 10)° 4+ R, (x — 20)° (2)
M= /de = Ry (x)! —200(x — 4)! — 100(x — 10)' + R,(x — 20)" (3)
Notethat V=M =0atx =0".
The reactions R; and R, can be found by taking a summation of moments and

forces as usual, or they can be found by noting that the shear force and bending moment
must be zero everywhere except in the region 0 < x < 20 in. This means that Eq. (2)
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EXAMPLE 3-3
Solution
Answers

Figure 3-6

(a) Loading diagram for a
beam cantilevered at A.

(b) Shear-force diagram.

(c) Bending-moment diagram.

should give V = 0 at x slightly larger than 20 in. Thus
Ry —200—-100+ R, =0 (4)
Since the bending moment should also be zero in the same region, we have, from Eq. (3),
R1(20) —200(20 — 4) — 10020 — 10) =0 (5)

Equations (4) and (5) yield the reactions R;= 210 Ibf and R, = 90 Ibf.
The reader should verify that substitution of the values of R and R, into Eqs. (2)
and (3) yield Figs. 3-5b and c.

Figure 3—-6a shows the loading diagram for a beam cantilevered at A with a uniform

load of 20 Ibf/in acting on the portion 3 in < x < 7 in, and a concentrated counter-

clockwise moment of 240 Ibf - in at x = 10 in. Derive the shear-force and bending-

moment relations, and the support reactions M; and R;.

Following the procedure of Example 3-2, we find the load intensity function to be
g=—Mx)72+ R (x)7!' —20(x —3)°+20(x — 7)° —240(x — 10)"2 (1)

Note that the 20(x — 7)° term was necessary to “turn off” the uniform load at C.
Integrating successively gives

V=M {x)""+ R (x)° = 20(x — 3)! +20(x — 7)! —240(x —10)""  (2)
M= —M(x)°+ R (x)! — 10{x — 3)% + 10{x — 7)> — 240(x — 10)° (3)

The reactions are found by making x slightly larger than 10 in, where both V and M are
zero in this region. Noting that (10)~! = 0, Eq. (2) will then give

—M1(0) + R (1) — 2010 — 3) + 20(10 — 7) — 240(0) = 0

q 10 in
7 in i
<—3in—>  201bffin 240 b in
. W
A B C
M,
(@) R,
V (Ibf)
Step
80 Ramp
(®) o | x
M (1bf-in) s
i te
240 -+ Parabolic P
80 |
[ X
A]’lp ‘
—-160 Slope = 80 Ibf - in/in
(©) \
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3-5

Figure 3-7

Stress components on surface
normal to x direction.
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which yields R; = 80 Ibf.
From Eq. (3) we get

—M; (1) + 80(10) — 10(10 — 3) + 10(10 — 7)% — 240(1) = 0

which yields M; = 160 Ibf - in.

Figures 3—6b and ¢ show the shear-force and bending-moment diagrams. Note that
the impulse terms in Eq. (2), —M, (x)~! and —240(x — 10)~', are physically not forces
and are not shown in the V diagram. Also note that both the M; and 240 Ibf - in
moments are counterclockwise and negative singularity functions; however, by the con-
vention shown in Fig. 3-2 the M, and 240 1bf - in are negative and positive bending
moments, respectively, which is reflected in Fig. 3—6c.

Stress

When an internal surface is isolated as in Fig. 3-2b, the net force and moment acting on
the surface manifest themselves as force distributions across the entire area. The force
distribution acting at a point on the surface is unique and will have components in the
normal and tangential directions called normal stress and tangential shear stress,
respectively. Normal and shear stresses are labeled by the Greek symbols o and r,
respectively. If the direction of o is outward from the surface it is considered to be a ten-
sile stress and is a positive normal stress. If o is into the surface it is a compressive stress
and commonly considered to be a negative quantity. The units of stress in U.S.
Customary units are pounds per square inch (psi). For SI units, stress is in newtons per
square meter (N/m?); 1 N/m? = 1 pascal (Pa).

Cartesian Stress Components

The Cartesian stress components are established by defining three mutually orthogo-
nal surfaces at a point within the body. The normals to each surface will establish the
x, y, z Cartesian axes. In general, each surface will have a normal and shear stress. The
shear stress may have components along two Cartesian axes. For example, Fig. 3-7
shows an infinitesimal surface area isolation at a point Q within a body where the sur-
face normal is the x direction. The normal stress is labeled o,. The symbol o indi-
cates a normal stress and the subscript x indicates the direction of the surface normal.
The net shear stress acting on the surface is (7,)net Which can be resolved into com-
ponents in the y and z directions, labeled as ,, and 7., respectively (see Fig. 3-7).

et e
; !}\
N\

\

|
|
|
|
|
.
XZ‘

e



80 Mechanical Engineering Design

Figure 3-8

(a) General three-dimensional

stress. (b) Plane stress with

“cross-shears” equal.

3-6

VE

(@) (b)

Note that double subscripts are necessary for the shear. The first subscript indicates
the direction of the surface normal whereas the second subscript is the direction of
the shear stress.

The state of stress at a point described by three mutually perpendicular surfaces is
shown in Fig. 3—8a. It can be shown through coordinate transformation that this is suf-
ficient to determine the state of stress on any surface intersecting the point. As the
dimensions of the cube in Fig. 3-8a approach zero, the stresses on the hidden faces
become equal and opposite to those on the opposing visible faces. Thus, in general, a
complete state of stress is defined by nine stress components, oy, 0y, 0z, Tyy,
Tazy Tyxs Tyzs Toxs and 7gy.

For equilibrium, in most cases, “cross-shears” are equal, hence

Tyx = Txy Ty = Tyz Txz = Tox (3-7)

This reduces the number of stress components for most three-dimensional states of
stress from nine to six quantities, oy, 0y, 0, Txy, Ty;, and Tox.

A very common state of stress occurs when the stresses on one surface are zero.
When this occurs the state of stress is called plane stress. Figure 3—8b shows a state of
plane stress, arbitrarily assuming that the normal for the stress-free surface is the
z direction such that o, = 1,; = 7;, = 0. It is important to note that the element in
Fig. 3-8b is still a three-dimensional cube. Also, here it is assumed that the cross-shears
are equal such that 7y, = 7y, and 7,;, = 7;, = 7,; = 7, = 0.

Mohr’s Circle for Plane Stress

Suppose the dx dy dz element of Fig. 3-8b is cut by an oblique plane with a normal n at
an arbitrary angle ¢ counterclockwise from the x axis as shown in Fig. 3-9. Here, we are
concerned with the stresses o and t that act upon this oblique plane. By summing the
forces caused by all the stress components to zero, the stresses o and t are found to be

o — Oy ;-Gy n Oy ;U,\’ 08 2¢ + T, 5in2¢ (3-8)
T= —% sin2¢ + Ty, cos 2¢ (3-9)

Equations (3-8) and (3-9) are called the plane-stress transformation equations.
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¢
o, [ A
dy ds
Tyy

Differentiating Eq. (3—8) with respect to ¢ and setting the result equal to zero
maximizes o and gives

2 )
tan 2¢, = Fxy

(3-10)
o, — oy

Equation (3-10) defines two particular values for the angle 2¢,, one of which defines

the maximum normal stress o and the other, the minimum normal stress 0,. These two

stresses are called the principal stresses, and their corresponding directions, the princi-

pal directions. The angle between the two principal directions is 90°. It is important to

note that Eq. (3—10) can be written in the form

oy — 0y

sin2¢, — Ty, cos2¢, =0 (a)

Comparing this with Eq. (3-9), we see that T = 0, meaning that the perpendicular sur-
faces containing principal stresses have zero shear stresses.
In a similar manner, we differentiate Eq. (3-9), set the result equal to zero, and obtain

Oy — Oy

tan 2¢;, = — (3-11)

27,y

Equation (3—11) defines the two values of 2¢; at which the shear stress T reaches an
extreme value. The angle between the two surfaces containing the maximum shear
stresses is 90°. Equation (3—11) can also be written as

ox — 0,

cos2¢, + Ty sin2¢, =0 (b)

Substituting this into Eq. (3-8) yields

oy + 0y
o= > (3-12)
Equation (3-12) tells us that the two surfaces containing the maximum shear stresses
also contain equal normal stresses of (o, + o) /2.

Comparing Egs. (3-10) and (3—11), we see that tan 2¢; is the negative reciprocal
of tan 2¢,. This means that 2¢, and 2¢, are angles 90° apart, and thus the angles
between the surfaces containing the maximum shear stresses and the surfaces contain-
ing the principal stresses are +45°.

Formulas for the two principal stresses can be obtained by substituting the
angle 2¢,, from Eq. (3—-10) in Eq. (3-8). The result is

oy t+ oy o —oy\°
01,00 = x2 Y4 <x2 }) +szy (3-13)
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In a similar manner the two extreme-value shear stresses are found to be

2
7,7 = i\/(¥> +72 (3-14)

Your particular attention is called to the fact that an extreme value of the shear stress
may not be the same as the actual maximum value. See Sec. 3-7.

It is important to note that the equations given to this point are quite sufficient for
performing any plane stress transformation. However, extreme care must be exercised
when applying them. For example, say you are attempting to determine the principal
state of stress for a problem where o, = 14 MPa, 6, = —10 MPa, and 7,, = —16 MPa.
Equation (3-10) yields ¢, = —26.57° and 63.43°, which locate the principal stress sur-
faces, whereas, Eq. (3—13) gives o) = 22 MPa and 0, = —18 MPa for the principal
stresses. If all we wanted was the principal stresses, we would be finished. However,
what if we wanted to draw the element containing the principal stresses properly ori-
ented relative to the x, y axes? Well, we have two values of ¢, and two values for the
principal stresses. How do we know which value of ¢, corresponds to which value of
the principal stress? To clear this up we would need to substitute one of the values of
¢, into Eq. (3-8) to determine the normal stress corresponding to that angle.

A graphical method for expressing the relations developed in this section, called
Mohr’s circle diagram, is a very effective means of visualizing the stress state at a point
and keeping track of the directions of the various components associated with plane stress.
Equations (3-8) and (3-9) can be shown to be a set of parametric equations for o and ,
where the parameter is 2¢p. The parametric relationship between o and 7 is that of a cir-
cle plotted in the o, T plane, where the center of the circle is located at C = (o, 7) =
[(ox + 0y)/2,0] and has a radius of R = /[(0x — Uy)/2]2 + l')?y. A problem arises in
the sign of the shear stress. The transformation equations are based on a positive ¢
being counterclockwise, as shown in Fig. 3-9. If a positive T were plotted above the
o axis, points would rotate clockwise on the circle 2¢ in the opposite direction of
rotation on the element. It would be convenient if the rotations were in the same
direction. One could solve the problem easily by plotting positive T below the axis.
However, the classical approach to Mohr’s circle uses a different convention for the
shear stress.

Mohr’s Circle Shear Convention
This convention is followed in drawing Mohr’s circle:

e Shear stresses tending to rotate the element clockwise (cw) are plotted above the
o axis.

» Shear stresses tending to rotate the element counterclockwise (ccw) are plotted below
the o axis.

For example, consider the right face of the element in Fig. 3—-8b. By Mohr’s circle con-
vention the shear stress shown is plotted below the o axis because it tends to rotate the
element counterclockwise. The shear stress on the top face of the element is plotted
above the o axis because it tends to rotate the element clockwise.

In Fig. 3—10 we create a coordinate system with normal stresses plotted along the
abscissa and shear stresses plotted as the ordinates. On the abscissa, tensile (positive)
normal stresses are plotted to the right of the origin O and compressive (negative) nor-
mal stresses to the left. On the ordinate, clockwise (cw) shear stresses are plotted up;
counterclockwise (ccw) shear stresses are plotted down.



Figure 3-10

Mohr’s circle diagram.
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Using the stress state of Fig. 3—8b, we plot Mohr’s circle, Fig. 3—10, by first look-
ing at the right surface of the element containing o, to establish the sign of o, and the
cw or ccw direction of the shear stress. The right face is called the x face where
¢ = 0°. If o, is positive and the shear stress 7, is ccw as shown in Fig. 3-8b, we can
establish point A with coordinates (oy, 7;,") in Fig. 3-10. Next, we look at the top y
face, where ¢ = 90°, which contains o, and repeat the process to obtain point B with
coordinates (o, 7;}') as shown in Fig. 3—10. The two states of stress for the element
are A¢ = 90° from each other on the element so they will be 2A¢ = 180° from each
other on Mohr’s circle. Points A and B are the same vertical distance from the o axis.
Thus, A B must be on the diameter of the circle, and the center of the circle C is where
AB intersects the o axis. With points A and B on the circle, and center C, the complete
circle can then be drawn. Note that the extended ends of line AB are labeled x and y
as references to the normals to the surfaces for which points A and B represent the
stresses.

The entire Mohr’s circle represents the state of stress at a single point in a struc-
ture. Each point on the circle represents the stress state for a specific surface intersect-
ing the point in the structure. Each pair of points on the circle 180° apart represent the
state of stress on an element whose surfaces are 90° apart. Once the circle is drawn, the
states of stress can be visualized for various surfaces intersecting the point being ana-
lyzed. For example, the principal stresses o) and o, are points D and E, respectively,
and their values obviously agree with Eq. (3—13). We also see that the shear stresses
are zero on the surfaces containing o7 and o,. The two extreme-value shear stresses, one
clockwise and one counterclockwise, occur at F and G with magnitudes equal to the
radius of the circle. The surfaces at F' and G each also contain normal stresses of
(o +0,)/2 as noted earlier in Eq. (3—12). Finally, the state of stress on an arbitrary
surface located at an angle ¢ counterclockwise from the x face is point H.
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EXAMPLE 3-4

Solution

Answer

Answer

Answer

At one time, Mohr’s circle was used graphically where it was drawn to scale very
accurately and values were measured by using a scale and protractor. Here, we are strictly
using Mohr’s circle as a visualization aid and will use a semigraphical approach, calculat-
ing values from the properties of the circle. This is illustrated by the following example.

A stress element has o, = 80 MPa and t,, = 50 MPa cw, as shown in Fig. 3-11a.

(a) Using Mohr’s circle, find the principal stresses and directions, and show these
on a stress element correctly aligned with respect to the xy coordinates. Draw another
stress element to show 7; and 1, find the corresponding normal stresses, and label the
drawing completely.

(b) Repeat part a using the transformation equations only.

(a) In the semigraphical approach used here, we first make an approximate freehand
sketch of Mohr’s circle and then use the geometry of the figure to obtain the desired
information.

Draw the o and t axes first (Fig. 3—115) and from the x face locate o, = 80 MPa
along the o axis. On the x face of the element, we see that the shear stress is 50 MPa in
the cw direction. Thus, for the x face, this establishes point A (80, 50°%) MPa.
Corresponding to the y face, the stress is 0 = 0 and T = 50 MPa in the ccw direction.
This locates point B (0, 50°“*) MPa. The line A B forms the diameter of the required cir-
cle, which can now be drawn. The intersection of the circle with the o axis defines o
and o, as shown. Now, noting the triangle AC D, indicate on the sketch the length of the
legs AD and CD as 50 and 40 MPa, respectively. The length of the hypotenuse AC is

71 = v/ (50)% + (40)%> = 64.0 MPa

and this should be labeled on the sketch too. Since intersection C is 40 MPa from the
origin, the principal stresses are now found to be

o1 = 40 + 64 = 104 MPa and o, = 40 — 64 = —24 MPa
The angle 2¢ from the x axis cw to o7 is
2¢, =tan™' 3 = 51.3°

To draw the principal stress element (Fig. 3—11c), sketch the x and y axes parallel
to the original axes. The angle ¢, on the stress element must be measured in the same
direction as is the angle 2¢, on the Mohr circle. Thus, from x measure 25.7° (half of
51.3°) clockwise to locate the o axis. The o, axis is 90° from the o; axis and the stress
element can now be completed and labeled as shown. Note that there are no shear
stresses on this element.

The two maximum shear stresses occur at points £ and F in Fig. 3—11b. The two
normal stresses corresponding to these shear stresses are each 40 MPa, as indicated.
Point E is 38.7° ccw from point A on Mohr’s circle. Therefore, in Fig. 3—11d, draw a
stress element oriented 19.3° (half of 38.7°) ccw from x. The element should then be
labeled with magnitudes and directions as shown.

In constructing these stress elements it is important to indicate the x and y direc-
tions of the original reference system. This completes the link between the original
machine element and the orientation of its principal stresses.



Figure 3-11

All stresses in MPa.
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(80, 50°%)

(a)

(, Soccw)

(b)

/ o =40

Answer 19.3°

() (d)

(b) The transformation equations are programmable. From Eq. (3—10),

1 2T,y 1 2(-50
p = — tan~! (4) = —tan”! ( ( )> = —25.7°,64.3°
2 O = @ 2 80

From Eq. (3-8), for the first angle ¢, = —25.7°,

80+0 80—-0
o= 0 + > cos[2(—25.7)] + (—50) sin[2(—25.7)] = 104.03 MPa

2

The shear on this surface is obtained from Eq. (3-9) as

sin[2(=25.7)] + (=50) cos[2(—25.7)] = 0 MPa

which confirms that 104.03 MPa is a principal stress. From Eq. (3-8), for ¢, = 64.3°,

80+0 80—-0
o=t

cos[2(64.3)] + (—50) sin[2(64.3)] = —24.03 MPa
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Answer

Answer

Substituting ¢, = 64.3° into Eq. (3-9) again yields 7 = 0, indicating that —24.03 MPa
is also a principal stress. Once the principal stresses are calculated they can be ordered
such that o7 > 0». Thus, o7 = 104.03 MPa and 0, = —24.03 MPa.

Since for o1 = 104.03 MPa, ¢, = —25.7°, and since ¢ is defined positive ccw in the
transformation equations, we rotate clockwise 25.7° for the surface containing o;. We
see in Fig. 3—11c that this totally agrees with the semigraphical method.

To determine 7; and 1,, we first use Eq. (3—11) to calculate ¢j:

1 — 1 80

b= ~tan' (="} = Zqan! (= =19.3°,109.3°
2 Dtz 2 2(—50)

For ¢, = 19.3°, Egs. (3-8) and (3-9) yield

80+0 80—-0
o=——+

5 5 Cos[2(19.3)] + (~50) sin[2(19.3)] = 40.0 MPa

sin[2(19.3)] + (—50) cos[2(19.3)] = —64.0 MPa

Remember that Egs. (3—8) and (3-9) are coordinate transformation equations. Imagine
that we are rotating the x, y axes 19.3° counterclockwise and y will now point up and
to the left. So a negative shear stress on the rotated x face will point down and to the
right as shown in Fig. 3—11d. Thus again, results agree with the semigraphical method.

For ¢, = 109.3°, Egs. (3-8) and (3-9) give 0 = 40.0 MPa and v = +64.0 MPa.
Using the same logic for the coordinate transformation we find that results again agree
with Fig. 3-11d.

General Three-Dimensional Stress

As in the case of plane stress, a particular orientation of a stress element occurs in space
for which all shear-stress components are zero. When an element has this particular ori-
entation, the normals to the faces are mutually orthogonal and correspond to the prin-
cipal directions, and the normal stresses associated with these faces are the principal
stresses. Since there are three faces, there are three principal directions and three prin-
cipal stresses oy, 03, and o3. For plane stress, the stress-free surface contains the third
principal stress which is zero.

In our studies of plane stress we were able to specify any stress state o, o, and
7,y and find the principal stresses and principal directions. But six components of
stress are required to specify a general state of stress in three dimensions, and the
problem of determining the principal stresses and directions is more difficult. In
design, three-dimensional transformations are rarely performed since most maxi-
mum stress states occur under plane stress conditions. One notable exception is con-
tact stress, which is not a case of plane stress, where the three principal stresses are
given in Sec. 3—19. In fact, all states of stress are truly three-dimensional, where
they might be described one- or two-dimensionally with respect to specific coordi-
nate axes. Here it is most important to understand the relationship among the three
principal stresses. The process in finding the three principal stresses from the six



Figure 3-12

Mohr’s circles for three-
dimensional stress.

3-8
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T

(a) ()

stress components oy, 0y, 0z, Tyy, Tyz, and 7., involves finding the roots of the cubic
equation'

3 2 2 2 2
0” —(0x +0y,+0,)0" + (oxay +oy0. +oy0. — T, — T — ‘L'ZX)O’
2 2 2
— (040407 + 214y Ty oy — 04T, — 0,7, —02T,,) =0 (3-15)

In plotting Mohr’s circles for three-dimensional stress, the principal normal
stresses are ordered so that o7 > 0, > 03. Then the result appears as in Fig. 3-12a. The
stress coordinates o, T for any arbitrarily located plane will always lie on the bound-
aries or within the shaded area.

Figure 3—12a also shows the three principal shear stresses i), T2/3, and Ty /3.2
Each of these occurs on the two planes, one of which is shown in Fig. 3—-12b. The fig-
ure shows that the principal shear stresses are given by the equations
01 — 02 02 — 03 01 — 03

= = 3-16
3 72/3 5 T1/3 5 ( )

T2 =
Of course, Tmax = 71,3 When the normal principal stresses are ordered (o7 > 05 > 03),
so always order your principal stresses. Do this in any computer code you generate and
you’ll always generate Tpax.

Elastic Strain
Normal strain € is defined and discussed in Sec. 2—1 for the tensile specimen and is

given by Eq. (2-2) as € = §/1, where § is the total elongation of the bar within the
length /. Hooke’s law for the tensile specimen is given by Eq. (2-3) as

o = Ee¢ (3-17)

where the constant E is called Young’s modulus or the modulus of elasticity.

!For development of this equation and further elaboration of three-dimensional stress transformations see:
Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New York,
1999, pp. 46-78.

2Note the difference between this notation and that for a shear stress, say, Tyy. The use of the shilling mark is
not accepted practice, but it is used here to emphasize the distinction.
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3-9

When a material is placed in tension, there exists not only an axial strain, but also
negative strain (contraction) perpendicular to the axial strain. Assuming a linear,
homogeneous, isotropic material, this lateral strain is proportional to the axial strain. If
the axial direction is x, then the lateral strains are €, = €, = —ve,. The constant of pro-
portionality v is called Poisson’s ratio, which is about 0.3 for most structural metals.
See Table A-5 for values of v for common materials.

If the axial stress is in the x direction, then from Eq. (3—-17)

€ = % €y =€, = —vg—bf (3-18)

For a stress element undergoing o,, o,, and o, simultaneously, the normal strains

are given by

€ = % [O'X —v(oy + O’Z)]

1
& =z oy —vior +00)] (3-19)
€, = % [0. — v(ox + 0y)]

Shear strain y is the change in a right angle of a stress element when subjected to
pure shear stress, and Hooke’s law for shear is given by

T =Gy (3-20)

where the constant G is the shear modulus of elasticity or modulus of rigidity.
It can be shown for a linear, isotropic, homogeneous material, the three elastic con-
stants are related to each other by

E =2G(+v) (3-21)

Uniformly Distributed Stresses

The assumption of a uniform distribution of stress is frequently made in design. The
result is then often called pure tension, pure compression, or pure shear, depending
upon how the external load is applied to the body under study. The word simple is some-
times used instead of pure to indicate that there are no other complicating effects.
The tension rod is typical. Here a tension load F is applied through pins at the ends of
the bar. The assumption of uniform stress means that if we cut the bar at a section
remote from the ends and remove one piece, we can replace its effect by applying a uni-
formly distributed force of magnitude oA to the cut end. So the stress o is said to be
uniformly distributed. It is calculated from the equation

o=— (3-22)

This assumption of uniform stress distribution requires that:

e The bar be straight and of a homogeneous material
e The line of action of the force contains the centroid of the section

e The section be taken remote from the ends and from any discontinuity or abrupt
change in cross section



Figure 3-13

Straight beam in positive
bending.
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For simple compression, Eq. (3-22) is applicable with F normally being consid-
ered a negative quantity. Also, a slender bar in compression may fail by buckling, and
this possibility must be eliminated from consideration before Eq. (3—-22) is used.?

Another type of loading that assumes a uniformly distributed stress is known as
direct shear. This occurs when there is a shearing action with no bending. An example
is the action on a piece of sheet metal caused by the two blades of tin snips. Bolts and
pins that are loaded in shear often have direct shear. Think of a cantilever beam with a
force pushing down on it. Now move the force all the way up to the wall so there is no
bending moment, just a force trying to shear the beam off the wall. This is direct shear.
Direct shear is usually assumed to be uniform across the cross section, and is given by

T=— (3-23)

where V is the shear force and A is the area of the cross section that is being sheared.
The assumption of uniform stress is not accurate, particularly in the vicinity where the
force is applied, but the assumption generally gives acceptable results.

Normal Stresses for Beams in Bending

The equations for the normal bending stresses in straight beams are based on the fol-
lowing assumptions.

* The beam is subjected to pure bending. This means that the shear force is zero, and
that no torsion or axial loads are present (for most engineering applications it is as-
sumed that these loads affect the bending stresses minimally).

* The material is isotropic and homogeneous.
* The material obeys Hooke’s law.

* The beam is initially straight with a cross section that is constant throughout the
beam length.

e The beam has an axis of symmetry in the plane of bending.

* The proportions of the beam are such that it would fail by bending rather than by
crushing, wrinkling, or sidewise buckling.

* Plane cross sections of the beam remain plane during bending.

In Fig. 3—13 we visualize a portion of a straight beam acted upon by a positive
bending moment M shown by the curved arrow showing the physical action of the
moment together with a straight arrow indicating the moment vector. The x axis is
coincident with the neutral axis of the section, and the xz plane, which contains the

=

M

3See Sec. 4-11.
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Figure 3-14

Bending stresses according to
Eq. (3-24).

EXAMPLE 3-5

Solution

y Compression
3 ¢ Neutral axis, Centroidal axis
Tension

neutral axes of all cross sections, is called the neutral plane. Elements of the beam
coincident with this plane have zero stress. The location of the neutral axis with
respect to the cross section is coincident with the centroidal axis of the cross section.
The bending stress varies linearly with the distance from the neutral axis, y, and is
given by
My

oy = (3-24)
1
where [ is the second-area moment about the z axis. That is,
I = / y*dA (3-25)

The stress distribution given by Eq. (3—24) is shown in Fig. 3—14. The maximum magni-
tude of the bending stress will occur where y has the greatest magnitude. Designating o,x
as the maximum magnitude of the bending stress, and ¢ as the maximum magnitude of y

M
Omax = TC (3_260)

Equation (3—24) can still be used to ascertain whether o,y is tensile or compressive.
Equation (3-26a) is often written as

M
Omax = — (3_26b)
Z

where Z = I/c is called the section modulus.

A beam having a T section with the dimensions shown in Fig. 3—15 is subjected to a bend-
ing moment of 1600 N - m, about the negative z axis, that causes tension at the top surface.
Locate the neutral axis and find the maximum tensile and compressive bending stresses.

Dividing the T section into two rectangles, numbered 1 and 2, the total area is
A = 12(75) + 12(88) = 1956 mm?. Summing the area moments of these rectangles
about the top edge, where the moment arms of areas 1 and 2 are 6 mm and (12 +
88/2) = 56 mm respectively, we have

1956¢; = 12(75)(6) + 12(88)(56)
and hence ¢; = 32.99 mm. Therefore ¢, = 100 — 32.99 = 67.01 mm.
Next we calculate the second moment of area of each rectangle about its own cen-
troidal axis. Using Table A—18, we find for the top rectangle

1 1
I, = —bh® = —(75)12° = 1.080 x 10* mm*
12 12



Figure 3-15

Dimensions in millimeters.

Answer

Answer
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NP
For the bottom rectangle, we have
1 3 5 4
I = 5(12)88* = 6.815 x 10° mm
We now employ the parallel-axis theorem to obtain the second moment of area of the
composite figure about its own centroidal axis. This theorem states

I, = I, + Ad?

where /., is the second moment of area about its own centroidal axis and /, is the sec-
ond moment of area about any parallel axis a distance d removed. For the top rectan-
gle, the distance is

dy =32.99 — 6 =26.99 mm

and for the bottom rectangle,
88

Using the parallel-axis theorem for both rectangles, we now find that
I =[1.080 x 10* + 12(75)26.99%] + [6.815 x 10° + 12(88)23.01%]
= 1.907 x 10° mm*

Finally, the maximum tensile stress, which occurs at the top surface, is found to be

Me;  1600(32.99)1073

= = 27.68(10%) Pa = 27.68 MP
i 1.907(10-5) (10%) Pa :

o =

Similarly, the maximum compressive stress at the lower surface is found to be

Mc; _ 1600(67.01)107

= = —56.22(10°) Pa = —56.22 MP.
i 1.907(10-5) (10°) Pa 4

o = —
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EXAMPLE 3-6

Figure 3-16

(a) Beam loaded in two
planes; (b) loading and
bending-moment diagrams
in xy plane; (c) loading and
bending-moment diagrams

in xz plane.

Two-Plane Bending

Quite often, in mechanical design, bending occurs in both xy and xz planes. Considering
cross sections with one or two planes of symmetry only, the bending stresses are given by
M,y Mz

== : 3-27
Ox LT 1, (3-27)

where the first term on the right side of the equation is identical to Eq. (3-24), M, is
the bending moment in the xz plane (moment vector in y direction), z is the distance
from the neutral y axis, and I, is the second area moment about the y axis.

For noncircular cross sections, Eq. (3-27) is the superposition of stresses caused
by the two bending moment components. The maximum tensile and compressive bend-
ing stresses occur where the summation gives the greatest positive and negative stresses,
respectively. For solid circular cross sections, all lateral axes are the same and the plane
containing the moment corresponding to the vector sum of M, and M, contains the
maximum bending stresses. For a beam of diameter d the maximum distance from the
neutral axis is d/2, and from Table A-18, I = nd“/ 64. The maximum bending stress for
a solid circular cross section is then

Me (M2+M)'2d/2) 32

= — = (M?+ M>'? 3-28
om = 7d* /64 was My T M) (3-28)

As shown in Fig. 3—16a, beam OC is loaded in the xy plane by a uniform load of
50 1bf/in, and in the xz plane by a concentrated force of 100 Ibf at end C. The beam is
8 in long.

Y y

‘ 50 Ibf/in

1A02222222222277 SN
o ©
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Sin 0 x
x /
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—1600 —

@ (b)

100 Ibf

800 Ibf-in

—x
B fe
& 100 1bf
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0
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(a) For the cross section shown determine the maximum tensile and compressive
bending stresses and where they act.

(b) If the cross section was a solid circular rod of diameter, d = 1.25 in, determine
the magnitude of the maximum bending stress.

(a) The reactions at O and the bending-moment diagrams in the xy and xz planes are
shown in Figs. 3—16b and c, respectively. The maximum moments in both planes occur
at O where

1
(M)o = —5(50)82 = —1600 Ibf-in (M,)o = 100(8) = 800 Ibf-in
The second moments of area in both planes are

1 1
I, = E(0.75)1.53 =0.2109in* I, = E(1.5)0.753 =0.05273in*
The maximum tensile stress occurs at point A, shown in Fig. 3—16a, where the maxi-

mum tensile stress is due to both moments. At A, y4 = 0.75 in and z4 = 0.375 in. Thus,
from Eq. (3-27)

—1600(0.75)  800(0.375) . .
_ =11 — 1138k
()4 02109 005273 380psi = 11.38 kpsi

The maximum compressive bending stress occurs at point B where, yg = —0.75 in and
zp = —0.375 in. Thus

—1600(—0.75)  800(—0.375
( ) ( ) _ _11380psi = —11.38 kpsi
0.2109 0.05273

(Gx)B = -

(b) For a solid circular cross section of diameter, d = 1.25 in, the maximum bending
stress at end O is given by Eq. (3-28) as

32

o — 1/2
" (1.25)3

[800% + (—1600)*] "~ = 9329 psi = 9.329 kpsi

Beams with Asymmetrical Sections*

The bending stress equations, given by Eqs. (3—24) and (3-27), can also be applied to
beams having asymmetrical cross sections, provided the planes of bending coincide
with the area principal axes of the section. The method for determining the orientation
of the area principal axes and the values of the corresponding principal second-area
moments can be found in any statics book. If a section has an axis of symmetry, that
axis and its perpendicular axis are the area principal axes.

For example, consider a beam in bending, using an equal leg angle as shown in
Table A—6. Equation (3—27) cannot be used if the bending moments are resolved about
axis 1-1 and/or axis 2-2. However, Eq. (3—27) can be used if the moments are resolved

“For further discussion, see Sec. 5.3, Richard G. Budynas, Advanced Strength and Applied Stress Analysis,
2nd ed.,McGraw-Hill, New York, 1999.
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about axis 3-3 and its perpendicular axis (let us call it, say, axis 4-4). Note, for this
cross section, axis 4—4 is an axis of symmetry. Table A—6 is a standard table, and for
brevity, does not directly give all the information needed to use it. The orientation of
the area principal axes and the values of I, ;, I3 3, and 1,4 are not given because they
can be determined as follows. Since the legs are equal, the principal axes are oriented
+45° from axis 1-1, and I, , = I;_;. The second-area moment I5_3 is given by

L3 = A(ks_3)* (a)

where k3_3 is called the radius of gyration. The sum of the second-area moments for a
cross section is invariant, so I1_; + I,y = I33 + I4 4. Thus, 14 4 1s given by

Iiy=25L_1—-13 (b)

where I, » = I,_;. For example, consider a 3 X 3 X % angle. Using Table A—6 and Egs.
(@) and (b), I3 = 1.44 (0.592)> = 0.505 in*, and I, 4 = 2 (1.24) — 0.505 = 1.98 in*.

Shear Stresses for Beams in Bending

Most beams have both shear forces and bending moments present. It is only occasion-
ally that we encounter beams subjected to pure bending, that is to say, beams having
zero shear force. The flexure formula is developed on the assumption of pure bending.
This is done, however, to eliminate the complicating effects of shear force in the devel-
opment. For engineering purposes, the flexure formula is valid no matter whether a
shear force is present or not. For this reason, we shall utilize the same normal bending-
stress distribution [Egs. (3—24) and (3-26)] when shear forces are also present.

In Fig. 3—-17a we show a beam segment of constant cross section subjected to a
shear force V and a bending moment M at x. Because of external loading and V, the
shear force and bending moment change with respect to x. At x 4+ dx the shear force
and bending moment are V + dV and M 4 d M, respectively. Considering forces in the
x direction only, Fig. 3—17b shows the stress distribution o, due to the bending
moments. If dM is positive, with the bending moment increasing, the stresses on the
right face, for a given value of y, are larger in magnitude than the stresses on the left
face. If we further isolate the element by making a slice at y = y; (see Fig. 3—17b), the
net force in the x direction will be directed to the left with a value of

/C(dM)ydA
w1

i
as shown in the rotated view of Fig. 3—17¢. For equilibrium, a shear force on the bottom
face, directed to the right, is required. This shear force gives rise to a shear stress t,
where, if assumed uniform, the force is b dx. Thus

cdM
thdx = @My

dA (a)
i

The term dM/I can be removed from within the integral and b dx placed on the right

side of the equation; then, from Eq. (3-3) with V = dM /dx, Eq. (a) becomes

V c
T=— dA 3-29
), y (3-29)
In this equation, the integral is the first moment of the area A" with respect to the neu-
tral axis (see Fig. 3—17¢). This integral is usually designated as Q. Thus
0= ydA =3 A (3-30)

Vi
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Figure 3-17

Beam section isolation. Note:
Only forces shown in x
direction on dx element in (b).

(b)
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where, for the isolated area y; to ¢, y’ is the distance in the y direction from the neutral
plane to the centroid of the area A’. With this, Eq. (3-29) can be written as
|44

T = 7 (3-31)

This stress is known as the transverse shear stress. It is always accompanied with bend-
ing stress.

In using this equation, note that b is the width of the section at y = y;. Also, [ is
the second moment of area of the entire section about the neutral axis.

Because cross shears are equal, and area A’ is finite, the shear stress T given by
Eq. (3-31) and shown on area A’ in Fig. 3—17¢ occurs only at y = y;. The shear stress
on the lateral area varies with y, normally maximum at y = 0 (where y’A” is maximum)
and zero at the outer fibers of the beam where A" = 0.

The shear stress distribution in a beam depends on how Q/b varies as a function
of y;. Here we will show how to determine the shear stress distribution for a beam with
a rectangular cross section and provide results of maximum values of shear stress for
other standard cross sections. Figure 3—18 shows a portion of a beam with a rectangu-
lar cross section, subjected to a shear force V and a bending moment M. As a result of
the bending moment, a normal stress o is developed on a cross section such as A-A,
which is in compression above the neutral axis and in tension below. To investigate the
shear stress at a distance y; above the neutral axis, we select an element of area dA at
a distance y above the neutral axis. Then, dA = bdy, and so Eq. (3-30) becomes

c c b 2¢ b
0= [ yaa=b [ yay="3] =2 (-3 (b)
N1 Y1 2 y 2
) Y1
Substituting this value for Q into Eq. (3-31) gives
Voo 2
= — 3-32
T 2] ( )’1) ( )

This is the general equation for shear stress in a rectangular beam. To learn something

about it, let us make some substitutions. From Table A—18, the second moment of area

for a rectangular section is = bh*®/12; substituting & = 2c and A = bh = 2bc gives
Ac?

=3 a

1
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Figure 3-18

Transverse shear stresses in a
rectangular beam.
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If we now use this value of I for Eq. (3—32) and rearrange, we get

3V 2
r=o <1 - i—;) (3-33)

We note that the maximum shear stress exists when y; = 0, which is at the bending neu-
tral axis. Thus

L)%

max — A . -34
T 7A (3-34)

for a rectangular section. As we move away from the neutral axis, the shear stress
decreases parabolically until it is zero at the outer surfaces where y; = £c, as shown
in Fig. 3—18c¢. Horizontal shear stress is always accompanied by vertical shear stress
of the same magnitude, and so the distribution can be diagrammed as shown in
Fig. 3—-18d. Figure 3—18c shows that the shear t on the vertical surfaces varies with
y. We are almost always interested in the horizontal shear, T in Fig. 3—18d, which is
nearly uniform over dx with constant y = y;. The maximum horizontal shear occurs
where the vertical shear is largest. This is usually at the neutral axis but may not be
if the width b is smaller somewhere else. Furthermore, if the section is such that b
can be minimized on a plane not horizontal, then the horizontal shear stress occurs
on an inclined plane. For example, with tubing, the horizontal shear stress occurs on
a radial plane and the corresponding “vertical shear” is not vertical, but tangential.

The distributions of transverse shear stresses for several commonly used cross sec-
tions are shown in Table 3-2. The profiles represent the VQ/Ib relationship, which is a
function of the distance y from the neutral axis. For each profile, the formula for the
maximum value at the neutral axis is given. Note that the expression given for the
I beam is a commonly used approximation that is reasonable for a standard I beam with
a thin web. Also, the profile for the I beam is idealized. In reality the transition from the
web to the flange is quite complex locally, and not simply a step change.
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Formulas for Maximum
Transverse Shear Stress
from VQ/Ib
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Rectangular Hollow, thin-walled round

v av - LV
E e =3y % ™ A

Structural I beam (thin-walled)

Circular

It is significant to observe that the transverse shear stress in each of these common
cross sections is maximum on the neutral axis, and zero on the outer surfaces. Since this
is exactly the opposite of where the bending and torsional stresses have their maximum
and minimum values, the transverse shear stress is often not critical from a design
perspective.

Let us examine the significance of the transverse shear stress, using as an example
a cantilever beam of length L, with rectangular cross section b X h, loaded at the free end
with a transverse force F. At the wall, where the bending moment is the largest, at a dis-
tance y from the neutral axis, a stress element will include both bending stress and
transverse shear stress. In Sec. 5—4 it will be shown that a good measure of the com-
bined effects of multiple stresses on a stress element is the maximum shear stress.
Inserting the bending stress (My/I) and the transverse shear stress (VQ/Ib) into the
maximum shear stress equation, Eq. (3—14), we obtain a general equation for the max-
imum shear stress in a cantilever beam with a rectangular cross section. This equation
can then be normalized with respect to L/h and y/c, where c is the distance from the
neutral axis to the outer surface (h/2), to give

2 3F
i =/ (3) + 2= 24 20702+ [1 - )02 (d)

To investigate the significance of transverse shear stress, we plot 7,,,x as a function
of L/h for several values of y/c, as shown in Fig. 3—19. Since F and b appear only as
linear multipliers outside the radical, they will only serve to scale the plot in the verti-
cal direction without changing any of the relationships. Notice that at the neutral axis
where y/c = 0, Tmax 1s constant for any length beam, since the bending stress is zero at
the neutral axis and the transverse shear stress is independent of L. On the other hand,
on the outer surface where y/c = 1, tmax increases linearly with L/h because of the
bending moment. For y/c between zero and one, T, is nonlinear for low values of L/,
but behaves linearly as L/h increases, displaying the dominance of the bending stress
as the moment arm increases. We can see from the graph that the critical stress element
(the largest value of t,x) will always be either on the outer surface (y/c = 1) or at the
neutral axis (y/c = 0), and never between. Thus, for the rectangular cross section, the
transition between these two locations occurs at L/h = 0.5 where the line for y/c = 1
crosses the horizontal line for y/c = 0. The critical stress element is either on the outer
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Figure 3-19

Plot of maximum shear stress
for a cantilever beam,
combining the effects of
bending and transverse shear
stresses.

EXAMPLE 3-7

Solution
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surface where the transverse shear is zero, or if L/h is small enough, it is on the neutral
axis where the bending stress is zero.

The conclusions drawn from Fig. 3—19 are generally similar for any cross section
that does not increase in width farther away from the neutral axis. This notably includes
solid round cross sections, but not I beams or channels. Care must be taken with I beams
and channels that have thin webs that extend far enough from the neutral axis that the
bending and shear may both be significant on the same stress element (See Ex. 3—7). For
any common cross section beam, if the beam length to height ratio is greater than 10, the
transverse shear stress is generally considered negligible compared to the bending stress
at any point within the cross section.

A beam 12 in long is to support a load of 488 Ibf acting 3 in from the left support, as
shown in Fig. 3-20a. The beam is an I beam with the cross-sectional dimensions
shown. To simplify the calculations, assume a cross section with square corners, as
shown in Fig. 3-20c. Points of interest are labeled (a, b, ¢, and d) at distances y from
the neutral axis of 0 in, 1.240 in, 1.240" in, and 1.5 in (Fig. 3-20c¢). At the critical
axial location along the beam, find the following information.

(a) Determine the profile of the distribution of the transverse shear stress, obtain-
ing values at each of the points of interest.

(b) Determine the bending stresses at the points of interest.

(c) Determine the maximum shear stresses at the points of interest, and compare them.

First, we note that the transverse shear stress is not likely to be negligible in this case
since the beam length to height ratio is much less than 10, and since the thin web and
wide flange will allow the transverse shear to be large. The loading, shear-force, and
bending-moment diagrams are shown in Fig. 3-20b. The critical axial location is at
x = 3~ where the shear force and the bending moment are both maximum.

(a) We obtain the area moment of inertia / by evaluating / for a solid 3.0-in X 2.33-in
rectangular area, and then subtracting the two rectangular areas that are not part of the
cross section.

;2396000 |:(1.08)(2.48)3

=2.50 in*
12 12
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| Figure 3-20 Y
488 Ibf
3in A 0.260 in

ol "~ 1 ° 3.00 in 0.170 in

1 / <233 in—>]
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.
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Finding Q at each point of interest using Eq. (3—30) gives

0.260 1.24 .
0, = (124 + =5 ) [(2.33)(0.260)] + <T [(1.24)(0.170)] = 0.961 in’

Op=0c= (1.24 + @) [(2.33)(0.260)] = 0.830 in®

0. = (1.5)(0) = 0 in®

Applying Eq. (3-31) at each point of interest, with V and / constant for each point, and
b equal to the width of the cross section at each point, shows that the magnitudes of the
transverse shear stresses are

VO, (366)(0.961)

Answer 7, ™ (2.50)(0.170) 828 psi
VO,  (366)(0.830) ,
T = = =715 psi
1b, (2.50)(0.170)
= VO, _ (366)(0.830) — 52.2 psi
b, (2.50)(2.33)
VO, (366)(0) 0 psi
= = psi

T by (2500233)
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Answer

Answer

The magnitude of the idealized transverse shear stress profile through the beam
depth will be as shown in Fig. 3-20d.
(b) The bending stresses at each point of interest are

_ My, _ (1098)(0) _

a - =0
%= 2.50 B
M 1098)(1.24
Op = 0c = — yb=—( i )=—545psi
I 2.50
M 1098)(1.50
oy M __A0®AS)

1 2.50

(c) Now at each point of interest, consider a stress element that includes the bend-
ing stress and the transverse shear stress. The maximum shear stress for each stress
element can be determined by Mohr’s circle, or analytically by Eq. (3—-14) with
o, =0,

\D
Tmax = (E) + 12

Thus, at each point

Tmax,a = V 0+ (828)2 = 828 pSi

—545\°

Tmax,b = \/<T) =P (715)2 =765 pSl
—545\?

Tmax,c — \/<T) + (522)2 =277 pSi

659 ,
Tmax,d — + 0 =330 ps1

2

Interestingly, the critical location is at point a where the maximum shear stress is the
largest, even though the bending stress is zero. The next critical location is at point b in
the web, where the thin web thickness dramatically increases the transverse shear stress
compared to points ¢ or d. These results are counterintuitive, since both points a and b
turn out to be more critical than point d, even though the bending stress is maximum at
point d. The thin web and wide flange increase the impact of the transverse shear stress.
If the beam length to height ratio were increased, the critical point would move from
point a to point b, since the transverse shear stress at point a would remain constant,
but the bending stress at point b would increase. The designer should be particularly
alert to the possibility of the critical stress element not being on the outer surface with
cross sections that get wider farther from the neutral axis, particularly in cases with
thin web sections and wide flanges. For rectangular and circular cross sections, how-
ever, the maximum bending stresses at the outer surfaces will dominate, as was shown
in Fig. 3-19.
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Torsion

Any moment vector that is collinear with an axis of a mechanical element is called a
torque vector, because the moment causes the element to be twisted about that axis. A
bar subjected to such a moment is also said to be in torsion.

As shown in Fig. 3—21, the torque T applied to a bar can be designated by drawing
arrows on the surface of the bar to indicate direction or by drawing torque-vector arrows
along the axes of twist of the bar. Torque vectors are the hollow arrows shown on the
x axis in Fig. 3-21. Note that they conform to the right-hand rule for vectors.

The angle of twist, in radians, for a solid round bar is

Tl
0=— (3-35)
GJ
where T = torque
| = length
G = modulus of rigidity
J = polar second moment of area

Shear stresses develop throughout the cross section. For a round bar in torsion,
these stresses are proportional to the radius p and are given by

T
r=22 (3-36)
7

Designating r as the radius to the outer surface, we have

Tr
Tmax = 7 (3_37)
The assumptions used in the analysis are:
e The bar is acted upon by a pure torque, and the sections under consideration are
remote from the point of application of the load and from a change in diameter.

* The material obeys Hooke’s law.

* Adjacent cross sections originally plane and parallel remain plane and parallel after
twisting, and any radial line remains straight.
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1.00

The last assumption depends upon the axisymmetry of the member, so it does not
hold true for noncircular cross sections. Consequently, Eqgs. (3-35) through (3-37)
apply only to circular sections. For a solid round section,

wd*

J="=
32

(3-38)

where d is the diameter of the bar. For a hollow round section,

T

J
32

(@} —a)

0 (3-39)
where the subscripts o and i refer to the outside and inside diameters, respectively.

There are some applications in machinery for noncircular cross section members
and shafts where a regular polygonal cross section is useful in transmitting torque to a
gear or pulley that can have an axial change in position. Because no key or keyway is
needed, the possibility of a lost key is avoided. The development of equations for stress
and deflection for torsional loading of noncircular cross sections can be obtained from
the mathematical theory of elasticity. In general, the shear stress does not vary linearly
with the distance from the axis, and depends on the specific cross section. In fact, for a
rectangular section bar the shear stress is zero at the corners where the distance from
the axis is the largest. The maximum shearing stress in a rectangular b x ¢ section bar
occurs in the middle of the longest side b and is of the magnitude

_ T T (18
fmax = b be? b/c

where b is the width (longer side) and c is the thickness (shorter side). They can not be
interchanged. The parameter « is a factor that is a function of the ratio b/c as shown in
the following table.’ The angle of twist is given by

T
o=
Bb3G

(3-40)

(3-41)

where § is a function of b/c, as shown in the table.

1.50 1.75 2.00 2.50 3.00 4.00 6.00 8.00 10 00

0.208

0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 0.313 0.333

0.141

0.196 0.214 0.228 0.249 0.263 0.281 0.299 0.307 0.313 0.333

Equation (3—40) is also approximately valid for equal-sided angles; these can be con-
sidered as two rectangles, each of which is capable of carrying half the torque.®

It is often necessary to obtain the torque 7 from a consideration of the power and
speed of a rotating shaft. For convenience when U. S. Customary units are used, three
forms of this relation are

H— FV _ 2nTn _ Tn
T 33000 33000012) 63025

(3-42)

3S. Timoshenko, Strength of Materials, Part I, 3rd ed., D. Van Nostrand Company, New York, 1955, p. 290.

For other sections see W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed.,
McGraw-Hill, New York, 2002.
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| Figure 3-22
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where H = power, hp
T = torque, Ibf - in
n = shaft speed, rev/min
F = force, 1bf

V = velocity, ft/min

When SI units are used, the equation is

H=Tow (3-43)
where H = power, W
T = torque, N - m

o = angular velocity, rad/s

The torque T corresponding to the power in watts is given approximately by
H
T =9.55— (3-44)
n

where 7 is in revolutions per minute.

Figure 3-22 shows a crank loaded by a force F = 300 Ibf that causes twisting and
bending of a %-in—diameter shaft fixed to a support at the origin of the reference system.
In actuality, the support may be an inertia that we wish to rotate, but for the purposes
of a stress analysis we can consider this a statics problem.

(a) Draw separate free-body diagrams of the shaft AB and the arm BC, and com-
pute the values of all forces, moments, and torques that act. Label the directions of the
coordinate axes on these diagrams.

(b) Compute the maxima of the torsional stress and the bending stress in the arm
BC and indicate where these act.

(c) Locate a stress element on the top surface of the shaft at A, and calculate all the
stress components that act upon this element.

(d) Determine the maximum normal and shear stresses at A.
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Solution

Answer

Answer

Answer

| Figure 3-23

(a) The two free-body diagrams are shown in Fig. 3-23. The results are

At end C of arm BC: F = —300j 1bf, T¢c = —450k 1bf - in

Atend B of arm BC: F = 300j Ibf, My = 1200i Ibf - in, T; = 450k 1bf - in

At end B of shaft AB: F = —300j Ibf, T, = —1200i 1bf - in, M = —450k 1bf - in
At end A of shaft AB: F = 300j Ibf, M4 = 1950k 1bf - in, T4 = 1200i 1bf - in

(b) For arm BC, the bending moment will reach a maximum near the shaft at B.
If we assume this is 1200 Ibf - in, then the bending stress for a rectangular section
will be

M 6M 6(1200) : :
0§g=Sc =0 = —————— = 18400pS1= 18.4kps1
Ilc bh?  0.25(1.25)2
Of course, this is not exactly correct, because at B the moment is actually being trans-
ferred into the shaft, probably through a weldment.
For the torsional stress, use Eq. (3—43). Thus

T (5418 40 (5, 18 19 400 psi = 19.4 kpsi
Toax — —— — = = si = 19. si
be2 b/c) T 12500257 1.25/0.25 . .

This stress occurs at the middle of the lﬁ—in side.
(c) For a stress element at A, the bending stress is tensile and is

M 32M  32(1950) . .
— = =47 100 psi = 47.1 kpsi

Ox

T Y md® T 7(0.75)3
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Solution
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The torsional stress is

T 16T —16(1200) . .
_r_ _ — 14500 psi = —14.5 k
Je - 7l 7057 2 -

where the reader should verify that the negative sign accounts for the direction of 7,,.

(d) Point A is in a state of plane stress where the stresses are in the xz plane. Thus
the principal stresses are given by Eq. (3—13) with subscripts corresponding to the
X, Z axes.

The maximum normal stress is then given by

oy + 0, ax—azz >
n=—t B T

47.1+0 47.1 —0\*
_ ikl o +\/< ) 4 (—14.5)2 = 51.2 kpsi

2 2

The maximum shear stress at A occurs on surfaces different than the surfaces contain-
ing the principal stresses or the surfaces containing the bending and torsional shear
stresses. The maximum shear stress is given by Eq. (3—14), again with modified sub-
scripts, and is given by

2 2
- 471-0 :
. \/(%) +12 = \/(T) + (—14.5)2 = 27.7 kpsi

The 1.5-in-diameter solid steel shaft shown in Fig. 3—24a is simply supported at the ends.
Two pulleys are keyed to the shaft where pulley B is of diameter 4.0 in and pulley C is of
diameter 8.0 in. Considering bending and torsional stresses only, determine the locations
and magnitudes of the greatest tensile, compressive, and shear stresses in the shaft.

Figure 3-24b shows the net forces, reactions, and torsional moments on the shaft.
Although this is a three-dimensional problem and vectors might seem appropriate, we
will look at the components of the moment vector by performing a two-plane analysis.
Figure 3—24c¢ shows the loading in the xy plane, as viewed down the z axis, where bend-
ing moments are actually vectors in the z direction. Thus we label the moment diagram
as M, versus x. For the xz plane, we look down the y axis, and the moment diagram is
M, versus x as shown in Fig. 3-24d.
The net moment on a section is the vector sum of the components. That is,

M= [M?}+ M2 (1)
Mg = /20002 + 80002 = 8246 Ibf - in
Mc = /40002 + 40002 = 5657 Ibf - in

At point B,

At point C,
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| Figure 3-24
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Thus the maximum bending moment is 8246 1bf - in and the maximum bending stress
at pulley B is
Md/2  32M  32(8246)
o = = =
wd*/64  nwd? 7 (1.53)

= 24 890 psi = 24.89 kpsi

The maximum torsional shear stress occurs between B and C and is

Td/2 16T  16(1600)
= =0 = VY
nd*/32  wd? (1.5%)

= 2414 psi = 2.414 kpsi

The maximum bending and torsional shear stresses occur just to the right of pulley
B at points E and F as shown in Fig. 3-24e. At point E, the maximum tensile stress will
be o} given by

2 2
24.89 24.89
Answer = % + (%) +12= S \/( > ) +2.4142 = 25.12 kpsi

At point F, the maximum compressive stress will be o, given by

2 2
= = —24.89 —24.89
Answer = Ta = (%) +12= 5~ \/( > ) +2.4142 = —25.12 kpsi

The extreme shear stress also occurs at E and F and is

+0\?2 +24.89\?
Answer il — \/(70) +12= \/( 5 ) +2.4142 = 12.68 kpsi

Closed Thin-Walled Tubes (t << r)”

In closed thin-walled tubes, it can be shown that the product of shear stress times thickness
of the wall t¢ is constant, meaning that the shear stress t is inversely proportional to the
wall thickness . The total torque 7 on a tube such as depicted in Fig. 3-25 is given by

T = /ttr ds = (tt) / rds =tt(2A,) =2A,tt

where A, is the area enclosed by the section median line. Solving for t gives

T
T =
2A,t

(3-45)

For constant wall thickness ¢, the angular twist (radians) per unit of length of the tube
0, is given by
TLﬂl

0, =
' 4GAL

(3-46)

7See Sec. 3-13, F. P. Beer, E. R. Johnston, and J. T. De Wolf, Mechanics of Materials, 5th ed., McGraw-Hill,
New York, 2009.
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Figure 3-25

The depicted cross section is
elliptical, but the section need
not be symmetrical nor of
constant thickness.

EXAMPLE 3-10

Solution

Answer

Answer

Figure 3-26

A rectangular steel tube
produced by welding.

Median line

where L, is the length of the section median line. These equations presume the buck-
ling of the tube is prevented by ribs, stiffeners, bulkheads, and so on, and that the
stresses are below the proportional limit.

A welded steel tube is 40 in long, has a %-in wall thickness, and a 2.5-in by 3.6-in
rectangular cross section as shown in Fig. 3-26. Assume an allowable shear stress of
11 500 psi and a shear modulus of 11.5(10°) psi.

(a) Estimate the allowable torque 7.

(b) Estimate the angle of twist due to the torque.
(a) Within the section median line, the area enclosed is

A = (2.5 —0.125)(3.6 — 0.125) = 8.253 in’
and the length of the median perimeter is
L, =2[2.5-0.125) + (3.6 — 0.125)] = 11.70 in
From Eq. (3—45) the torque T is
T =2A,,tt = 2(8.253)0.125(11 500) = 23730 1bf - in

(b) The angle of twist 6 from Eq. (3—46) is

T Mg 23 730(11.70)

0=6,= [ =
T 4GAZr T 4(115 x 106)(8.2532)(0.125)

(40) = 0.0284 rad = 1.62°

40 in
2.5in

L«—as in
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Figure 3-27

Some open thin-wall sections.
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Compare the shear stress on a circular cylindrical tube with an outside diameter of 1 in
and an inside diameter of 0.9 in, predicted by Eq. (3-37), to that estimated by
Eq. (3—45).

From Eq. (3-37),

Tr Tr 7(0.5)

T T ad—d) - manat—ooh - 80T

Tmax =

From Eq. (3—45),

T T

= = 14.108T
24, 2(70.952/4)0.05

T =

Taking Eq. (3-37) as correct, the error in the thin-wall estimate is —4.7 percent.

Open Thin-Walled Sections

When the median wall line is not closed, the section is said to be an open section. Fig-
ure 3—-27 presents some examples. Open sections in torsion, where the wall is thin, have
relations derived from the membrane analogy theory® resulting in:

3T
T =75 (3-47)

where 7 is the shear stress, G is the shear modulus, 6; is the angle of twist per unit
length, T is torque, and L is the length of the median line. The wall thickness is
designated c (rather than #) to remind you that you are in open sections. By study-
ing the table that follows Eq. (3—41) you will discover that membrane theory pre-
sumes b/c — oo. Note that open thin-walled sections in torsion should be avoided
in design. As indicated in Eq. (3—47), the shear stress and the angle of twist are
inversely proportional to ¢ and ¢, respectively. Thus, for small wall thickness,
stress and twist can become quite large. For example, consider the thin round tube
with a slit in Fig. 3-27. For a ratio of wall thickness of outside diameter of
c/d, = 0.1, the open section has greater magnitudes of stress and angle of twist by
factors of 12.3 and 61.5, respectively, compared to a closed section of the same
dimensions.

1O

8See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970, Sec. 109.

F————
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EXAMPLE 3-12

Solution

—>| |« 1in

Figure 3-28

The cross-section of a thin strip
of steel subjected to a torsional

moment 7.

A 12-in-long strip of steel is % in thick and 1 in wide, as shown in Fig. 3-28. If the
allowable shear stress is 11 500 psi and the shear modulus is 11.5(10°) psi, find the
torque corresponding to the allowable shear stress and the angle of twist, in degrees,
(a) using Eq. (3—47) and (b) using Egs. (3—40) and (3—41).

(a) The length of the median line is 1 in. From Eq. (3—47),

Lt (1)(1/8)11 500
3 3

Tl 11500(12)

~ Ge  11.5(109)(1/8)

T = = 59.90 Ibf - in

0 =0l = 0.0960 rad = 5.5°

A torsional spring rate k, can be expressed as 7/6:
k; = 59.90/0.0960 = 624 1bf - in/rad
(b) From Eq. (3—40),

Tnaxbc®  11500(1)(0.125)2

— — = 55.721bf - in
3+ 1.8/(b/c) 3+ 1.8/(1/0.125)

From Eq. (3—41), with b/c = 1/0.125 = 8§,

o Tl 55.72(12)
© Bbc3G T 0.307(1)0.1253(11.5)100

=0.0970 rad = 5.6°

ky =55.72/0.0970 = 574 1bf - in/rad

The cross section is not thin, where b should be greater than ¢ by at least a factor
of 10. In estimating the torque, Eq. (3—47) provides a value of 7.5 percent higher than
Eq. (3—40), and is 8.5 percent higher than when the table on page 102 is used.

Stress Concentration

In the development of the basic stress equations for tension, compression, bending, and
torsion, it was assumed that no geometric irregularities occurred in the member under
consideration. But it is quite difficult to design a machine without permitting some
changes in the cross sections of the members. Rotating shafts must have shoulders
designed on them so that the bearings can be properly seated and so that they will take
thrust loads; and the shafts must have key slots machined into them for securing pul-
leys and gears. A bolt has a head on one end and screw threads on the other end, both
of which account for abrupt changes in the cross section. Other parts require holes, oil
grooves, and notches of various kinds. Any discontinuity in a machine part alters the
stress distribution in the neighborhood of the discontinuity so that the elementary stress
equations no longer describe the state of stress in the part at these locations. Such dis-
continuities are called stress raisers, and the regions in which they occur are called
areas of stress concentration. Stress concentrations can also arise from some irregular-
ity not inherent in the member, such as tool marks, holes, notches, grooves, or threads.



Figure 3-29

Thin plate in tension or simple
compression with a transverse
central hole. The net tensile
force is F = o wt, where t is
the thickness of the plate. The
nominal stress is given by

F w
Twodr  w-d°

0]
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A theoretical, or geometric, stress-concentration factor K; or K is used to relate
the actual maximum stress at the discontinuity to the nominal stress. The factors are
defined by the equations

0']'\’lfiX Tmax

Kt = Kts =
00 7o

(3-48)

where K, is used for normal stresses and K, for shear stresses. The nominal stress o or
79 is the stress calculated by using the elementary stress equations and the net area, or
net cross section. Sometimes the gross cross section is used instead, and so it is always
wise to double check the source of K, or K;; before calculating the maximum stress.

The stress-concentration factor depends for its value only on the geometry of the
part. That is, the particular material used has no effect on the value of K;. This is why
it is called a theoretical stress-concentration factor.

The analysis of geometric shapes to determine stress-concentration factors is a
difficult problem, and not many solutions can be found. Most stress-concentration
factors are found by using experimental techniques.” Though the finite-element
method has been used, the fact that the elements are indeed finite prevents finding the
true maximum stress. Experimental approaches generally used include photoelasticity,
grid methods, brittle-coating methods, and electrical strain-gauge methods. Of course,
the grid and strain-gauge methods both suffer from the same drawback as the finite-
element method.

Stress-concentration factors for a variety of geometries may be found in
Tables A—15 and A-16.

An example is shown in Fig. 3-29, that of a thin plate loaded in tension where the
plate contains a centrally located hole.

In static loading, stress-concentration factors are applied as follows. In ductile
materials (e > 0.05), the stress-concentration factor is not usually applied to predict
the critical stress, because plastic strain in the region of the stress is localized and
has a strengthening effect. In brittle materials (e; < 0.05), the geometric stress-
concentration factor K; is applied to the nominal stress before comparing it with
strength. Gray cast iron has so many inherent stress raisers that the stress raisers intro-
duced by the designer have only a modest (but additive) effect.

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
d/w

9The best source book is W. D. Pilkey and D. F. Pilkey, Peterson’s Stress Concentration Factors, 3rd ed.,
John Wiley & Sons, New York, 2008.
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EXAMPLE 3-13

| Figure 3-30

Solution

Answer

Consider a part made of a ductile material and loaded by a gradually applied sta-
tic load such that the stress in an area of a stress concentration goes beyond the yield
strength. The yielding will be restricted to a very small region, and the permanent
deformation as well as the residual stresses after the load is released will be insignifi-
cant and normally can be tolerated. If yielding does occur, the stress distribution
changes and tends toward a more uniform distribution. In the region where yielding
occurs, there is little danger of fracture of a ductile material, but if the possibility of a
brittle fracture exists, the stress concentration must be taken seriously. Brittle fracture
is not just limited to brittle materials. Materials often thought of as being ductile can
fail in a brittle manner under certain conditions, e.g., any single application or combi-
nation of cyclic loading, rapid application of static loads, loading at low temperatures,
and parts containing defects in their material structures (see Sec. 5—12). The effects on
a ductile material of processing, such as hardening, hydrogen embrittlement, and
welding, may also accelerate failure. Thus, care should always be exercised when deal-
ing with stress concentrations.

For dynamic loading, the stress concentration effect is significant for both ductile
and brittle materials and must always be taken into account (see Sec. 6-10).

The 2-mm-thick bar shown in Fig. 3-30 is loaded axially with a constant force of 10 kN.
The bar material has been heat treated and quenched to raise its strength, but as a con-
sequence it has lost most of its ductility. It is desired to drill a hole through the center
of the 40-mm face of the plate to allow a cable to pass through it. A 4-mm hole is suf-
ficient for the cable to fit, but an 8-mm drill is readily available. Will a crack be more
likely to initiate at the larger hole, the smaller hole, or at the fillet?

Since the material is brittle, the effect of stress concentrations near the discontinuities
must be considered. Dealing with the hole first, for a 4-mm hole, the nominal stress is
F F 10 000

£ — — 139 MP
AT w—dy  (40—4)2 a

oy =

The theoretical stress concentration factor, from Fig. A—15-1, with d/w = 4/40 = 0.1,
is K; = 2.7. The maximum stress is

Omax = K00 = 2.7(139) = 380 MPa
Similarly, for an 8-mm hole,

F F 10 000
oy = —

A~ w—dy _ @0—8)2
With d/w = 8/40 = 0.2, then K, = 2.5, and the maximum stress is

= 156 MPa

1 mm rad
i -
40 mm O 34mm  |— 10kN
1 B e
I




Answer

Answer

Answer

Ly

Figure 3-31

A cylinder subjected to both
internal and external pressure.
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Omax = K,00 = 2.5(156) = 390 MPa

Though the stress concentration is higher with the 4-mm hole, in this case the increased
nominal stress with the 8-mm hole has more effect on the maximum stress.
For the fillet,

F 10000
oy = — =
OT AT 342

= 147 MPa

From Table A—15-5, D/d = 40/34 = 1.18, and r/d = 1/34 = 0.026. Then K, = 2.5.
Omax = K,00 = 2.5(147) = 368 MPa

The crack will most likely occur with the 8-mm hole, next likely would be the 4-mm
hole, and least likely at the fillet.

Stresses in Pressurized Cylinders

Cylindrical pressure vessels, hydraulic cylinders, gun barrels, and pipes carrying fluids
at high pressures develop both radial and tangential stresses with values that depend
upon the radius of the element under consideration. In determining the radial stress o,
and the tangential stress o,, we make use of the assumption that the longitudinal
elongation is constant around the circumference of the cylinder. In other words, a right
section of the cylinder remains plane after stressing.

Referring to Fig. 3-31, we designate the inside radius of the cylinder by r;, the out-
side radius by r,, the internal pressure by p;, and the external pressure by p,. Then it can
be shown that tangential and radial stresses exist whose magnitudes are'”

pir? — por? —r2r¥(po — pi)/r?

o; =
’ —r
2 24,22 2 (3-49)
_piry = pory, +171,(po — pi)/T
r— 2 2
r2 —r;
As usual, positive values indicate tension and negative values, compression.
For the special case of p, = 0, Eq. (3-49) gives
2 2
ripi r
oy = 2,]712 (]—}——;)
r; —r; r
(3-50)

2 2

ripi 7‘0
o=—7—5(l-3
r2—r r

i

10See Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New
York, 1999, pp. 348-352.
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Figure 3-32

Distribution of stresses in a
thick-walled cylinder subjected
to internal pressure.

(a) Tangential stress (b) Radial stress
distribution distribution

The equations of set (3—50) are plotted in Fig. 3-32 to show the distribution of stresses
over the wall thickness. It should be realized that longitudinal stresses exist when the
end reactions to the internal pressure are taken by the pressure vessel itself. This stress
is found to be

2
o= I (3-51)

==
U ri

We further note that Eqs. (3—49), (3-50), and (3-51) apply only to sections taken a sig-
nificant distance from the ends and away from any areas of stress concentration.

Thin-Walled Vessels

When the wall thickness of a cylindrical pressure vessel is about one-tenth, or less, of
its radius, the radial stress that results from pressurizing the vessel is quite small com-
pared with the tangential stress. Under these conditions the tangential stress can be
obtained as follows: Let an internal pressure p be exerted on the wall of a cylinder of
thickness ¢ and inside diameter d;. The force tending to separate two halves of a unit
length of the cylinder is pd;. This force is resisted by the tangential stress, also called
the hoop stress, acting uniformly over the stressed area. We then have pd; = 2to;, or

pd

> (3-52)

(Gt)av =
This equation gives the average tangential stress and is valid regardless of the wall thick-
ness. For a thin-walled vessel an approximation to the maximum tangential stress is
pldi +1)
(0)max = —— (3—53)
2t
where d; + ¢ is the average diameter.
In a closed cylinder, the longitudinal stress o; exists because of the pressure upon
the ends of the vessel. If we assume this stress is also distributed uniformly over the
wall thickness, we can easily find it to be

o) = (3_54)

4¢
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Solution

Answer

Answer

Answer

load and Stress Analysis 115

An aluminum-alloy pressure vessel is made of tubing having an outside diameter of 8 in
and a wall thickness of  in.

(a) What pressure can the cylinder carry if the permissible tangential stress is
12 kpsi and the theory for thin-walled vessels is assumed to apply?

(b) On the basis of the pressure found in part (@), compute the stress components
using the theory for thick-walled cylinders.

(a) Here d; =8 —2(0.25) =7.51in,r; =7.5/2 =3.75 in, and r, = 8§/2 = 4 in. Then
t/r; = 0.25/3.75 = 0.067. Since this ratio is less than 0.1, the theory for thin-walled
vessels should yield safe results.

We first solve Eq. (3—53) to obtain the allowable pressure. This gives
2(0.25)(12)(10)*

= = 774 psi
7.5+ 0.25

_ 2t (01) max
- d,' +1t

(b) The maximum tangential stress will occur at the inside radius, and so we use
r = r; in the first equation of Eq. (3—50). This gives

' pi , 24 r? 424375
(O max = S5 <1+ r—2> = pie I 77T 12000 psi
r-—r r; —

2 : 2 - 42 — 3,752
Similarly, the maximum radial stress is found, from the second equation of Eq. (3—50)

to be
o, = —p;i = —774 psi

The stresses o; and o, are principal stresses, since there is no shear on these surfaces.
Note that there is no significant difference in the stresses in parts (a) and (b), and so the
thin-wall theory can be considered satisfactory for this problem.

Stresses in Rotating Rings

Many rotating elements, such as flywheels and blowers, can be simplified to a rotating
ring to determine the stresses. When this is done it is found that the same tangential and
radial stresses exist as in the theory for thick-walled cylinders except that they are
caused by inertial forces acting on all the particles of the ring. The tangential and radial
stresses so found are subject to the following restrictions:

* The outside radius of the ring, or disk, is large compared with the thickness r, > 10z.
* The thickness of the ring or disk is constant.

e The stresses are constant over the thickness.

The stresses are'!

(3-55)

bid, pp. 348-357.
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Figure 3-33

Notation for press and shrink
fits. (@) Unassembled parts;
(b) after assembly.

where r is the radius to the stress element under consideration, p is the mass density,
and w is the angular velocity of the ring in radians per second. For a rotating disk, use
r; = 0 in these equations.

Press and Shrink Fits

When two cylindrical parts are assembled by shrinking or press fitting one part upon
another, a contact pressure is created between the two parts. The stresses resulting from
this pressure may easily be determined with the equations of the preceding sections.

Figure 3-33 shows two cylindrical members that have been assembled with a shrink
fit. Prior to assembly, the outer radius of the inner member was larger than the inner radius
of the outer member by the radial interference §. After assembly, an interference contact
pressure p develops between the members at the nominal radius R, causing radial stresses
0, = —p in each member at the contacting surfaces. This pressure is given by'?

8
R 1 r§+R2+ n 1 Rz—i—ri2
— S5tV )+ — i
E, \r? —R? E; \ R?2 — ri2
where the subscripts o and i on the material properties correspond to the outer and

inner members, respectively. If the two members are of the same material with
E, =E; = E, v, = v;, the relation simplifies to

p= (3-5¢)

(r Rz)(Rz—riz)

For Egs. (3-56) or (3—57), diameters can be used in place of R, r;, and r,, provided § is
the diametral interference (twice the radial interference).

With p, Eq. (3—49) can be used to determine the radial and tangential stresses in
each member. For the inner member, p, = p and p; = 0, For the outer member, p, = 0
and p; = p. For example, the magnitudes of the tangential stresses at the transition
radius R are maximum for both members. For the inner member

(01)i

R*+rf
= p (3-58)

= SR
r=R R T

)
&'J

12[bid, pp. 348-354.



Table 3-3

Coefficients of Thermal
Expansion (Linear
Mean Coefficients

for the Temperature
Range 0-100°C)
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and, for the outer member

r:+ R?
(Ut)o = Prz R2 (3_59)
r=R o

Assumptions

It is assumed that both members have the same length. In the case of a hub that has been
press-fitted onto a shaft, this assumption would not be true, and there would be an increased
pressure at each end of the hub. It is customary to allow for this condition by employing a
stress-concentration factor. The value of this factor depends upon the contact pressure and
the design of the female member, but its theoretical value is seldom greater than 2.

Temperature Effects

When the temperature of an unrestrained body is uniformly increased, the body expands,
and the normal strain is

€ =€, =€, =a(AT) (3-60)

where « is the coefficient of thermal expansion and AT is the temperature change, in
degrees. In this action the body experiences a simple volume increase with the compo-
nents of shear strain all zero.

If a straight bar is restrained at the ends so as to prevent lengthwise expansion and
then is subjected to a uniform increase in temperature, a compressive stress will develop
because of the axial constraint. The stress is

o0 =—¢E =—a(AT)E (3-61)

In a similar manner, if a uniform flat plate is restrained at the edges and also sub-
jected to a uniform temperature rise, the compressive stress developed is given by the
equation

o= _2ADE (3-62)
1—v

The stresses expressed by Eqs. (3—-61) and (3-62) are called thermal stresses.
They arise because of a temperature change in a clamped or restrained member. Such
stresses, for example, occur during welding, since parts to be welded must be clamped
before welding. Table 3-3 lists approximate values of the coefficients of thermal
expansion.

Material Celsius Scale (°C~!)  Fahrenheit Scale (°F!)
Aluminum 23.9(10)"° 13.3(10)~°
Brass, cast 18.7(10)~°¢ 10.4(10)°
Carbon steel 10.8(10)~° 6.0(10)~°
Cast iron 10.6(10)~° 5.9(10)~°
Magnesium 25.2(10)° 14.0(10)°
Nickel steel 13.1(10)~° 7.3(10)~°
Stainless steel 17.3(10)~° 9.6(10)~°

Tungsten 4.3(10)~° 2.4(10)7¢
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3-18

Figure 3-34

Note that y is positive in the
direction toward the center of
curvature, point O.

Curved Beams in Bending'3

The distribution of stress in a curved flexural member is determined by using the
following assumptions:

* The cross section has an axis of symmetry in the plane of bending.

* Plane cross sections remain plane after bending.

* The modulus of elasticity is the same in tension as in compression.

We shall find that the neutral axis and the centroidal axis of a curved beam,
unlike the axes of a straight beam, are not coincident and also that the stress does
not vary linearly from the neutral axis. The notation shown in Fig. 3-34 is defined
as follows:

r, = radius of outer fiber

r; = radius of inner fiber

h = depth of section

¢, = distance from neutral axis to outer fiber

¢; = distance from neutral axis to inner fiber

r, = radius of neutral axis

r. = radius of centroidal axis

e = distance from centroidal axis to neutral axis

M = bending moment; positive M decreases curvature

Figure 3-34 shows that the neutral and centroidal axes are not coincident. The location
of the neutral axis with respect to the center of curvature O is given by the equation

A (3-63)

_ Centroidal
axis

&

Neutral axis

3For a complete development of the relations in this section, see Richard G. Budynas, Advanced Strength
and Applied Stress Analysis, 2nd ed., Mcgraw-Hill, New York, 1999, pp. 309-317.
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Furthermore, it can be shown that the stress distribution is given by

My

o=—2 (3-64)
Ae(ry — )

where M is positive in the direction shown in Fig. 3-34. The stress distribution given
by Eq. (3-64) is hyperbolic and not linear as is the case for straight beams. The critical

stresses occur at the inner and outer surfaces where y = ¢; and y = —c,, respectively,
and are
Mc; Mc
o = d o, = ——2 (3-65)
Aer; Aer,

These equations are valid for pure bending. In the usual and more general case, such as
a crane hook, the U frame of a press, or the frame of a C clamp, the bending moment is
due to a force acting at a distance from the cross section under consideration. Thus, the
cross section transmits a bending moment and an axial force. The axial force is located
at the centroidal axis of the section and the bending moment is then computed at this
location. The tensile or compressive stress due to the axial force, from Eq. (3-22), is then
added to the bending stresses given by Eqgs. (3—64) and (3—-65) to obtain the resultant
stresses acting on the section.

Plot the distribution of stresses across section A—A of the crane hook shown in
Fig. 3-35a. The cross section is rectangular, with b = 0.75 in and 4 = 4 in, and the load
is F = 5000 Ibf.

Since A = bh, we have dA = bdr and, from Eq. (3-63),

A bh h
r, = dA = %0 = Y (])
- Zdr In—
r /n r T

From Fig. 3-35b, we see thatr; =2 in, 7, =6 in,r, =4 in,and A = 3 in%. Thus, from
Eq. (1),

h 4 .
rn=7=—6=3.641m
In(r, /1) In 3

and the eccentricity is e = r, — r, = 4 — 3.641 = 0.359 in. The moment M is positive
and is M = Fr, = 5000(4) = 20 000 Ibf - in. Adding the axial component of stress to
Eq. (3-64) gives

F N My 5000 = (20000)(3.641 —r)
A Ae(r,—y) 3 3(0.359)r

o= (2)
Substituting values of » from 2 to 6 in results in the stress distribution shown in

Fig. 3-35¢. The stresses at the inner and outer radii are found to be 16.9 and —5.63 kpsi,
respectively, as shown.
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Figure 3-35

(a) Plan view of crane hook;
(b) cross section and notation;
(c) resulting stress distribution.
There is no stress concentration.

<2 in —> 0.75 in

6in

Section A-A
(@) (b)

o

16.9 kpsi

4 5 6
7

’ 3 W
—5.63 kpsi

(0)

Note in the hook example, the symmetrical rectangular cross section causes the
maximum tensile stress to be 3 times greater than the maximum compressive stress. If
we wanted to design the hook to use material more effectively we would use more
material at the inner radius and less material at the outer radius. For this reason, trape-
zoidal, T, or unsymmetric I, cross sections are commonly used. Sections most fre-
quently encountered in the stress analysis of curved beams are shown in Table 3—4.

Alternative Calculations for ¢

Calculating r, and r. mathematically and subtracting the difference can lead to large
errors if not done carefully, since r, and r, are typically large values compared to e.
Since e is in the denominator of Egs. (3—64) and (3—-65), a large error in e can lead to
an inaccurate stress calculation. Furthermore, if you have a complex cross section that
the tables do not handle, alternative methods for determining e are needed. For a quick
and simple approximation of e, it can be shown that'*

e =

1
oA (3-66)

“Ibid., pp. 317-321. Also presents a numerical method.



Table 3-4

Formulas for Sections
of Curved Beams

bo — bi + [(biro — bori)/h]In(ry/1i)

¢ rc:ri+§
h -
- T h
= ——
L . n o/ 1)
r; i
B Y
b, h b; +2b,
e =i
T . 3 bi + b,
- ¢ . )
L j r, "=

bic% + 2b,cicr + boc%
2(boca + bicy)

e =717

_ bic1 + byca
b In[(r; + ¢1)/ri)] + bo In[ro /(i + c1)]

I'n

re=ri+ R

R2

2<rc — rCZ—Rz)

Iy =

1 1
Eh% + Ezf(bi — D) +1o(by — 1) (h — 1,/2)
. J re=rit ti(bj — 1) 4+ to(by — t) + ht
¢ [N )
| ok B (b — 1) + 1o (by — 1) + hi,
BN 'n = ri+t To — Iy To
r b In +tln + by In
. ’ Ti it To — 1o
. A
" f— b, ——>
i
. 1 1
y° ‘ S+ 3120 = 1) + 10 (b = D = 1,/2)
t — 7
¥ e ht + (b= 1)(t; + 1)
> L]« > L]«
4 2 2
Y R I B S b—1)(t +1,) + ht
- n = . . _
. ru b <ln TN gy Lo )—l—tln Lo —fo
. ri ro — 1o ri t;
re r, + e
T
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EXAMPLE 3-16

Solution

Answer

Answer

This approximation is good for a large curvature where e is small with r, =r,..
Substituting Eq. (3-66) into Eq. (3-64), with r,, — y = r, gives

oM (3-67)

I r

If r, = r., which it should be to use Eq. (3—-67), then it is only necessary to calculate 7.,
and to measure y from this axis. Determining r. for a complex cross section can be done
easily by most CAD programs or numerically as shown in the before-mentioned refer-
ence. Observe that as the curvature increases, r — r., and Eq. (3—67) becomes the
straight-beam formulation, Eq. (3—24). Note that the negative sign is missing because y
in Fig. 3-34 is vertically downward, opposite that for the straight-beam equation.

Consider the circular section in Table 3—4 with . = 3 in and R = 1 in. Determine e by
using the formula from the table and approximately by using Eq. (3—66). Compare the
results of the two solutions.

Using the formula from Table 3—4 gives
R? 12
ry = = =2.91421 in

2(re = Jr2=R?) 2(33-437-1)
This gives an eccentricity of

e=r.—r,=3—-291421=0.08579 in

The approximate method, using Eq. (3—66), yields

1 7 RY4A R? 12 .
=————=—=——=0.08333in
reA  re(wrR?)  4r., 403)

This differs from the exact solution by —2.9 percent.

Contact Stresses

When two bodies having curved surfaces are pressed together, point or line contact
changes to area contact, and the stresses developed in the two bodies are three-
dimensional. Contact-stress problems arise in the contact of a wheel and a rail, in auto-
motive valve cams and tappets, in mating gear teeth, and in the action of rolling
bearings. Typical failures are seen as cracks, pits, or flaking in the surface material.

The most general case of contact stress occurs when each contacting body has a
double radius of curvature; that is, when the radius in the plane of rolling is different
from the radius in a perpendicular plane, both planes taken through the axis of the con-
tacting force. Here we shall consider only the two special cases of contacting spheres
and contacting cylinders.'> The results presented here are due to Hertz and so are fre-
quently known as Hertzian stresses.

15A more comprehensive presentation of contact stresses may be found in Arthur P. Boresi and Richard
J. Schmidt, Advanced Mechanics of Materials, 6th ed., Wiley, New York, 2003, pp. 589-623.



Figure 3-36

(a) Two spheres held in contact
by force F; (b) contact stress

has a hemispherical distribution
across contact zone diameter 2a.
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Spherical Contact

When two solid spheres of diameters d; and d, are pressed together with a force
F, a circular area of contact of radius « is obtained. Specifying E|, v; and E3, v, as the
respective elastic constants of the two spheres, the radius a is given by the equation

_ 3[3F(1=v]) JEi + (1 —v3) /Es (3-68)
T 1/d, + 1/d

The pressure distribution within the contact area of each sphere is hemispherical, as shown
in Fig. 3-36b. The maximum pressure occurs at the center of the contact area and is

3F

ma? (3-69)

Pmax =

Equations (3-68) and (3—-69) are perfectly general and also apply to the contact of
a sphere and a plane surface or of a sphere and an internal spherical surface. For a plane
surface, use d = co. For an internal surface, the diameter is expressed as a negative
quantity.

The maximum stresses occur on the z axis, and these are principal stresses. Their
values are

1 1
01 =03 = 0y = 0y = — Prax (1 ‘ tef‘k/—al)(lw)—i2
2<1+Z—2)
a
(3-70)
0_3_0___pmax
=0, = 3
z _
1+ (3-71)
a

(a) (b)
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Figure 3-37 a7

Magnitude of the stress
components below the surface
as a function of the maximum
pressure of contacting spheres.
Note that the maximum shear
stress is slightly below the
surface at z = 0.48a and is
approximately 0.3pmax. The
chart is based on a Poisson
ratio of 0.30. Note that the
normal stresses are all

[Ratio of stress to py,|

compressive stresses.

0 0.5a a 1.5a 2a 2.5a 3a

Distance from contact surface

These equations are valid for either sphere, but the value used for Poisson’s ratio
must correspond with the sphere under consideration. The equations are even more com-
plicated when stress states off the z axis are to be determined, because here the x and y
coordinates must also be included. But these are not required for design purposes,
because the maxima occur on the z axis.

Mohr’s circles for the stress state described by Eqgs. (3—70) and (3—71) are a point
and two coincident circles. Since o1 = 02, we have 71, = 0 and

o1 — O Oy — O
Tmax = T1/3 = T2/3 = 12 = 22 s (3-72)

Figure 3—-37 is a plot of Eqgs. (3-70), (3—71), and (3-72) for a distance to 3a below the
surface. Note that the shear stress reaches a maximum value slightly below the surface.
It is the opinion of many authorities that this maximum shear stress is responsible for
the surface fatigue failure of contacting elements. The explanation is that a crack orig-
inates at the point of maximum shear stress below the surface and progresses to the sur-
face and that the pressure of the lubricant wedges the chip loose.

Cylindrical Contact

Figure 3-38 illustrates a similar situation in which the contacting elements are two
cylinders of length [ and diameters d; and d,. As shown in Fig. 3-38b, the area of con-
tact is a narrow rectangle of width 2b and length [, and the pressure distribution is
elliptical. The half-width b is given by the equation

\/2_1: (1—v?) JEi + (1 —v2) JE, (3-73)

wl 1/dy +1/d,
The maximum pressure is

2F

Pmax = ﬁ (3_74)



Figure 3-38

(a) Two right circular cylinders
held in contact by forces F'
uniformly distributed along
cylinder length /. (b) Contact
stress has an elliptical
distribution across the

contact zone width 2b.
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Equations (3—73) and (3—74) apply to a cylinder and a plane surface, such as a rail, by mak-

ing d = oo for the plane surface. The equations also apply to the contact of a cylinder and

an internal cylindrical surface; in this case d is made negative for the internal surface.
The stress state along the z axis is given by the equations

/ 2 |z
Oy = —2Upmax ( 1 + ﬁ — E ) (3_75)
2
1+ 2% .
Oy = — Pmax —Z2 -2 E (3-76)
I+
03 = 0, = ——PmX (3-77)

V14 z2/b?

These three equations are plotted in Fig. 3-39 up to a distance of 3b below the surface.
For 0 <z <0.436b, 01 = 0y, and 1y = (01 — 03)/2 = (0 — 0;)/2. For z > 0.436b,
o1 = 0y, and Ty = (0y — 0;)/2. A plot of T,y is also included in Fig. 3-39, where the
greatest value occurs at z/b = 0.786 with a value of 0.300 ppax.

Hertz (1881) provided the preceding mathematical models of the stress field when the
contact zone is free of shear stress. Another important contact stress case is line of contact
with friction providing the shearing stress on the contact zone. Such shearing stresses are
small with cams and rollers, but in cams with flatfaced followers, wheel-rail contact, and
gear teeth, the stresses are elevated above the Hertzian field. Investigations of the effect on
the stress field due to normal and shear stresses in the contact zone were begun theoretically
by Lundberg (1939), and continued by Mindlin (1949), Smith-Liu (1949), and Poritsky
(1949) independently. For further detail, see the reference cited in Footnote 15, p. 122.
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Figure 3-39 *T

Magnitude of the stress
components below the surface
as a function of the maximum
pressure for contacting
cylinders. The largest value of
Tmax Occurs at z/b = 0.786. Its
maximum value is 0.30pyax.
The chart is based on a Poisson
ratio of 0.30. Note that all
normal stresses are

[Ratio of stress to p,,

compressive stresses.

0 0.5b b 1.5b 2b 2.5b 3b

Distance from contact surface

3-20  Summary

The ability to quantify the stress condition at a critical location in a machine element
is an important skill of the engineer. Why? Whether the member fails or not is assessed
by comparing the (damaging) stress at a critical location with the corresponding mate-
rial strength at this location. This chapter has addressed the description of stress.

Stresses can be estimated with great precision where the geometry is sufficiently
simple that theory easily provides the necessary quantitative relationships. In other
cases, approximations are used. There are numerical approximations such as finite
element analysis (FEA, see Chap. 19), whose results tend to converge on the true val-
ues. There are experimental measurements, strain gauging, for example, allowing infer-
ence of stresses from the measured strain conditions. Whatever the method(s), the goal
is a robust description of the stress condition at a critical location.

The nature of research results and understanding in any field is that the longer we
work on it, the more involved things seem to be, and new approaches are sought to
help with the complications. As newer schemes are introduced, engineers, hungry for
the improvement the new approach promises, begin to use the approach. Optimism
usually recedes, as further experience adds concerns. Tasks that promised to extend
the capabilities of the nonexpert eventually show that expertise is not optional.

In stress analysis, the computer can be helpful if the necessary equations are available.
Spreadsheet analysis can quickly reduce complicated calculations for parametric studies,
easily handling “what if” questions relating trade-offs (e.g., less of a costly material or
more of a cheaper material). It can even give insight into optimization opportunities.

When the necessary equations are not available, then methods such as FEA are
attractive, but cautions are in order. Even when you have access to a powerful FEA
code, you should be near an expert while you are learning. There are nagging questions
of convergence at discontinuities. Elastic analysis is much easier than elastic-plastic
analysis. The results are no better than the modeling of reality that was used to formulate
the problem. Chapter 19 provides an idea of what finite-element analysis is and how it
can be used in design. The chapter is by no means comprehensive in finite-element the-
ory and the application of finite elements in practice. Both skill sets require much expo-
sure and experience to be adept.
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Problems marked with an asterisk (*) are linked with problems in other chapters, as summarized

in Table 1-1 of Sec. 1-16, p. 24.

3-1* to Sketch a free-body diagram of each element in the figure. Compute the magnitude and direction
3-4 of each force using an algebraic or vector method, as specified.
HPNE R
]
100 1bf
y 100 Ibf - )
‘ l 1 10in
o e — ) ' [(® aU Y
o) B
LGin 12 in LIOin—PLflOin—PLfIOinJ
Problem 3-1* Problem 3-2
Problem 3-3 Problem 3-4
3-5 to For the beam shown, find the reactions at the supports and plot the shear-force and bending-
3-8 moment diagrams. Label the diagrams properly and provide values at all key points.

y

9kN 5kN
300 900 300

of 4
TRl
Problem 3-5

Dimensions in millimeters

I

Problem 3-7

S00Ibf 40 bfzin

il

A B

6 in 6 in

Problem 3-6

Hinge
40 Ibf/in

s i

A B AC D
1R2 Ry

Y a2 10m
Problem 3-8

X
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3-9
3-10
3-11
3-12
3-13

3-14

Problem 3-14

3-15

3-16

Repeat Prob. 3-5 using singularity functions exclusively (including reactions).
Repeat Prob. 3-6 using singularity functions exclusively (including reactions).
Repeat Prob. 3—7 using singularity functions exclusively (including reactions).
Repeat Prob. 3-8 using singularity functions exclusively (including reactions).

For a beam from Table A-9, as specified by your instructor, find general expressions for the
loading, shear-force, bending-moment, and support reactions. Use the method specified by your
instructor.

A beam carrying a uniform load is simply supported with the supports set back a distance a from
the ends as shown in the figure. The bending moment at x can be found from summing moments
to zero at section x:

1 1
ZM:M—l—Ew(cz—l—x)z— Ewlx:O
or
M= %[lx —(a+x)7]

where w is the loading intensity in Ibf/in. The designer wishes to minimize the necessary weight

of the supporting beam by choosing a setback resulting in the smallest possible maximum bend-

ing stress.

(a) If the beam is configured with a = 2.25 in, [ = 10 in, and w = 100 Ibf/in, find the magnitude
of the severest bending moment in the beam.

(b) Since the configuration in part (a) is not optimal, find the optimal setback «a that will result in
the lightest-weight beam.

— X
w(a + x)
w, Ibf/in

R REREN liillDM

Vv
f<— g —> La» T—x—»‘

! wl

2

For each of the plane stress states listed below, draw a Mohr’s circle diagram properly labeled,
find the principal normal and shear stresses, and determine the angle from the x axis to o;. Draw
stress elements as in Fig. 3—11¢ and d and label all details.

(a) oy =20kpsi, oy = —10kpsi, 7,y = 8kpsi cw

(b) o = 16kpsi, oy = 9kpsi, 7y, = Skpsi ccw

(¢) ox = 10kpsi, oy = 24 kpsi, 7y = 6kpsi ccw

(d) oy = —12Kkpsi, 0y = 22kpsi, T,y = 12kpsi cw

Repeat Prob. 3—15 for:

(a) ox = —8MPa, oy, = 7TMPa, 14y, = 6 MPa cw
(b) 0x =9MPa, 0y = —6MPa, 14y, = 3MPa cw
(¢) ox = —4MPa, oy = 12MPa, 1y, = 7MPa ccw
(d) ox = 6 MPa, 0y = —5MPa, 7, = 8 MPa ccw



3-20

3-21
3-22
3-23

3-24
3-25

3-26

3-27
3-28
3-29

3-30
3-31
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Repeat Prob. 3—15 for:

(a) ox = 12 kpsi, o, = 6Kpsi, Ty = 4kpsi cw

(b) ox = 30kpsi, oy = —10kpsi, Txy = 10kpsi ccw
(¢) ox = —10kpsi, oy, = 18kpsi, T,y = 9kpsi cw
(d) ox = 9kpsi, oy = 19kpsi, 7, = 8kpsi cw

For each of the stress states listed below, find all three principal normal and shear stresses. Draw
a complete Mohr’s three-circle diagram and label all points of interest.

(a) ox = —80MPa, oy = —30MPa, 1,, = 20MPacw

(b) 0x = 30MPa, 0y, = —60MPa, 7, = 30 MPacw

(¢) ox =40MPa, 0, = —30MPa, 7,, = 20 MPa ccw

(d) ox = 50MPa, 0, = —20MPa, 7, = 30 MPa cw

Repeat Prob. 3—18 for:

(a) ox = 10kpsi, oy = —4kpsi

(b) ox = 10kpsi, Ty = 4kpsi ccw

(¢) ox = —2kpsi, oy = —8Kpsi, Ty = 4kpsi cw
(d) ox = 10kpsi, o, = —30kpsi, T,y = 10kpsi ccw

The state of stress at a point is oy = —6, 0y = 18, 0, = =12, 7,, =9, 1y, =6, and 1 =
— 15 kpsi. Determine the principal stresses, draw a complete Mohr’s three-circle diagram, label-
ing all points of interest, and report the maximum shear stress for this case.

Repeat Prob. 3-20 with o = 20, 0y = 0, 0, = 20, 14y = 40, 7); = —204/2, and 7, = 0 kpsi.
Repeat Prob. 3-20 with o, = 10, 0y, = 40, 0, = 40, 7y, = 20, 7); = —40, and 7, = —20 MPa.

A %—in—diameter steel tension rod is 5 ft long and carries a load of 15 kip. Find the tensile stress,
the total deformation, the unit strains, and the change in the rod diameter.

Repeat Prob. 3-23 except change the rod to aluminum and the load to 3000 Ibf.

A 30-mm-diameter copper rod is 1 m long with a yield strength of 70 MPa. Determine the axial
force necessary to cause the diameter of the rod to reduce by 0.01 percent, assuming elastic defor-
mation. Check that the elastic deformation assumption is valid by comparing the axial stress to
the yield strength.

A diagonal aluminum alloy tension rod of diameter d and initial length / is used in a rectangular frame
to prevent collapse. The rod can safely support a tensile stress of o oy If d = 0.5 in, [ = 8 ft, and
oallow = 20 kpsi, determine how much the rod must be stretched to develop this allowable stress.

Repeat Prob. 3-26 with d = 16 mm, / = 3 m, and oyj10w = 140 MPa.
Repeat Prob. 3-26 with d = % in, [ = 10 ft, and ogap0w = 15 kpsi.

Electrical strain gauges were applied to a notched specimen to determine the stresses in the notch.
The results were €, = 0.0019 and €, = —0.00072. Find o, and o, if the material is carbon steel.

Repeat Prob. 3-29 for a material of aluminum.

The Roman method for addressing uncertainty in design was to build a copy of a design that was
satisfactory and had proven durable. Although the early Romans did not have the intellectual
tools to deal with scaling size up or down, you do. Consider a simply supported, rectangular-cross-
section beam with a concentrated load F, as depicted in the figure.
(a) Show that the stress-to-load equation is
obh?l
6ac

F =
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(b) Subscript every parameter with m (for model) and divide into the above equation. Introduce
a scale factor, s = a,,/a = b,,/b = c,,/c etc. Since the Roman method was to not “lean on”
the material any more than the proven design, set 0,, /o = 1. Express F,, in terms of the scale
factors and F, and comment on what you have learned.

Problem 3-31

3-32 Using our experience with concentrated loading on a simple beam, Prob. 3-31, consider a uni-
formly loaded simple beam (Table A—9-7).

(a) Show that the stress-to-load equation for a rectangular-cross-section beam is given by
_ 4obh?
3

w

where W = wl.

(b) Subscript every parameter with m (for model) and divide the model equation into the proto-
type equation. Introduce the scale factor s as in Prob. 3-31, setting o,, /0 = 1. Express W,
and w,, in terms of the scale factor, and comment on what you have learned.

3-33 The Chicago North Shore & Milwaukee Railroad was an electric railway running between the
cities in its corporate title. It had passenger cars as shown in the figure, which weighed 104.4 kip,
had 32-ft, 8-in truck centers, 7-ft-wheelbase trucks, and a coupled length of 55 ft, 3%in. Consider
the case of a single car on a 100-ft-long, simply supported deck plate girder bridge.

(a) What was the largest bending moment in the bridge?
(b) Where on the bridge was the moment located?

(c) What was the position of the car on the bridge?

(d) Under which axle is the bending moment?

e

»;i‘ ﬁ@ M\ = DCTOTe) :—',‘ - ‘:
CHICAGO NORTH SHORE A MILWAUKEE RAILROAD T [i )
anivdisliebs iloltofisiotes ik i - il
TICCICCIEIEI T T
} :J {__I gl N
B ]
752 ST 752 782
I

Selipes (LD [ el
VT e _// kw ! "://7“
1 32 ft, 8 in }'ﬁm
Drawing: LF, RGB

Scale in feet Coaches 752-776

o 10 15
I R )

AS ORIGINALLY BUILT

Problem 3-33
Copyright 1963 by Central Electric Railfans Association, Bull. 107, p. 145, reproduced by permission.
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3-34 For each section illustrated, find the second moment of area, the location of the neutral axis, and
the distances from the neutral axis to the top and bottom surfaces. Consider that the section is
transmitting a positive bending moment about the z axis, M,, where M, = 10 kip - in if the dimen-
sions of the section are given in ips units, or M, = 1.13 kN - m if the dimensions are in SI units.
Determine the resulting stresses at the top and bottom surfaces and at every abrupt change in the

cross section.

y

40 mm #74»‘

p 1
25 mm llin % in
= 25 mm
¥
B T | 1
2
25 mm _1_Y " AL
A ! 3in »‘ } 12in } F %in
(@) )
y
Problem 3-34
1 D
c
7 —- - 75 100
—| 125 125> |~
B A
N
25
50 ——|
100
(c) Dimensions in mm (d)
3-35 to For the beam illustrated in the figure, find the locations and magnitudes of the maximum tensile
3-38 bending stress due to M and the maximum shear stress due to V.
y 1
4500 N ‘ ) i
20 mm w =100 Ibf/in 1in
300 mm 1s0mm Ly P B
=] Ee=——"—51
AN A B/ | 0 8m A_/\ 8in B
40 mm 2in
Problem 3-35 Problem 3-36
y 3000 Ibf 1000 1bf y
% m
L,{ w =6 kN/mm
y
I~ 1A22222222222222222227
e Y O
O 5in_/\_ A 15in B _/\5inC 0 100 mm Q A 200mm B

Problem 3-37

2in

50 mm dia

Problem 3-38
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3-39

Problem 3-39

3-40*

Problem 3-40*

3-41
3-42

The figure illustrates a number of beam sections. Use an allowable bending stress of 12 kpsi for

steel and find the maximum safe uniformly distributed load that each beam can carry if the given

lengths are between simple supports.

(a) Standard 2-in x %—in tube, 48 in long

(b) Hollow steel tube 3 by 2 in, outside dimensions, formed from l%—in material and welded,
60 in long

(c) Steel angles 2% X 2% X % in and 60 in long

(d) A 6.0 Ibf/ft, 3-in steel channel, 60 in long

y y y
y
z z — +— z — } —
Ul
b

(a) (b) (c) (d)

I8}

A pin in a knuckle joint carrying a tensile load F deflects somewhat on account of this loading, mak-
ing the distribution of reaction and load as shown in part (b) of the figure. A common simplification
is to assume uniform load distributions, as shown in part (c). To further simplify, designers may con-
sider replacing the distributed loads with point loads, such as in the two models shown in parts d
ande. Ifa=0.5in, 5 =0.751in,d = 0.5 in, and F = 1000 Ibf, estimate the maximum bending stress
and the maximum shear stress due to V for the three simplified models. Compare the three models
from a designer’s perspective in terms of accuracy, safety, and modeling time.

l<—a b a—s|
F

Yy

j \ 1 1
(c)

|-
-
Y <7a+b*>T

(d)

Laﬂl; ‘]>a4 (b)
‘ F

(a) (e)

|

|

|
-

|

|

|
=

YIS

Repeat Prob. 3—40 for a = 6 mm, b = 18 mm, d = 12 mm, and F = 4 kN.

For the knuckle joint described in Prob. 3—40, assume the maximum allowable tensile stress in
the pin is 30 kpsi and the maximum allowable shearing stress in the pin is 15 kpsi. Use the model



3-43

Problem 3-43

3-44

Problem 3-44

3-45

Problem 3-45
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shown in part ¢ of the figure to determine a minimum pin diameter for each of the following

potential failure modes.

(a) Consider failure based on bending at the point of maximum bending stress in the pin.

(b) Consider failure based on the average shear stress on the pin cross section at the interface
plane of the knuckle and clevis.

(c) Consider failure based on shear at the point of the maximum transverse shear stress in the pin.

The figure illustrates a pin tightly fitted into a hole of a substantial member. A usual analysis
is one that assumes concentrated reactions R and M at distance / from F. Suppose the reaction
is distributed linearly along distance a. Is the resulting moment reaction larger or smaller than
the concentrated reaction? What is the loading intensity ¢? What do you think of using the
usual assumption?

For the beam shown, determine (@) the maximum tensile and compressive bending stresses,
(b) the maximum shear stress due to V, and (c¢) the maximum shear stress in the beam.

1800 Ibf lin

300 Ibffin — =

ap ol L e

AN
<10 in>{<

3in

lin}
30in4>( }.—.{
3in

Cross section (enlarged)

A cantilever beam with a 1-in-diameter round cross section is loaded at the tip with a trans-
verse force of 1000 1bf, as shown in the figure. The cross section at the wall is also shown, with
labeled points A at the top, B at the center, and C at the midpoint between A and B. Study the

Cross section at the wall
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3-46

3-47

3-48 and
3-49

3-50

significance of the transverse shear stress in combination with bending by performing the

following steps.

(a) Assume L = 10 in. For points A, B, and C, sketch three-dimensional stress elements, labeling
the coordinate directions and showing all stresses. Calculate magnitudes of the stresses on the
stress elements. Do not neglect transverse shear stress. Calculate the maximum shear stress
for each stress element.

(b) For each stress element in part (a), calculate the maximum shear stress if the transverse shear
stress is neglected. Determine the percent error for each stress element from neglecting the
transverse shear stress.

(c) Repeat the problem for L =4, 1, and 0.1 in. Compare the results and state any conclusions
regarding the significance of the transverse shear stress in combination with bending.

Consider a simply supported beam of rectangular cross section of constant width b and variable
depth A, so proportioned that the maximum stress o, at the outer surface due to bending is con-
stant, when subjected to a load F at a distance a from the left support and a distance ¢ from the
right support. Show that the depth / at location x is given by

6Fcx
h= 0<x<a
[bOmax

In Prob. 3-46, h — 0 as x — 0, which cannot occur. If the maximum shear stress T,,,x due to

direct shear is to be constant in this region, show that the depth % at location x is given by

3 Fc 3 FCGmax
= - — <x < -
2 [bTmax 7 7 8 Ibtl

max

The beam shown is loaded in the xy and xz planes.

(a) Find the yz components of the reactions at the supports.

(b) Plot the shear-force and bending-moment diagrams for the xy and xz planes. Label the dia-
grams properly and provide the values at key points.

(c) Determine the net shear-force and bending-moment at the key points of part (b).

(d) Determine the maximum tensile bending stress. For Prob. 3—48, use the cross section given in
Prob. 3-34, part (a). For Prob. 349, use the cross section given in Prob. 3-39, part (b).

600 Ibf

Problem 3-48 Problem 3-49

Two steel thin-wall tubes in torsion of equal length are to be compared. The first is of square cross
section, side length b, and wall thickness 7. The second is a round of diameter b and wall thick-
ness t. The largest allowable shear stress is 7, and is to be the same in both cases. How does the
angle of twist per unit length compare in each case?



3-51

Problem 3-51

3-52

Problem 3-52

3-53 to
3-55

3-56
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Consider a 1-in-square steel thin-walled tube loaded in torsion. The tube has a wall thickness
t= liﬁ in, is 36 in long, and has a maximum allowable shear stress of 12 kpsi. Determine the max-
imum torque that can be applied and the corresponding angle of twist of the tube.

(a) Assume that the internal radius at the corners r; = 0.

(b) Assume that the internal radius at the corners is more realistically r; = % in.

|
!

A 7

1in

The thin-walled open cross-section shown is transmitting torque 7. The angle of twist per unit
length of each leg can be determined separately using Eq. (3—47) and is given by
3T;
1 =
GL,'C?

where for this case, i = 1, 2, 3, and T; represents the torque in leg i. Assuming that the angle of
twist per unit length for each leg is the same, show that

GO 3 3
T = T Z Lic; and Tmax = GO Cmax
i=1

€

ailln Lo

el

Ly !

Using the results from Prob. 3-52, consider a steel section with Tajjow = 12 kpsi.
(a) Determine the torque transmitted by each leg and the torque transmitted by the entire section.
(b) Determine the angle of twist per unit length.

3-55 2 mm 20 mm 3 mm 30 mm 2 mm 2

Two 300-mm-long rectangular steel strips are placed together as shown. Using a maximum allow-
able shear stress of 80 MPa, determine the maximum torque and angular twist, and the torsional
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Problem 3-56

3-57

3-58
3-59

3-60

3-61

3-62

3-63

3-64

3-65

spring rate. Compare these with a single strip of cross section 30 mm by 4 mm. Solve the prob-
lem two ways: (a) using Eqgs. (3—40) and (3—41), and (b) using Eq. (3—47). Compare and discuss
your results

2 mm

4 mm

>|

Using a maximum allowable shear stress of 70 MPa, find the shaft diameter needed to transmit
40 kW when

(a) The shaft speed is 2500 rev/min.

(b) The shaft speed is 250 rev/min.

Repeat Prob. 3—57 with an allowable shear stress of 20 kpsi and a power of 50 hp.

Using an allowable shear stress of 50 MPa, determine the power that can be transmitted at 2000 rpm
through a shaft with a 30-mm diameter.

A 20-mm-diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is
not to exceed 110 MPa when one end is twisted through an angle of 15°, what must be the length
of the bar?

A 2-ft-long steel bar with a %—in diameter is to be used as a torsion spring. If the torsional stress

in the bar is not to exceed 30 kpsi, what is the maximum angle of twist of the bar?

A 40-mm-diameter solid steel shaft, used as a torque transmitter, is replaced with a hollow
shaft having a 40-mm OD and a 36-mm ID. If both materials have the same strength, what is
the percentage reduction in torque transmission? What is the percentage reduction in shaft
weight?

Generalize Prob. 3—62 for a solid shaft of diameter d replaced with a hollow shaft of the same
material with an outside diameter d, and an inside diameter that is a fraction of the outside diam-
eter, x X d, where x is any fraction between zero and one. Obtain expressions for percentage
reduction in torque transmission and percentage reduction in weight in terms of only x. Notice
that the length and diameter of the shaft, and the material, are not needed for this comparison.
Plot both results on the same axis for the range 0 < x < 1. From the plot, what is the approxi-
mate value of x to obtain the greatest difference between the percent decrease in weight and the
percent decrease in torque?

A hollow steel shaft is to transmit 4200 N - m of torque and is to be sized so that the torsional

stress does not exceed 120 MPa.

(a) If the inside diameter is 70 percent of the outside diameter, what size shaft should be used?
Use preferred sizes.

(b) What is the stress on the inside of the shaft when full torque is applied?

The figure shows an endless-belt conveyor drive roll. The roll has a diameter 120 mm and is

driven at 10 rev/min by a geared-motor source rated at 1.5 kW. Determine a suitable shaft diam-

eter dc for an allowable torsional stress of 80 MPa.

(a) What would be the stress in the shaft you have sized if the motor starting torque is twice the
running torque?

(b) Is bending stress likely to be a problem? What is the effect of different roll lengths B on
bending?
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y
d, ‘ dp d, de
Problem 3-65 i \ \
- - - - - : — - X
JA} B lA < C—>|
(a) (b)

3-66 The conveyer drive roll in the figure for Prob. 3—-65 is 5 in in diameter and is driven at 8 rev/min
by a geared-motor source rated at 1 hp. Find a suitable shaft diameter d- based on an allowable
torsional stress of 15 kpsi.

3-67 Consider two shafts in torsion, each of the same material, length, and cross-sectional area. One

shaft has a solid square cross section and the other shaft has a solid circular section.
(a) Which shaft has the greater maximum shear stress and by what percentage?
(b) Which shaft has the greater angular twist 6 and by what percentage?

3-68* to A countershaft carrying two V-belt pulleys is shown in the figure. Pulley A receives power from a
3-71* motor through a belt with the belt tensions shown. The power is transmitted through the shaft and
delivered to the belt on pulley B. Assume the belt tension on the loose side at B is 15 percent of
the tension on the tight side.
(a) Determine the tensions in the belt on pulley B, assuming the shaft is running at a constant
speed.
(b) Find the magnitudes of the bearing reaction forces, assuming the bearings act as simple
supports.
(c) Draw shear-force and bending-moment diagrams for the shaft. If needed, make one set for the
horizontal plane and another set for the vertical plane.
(d) At the point of maximum bending moment, determine the bending stress and the torsional
shear stress.
(e) At the point of maximum bending moment, determine the principal stresses and the maximum
shear stress.

‘ 18 in

250-mm dia.

400-mm dia.
14 -in dia.
10-in dia. 1800 N

Problem 3-68* Problem 3-69*
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Problem 3-70* Problem 3-71%
Dimensions in inches. Dimensions in millimeters.
3-72* to A gear reduction unit uses the countershaft shown in the figure. Gear A receives power from
g g p
3-73* another gear with the transmitted force F, applied at the 20° pressure angle as shown. The power

is transmitted through the shaft and delivered through gear B through a transmitted force Fj at

the pressure angle shown.

(a) Determine the force Fg, assuming the shaft is running at a constant speed.

(b) Find the magnitudes of the bearing reaction forces, assuming the bearings act as simple supports.

(c) Draw shear-force and bending-moment diagrams for the shaft. If needed, make one set for the
horizontal plane and another set for the vertical plane.

(d) At the point of maximum bending moment, determine the bending stress and the torsional
shear stress.

(e) At the point of maximum bending moment, determine the principal stresses and the maximum

shear stress.

1.25-in dia.

Gear A
20-in dia.

Gear A, 600-mm dia.

8-in dia. Gear B, 300-mm dia.

Fy =300 1ot 15>
Problem 3-72* Problem 3-73* *

3-74* In the figure, shaft AB transmits power to shaft CD through a set of bevel gears contacting at point
E. The contact force at E on the gear of shaft CD is determined to be (Fg)cp = —92.8i — 362.8j +
808.0k Ibf. For shaft CD: (a) draw a free-body diagram and determine the reactions at C and D



Problem 3-74*

3-75

3-76*
3-77*

Problem 3-77*

3-78
3-79*

3-80*
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assuming simple supports (assume also that bearing C carries the thrust load), (b) draw the shear-
force and bending-moment diagrams, (c¢) for the critical stress element, determine the torsional
shear stress, the bending stress, and the axial stress, and (d) for the critical stress element, deter-
mine the principal stresses and the maximum shear stress.

y

! 6.50in 3in

3.88in
D
2.30ir17 | r0.88—in dia.
T L : A X
s
)
- | <—1.13-in dia.

Repeat Prob. 3—74 except for a contact force at E of (Fg)cp = —46.61 — 140j + 406k 1bf and a
shaft diameter of 1.0 in.

Repeat the analysis of Prob. 3—74 for shaft AB. Assume that bearing A carries the thrust load.

A torque T = 100 N - m is applied to the shaft EFG, which is running at constant speed and con-
tains gear F. Gear F transmits torque to shaft ABCD through gear C, which drives the chain
sprocket at B, transmitting a force P as shown. Sprocket B, gear C, and gear F' have pitch diam-
eters of a = 150, b = 250, and ¢ = 125 mm, respectively. The contact force between the gears is
transmitted through the pressure angle ¢ = 20°. Assuming no frictional losses and consider-
ing the bearings at A, D, E, and G to be simple supports, locate the point on shaft ABCD that
contains the maximum tensile bending and maximum torsional shear stresses. Combine these
stresses and determine the maximum principal normal and shear stresses in the shaft.

y
. |
E F 1K
% c=125mm
y T=100Nm ¥
‘ B
= Y c D
- — - - X
P — # -1
d =30 mm
o
a
P
=250 mm g=125mm
e=75mm a =150 mm

View a—a

Repeat Prob. 3—77 with the chain parallel to the z axis with P in the positive z direction.

Repeat Prob. 3-77 with T =900 Ibf - in,a =6 in, b =5 in, c = 10 in, d = 1.375 in, e = 4 in,
f=101in, and g = 6 in.

The cantilevered bar in the figure is made from a ductile material and is statically loaded with
Fy =200 Ibf and Fy = F; = 0. Analyze the stress situation in rod AB by obtaining the follow-
ing information.
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Problem 3-80*

3-81*
3-82*
3-83*

3-84*

Problem 3-84*

(a) Determine the precise location of the critical stress element.

(b) Sketch the critical stress element and determine magnitudes and directions for all stresses act-
ing on it. (Transverse shear may only be neglected if you can justify this decision.)

(c) For the critical stress element, determine the principal stresses and the maximum shear stress.

y

Repeat Prob. 3-80 with F, = 0, F,, = 175 Ibf, and F, = 100 Ibf.
Repeat Prob. 3-80 with F, = 75 Ibf, F, = —200 Ibf, and F, = 100 Ibf.
For the handle in Prob. 3—80, one potential failure mode is twisting of the flat plate BC. Determine

the maximum value of the shear stress due to torsion in the main section of the plate, ignoring
the complexities of the interfaces at B and C.

The cantilevered bar in the figure is made from a ductile material and is statically loaded with
F,=2501bf and Fy = F. = 0. Analyze the stress situation in the small diameter at the shoulder at
A by obtaining the following information.

y

1-in dia.

1. .
13-in dia.



3-85*
3-86*
3-87*

3-88

3-89

3-90

Problem 3-90
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(a) Determine the precise location of the critical stress element at the cross section at A.

(b) Sketch the critical stress element and determine magnitudes and directions for all stresses
acting on it. (Transverse shear may be neglected if you can justify this decision.)

(¢) For the critical stress element, determine the principal stresses and the maximum shear stress.

Repeat Prob. 3-84 with F, = 300 Ibf, F,, = 250 Ibf, and F. = 0.
Repeat Prob. 3-84 with F, = 300 Ibf, F\, = 250 Ibf, and F, = —100 Ibf.

Repeat Prob. 3—84 for a brittle material, requiring the inclusion of stress concentration in the
fillet radius.

Repeat Prob. 3—84 with F, = 300 Ibf, F, = 250 Ibf, and F, = 0, and for a brittle material, requir-
ing the inclusion of stress concentration in the fillet radius.

Repeat Prob. 3-84 with F, = 300 Ibf, F, = 250 Ibf, and F; = —100 Ibf, and for a brittle material,
requiring the inclusion of stress concentration in the fillet radius.

The figure shows a simple model of the loading of a square thread of a power screw transmitting
an axial load F' with an application of torque 7. The torque is balanced by the frictional force Fy
acting along the top surface of the thread. The forces on the thread are considered to be distrib-
uted along the circumference of the mean diameter d,, over the number of engaged threads, n,.
From the figure, d,, = d, + p/2, where d, is the root diameter of the thread and p is the pitch of
the thread.

(a) Considering the thread to be a cantilever beam as shown in the cutaway view, show that the

bending stress at the root of the thread can be approximated by
6F
wdyng p

o, ==+

(b) Show that the axial and maximum torsional shear stresses in the body of the shaft can be
approximated by
4F 16T

_n—d} and T = n—dﬁ

(c) For the stresses of parts (a) and (b) show a three-dimensional representation of the state

Oq =

of stress on an element located at the intersection of the lower thread root base and the

| - .

pl2

o
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3-91

3-92

3-93

3-94 to
3-96

3-97 to
3-99

3-100

3-101
3-102
3-103
3-104

thread body. Using the given coordinate system label the stresses using the notation given
in Fig. 3-8a.

(d) A square-thread power screw has an outside diameter d = 1.5 in, pitch p = 0.25 in, and
transmits a load F = 1 500 Ibf through the application of a torque 7' = 235 1bf - in. If n; = 2,
determine the key stresses and the corresponding principal stresses (normal and shear).

Develop the formulas for the maximum radial and tangential stresses in a thick-walled cylinder
due to internal pressure only.

Repeat Prob. 3-91 where the cylinder is subject to external pressure only. At what radii do the
maximum stresses occur?

Develop the equations for the principal stresses in a thin-walled spherical pressure vessel of
inside diameter d;, thickness 7, and with an internal pressure p;. You may wish to follow a process
similar to that used for a thin-walled cylindrical pressure vessel on p. 114.

A pressure cylinder has an outer diameter d,, wall thickness 7, internal pressure p;, and maximum
allowable shear stress Tmax. In the table given, determine the appropriate value of x.

Number d, f P; Tmax
3-94 6 in 0.25 in Xmax 10 kpsi
3-95 200 mm Xmin 4 MPa 25 MPa
3-96 8 in 0.25 in 500 psi X

A pressure cylinder has an outer diameter d,, wall thickness 7, external pressure p,, and maximum
allowable shear stress tmax. In the table given, determine the appropriate value of x.

Problem

Number do t Po Tmax

3-97 6 in 0.25 in Xmax 10 kpsi
3-98 200 mm Xmin 4 MPa 25 MPa
3-99 8in 0.25 in 500 psi X

An AISI 1040 cold-drawn steel tube has an OD = 50 mm and wall thickness 6 mm. What max-
imum external pressure can this tube withstand if the largest principal normal stress is not to
exceed 80 percent of the minimum yield strength of the material?

Repeat Prob. 3—100 with an OD of 2 in and wall thickness of 0.25 in.
Repeat Prob. 3—100 with an internal pressure.
Repeat Prob. 3—101 with an internal pressure.

A thin-walled cylindrical steel water storage tank 30 ft in diameter and 60 ft long is oriented with
its longitudinal axis vertical. The tank is topped with a hemispherical steel dome. The wall thick-
ness of the tank and dome is 0.75 in. If the tank is unpressurized and contains water 55 ft above
its base, and considering the weight of the tank, determine the maximum state of stress in the
tank and the corresponding principal stresses (normal and shear). The weight density of water
is 62.4 1bf/ft3.



3-105
3-106

3-107

3-108

3-109

Problem 3-109

3-110 to
3-115

3-116 to
3-119
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Repeat Prob. 3—104 with the tank being pressurized to 50 psig.

Find the maximum shear stress in a 5 % -in-diameter circular saw blade if it runs idle at 5000 rev/min.

The saw is 14 gauge (0.0747 in) steel and is used on a %—in—diameter arbor. The thickness is uni-

form. What is the maximum radial component of stress?

The maximum recommended speed for a 250-mm-diameter abrasive grinding wheel is 2000 rev/min.
Assume that the material is isotropic; use a bore of 20 mm, v = 0.24, and a mass density of
3320 kg/m?, and find the maximum tensile stress at this speed.

An abrasive cutoff wheel has a diameter of 5 in, is % in thick, and has a %—in bore. It weighs 5 oz
and is designed to run at 12 000 rev/min. If the material is isotropic and v = 0.20, find the

maximum shear stress at the design speed.

A rotary lawnmower blade rotates at 3500 rev/min. The steel blade has a uniform cross section % in
thick by 1% in wide, and has a %—in—diameter hole in the center as shown in the figure. Estimate

the nominal tensile stress at the central section due to rotation.

I R Y

| % [ it
T

! 30in ,‘

The table lists the maximum and minimum hole and shaft dimensions for a variety of standard
press and shrink fits. The materials are both hot-rolled steel. Find the maximum and minimum
values of the radial interference and the corresponding interface pressure. Use a collar diameter
of 100 mm for the metric sizes and 4 in for those in inch units.

Problem Fit

Number Designationt

3-110 50H7/p6 50 mm 50.025 50.000 50.042 50.026
3-111 (2 in)H7/p6 2 in 2.0010 2.0000 2.0016 2.0010
3-112 50H7/s6 50 mm 50.025 50.000 50.059 50.043
3-113 (2 in)H7/s6 2 in 2.0010 2.0000 2.0023 2.0017
3-114 50H7/u6 50 mm 50.025 50.000 50.086 50.070
3-115 (2 in)H7/u6 2 in 2.0010 2.0000 2.0034 2.0028

"Note: See Table 7-9 for description of fits.

The table gives data concerning the shrink fit of two cylinders of differing materials and
dimensional specification in inches. Elastic constants for different materials may be found in
Table A-5. Identify the radial interference 8, then find the interference pressure p, and the

tangential normal stress on both sides of the fit surface. If dimensional tolerances are given at
fit surfaces, repeat the problem for the highest and lowest stress levels.

Problem Inner Cylinder Outer Cylinder

Number Material d; do Material D; Do
3-116 Steel 0 2.002 Steel 2.000 3.00
3-117 Steel 0 2.002 Cast iron 2.000 3.00
3-118 Steel 0 1.002/1.003 Steel 1.001/1.002 2.00
3-119 Aluminum 0 2.003/2.006 Steel 2.000/2.002 3.00
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3-120

Problem 3-120

3-121
3-122

Problem 3-122

3-123
3-124
3-125
3-126

Problem 3-126

3-127

A utility hook was formed from a round rod of diameter d = 20 mm into the geometry shown in
the figure. What are the stresses at the inner and outer surfaces at section A-A if F =4 kN,
L =250 mm, and D; = 75 mm?

| L

A
-

Repeat Prob. 3—-120 with d = 0.75 in, F = 750 1bf, L = 10 in, and D; = 2.5 in.

The steel eyebolt shown in the figure is loaded with a force F = 300 N. The bolt is formed from
wire of diameter d = 6 mm to a radius R = 10 mm in the eye and at the shank. Estimate the
stresses at the inner and outer surfaces at section A—A.

N
R
FA B EEED?
B
A R

For Prob. 3—122 estimate the stresses at the inner and outer surfaces at section B—-B.

Repeat Prob. 3-122 with d = % in, R = % in, and F = 75 Ibf.
Repeat Prob. 3-123 with d = % in, R = % in, and F = 75 Ibf.

Shown in the figure is a 12-gauge (0.1094-in) by 3in latching spring that supports a load of

4
F = 3 Ibf. The inside radius of the bend is é in.

(a) Using straight-beam theory, determine the stresses at the top and bottom surfaces immediately
to the right of the bend.

(b) Using curved-beam theory, determine the stresses at the inner and outer surfaces at the bend.

(c) By comparing the stresses at the bend with the nominal stresses before the bend, estimate
effective stress concentration factors for the inner and outer surfaces.

F
1

4in
Aﬁ L

..

.inR. fe— % in—|

cJ

Section A—A No. 12 gauge (0.1094 in)

Repeat Prob. 3—-126 with a 10-gauge (0.1406-in) material thickness.



load and Stress Analysis 145

3-128 Repeat Prob. 3-126 with a bend radius of % in.

3-129 The cast-iron bell-crank lever depicted in the figure is acted upon by forces F; of 2.4 kN and F>
of 3.2 kN. The section A—A at the central pivot has a curved inner surface with a radius of
r; = 25 mm. Estimate the stresses at the inner and outer surfaces of the curved portion of the lever.

Nylon bushing

87 / ¢

|
| 2
Problem 3-129 9
| )
! }
31
28
47
Section A-A

Dimensions in mm

3-130 The crane hook depicted in Fig. 3-35 has a %—in—diameter hole in the center of the critical section.

For aload of 6 kip, estimate the bending stresses at the inner and outer surfaces at the critical section.
3-131 An offset tensile link is shaped to clear an obstruction with a geometry as shown in the figure. The
cross section at the critical location is elliptical, with a major axis of 3 in and a minor axis of 1.5 in.
For a load of 20 kip, estimate the stresses at the inner and outer surfaces of the critical section.
12-in R.

T
Problem 3-131

3-132 A cast-steel C frame as shown in the figure has a rectangular cross section of 1.25 in by 2 in, with
a 0.5-in-radius semicircular notch on both sides that forms midflank fluting as shown. Estimate A,
re, 'y, and e, and for a load of 2000 Ibf, estimate the inner and outer surface stresses at the throat
C. Note: Table 3—4 can be used to determine r, for this section. From the table, the integral
[ dA/r can be evaluated for a rectangle and a circle by evaluating A/r, for each shape [see
Eq. (3-64)]. Subtracting A/r, of the circle from that of the rectangle yields [ dA/r for the C
frame, and r, can then be evaluated.

0.5-in R.

1.25 in

A

2000 Ibf

Problem 3-132

< 0.51in
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3-133

3-134

3-135
3-136

3-137

3-138

3-139

3-140 to
3-142

Two carbon steel balls, each 30 mm in diameter, are pressed together by a force F. In terms of
the force F, find the maximum values of the principal stress, and the maximum shear stress, in
MPa.

A carbon steel ball with 25-mm diameter is pressed together with an aluminum ball with a
40-mm diameter by a force of 10 N. Determine the maximum shear stress, and the depth at
which it will occur for the aluminum ball. Assume Fig. 3-37, which is based on a typical
Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress
occurs for these materials.

Repeat Prob. 3—134 but determine the maximum shear stress and depth for the steel ball.

A carbon steel ball with a 30-mm diameter is pressed against a flat carbon steel plate with a force
of 20 N. Determine the maximum shear stress, and the depth in the plate at which it will occur.

An AISI 1018 steel ball with 1-in diameter is used as a roller between a flat plate made from 2024
T3 aluminum and a flat table surface made from ASTM No. 30 gray cast iron. Determine the
maximum amount of weight that can be stacked on the aluminum plate without exceeding a max-
imum shear stress of 20 kpsi in any of the three pieces. Assume Fig. 3-37, which is based on a
typical Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear
stress occurs for these materials.

An aluminum alloy cylindrical roller with diameter 1.25 in and length 2 in rolls on the inside of
a cast-iron ring having an inside radius of 6 in, which is 2 in thick. Find the maximum contact
force F that can be used if the shear stress is not to exceed 4000 psi.

A pair of mating steel spur gears with a 0.75-in face width transmits a load of 40 1bf. For
estimating the contact stresses, make the simplifying assumption that the teeth profiles can be
treated as cylindrical with instantaneous radii at the contact point of interest of 0.47 in and
0.62 in, respectively. Estimate the maximum contact pressure and the maximum shear stress
experienced by either gear.

A wheel of diameter d and width w carrying a load F rolls on a flat rail.

Assume that Fig. 3-39, which is based on a Poisson’s ratio of 0.3, is applicable to estimate the
depth at which the maximum shear stress occurs for these materials. At this critical depth, calcu-
late the Hertzian stresses oy, oy, 07, and Tmax for the wheel.

Problem Wheel Rail
Number d w F Material Material
3-140 5in 2in 600 Ibf Steel Steel

3-141 150 mm 40 mm 2 kN Steel Cast iron

3-142 3in 1.25 mm 250 Ibf Cast iron Cast iron
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Figure 4-1

(a) A linear spring;
(b) a stiffening spring;
(c) a softening spring.

All real bodies deform under load, either elastically or plastically. A body can be suffi-
ciently insensitive to deformation that a presumption of rigidity does not affect an analy-
sis enough to warrant a nonrigid treatment. If the body deformation later proves to be not
negligible, then declaring rigidity was a poor decision, not a poor assumption. A wire
rope is flexible, but in tension it can be robustly rigid and it distorts enormously under
attempts at compressive loading. The same body can be both rigid and nonrigid.

Deflection analysis enters into design situations in many ways. A snap ring, or retain-
ing ring, must be flexible enough to be bent without permanent deformation and
assembled with other parts, and then it must be rigid enough to hold the assembled parts
together. In a transmission, the gears must be supported by a rigid shaft. If the shaft bends
too much, that is, if it is too flexible, the teeth will not mesh properly, and the result will
be excessive impact, noise, wear, and early failure. In rolling sheet or strip steel to pre-
scribed thicknesses, the rolls must be crowned, that is, curved, so that the finished product
will be of uniform thickness. Thus, to design the rolls it is necessary to know exactly how
much they will bend when a sheet of steel is rolled between them. Sometimes mechanical
elements must be designed to have a particular force-deflection characteristic. The
suspension system of an automobile, for example, must be designed within a very narrow
range to achieve an optimum vibration frequency for all conditions of vehicle loading,
because the human body is comfortable only within a limited range of frequencies.

The size of a load-bearing component is often determined on deflections, rather
than limits on stress.

This chapter considers distortion of single bodies due to geometry (shape) and
loading, then, briefly, the behavior of groups of bodies.

Spring Rates

Elasticity is that property of a material that enables it to regain its original configuration
after having been deformed. A spring is a mechanical element that exerts a force when
deformed. Figure 4—1a shows a straight beam of length / simply supported at the ends
and loaded by the transverse force F. The deflection y is linearly related to the force, as
long as the elastic limit of the material is not exceeded, as indicated by the graph. This
beam can be described as a linear spring.

In Fig. 4-1b a straight beam is supported on two cylinders such that the length
between supports decreases as the beam is deflected by the force F. A larger force is
required to deflect a short beam than a long one, and hence the more this beam is
deflected, the stiffer it becomes. Also, the force is not linearly related to the deflection,
and hence this beam can be described as a nonlinear stiffening spring.

Figure 4-1c is an edge-view of a dish-shaped round disk. The force necessary to flat-
ten the disk increases at first and then decreases as the disk approaches a flat configuration,

(a) (b) (c)
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as shown by the graph. Any mechanical element having such a characteristic is called a
nonlinear softening spring.
If we designate the general relationship between force and deflection by the equation
F=F(Qy) (a)
then spring rate is defined as
. AF dF
k(y) = lim — = — (4-1)
Ay—0 Ay dy

where y must be measured in the direction of F and at the point of application of F. Most
of the force-deflection problems encountered in this book are linear, as in Fig. 4—1a. For
these, k is a constant, also called the spring constant; consequently Eq. (4—1) is written

k=— (4-2)
y
We might note that Eqs. (4—1) and (4-2) are quite general and apply equally well for
torques and moments, provided angular measurements are used for y. For linear dis-
placements, the units of k are often pounds per inch or newtons per meter, and for
angular displacements, pound-inches per radian or newton-meters per radian.

Tension, Compression, and Torsion

The total extension or contraction of a uniform bar in pure tension or compression,
respectively, is given by
Fl

This equation does not apply to a long bar loaded in compression if there is a possibil-
ity of buckling (see Secs. 4-11 to 4-15). Using Eqs. (4-2) and (4-3) with$§ = y, we see
that the spring constant of an axially loaded bar is
_AE
o

k (4-4)

The angular deflection of a uniform solid or hollow round bar subjected to a twist-

ing moment 7" was given in Eq. (3-35), and is
Tl
- GJ

where 6 is in radians. If we multiply Eq. (4-5) by 180/ and substitute J = wd*/32 for
a solid round bar, we obtain

(4-5)

583.6T'1
0 = ——— 4-6
Gd* (4=¢)

where 6 is in degrees.
Equation (4-5) can be rearranged to give the torsional spring rate as

T GJ
= — = — 4_7
5 ] (4-7)

Equations (4-5), (4-6), and (4-7) apply only to circular cross sections. Torsional load-
ing for bars with noncircular cross sections is discussed in Sec. 3—12 (p. 101). For the
angular twist of rectangular cross sections, closed thin-walled tubes, and open thin-
walled sections, refer to Eqgs. (3—41), (3—46), and (3—47), respectively.
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4-3

Deflection Due to Bending

The problem of bending of beams probably occurs more often than any other loading
problem in mechanical design. Shafts, axles, cranks, levers, springs, brackets, and wheels,
as well as many other elements, must often be treated as beams in the design and analy-
sis of mechanical structures and systems. The subject of bending, however, is one that
you should have studied as preparation for reading this book. It is for this reason that
we include here only a brief review to establish the nomenclature and conventions to be
used throughout this book.
The curvature of a beam subjected to a bending moment M is given by

1 M
= (4-8)

where p is the radius of curvature. From studies in mathematics we also learn that the
curvature of a plane curve is given by the equation
1 d*y/dx*

p = [+ Wy/d) T 49

where the interpretation here is that y is the lateral deflection of the centroidal axis of
the beam at any point x along its length. The slope of the beam at any point x is

d
o="> (a)
dx
For many problems in bending, the slope is very small, and for these the denominator
of Eq. (4-9) can be taken as unity. Equation (4-8) can then be written

M d?
— = (b)
EI  dx?
Noting Egs. (3-3) and (3—4) and successively differentiating Eq. (b) yields
Vv d*y
— = (e
EI  dx3
a _dYy (d)
EI  dx*
It is convenient to display these relations in a group as follows:
g _dly
S 4-10
EI  dx* ( )
v &
L4 (4-11)
EI  dx3
M d’y
— -7 4-12
EI  dx? ( )
d
o= (4-13)
dx
y=fx) (4-14)
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[=20in

w

AUV YV YV I bYY Iy Loading,

w = 80 Ibf/in

=

Shear, V
x  Vy=+800Ibf
Vv, =-800 Ibf

(b)

M, M, X Moment, M
() My=M,=0

EIO
+

EIB,
Slope, EI6
0,,=0

El6,| -

(d)

Ely
Deflection, EIy
Yo=y=0

(e)

The nomenclature and conventions are illustrated by the beam of Fig. 4-2. Here, a beam
of length / = 20 in is loaded by the uniform load w = 80 1bf per inch of beam length.
The x axis is positive to the right, and the y axis positive upward. All quantities—
loading, shear, moment, slope, and deflection—have the same sense as y; they are pos-
itive if upward, negative if downward.

The reactions R; = R, = +800 1bf and the shear forces Vy, = +800 1bf and
V; = —800 1Ibf are easily computed by using the methods of Chap. 3. The bending
moment is zero at each end because the beam is simply supported. For a simply-
supported beam, the deflections are also zero at each end.

For the beam in Fig. 4-2, the bending moment equation, for 0 < x <, is

wl w ,
M=—x——x
2 2
Using Eq. (4-12), determine the equations for the slope and deflection of the beam, the

slopes at the ends, and the maximum deflection.

Integrating Eq. (4-12) as an indefinite integral we have

d [
EI—y=/de=w—x2—Ex3+C1 (1)
dx 4 6

where C) is a constant of integration that is evaluated from geometric boundary conditions.

We could impose that the slope is zero at the midspan of the beam, since the beam and
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4-4

loading are symmetric relative to the midspan. However, we will use the given bound-
ary conditions of the problem and verify that the slope is zero at the midspan. Integrating
Eq. (1) gives
w
Ely= || Mdx=—x’— —x*+Cix+C 2
y / X 12)6 5 4x +Cix +Cs (2)
The boundary conditions for the simply supported beam are y =0 at x=0 and [
Applying the first condition, y = 0 at x = 0, to Eq. (2) results in C; = 0. Applying the
second condition to Eq. (2) with C, =0,

wl w
Ely() = 513 — ﬂl“ +Cil=0

Solving for C; yields C; = —wl?/24. Substituting the constants back into Egs. (1) and
(2) and solving for the deflection and slope results in

wx
y = m(ﬂxz — 5 — ) (3)
d w
- ﬁ = s (6l — 4’ = 1) (4)

Comparing Eq. (3) with that given in Table A-9, beam 7, we see complete agreement.
For the slope at the left end, substituting x = 0 into Eq. (4) yields

wi?
9|x:0 =
24E1
and at x =/,
wi?
0|x=l =
24E1

At the midspan, substituting x = [/2 gives dy/dx = 0, as earlier suspected.
The maximum deflection occurs where dy/dx = 0. Substituting x =1[/2 into
Eq. (3) yields
Swi*
Ymax = T 3eAET

which again agrees with Table A—9-7.

The approach used in the example is fine for simple beams with continuous
loading. However, for beams with discontinuous loading and/or geometry such as a step
shaft with multiple gears, flywheels, pulleys, etc., the approach becomes unwieldy. The
following section discusses bending deflections in general and the techniques that are
provided in this chapter.

Beam Deflection Methods

Equations (4-10) through (4-14) are the basis for relating the intensity of loading ¢,
vertical shear V, bending moment M, slope of the neutral surface 6, and the trans-
verse deflection y. Beams have intensities of loading that range from g = constant
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(uniform loading), variable intensity g(x), to Dirac delta functions (concentrated
loads).

The intensity of loading usually consists of piecewise contiguous zones, the
expressions for which are integrated through Egs. (4-10) to (4-14) with varying
degrees of difficulty. Another approach is to represent the deflection y(x) as a Fourier
series, which is capable of representing single-valued functions with a finite number of
finite discontinuities, then differentiating through Eqs. (4—14) to (4-10), and stopping
at some level where the Fourier coefficients can be evaluated. A complication is the
piecewise continuous nature of some beams (shafts) that are stepped-diameter bodies.

All of the above constitute, in one form or another, formal integration methods,
which, with properly selected problems, result in solutions for ¢, V, M, 6, and y. These
solutions may be

1 Closed-form, or

2 Represented by infinite series, which amount to closed form if the series are rapidly
convergent, or

3 Approximations obtained by evaluating the first or the first and second terms.

The series solutions can be made equivalent to the closed-form solution by the use of a
computer. Roark’s' formulas are committed to commercial software and can be used on
a personal computer.

There are many techniques employed to solve the integration problem for beam
deflection. Some of the popular methods include:

* Superposition (see Sec. 4-5)
+ The moment-area method?
 Singularity functions (see Sec. 4-0)

* Numerical integration®

The two methods described in this chapter are easy to implement and can handle a large
array of problems.

There are methods that do not deal with Egs. (4-10) to (4-14) directly. An energy
method, based on Castigliano’s theorem, is quite powerful for problems not suitable for
the methods mentioned earlier and is discussed in Secs. 4-7 to 4—10. Finite element
programs are also quite useful for determining beam deflections.

Beam Deflections by Superposition

The results of many simple load cases and boundary conditions have been solved
and are available. Table A-9 provides a limited number of cases. Roark’s* provides
a much more comprehensive listing. Superposition resolves the effect of combined
loading on a structure by determining the effects of each load separately and adding

"Warren C. Young and Richard G. Budynas, Roark’s Formulas for Stress and Strain, Tth ed., McGraw-Hill,
New York, 2002.

2See Chap. 9, F. P. Beer, E. R. Johnston Jr., and J. T. DeWolf, Mechanics of Materials, 5th ed., McGraw-Hill,
New York, 2009.

3See Sec. 44, J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed., McGraw-Hill,
New York, 2001.

“Warren C. Young and Richard G. Budynas, Roark’s Formulas for Stress and Strain, Tth ed., McGraw-Hill,
New York, 2002.
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EXAMPLE 4-2

| Figure 4-3

Solution

Answer

Answer

Answer

Answer

the results algebraically. Superposition may be applied provided: (1) each effect is
linearly related to the load that produces it, (2) a load does not create a condition that
affects the result of another load, and (3) the deformations resulting from any spe-
cific load are not large enough to appreciably alter the geometric relations of the
parts of the structural system.

The following examples are illustrations of the use of superposition.

Consider the uniformly loaded beam with a concentrated force as shown in Fig. 4-3.
Using superposition, determine the reactions and the deflection as a function of x.

Considering each load state separately, we can superpose beams 6 and 7 of Table A-9.
For the reactions we find

Fb  wl
Ri=—+—
l 2
Fa wl
Ry=—+ —
[ 2

The loading of beam 6 is discontinuous and separate deflection equations are given
for regions AB and BC. Beam 7 loading is not discontinuous so there is only one equa-
tion. Superposition yields

Fbx 2 2 wx 2 33
= —— b —1 ——2Ix*— x> —1
YAB 6Ell(x+ )+24E1(x X )
Fa(l—-x) , 2 wx 2 3 3
SR B2 — )+ @Ux? =3 1
yoe = g & Ha = AN+ o Gl — = 1)
|
!
F
l«e—a b

[<—]
[<—1
<]
€
<]
l<—|
[<—]
[<—1
a

If the maximum deflection of a beam is desired, it will occur either where the slope
is zero or at the end of the overhang if the beam has a free end. In the previous example,
there is no overhang, so setting dy/dx = 0 will yield the equation for x that locates
where the maximum deflection occurs. In the example there are two equations for y
where only one will yield a solution. If a = /2, the maximum deflection would obvi-
ously occur at x =[/2 because of symmetry. However, if a < [/2, where would the
maximum deflection occur? It can be shown that as F moves toward the left support,
the maximum deflection moves toward the left support also, but not as much as F (see
Prob. 4-34). Thus, we would set dygc/dx = 0 and solve for x. If a > [/2, then we
would set dysp/dx = 0. For more complicated problems, plotting the equations using
numerical data is the simplest approach to finding the maximum deflection.



EXAMPLE 4-3
Solution
Answer
Answer
Figure 4-4

(a) Beam with uniformly
distributed load and overhang
force; (b) deflections due to
uniform load only.
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Sometimes it may not be obvious that we can use superposition with the tables at
hand, as demonstrated in the next example.

Consider the beam in Fig. 4—4a and determine the deflection equations using
superposition.

For region AB we can superpose beams 7 and 10 of Table A-9 to obtain

F
ﬂ(2[)62 — 5 — [P = ﬂ(l2 —x?)

YAB = S4ET 6EI]

For region BC, how do we represent the uniform load? Considering the uniform
load only, the beam deflects as shown in Fig. 4-4b. Region BC is straight since
there is no bending moment due to w. The slope of the beam at B is 65 and is
obtained by taking the derivative of y given in the table with respect to x and setting
x = [. Thus,

dy d [ wx 2 353 @ 2 343
- =— 2x° — x> =) | = ——(6Ix" —4x° —1

dx  dx [24EI( ] Y A
Substituting x = [/ gives

w wi?

O0p = 6l — 417 — 1) =
B = 34E1 )= 24E1

The deflection in region BC due to w is 6 (x — ), and adding this to the deflection due
to F, in BC, yields

w3 F(x =1
= —+————[x—-D*—aBx -1
YBC 24EI(X )+ 6El [(x =D —aBx = D]
y
y
\ ! | . F ‘
‘ w ‘ WB A yﬁc=0,,(x—l)
O e o4 —
<71*>‘
R, R, } x \

(@) (b)

Figure 4—5a shows a cantilever beam with an end load. Normally we model this prob-
lem by considering the left support as rigid. After testing the rigidity of the wall it was
found that the translational stiffness of the wall was k, force per unit vertical deflection,
and the rotational stiffness was k, moment per unit angular (radian) deflection (see
Fig. 4-5b). Determine the deflection equation for the beam under the load F.
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| Figure 4-5

Solution

Answer

4-6

Here we will superpose the modes of deflection. They are: (1) translation due to the
compression of spring k,, (2) rotation of the spring k,, and (3) the elastic deformation
of beam 1 given in Table A-9. The force in spring &, is R} = F, giving a deflection from
Eq. (4-2) of

F

5 (1)

1=
The moment in spring k, is M; = FI. This gives a clockwise rotation of 8 = Fl/k,.
Considering this mode of deflection only, the beam rotates rigidly clockwise, leading to
a deflection equation of
Fl

Y2 = _k_x (2)

Finally, the elastic deformation of beam 1 from Table A-9 is

2

_ I e 3)
V3= 6EI"

Adding the deflections from each mode yields

_ sz( 30 F Fl
VS L m
1 F

(a)

(b)

Beam Deflections by Singularity Functions

Introduced in Sec. 3-3, singularity functions are excellent for managing discontinuities, and
their application to beam deflection is a simple extension of what was presented in the ear-
lier section. They are easy to program, and as will be seen later, they can greatly simplify
the solution of statically indeterminate problems. The following examples illustrate the use
of singularity functions to evaluate deflections of statically determinate beam problems.
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Consider beam 6 of Table A-9, which is a simply supported beam having a concen-
trated load F not in the center. Develop the deflection equations using singularity
functions.

First, write the load intensity equation from the free-body diagram,
gq=Ri(x)"' = Flx—a)™ + Rofx — )7 (1)
Integrating Eq. (1) twice results in
V=Rx)"—F(x—a)’ + Rolx —)° (2)
M =Ri(x)! = F(x —a)' + Ro{x = I)! (3)

Recall that as long as the g equation is complete, integration constants are unnecessary
for V and M; therefore, they are not included up to this point. From statics, setting
V =M = 0 for x slightly greater than / yields Ry = Fb/l and R, = Fa/l. Thus Eq. (3)
becomes

M = F7b<x>1 —F(x—a)1+?(x—l)l

Integrating Eqs. (4—12) and (4—13) as indefinite integrals gives

dy Fb ., F , Fa ,
El]—=- = — = —(F = —(x —1 C
priie T i e TR R S
Fb F F
EIy:a(x)3—g(x—a)3+6—;1(x—l)3+clx+C2

Note that the first singularity term in both equations always exists, so (x)?> = x>

and (x)® = x>. Also, the last singularity term in both equations does not exist until
x = [, where it is zero, and since there is no beam for x > / we can drop the last term.
Thus

dy Fb , F )
El— = —x" — —(x — C 4
o le 2(x a)-+ C (4)
Fb F
E1y=5x3—g(x—a)3+clx+(f2 (5)

The constants of integration C; and C, are evaluated by using the two boundary con-
ditions y = 0 at x = 0 and y = 0 at x = [. The first condition, substituted into Eq. (5),
gives C, = 0 (recall that (0 — a)? = 0). The second condition, substituted into Eq. (5),
yields

0=Ebp _Fy_apycu=T_FY o
e 6 ¢ '="% 6 !
Solving for C; gives
Fb
Ci=——(@*-b

6l
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EXAMPLE 4-6

| Figure 4-6

Solution

Finally, substituting C; and C, in Eq. (5) and simplifying produces

F
y = o bx G + 52 =% =[x — a)’] (6)
Comparing Eq. (6) with the two deflection equations for beam 6 in Table A-9, we note
that the use of singularity functions enables us to express the deflection equation with
a single equation.

Determine the deflection equation for the simply supported beam with the load distribu-
tion shown in Fig. 4-6.

This is a good beam to add to our table for later use with superposition. The load inten-
sity equation for the beam is

qg=Rix)" —wx)’+wx—a)’+Ryx - 1)~ (1)
where the w(x — a)° is necessary to “turn off” the uniform load at x = a.
From statics, the reactions are

wa2

8 (2)

wa
R] :7(21—60 Rz:
For simplicity, we will retain the form of Eq. (1) for integration and substitute the values
of the reactions in later.
Two integrations of Eq. (1) reveal

V=R —wx) +wx—a) +Ryx =1)° (3)
M=R1<x>1—%<x>2+%<x—a>2+Rz<x—l>1 (4)

As in the previous example, singularity functions of order zero or greater starting at
x =0 can be replaced by normal polynomial functions. Also, once the reactions are
determined, singularity functions starting at the extreme right end of the beam can be
omitted. Thus, Eq. (4) can be rewritten as

M:Rlx—%xz—i-%(x—a)z (5)
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Integrating two more times for slope and deflection gives

dy Ri , w3 w 3
El—=—x"——x+—(x — C 6
=5 o +6<x a)” + C; (6)
R
Ely="2— 25+ 2 (x—a)* + Cix + G, (7)

6 24 24

The boundary conditions are y =0 at x =0 and y = 0 at x = [. Substituting the first
condition in Eq. (7) shows C, = 0. For the second condition

ﬂl:i_ﬂél

w
0= P de — (@ = @) 4= Chl
6 o +24( a)" + C

Solving for C; and substituting into Eq. (7) yields

R
Ely = Fl)c(x2 -1 - %x()c3 —% - %x(l —a)* + ;}—4()5 —a)*

Finally, substitution of R; from Eq. (2) and simplifying results gives

Y= —2 _axl —a)(x> — 1) — xI(x> = ) — x( — a)* + 1{x — a)*]

T 24EI]l

As stated earlier, singularity functions are relatively simple to program, as they are
omitted when their arguments are negative, and the () brackets are replaced with ()
parentheses when the arguments are positive.

The steel step shaft shown in Fig. 4—7a is mounted in bearings at A and F. A pulley
is centered at C where a total radial force of 600 Ibf is applied. Using singularity
functions evaluate the shaft displacements at %-in increments. Assume the shaft is
simply supported.

The reactions are found to be R; = 360 Ibf and R, = 240 Ibf. Ignoring R;, using
singularity functions, the moment equation is

M = 360x — 600(x — 8)! (1)

This is plotted in Fig. 4-7b.

For simplification, we will consider only the step at D. That is, we will assume sec-
tion AB has the same diameter as BC and section EF has the same diameter as DE.
Since these sections are short and at the supports, the size reduction will not add much
to the deformation. We will examine this simplification later. The second area moments
for BC and DE are

Inc = é’—41.54 —02485in*  Ipp = %1.754 — 0.4604 in®
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Figure 4-7

Dimensions in inches.

y 600 Ibf
1.750
1.000 1500 1 B ' £ 1.000
iA B Y c F i
v L .
X o5, t \ | i *
1
R 8.5 | Ry
& 195 ‘
(a) I 20 1
M 2880 Ibf-in_ 2760 Ibf-in
()
M/ .,
C
© E4

A plot of M/ is shown in Fig. 4-7c. The values at points b and c, and the step change are

M 2760 M 2760
<—> = =11 106.6 Ibf/in’ <—> = = 5994.8 Ibf/in’
1), 0.2485 1), 0.4604

M
A (7> =5994.8 — 11 106.6 = —5 111.8 Ibf/in’

The slopes for ab and cd, and the change are

2760 — 2880 —5994.8
Mgy = —————"— — 9658 Ibf/in* My = ———— = —521.3 Ibf/in*
0.2485(0.5) 11.5

Am = —521.3 — (—965.8) = 444.5 Ibf/in*
Dividing Eq. (1) by Ip¢ and, at x = 8.5 in, adding a step of —5 111.8 Ibf/in* and a ramp
of slope 444.5 Ibf/in*, gives
M
—= 1448.7x —2414.5(x — 8)' —5111.8(x —8.5)° +444.5(x —8.5)! (2

Integration gives
d
ESY =
dx

724.35x% — 1207.3(x — 8)> — 5 111.8(x — 8.5)"
+222.3(x —8.5)2+ C, (3)
Integrating again yields

Ey = 241.5x> — 402.4(x — 8)°> —2555.9(x — 8.5)> +74.08(x —8.5)> + C1x + C,
(4)

Atx =0, y = 0. This gives C, = 0 (remember, singularity functions do not exist until
the argument is positive). At x = 20 in, y = 0, and

0 = 241.5(20)> — 402.4(20 — 8)> — 2 555.9(20 — 8.5)% + 74.08(20 — 8.5)> + C;(20)
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Solving, gives C; = —50 565 Ibf/in®. Thus, Eq. (4) becomes, with E = 30(10)° psi,

= (241.5x% — 402.4(x — 8)° — 2 555.9(x — 8.5)?
30(106) (5)

+ 74.08(x — 8.5)°> — 50 565x)

When using a spreadsheet, program the following equations:

Y

_ 3 .
y = 30(106)(241.5x —50565x) 0 <x <8in
_ 3 3 .
=T [241.5x — 402.4(x — 8)> — 50565x] 8 <x <85in
- 241.5x — 402.4 (x — 8)> — 2 555.9 (x — 8.5)°
Y = Soci05 2415 (x —8) (x —8.5)
+ 74.08 (x — 8.5)% — 50565x] 8.5 <x <20in

The following table results.

Yy X y X y X y
—0.006851 9 —0.009335 13.5 —0.007001 18 —0.002377
—0.007421 9.5 —0.009238 14 —0.006571 18.5 —0.001790
—0.007931 10 —0.009096 14.5 —0.006116 19 —0.001197
—0.008374 10.5 —0.008909 15 —0.005636 19.5 —0.000600
—0.008745 11 —0.008682 15.5 —0.005134 20 0.000000
—0.009037 11.5 —0.008415 16 —0.004613
—0.009245 12 —0.008112 16.5 —0.004075
—0.009362 12.5 —0.007773 17 —0.003521
—0.009385 13 —0.007403 17.5 —0.002954

where x and y are in inches. We see that the greatest deflection is at x = 8.5 in, where
y = —0.009385 in.

Substituting C; into Eq. (3) the slopes at the supports are found tobe 4 = 1.686(1073)
rad = 0.09657 deg, and 6 = 1.198(1073) rad = 0.06864 deg. You might think these to
be insignificant deflections, but as you will see in Chap. 7, on shafts, they are not.

A finite-element analysis was performed for the same model and resulted in

Vlx=85in = —0.009380in 04 = —0.09653° 0r = 0.06868°

Virtually the same answer save some round-off error in the equations.
If the steps of the bearings were incorporated into the model, more equations result,
but the process is the same. The solution to this model is

Vlx=85in = —0.009387 in 04 = —0.09763° 0r = 0.06973°

The largest difference between the models is of the order of 1.5 percent. Thus the sim-
plification was justified.
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| Figure 4-8

4-7

In Sec. 4-9, we will demonstrate the usefulness of singularity functions in solving
statically indeterminate problems.

Strain Energy

The external work done on an elastic member in deforming it is transformed into strain,
or potential, energy. If the member is deformed a distance y, and if the force-deflection
relationship is linear, this energy is equal to the product of the average force and the
deflection, or

U= d r (4-15)

27T %

This equation is general in the sense that the force F' can also mean torque, or moment,
provided, of course, that consistent units are used for k. By substituting appropriate
expressions for k, strain-energy formulas for various simple loadings may be obtained.
For tension and compression, for example, we employ Eq. (4—4) and obtain

_ i (4-16)
T 2AE . .
or 5 tension and compression
F
U= [——d 4-17
2AE " (4=17)

where the first equation applies when all the terms are constant throughout the length,
and the more general integral equation allows for any of the terms to vary through the
length.

Similarly, from Eq. (4-7), the strain energy for torsion is given by

T2
= — 4_] 8
2GJ . ( )
or torsion
d 4-19
267 (4=19)

To obtain an expression for the strain energy due to direct shear, consider the element
with one side fixed in Fig. 4-8a. The force F places the element in pure shear, and the
work done is U = F§/2. Since the shear strainis y =/l = 1/G = F/AG, we have

F?l
= 4-2
2AG ) (4-20)
or direct shear
—F2 d 4-21
U= / 246 " =)

//\
Hefer, deJ

\
tall L \
LJ, t H *

(a) Pure shear element (b) Beam bending element




Table 4-1

Strain-Energy Correction
Factors for Transverse
Shear

Source: Richard G. Budynas,
Advanced Strength and Applied
Stress Analysis, 2nd ed.,
McGraw-Hill, New York, 1999.
Copyright © 1999 The
McGraw-Hill Companies.
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The strain energy stored in a beam or lever by bending may be obtained by refer-
ring to Fig. 4-8b. Here AB is a section of the elastic curve of length ds having a radius
of curvature p. The strain energy stored in this element of the beam is dU = (M /2)d6.
Since pdf = ds, we have

Md
aw="2 (a)
2p
We can eliminate p by using Eq. (4-8), p = EI/M. Thus
M?*d
v==-212 (b)
2E1
For small deflections, ds = dx. Then, for the entire beam
M2
U= / dU = | —dx (c)
2E1

The integral equation is commonly needed for bending, where the moment is typically
a function of x. Summarized to include both the integral and nonintegral form, the strain
energy for bending is

M2l
= — (4-22)
2E1 .
or bending
M2
U= | —dx 4-23
2E1 ( )

Equations (4-22) and (4-23) are exact only when a beam is subject to pure bend-
ing. Even when transverse shear is present, these equations continue to give quite good
results, except for very short beams. The strain energy due to shear loading of a beam
is a complicated problem. An approximate solution can be obtained by using Eq. (4-20)
with a correction factor whose value depends upon the shape of the cross section. If we
use C for the correction factor and V for the shear force, then the strain energy due to
shear in bending is

Ccv?l
= (4-24)
2AG
or cve transverse shear
= d 4-2
U / 7AG X (4-25)

Values of the factor C are listed in Table 4—1.

Rectangular 1.2

Circular 1.11
Thin-walled tubular, round 2.00
Box sections’ 1.00
Structural sections’ 1.00

Use area of web only.
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EXAMPLE 4-8
| Figure 4-9
Solution
Answer
4-8

A cantilever beam with a round cross section has a concentrated load F at the end, as
shown in Fig. 4-9a. Find the strain energy in the beam.

(@) (b)

To determine what forms of strain energy are involved with the deflection of the beam, we
break into the beam and draw a free-body diagram to see the forces and moments being
carried within the beam. Figure 4-9b shows such a diagram in which the transverse shear
is V = —F, and the bending moment is M = — Fx. The variable x is simply a variable of
integration and can be defined to be measured from any convenient point. The same results
will be obtained from a free-body diagram of the right-hand portion of the beam with x
measured from the wall. Using the free end of the beam usually results in reduced effort
since the ground reaction forces do not need to be determined.

For the transverse shear, using Eq. (4—24) with the correction factor C = 1.11 from
Table 4-2, and noting that V is constant through the length of the beam,

T CV2l 1.11F%
AT VAG | 2AG
For the bending, since M is a function of x, Eq. (4-23) gives

F23
6E1

M2dx 1

1
Ubend = =— [ (—Fx)%dx =
bend 2E] 2E1/0( x) dx

The total strain energy is

F23  1.11F%4

U = Upen Ushear =
bend F Ushear = 2T ¥ 24G

Note, except for very short beams, the shear term (of order /) is typically small com-
pared to the bending term (of order /°). This will be demonstrated in the next example.

Castigliano’s Theorem

A most unusual, powerful, and often surprisingly simple approach to deflection analysis
is afforded by an energy method called Castigliano’s theorem. It is a unique way of ana-
lyzing deflections and is even useful for finding the reactions of indeterminate structures.
Castigliano’s theorem states that when forces act on elastic systems subject to small dis-
placements, the displacement corresponding to any force, in the direction of the force, is
equal to the partial derivative of the total strain energy with respect to that force. The
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terms force and displacement in this statement are broadly interpreted to apply equally
to moments and angular displacements. Mathematically, the theorem of Castigliano is
U
=9F
where §; is the displacement of the point of application of the force F; in the direction
of F;. For rotational displacement Eq. (4-26) can be written as

U
0, = (4-27)
IM;

where 6; is the rotational displacement, in radians, of the beam where the moment
M; exists and in the direction of M;.

As an example, apply Castigliano’s theorem using Eqs. (4-16) and (4-18) to get
the axial and torsional deflections. The results are

o ([ F FI
5= — = (a)
oF \2AE) ~ AE

9 (T Tl
o =— = (b)
aT \2GJ) ~ GJ

Compare Eqs. (a) and (b) with Egs. (4-3) and (4-5).

(4-26)

i

The cantilever of Ex. 4-8 is a carbon steel bar 10 in long with a 1-in diameter and is
loaded by a force F = 100 Ibf.

(a) Find the maximum deflection using Castigliano’s theorem, including that due to shear.
(b) What error is introduced if shear is neglected?

(a) From Ex. 4-8, the total energy of the beam is
F*3  1.11F%

U=—
6E1 | 24G

(1)

Then, according to Castigliano’s theorem, the deflection of the end is

oU  FI? 1.11FI

= — = — 2
Ymx = 5E =351 T 4G (2)

We also find that
xd*  w()?

I=— = = 0.0491 in*
64 64 n
d> 1)2

A TE T esa i
4 4

Substituting these values, together with F = 100 Ibf, / = 10 in, E = 30 Mpsi, and
G = 11.5 Mpsi, in Eq. (3) gives

Ymax = 0.022 63 4- 0.000 12 = 0.022 75 in

Note that the result is positive because it is in the same direction as the force F.

(b) The error in neglecting shear for this problem is (0.02275 — 0.02263)/0.02275 =
0.0053 = 0.53 percent.
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The relative contribution of transverse shear to beam deflection decreases as the
length-to-height ratio of the beam increases, and is generally considered negligible for
I/d > 10. Note that the deflection equations for the beams in Table A—9 do not include
the effects of transverse shear.

Castigliano’s theorem can be used to find the deflection at a point even though no
force or moment acts there. The procedure is:

1 Set up the equation for the total strain energy U by including the energy due to a
fictitious force or moment Q acting at the point whose deflection is to be found.

2 Find an expression for the desired deflection &, in the direction of Q, by taking the
derivative of the total strain energy with respect to Q.

3 Since Q is a fictitious force, solve the expression obtained in step 2 by setting Q
equal to zero. Thus, the displacement at the point of application of the fictitious
force Q is

U
§=— (4-28)

90 {p-0

In cases where integration is necessary to obtain the strain energy, it is more effi-
cient to obtain the deflection directly without explicitly finding the strain energy, by
moving the partial derivative inside the integral. For the example of the bending case,

oM
2M —

oU d M? d M? 4
8 = = ——dx :/ — dx:/ 8Fdx
oF;, OF; 2E1 oF; \2E1 2E1
1 oM
=[— (M dx
El dF;
This allows the derivative to be taken before integration, simplifying the mathematics.
This method is especially helpful if the force is a fictitious force Q, since it can be set

to zero as soon as the derivative is taken. The expressions for the common cases in
Egs. (4-17), (4-19), and (4-23) are rewritten as

oUu 1 oF
8 = / (F ) dx tension and compression (4-29)

aF, ] AE\" aF
oU 1 oT

0, = = — (T dx torsion (4-30)
oM; GJ oM;
U 1 oM

8 = = f — | M dx bending (4-31)
dF; EI\" F,

EXAMPLE 4-10  Using Castigliano’s method, determine the deflections of points A and B due to the
force F applied at the end of the step shaft shown in Fig. 4-10. The second area
moments for sections AB and BC are I, and 21;, respectively.

Solution To avoid the need to determine the ground reaction forces, define the origin of x at the
left end of the beam as shown. For 0 < x </, the bending moment is

M = —Fx (1)
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2 ‘ 2 |

x I B 21 C

Since F is at A and in the direction of the desired deflection, the deflection at A from

Eq. (4-31) is
AU 7 oM

5A=—=/— M— ) dx (2)
OF — Jo EI OF

Substituting Eq. (1) into Eq. (2), noting that I = I; for 0 < x <1[/2, and I = 21, for
1/2 <x <1, we get

12 q L
8A=E|:/(; I—l(—Fx)(—x) dx-i-/l/zz—ll(—Fx)(—x) dx:|

1 [ F? 7FP 3 FI3
16 EIL

E | 241, * 481,

which is positive, as it is in the direction of F.
For B, a fictitious force Q is necessary at the point. Assuming Q acts down at B,
and x is as before, the moment equation is

M = —Fx 0<x<l/2
l (3)
M=—Fx—-0Q x—E /2 <x <l
For Eq. (4-31), we need dM /0 Q. From Eq. (3),
oM
=0 0<x<l/)2
90
(4)
oM [
—=—x-= /2 <x <l
200 2

Once the derivative is taken, Q can be set to zero, so Eq. (4-31) becomes

[ ¢ IM
83: /—(M—)dx]
o EI 00 0=0

1/2

1 1 ! l
= E—h : (—Fx)(0)dx + EQL) 1/2(—Fx) |:— <x — 5)] dx

Evaluating the last integral gives

)
S — F x3 Ix2 . 5 FI3
B=2er,\3 4 T 96 EI
12

which again is positive, in the direction of Q.
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EXAMPLE 4-11

| Figure 4-11

Solution

For the wire form of diameter d shown in Fig. 4—11a, determine the deflection of
point B in the direction of the applied force F (neglect the effect of transverse shear).

Figure 4-11b shows free body diagrams where the body has been broken in each section,
and internal balancing forces and moments are shown. The sign convention for the force
and moment variables is positive in the directions shown. With energy methods, sign
conventions are arbitrary, so use a convenient one. In each section, the variable x is
defined with its origin as shown. The variable x is used as a variable of integration for
each section independently, so it is acceptable to reuse the same variable for each sec-
tion. For completeness, the transverse shear forces are included, but the effects of trans-
verse shear on the strain energy (and deflection) will be neglected.
Element BC is in bending only so from Eq. (4-31),>

3

8UBC _ 1 a . F_a
_E/O (Fx)(x) dx = (1)

oF

3EI

Element C D is in bending and in torsion. The torsion is constant so Eq. (4-30) can be
written as

v TaT i
oF,  \' 9F ) GJ

STt is very tempting to mix techniques and try to use superposition also, for example. However, some subtle
things can occur that you may visually miss. It is highly recommended that if you are using Castigliano’s
theorem on a problem, you use it for all parts of the problem.
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where / is the length of the member. So for the torsion in member CD, F; = F, T = Fa,
and /[ = b. Thus,

U, b Fa*b
o = (Fa)(a)— = —= (2)
8F torsion G‘] GJ

For the bending in CD,

U, 1 [° Fb3
( CD) = — / (Fx)(x) dx = — (3)
OF Joenang  E1 Jo 3EI

Member DG is axially loaded and is bending in two planes. The axial loading is
constant, so Eq. (4-29) can be written as

W F8F l
oF. ~ \' oF ) AE

where [ is the length of the member. Thus, for the axial loading of DG, F; = F, [ = c,

and
oU F
L) = (4)
oF axial AE

The bending moments in each plane of DG are constant along the length, with
Mpgr, = Fb and Mpg, = Fa. Considering each one separately in the form of
Eq. (4-31) gives

aUDG _ L (¢f L c

( oF )bending_ EI/o (Fb)() dx + EI/O (Fa)(a) dx (5)
_ Fc(a® + b?)
=—

Adding Egs. (1) to (5), noting that I = wd*/64, J =21, A=nd*4, and G =
E/[2(1 4+ v)], we find that the deflection of B in the direction of F is

() = [16(a® + b) + 48c(a® + b*) + 48(1 + v)a’b + 3cd?]

3xEd*
Now that we have completed the solution, see if you can physically account for each
term in the result using an independent method such as superposition.

Deflection of Curved Members

Machine frames, springs, clips, fasteners, and the like frequently occur as curved
shapes. The determination of stresses in curved members has already been described in
Sec. 3—18. Castigliano’s theorem is particularly useful for the analysis of deflections in
curved parts t00.> Consider, for example, the curved frame of Fig. 4-12a. We are

For more solutions than are included here, see Joseph E. Shigley, “Curved Beams and Rings,” Chap. 38 in
Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine
Design, 3rd ed., McGraw-Hill, New York, 2004.
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(a) ()
Figure 4-12

(a) Curved bar loaded by force F. R = radius to centroidal axis of section;

h = section thickness. (b) Diagram showing forces acting on section taken at
angle 0. F, = V = shear component of F; Fy is component of F normal to
section; M is moment caused by force F.

interested in finding the deflection of the frame due to F and in the direction of F'. The
total strain energy consists of four terms, and we shall consider each separately. The
first is due to the bending moment and is’

M?do

U =
2AeE

(4-32)

In this equation, the eccentricity e is
e=R-—r, (4-33)
where r, is the radius of the neutral axis as defined in Sec. 3—18 and shown in Fig. 3-34.

The strain energy component due to the normal force Fy consists of two parts, one
of which is axial and analogous to Eq. (4—17). This part is

Uzsz (4-34)
2AE

The force Fy also produces a moment, which opposes the moment M in Fig. 4-12b. The
resulting strain energy will be subtractive and is

MFydo

Uy = Rl
3 AE

(4-35)
The negative sign of Eq. (4-35) can be appreciated by referring to both parts of
Fig. 4-12. Note that the moment M tends to decrease the angle d6. On the other hand,
the moment due to Fy tends to increase d6. Thus Us is negative. If Fy had been acting
in the opposite direction, then both M and F, would tend to decrease the angle d6.

The fourth and last term is the transverse shear energy due to F,. Adapting
Eq. (4-25) gives

CF2Rdb
U, = / b (4-36)
2AG

where C is the correction factor of Table 4—1.

7See Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., Sec. 6.7, McGraw-Hill,
New York, 1999.
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Combining the four terms gives the total strain energy

U (4-37)

[ M*de /Fnge MF,do +/ CF*Rdf
] 24¢E 2AE AE 2AG

The deflection produced by the force F' can now be found. It is
oU M (oM FyR (OF
b=t = —)ao+ | 2= (=L ) as
oF AeE \ OF AE \ 0F
1 d(MFy) CF,R (0F,
- — do do 4-38
/ AE OF +f AG (8F ) ( )
This equation is general and may be applied to any section of a thick-walled circular
curved beam with application of appropriate limits of integration.

For the specific curved beam in Fig. 4—12b, the integrals are evaluated from O to 7.
Also, for this case we find

oM

M = FRsinf —— = Rsin6
oF
oF,
Fy = Fsin6 % —sing
oF
d(MF,
MF, = F2Rsin%60 IME) _ 5 pRsin?e
oF
oF,
F, = Fcosf = cosf
oF

Substituting these into Eq. (4-38) and factoring yields

FR* [™ FR (™ ., 2FR [
§ = sin“ 6 df + — sin“0do — —— sin“ 6 do
AEE 0 AE 0 AE 0

CFR [™
+—f cos’ 6 do
AG J,

nFR*> nFR #FR nCFR =FR> =FR nCFR ~
- + - + = - + (4-39)
2A¢E | 2AE AE ' 2AG  24¢E 2AE ' 2AG

Because the first term contains the square of the radius, the second two terms will be
small if the frame has a large radius.

For curved sections in which the radius is significantly larger than the thickness, say
R/h > 10, the effect of the eccentricity is negligible, so that the strain energies can be
approximated directly from Eqgs. (4-17), (4-23), and (4-25) with a substitution of R d6
for dx. Further, as R increases, the contributions to deflection from the normal force
and tangential force becomes negligibly small compared to the bending component.
Therefore, an approximate result can be obtained for a thin circular curved member as

2E1

oUu . 1 oM
z_zf_ M2\ Rao  R/h =10 (4-41)
oF El oF

MZ
U= / ——R db R/h > 10 (4-40)
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EXAMPLE 4-12

| Figure 4-13

Solution

The cantilevered hook shown in Fig. 4-13a is formed from a round steel wire with a
diameter of 2 mm. The hook dimensions are [ = 40 and R = 50 mm. A force P of 1 N
is applied at point C. Use Castigliano’s theorem to estimate the deflection at point D at
the tip.

Since I/d and R/d are significantly greater than 10, only the contributions due
to bending will be considered. To obtain the vertical deflection at D, a fictitious
force Q will be applied there. Free-body diagrams are shown in Figs. 4-13b, ¢, and
d, with breaks in sections AB, BC, and CD, respectively. The normal and shear
forces, N and V respectively, are shown but are considered negligible in the deflec-
tion analysis.

For section AB, with the variable of integration x defined as shown in Fig. 4-13b,
summing moments about the break gives an equation for the moment in section AB,

Mup = P(R+x)+ Q2R + x) (1)
OMap/00 = 2R + x (2)

Since the derivative with respect to Q has been taken, we can set Q equal to zero. From
Eq. (4-31), inserting Eqgs. (1) and (2),

(8p) —fll My Ma ), 1 lP(R-I— )R + x)d
DAB—OEI AB BQ x—EIO X X X

(3)
P (! P 3 1
=— | @R*+3R Ndx = — QR + =I’R+ =1
EI/O( + 3Rx 4+ x7)dx EI( +2 +3)

(b) (c) (d)
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For section BC, with the variable of integration 6 defined as shown in Fig. 4-13c, sum-
ming moments about the break gives the moment equation for section BC.

Mpgc = O(R + R sin §) + PR sin 0 (4)

e T (5)

From Eq. (4-41), inserting Egs. (4) and (5) and setting O = 0, we get

bp)pc = /‘”/2 —1 M 9Mpc RdO = — /n/z(pR in 0)[R(1 in0)] d

c = = 1n =+ sin X

B 0 El Be a0 EI Jy S S )
6

PR3 (1 + JZ)
~EI 4

Noting that the break in section CD contains nothing but Q, and after setting O = 0, we
can conclude that there is no actual strain energy contribution in this section.
Combining terms from Eqgs. (3) and (6) to get the total vertical deflection at D,

5p = Op)ap + Op)se = P(2R21+312R+113)+PR3(1+”)
b= ODJAB T ACDIBC = oy 2 3 EIl 4
P (7)

= E(l.785R3 +2R% + 1.5 RI> + 0.3331%)

Substituting values, and noting I = wd*/64, and E = 207 GPa for steel, we get

1

o = 207(10%) [ (0.002%) /64]

[1.785(0.05%) 4 2(0.05%)0.04
+ 1.5(0.05)0.04% + 0.333(0.04%)]

=3.47(10"%) m = 3.47 mm

Deflection in a Variable-Cross-Section Punch-Press Frame

The general result expressed in Eq. (4-39),

_ 7FR*> nFR N 7CFR
T 2A¢E  2AE 2AG

is useful in sections that are uniform and in which the centroidal locus is circular. The
bending moment is largest where the material is farthest from the load axis.
Strengthening requires a larger second area moment /. A variable-depth cross section is
attractive, but it makes the integration to a closed form very difficult. However, if you
are seeking results, numerical integration with computer assistance is helpful.
Consider the steel C frame depicted in Fig. 4—14a in which the centroidal radius is
32 in, the cross section at the ends is 2 in x 2 in, and the depth varies sinusoidally with
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Figure 4-14

(a) A steel punch press has a
C frame with a varying-depth
rectangular cross section
depicted. The cross section
varies sinusoidally from

2in x 2inatf = 0° to

2in x 6inat @ = 90°, and =
back to 21in x 2 in at 6 = 180°.
Of immediate interest to the
designer is the deflection in the
load axis direction under the
load. (b) Finite-element model.

NN -

(@)

(b)

1000 Ibf

an amplitude of 2 in. The load is 1000 Ibf. It follows that C = 1.2, G = 11.5(10%) psi,
E = 30(10%) psi. The outer and inner radii are

Roye =33 +2sinf

Ri, =31 —2sinf

The remaining geometrical terms are
h = Rowt — Rin = 2(1 + 2 sin#6)
A =bh =4(1+ 2 sin6)

Note that

h

2(1 +2 sind)

e=R—-—r,=32—r,

M = FRsin6

Fy = Fsin6

MF, = F?Rsin*6

F, = Fcos6

where the integrals are

T
I = 8.5333(10*3)/
0

L, = —2.6667(107%) /
0

T
I; = 8.3478(107%) /
0

" (Row/Rim)  In[(33 + 2 sin6)/(31 — 2 sin0)]

dM/3F = Rsin6
dF,/F = siné

OMF,/dF = 2FRsin*6

dF,/0F = cos6
Substitution of the terms into Eq. (4-38) yields three integrals

S=L+L+5

sin” 0 do

(142sin6) |32 —

sin® 0 dO
1+ 2siné
cos2 6 do

1+ 2siné

2(1 + 25sin0)

i (

33 4+ 2sinf

31 — 2siné#

)

(1)

(2)

(3)

(4)
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The integrals may be evaluated in a number of ways: by a program using Simpson’s
rule integration,® by a program using a spreadsheet, or by mathematics software. Using
MathCad and checking the results with Excel gives the integrals as I; = 0.076 615,
I, = —0.000 159, and I3 = 0.000 773. Substituting these into Eq. (1) gives

6 =0.077 23 in

Finite-element (FE) programs are also very accessible. Figure 4-14b shows a
simple half-model, using symmetry, of the press consisting of 216 plane-stress (2-D)
elements. Creating the model and analyzing it to obtain a solution took minutes.
Doubling the results from the FE analysis yielded § = 0.07790 in, a less than 1 percent
variation from the results of the numerical integration.

Statically Indeterminate Problems

A system is overconstrained when it has more unknown support (reaction) forces and/or
moments than static equilibrium equations. Such a system is said to be statically indeter-
minate and the extra constraint supports are called redundant supports. In addition to the
static equilibrium equations, a deflection equation is required for each redundant support
reaction in order to obtain a solution. For example, consider a beam in bending with a wall
support on one end and a simple support on the other, such as beam 12 of Table A-9.
There are three support reactions and only two static equilibrium equations are available.
This beam has one redundant support. To solve for the three unknown support reactions
we use the two equilibrium equations and one additional deflection equation. For another
example, consider beam 15 of Table A-9. This beam has a wall on both ends, giving rise
to two redundant supports requiring rwo deflection equations in addition to the equations
from statics. The purpose of redundant supports is to provide safety and reduce deflection.

A simple example of a statically indeterminate problem is furnished by the nested
helical springs in Fig. 4—15a. When this assembly is loaded by the compressive force F,
it deforms through the distance §. What is the compressive force in each spring?

Only one equation of static equilibrium can be written. It is

ZF:F—Fl—ngo (a)

which simply says that the total force F is resisted by a force Fj in spring 1 plus the
force F, in spring 2. Since there are two unknowns and only one static equilibrium
equation, the system is statically indeterminate.

To write another equation, note the deformation relation in Fig. 4-15b. The two
springs have the same deformation. Thus, we obtain the second equation as

S =8=25 (b)
If we now substitute Eq. (4-2) in Eq. (b), we have
F B
—=22 (@
k k>

8See Case Study 4, p. 203, I. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed.,
McGraw-Hill, New York, 2001.
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| Figure 4-15

1— k,

()

Now we solve Eq. (¢) for F and substitute the result in Eq. (a). This gives

Fole po o B= RF
o 2 2= 2_k1+k2

(d)

Substituting F, into Eq. (c) gives Fy =k F/(k; +k;) and so § =6, = 8§, =
F/(k; + ky). Thus, for two springs in parallel, the overall spring constant is
k=F/8 =k +k.

In the spring example, obtaining the necessary deformation equation was very
straightforward. However, for other situations, the deformation relations may not be as
easy. A more structured approach may be necessary. Here we will show two basic pro-
cedures for general statically indeterminate problems.

Procedure 1

1 Choose the redundant reaction(s). There may be alternative choices (See Ex-
ample 4-14).

2 Write the equations of static equilibrium for the remaining reactions in terms of the
applied loads and the redundant reaction(s) of step 1.

3 Write the deflection equation(s) for the point(s) at the locations of the
redundant reaction(s) of step 1 in terms of the applied loads and the redundant
reaction(s) of step 1. Normally the deflection(s) is (are) zero. If a redundant
reaction is a moment, the corresponding deflection equation is a rotational
deflection equation.

4 The equations from steps 2 and 3 can now be solved to determine the reactions.

In step 3 the deflection equations can be solved in any of the standard ways. Here
we will demonstrate the use of superposition and Castigliano’s theorem on a beam
problem.
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Solution

Solution 1

Answer

Answer

Solution 2

| Figure 4-16
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The indeterminate beam 11 of Appendix Table A-9 is reproduced in Fig. 4-16.
Determine the reactions using procedure 1.

The reactions are shown in Fig. 4-16b. Without R, the beam is a statically determinate
cantilever beam. Without M; the beam is a statically determinate simply supported
beam. In either case, the beam has only one redundant support. We will first solve this
problem using superposition, choosing R as the redundant reaction. For the second
solution, we will use Castigliano’s theorem with M, as the redundant reaction.

1 Choose R, at B to be the redundant reaction.
2 Using static equilibrium equations solve for R; and M, in terms of F and R,. This
results in
Fl
Ri=F—-R, M1=7—Rzl (1)
3 Write the deflection equation for point B in terms of F' and R;. Using superposition
of beam 1 of Table A-9 with F = —R,, and beam 2 of Table A-9 with a =1/2,
the deflection of B, at x = [, is
RyI? F(/2)? (1 R SFPP
dp=———( -3l ==3)=— — =0 2
8=—5p1" 0T 6z \2 3EI  48El 12
4 Equation (2) can be solved for R, directly. This yields
S5F
R, = — 3
2= 1¢ (3)
Next, substituting R, into Egs. (1) completes the solution, giving
11F 3F!
Ri=—+ M =— (4)
16 16

Note that the solution agrees with what is given for beam 11 in Table A-9.

1 Choose M; at O to be the redundant reaction.
2 Using static equilibrium equations solve for R; and R, in terms of F" and M. This

results in
R=L M g LM (5)
T T2
y
l ‘ F
F < lA B
1 X
2 A B i TO T
o M, R, = R,

(a) (b)
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3 Since M; is the redundant reaction at O, write the equation for the angular
deflection at point O. From Castigliano’s theorem this is

oUu

= oM, (6)

o

We can apply Eq. (4-31), using the variable x as shown in Fig. 4-16b. However, sim-
pler terms can be found by using a variable x that starts at B and is positive to the left.
With this and the expression for R, from Eq. (5) the moment equations are

F M [
=(=-=1)z 0<f<-= (7)
2 l 2
F M\ . . l 2
M=|——-—|x—-F|x—= —<x<lI (8)
2 l 2
For both equations
oM X
=== 9
M, [ ©)

Substituting Egs. (7) to (9) in Eq. (6), using the form of Eq. (4-31) where F; = M|, gives
U 1 [ (P (F M\, X\ ,. ['[(F M.
0o == — — L) g(-2) ax+ oD
oM, EI|lJ, \2 1 l i L\2 1
] N
“F(i—2)|(-2)azl =0
2 [

Canceling 1/E 1], and combining the first two integrals, simplifies this quite readily to

F M z L l
(———l)f£2d£—F/ ()e——))ed)ezo
2 l 0 12 2

Integrating gives

(E-2) -4 5 ()]

which reduces to

3FI
My =— 1
1= ¢ (10)

4  Substituting Eq. (10) into (5) results in

11F S5F
Ri=— R, = — 11
I T 2= ¢ (11)

which again agrees with beam 11 of Table A-9.
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Figure 4-17

Dimensions in mm.

Solution
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For some problems even procedure 1 can be a task. Procedure 2 eliminates some
tricky geometric problems that would complicate procedure 1. We will describe the pro-
cedure for a beam problem.

Procedure 2

1 Write the equations of static equilibrium for the beam in terms of the applied loads
and unknown restraint reactions.

2 Write the deflection equation for the beam in terms of the applied loads and unknown
restraint reactions.

3 Apply boundary conditions to the deflection equation of step 2 consistent with the
restraints.

4 Solve the equations from steps 1 and 3.

The rods AD and C E shown in Fig. 4-17a each have a diameter of 10 mm. The second-
area moment of beam ABC is I = 62.5(10%) mm®*. The modulus of elasticity of the
material used for the rods and beam is £ = 200 GPa. The threads at the ends of the rods
are single-threaded with a pitch of 1.5 mm. The nuts are first snugly fit with bar ABC
horizontal. Next the nut at A is tightened one full turn. Determine the resulting tension
in each rod and the deflections of points A and C.

There is a lot going on in this problem; a rod shortens, the rods stretch in tension, and
the beam bends. Let’s try the procedure!

1 The free-body diagram of the beam is shown in Fig. 4—17b. Summing forces, and
moments about B, gives

Fgp—Fs—Fc=0 (1)
4Fy —3Fc =0 (2)
2 Using singularity functions, we find the moment equation for the beam is
M = —Fux + Fg(x —0.2)!

where x is in meters. Integration yields

dy Fo ,  Fp 2
El-— =—-- —(x =02 C
s > + > (x )y + G
F F

The term E1 = 200(10%) 62.5(107%) = 1.25(10*) N - m?.
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Arh B =nc A\ B ¢
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€

T (b) Free-body diagram of beam ABC
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3 The upward deflection of point A is (FI/AE)sp — Np, where the first term is the
elastic stretch of AD, N is the number of turns of the nut, and p is the pitch of the
thread. Thus, the deflection of A in meters is

FA(0.6)
A= EPe—— (1)(0.0015)

~(0.010
4( )~(200)(10%) (4)

=3.8197(107%)F, — 1.5(107%)

The upward deflection of point C is (FI/AE)cEg, or
Fc(0.8
Yo =7 slls) =5.093(10"%) Fc (5)
Z(0.010)2(200)(109)

Equations (4) and (5) will now serve as the boundary conditions for Eq. (3). At
x =0, y = y4. Substituting Eq. (4) into (3) with x = 0 and EI = 1.25(10%), noting
that the singularity function is zero for x = 0, gives

—4.7746(1071 F4 + C, = —18.75 (6)
Atx =0.2m, y =0, and Eq. (3) yields
—1.3333(107%)F4, +0.2C, + C, =0 (7)

At x =0.35m, y = yc. Substituting Eq. (5) into (3) with x =0.35m and EI =
1.25(10%) gives

—7.1458(107%) F4 + 5.625(107% F — 6.3662(10 ) Fc +0.35C, + C, =0 (8)

Equations (1), (2), (6), (7), and (8) are five equations in Fy, Fg, F¢, Ci, and C,.
Written in matrix form, they are

—1 1 —1 0 O F, 0
4 0 -3 0 O Fp 0
—4.7746(10~%) 0 0 0 1 Fc ¢ =1 —18.75
—1.3333(1073) 0 0 02 1 C, 0
—7.1458(107%) 5.625(10~%) —6.3662(10~%) 0.35 1 C, 0
Solving these equations yields
Answer Fy =2988 N Fp =6971 N Fc =3983 N

C,=10654N-m?> C,=-17324N.-m’
Equation (3) can be reduced to
y = —(39.84x> — 92.95(x — 0.2)> — 8.523x + 1.386)(10~)
Answer Atx =0,y =y, = —1.386(107%) m = —1.386 mm.

Answer Atx =035m, y = yc = —[39.84(0.35)3 — 92.95(0.35 — 0.2)> — 8.523(0.35)
+1.386](103) = 0.203(10~3) m = 0.203 mm



Deflection and Stiffness 181

Note that we could have easily incorporated the stiffness of the support at B if we
were given a spring constant.

Compression Members—General

The analysis and design of compression members can differ significantly from that of
members loaded in tension or in torsion. If you were to take a long rod or pole, such as
a meterstick, and apply gradually increasing compressive forces at each end, nothing
would happen at first, but then the stick would bend (buckle), and finally bend so much
as to fracture. Try it. The other extreme would occur if you were to saw off, say, a 5S-mm
length of the meterstick and perform the same experiment on the short piece. You would
then observe that the failure exhibits itself as a mashing of the specimen, that is, a
simple compressive failure. For these reasons it is convenient to classify compression
members according to their length and according to whether the loading is central or
eccentric. The term column is applied to all such members except those in which fail-
ure would be by simple or pure compression. Columns can be categorized then as:

1 Long columns with central loading

2 Intermediate-length columns with central loading
3 Columns with eccentric loading

4 Struts or short columns with eccentric loading

Classifying columns as above makes it possible to develop methods of analysis and
design specific to each category. Furthermore, these methods will also reveal whether
or not you have selected the category appropriate to your particular problem. The four
sections that follow correspond, respectively, to the four categories of columns listed
above.

Long Columns with Central Loading

Figure 4-18 shows long columns with differing end (boundary) conditions. If the axial
force P shown acts along the centroidal axis of the column, simple compression of the
member occurs for low values of the force. However, under certain conditions, when
P reaches a specific value, the column becomes unstable and bending as shown in
Fig. 4-18 develops rapidly. This force is determined by writing the bending deflection
equation for the column, resulting in a differential equation where when the boundary
conditions are applied, results in the critical load for unstable bending.” The critical
force for the pin-ended column of Fig. 4-18a is given by
p n?El
cr — 12

(4-42)
which is called the Euler column formula. Equation (4—42) can be extended to apply to
other end-conditions by writing

_ Cr’El

cr — 12 (4_43)

where the constant C depends on the end conditions as shown in Fig. 4—18.

9See F. P. Beer, E. R. Johnston, Jr., and J. T. DeWolf, Mechanics of Materials, 5th ed., McGraw-Hill,
New York, 2009, pp. 610-613.
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Figure 4-18

(a) Both ends rounded or
pivoted; (b) both ends fixed;
(c) one end free and one end
fixed; (d) one end rounded and
pivoted, and one end fixed.

(byc=4 (c)c=% dc=2

Using the relation / = Ak?, where A is the area and k the radius of gyration,
enables us to rearrange Eq. (4—43) into the more convenient form
P, Cn’E

AT ak? 4-44)

where [/k is called the slenderness ratio. This ratio, rather than the actual column
length, will be used in classifying columns according to length categories.

The quantity P, /A in Eq. (4—44) is the critical unit load. 1t is the load per unit area
necessary to place the column in a condition of unstable equilibrium. In this state any
small crookedness of the member, or slight movement of the support or load, will cause
the column to begin to collapse. The unit load has the same units as strength, but this is
the strength of a specific column, not of the column material. Doubling the length of a
member, for example, will have a drastic effect on the value of P../A but no effect at
all on, say, the yield strength S, of the column material itself.

Equation (4—44) shows that the critical unit load depends only upon the end con-
ditions, the modulus of elasticity, and the slenderness ratio. Thus a column obeying the
Euler formula made of high-strength alloy steel is no stronger than one made of low-
carbon steel, since E is the same for both.

The factor C is called the end-condition constant, and it may have any one of the
theoretical values i, 1, 2, and 4, depending upon the manner in which the load is
applied. In practice it is difficult, if not impossible, to fix the column ends so that the
factor C = 2 or C = 4 would apply. Even if the ends are welded, some deflection will
occur. Because of this, some designers never use a value of C greater than unity.
However, if liberal factors of safety are employed, and if the column load is accurately
known, then a value of C not exceeding 1.2 for both ends fixed, or for one end rounded
and one end fixed, is not unreasonable, since it supposes only partial fixation. Of course,
the value C = % must always be used for a column having one end fixed and one end
free. These recommendations are summarized in Table 4-2.

When Eq. (4-44) is solved for various values of the unit load P.;/A in terms of the
slenderness ratio //k, we obtain the curve POR shown in Fig. 4-19. Since the yield
strength of the material has the same units as the unit load, the horizontal line through
Sy and Q has been added to the figure. This would appear to make the figure S, QR
cover the entire range of compression problems from the shortest to the longest



Table 4-2

End-Condition Constants
for Euler Columns [to Be
Used with Eq. (4—43)]

Figure 4-19

Euler curve plotted using
Eq. (4-43) with C = 1.
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End-Condition Constant C

Column End Theoretical Conservative Recommended
Conditions Value Value

. 1 1 1
Fixed-free 1 I 1
Rounded-rounded 1 1 1
Fixed-rounded 2 1 1.2
Fixed-fixed 4 1 1.2

*To be used only with liberal factors of safety when the column load is accurately known.

\\ |
N
(S

P
A

Paraboli
curve

Unit load

Euler curve

) S

0

Slenderness ratio %

compression member. Thus it would appear that any compression member having an
[/k value less than (//k)o should be treated as a pure compression member while all
others are to be treated as Euler columns. Unfortunately, this is not true.

In the actual design of a member that functions as a column, the designer will be
aware of the end conditions shown in Fig. 4-18, and will endeavor to configure the ends,
using bolts, welds, or pins, for example, so as to achieve the required ideal end condi-
tions. In spite of these precautions, the result, following manufacture, is likely to contain
defects such as initial crookedness or load eccentricities. The existence of such defects
and the methods of accounting for them will usually involve a factor-of-safety approach
or a stochastic analysis. These methods work well for long columns and for simple
compression members. However, tests show numerous failures for columns with
slenderness ratios below and in the vicinity of point Q, as shown in the shaded area in
Fig. 4-19. These have been reported as occurring even when near-perfect geometric
specimens were used in the testing procedure.

A column failure is always sudden, total, unexpected, and hence dangerous. There
is no advance warning. A beam will bend and give visual warning that it is over-
loaded, but not so for a column. For this reason neither simple compression methods
nor the Euler column equation should be used when the slenderness ratio is near
(//k)o. Then what should we do? The usual approach is to choose some point 7" on
the Euler curve of Fig. 4-19. If the slenderness ratio is specified as (//k); correspond-
ing to point 7, then use the Euler equation only when the actual slenderness ratio is
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greater than (//k);. Otherwise, use one of the methods in the sections that follow. See
Examples 4-17 and 4-18.

Most designers select point 7" such that P;/A = S, /2. Using Eq. (4-43), we find
the corresponding value of (I/k); to be

I 272CE\"?
(1),=(57) -2

Intermediate-Length Columns with Central Loading

Over the years there have been a number of column formulas proposed and used for the
range of [/ k values for which the Euler formula is not suitable. Many of these are based
on the use of a single material; others, on a so-called safe unit load rather than the crit-
ical value. Most of these formulas are based on the use of a linear relationship between
the slenderness ratio and the unit load. The parabolic or J. B. Johnson formula now
seems to be the preferred one among designers in the machine, automotive, aircraft, and
structural-steel construction fields.
The general form of the parabolic formula is

Pe 1\’
X:a—b(%> (O)

where a and b are constants that are evaluated by fitting a parabola to the Euler curve
of Fig. 4-19 as shown by the dashed line ending at 7'. If the parabola is begun at S,
then a = §,. If point T is selected as previously noted, then Eq. (4—42) gives the value
of (I/k); and the constant b is found to be

S\ 1
b=(-=2) — (b)
2 ) CE
Upon substituting the known values of a and b into Eq. (a), we obtain, for the parabolic
equation,
P Sy 1\ 1 1 (1
oo (2l) = S <= (4-46)
A 2r k) CE k k),

Columns with Eccentric Loading

We have noted before that deviations from an ideal column, such as load eccentrici-
ties or crookedness, are likely to occur during manufacture and assembly. Though
these deviations are often quite small, it is still convenient to have a method of
dealing with them. Frequently, too, problems occur in which load eccentricities are
unavoidable.

Figure 4-20a shows a column in which the line of action of the column forces is
separated from the centroidal axis of the column by the eccentricity e. From Fig. 4-20b,
M = —P(e + y). Substituting this into Eq. (4—12), d*y/dx> = M/EI, results in the
differential equation

d*y P Pe

2 TE TR (a)



Figure 4-20

Notation for an eccentrically
loaded column.
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The solution of Eq. (a), for the boundary conditions thaty = 0 atx = 0, [ is

y= e[tan(é L% )sin( L%x) + cos(\/?) - 1] (b)

By substituting x = //2 in Eq. (b) and using a trigonometric identity, we obtain

sec( g—] %) - 1] (4-47)

The magnitude of the maximum bending moment also occurs at midspan and is

S=ce

M P(e 4+ 8) = Pesec L]P (4-48)
max — e = re =1 =7 —
2V EI

The magnitude of the maximum compressive stress at midspan is found by superposing
the axial component and the bending component. This gives

P Mc P+Mc (
O‘C:— _— = — —_—
AT T AT AR ¢

Substituting M.« from Eq. (4-48) yields

_F 1+ £ sec ! P (4-49)
%= K2 2%V EA

By imposing the compressive yield strength Sy, as the maximum value of o, we can
write Eq. (4-49) in the form

L Sye (4-50)
A 1+ (ec/k2)sec[(l/2k)/PJAE]

This is called the secant column formula. The term ec/k?* is called the eccentricity
ratio. Figure 4-21 is a plot of Eq. (4-50) for a steel having a compressive (and tensile)
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Figure 4-21

Comparison of secant and
Euler equations for steel with
Sy = 40 kpsi.

EXAMPLE 4-16

Solution

Answer

Answer

Euler's curve

Unit load P/A

| | | | J
0 50 100 150 200 250

Slenderness ratio I/k

yield strength of 40 kpsi. Note how the P/A contours asymptotically approach the Euler
curve as [/k increases.

Equation (4-50) cannot be solved explicitly for the load P. Design charts, in the
fashion of Fig. 4-21, can be prepared for a single material if much column design

is to be done. Otherwise, a root-finding technique using numerical methods must
be used.

Develop specific Euler equations for the sizes of columns having
(a) Round cross sections
(b) Rectangular cross sections

(a) Using A = wd¥4 and k = TJA = [(d*/64)/(wd*/4)]"/> = d /4 with Eq. (4-44)

gives
64P 1>\ "
d= <n3C“E) (4-51)

(b) For the rectangular column, we specify a cross section 2 x b with the
restriction that 2 < b. If the end conditions are the same for buckling in both directions,
then buckling will occur in the direction of the least thickness. Therefore

bh? h?

I —

—  A=bh 2=1/A=—
12 b C=ld=g

Substituting these in Eq. (4-44) gives

b= 12Pel” h<b (4-52)
T 72CER3 -

Note, however, that rectangular columns do not generally have the same end conditions
in both directions.
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Solution

Answer

EXAMPLE 4-18

Solution

Answer

Answer

EXAMPLE 4-19
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Specify the diameter of a round column 1.5 m long that is to carry a maximum load
estimated to be 22 kN. Use a design factor n; =4 and consider the ends as pinned
(rounded). The column material selected has a minimum yield strength of 500 MPa and
a modulus of elasticity of 207 GPa.
We shall design the column for a critical load of

Py =nyP =4(22) = 88 kN
Then, using Eq. (4-51) with C = 1 (see Table 4-2) gives

64 P..I? 1/4 64(88)(1.5)2 V4 103\ 4
d=<n3CE> =[W} <—) (10°) = 37.48 mm

10°
Table A—17 shows that the preferred size is 40 mm. The slenderness ratio for this size is

I 1 150103

= = = 150
k— d/4a - 40/4

To be sure that this is an Euler column, we use Eq. (5-51) and obtain

1\ _ (27>CEN"? 22207 (10 '/2_904
k), U S, B 500 6) 7

which indicates that it is indeed an Euler column. So select

d =40 mm

Repeat Ex. 4-16 for J. B. Johnson columns.

(a) For round columns, Eq. (4-46) yields

1,2
P, Syl?
d=2 (nSy + n2CE (4-53)

(b) For a rectangular section with dimensions 47 < b, we find

PCI'
b= h<b (4-54)

3128, -
hSy (11— =2
»‘< nZCEh2>

Choose a set of dimensions for a rectangular link that is to carry a maximum compres-
sive load of 5000 Ibf. The material selected has a minimum yield strength of 75 kpsi
and a modulus of elasticity £ = 30 Mpsi. Use a design factor of 4 and an end condi-
tion constant C = 1 for buckling in the weakest direction, and design for (a) a length
of 15 in, and () a length of 8 in with a minimum thickness of % in.
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Solution

Table 4-3

Table Generated to Solve
Ex. 4-19, part (a)

Figure 4-22

Eccentrically loaded strut.

(a) Using Eq. (4—44), we find the limiting slenderness ratio to be

L\ _ (20°CE\" _ 122300091 _ ooy
<%>1_< Sy ) _[ 75(10)° } o

By using Py = ng P = 4(5000) = 20 000 1bf, Egs. (4-52) and (4-54) are solved, using
various values of /4, to form Table 4-3. The table shows that a cross section of % by % in,
which is marginally suitable, gives the least area.

(b) An approach similar to that in part (@) is used with / = 8 in. All trial computa-
tions are found to be in the J. B. Johnson region of //k values. A minimum area occurs
when the section is a near square. Thus a cross section of % by % in is found to be suit-
able and safe.

h b A I/k Type Eq. No.
0.375 3.46 1.298 139 Euler (4-52)
0.500 1.46 0.730 104 Euler (4-52)
0.625 0.76 0.475 83 Johnson (4-54)
0.5625 1.03 0.579 92 Euler (4-52)

Struts or Short Compression Members

A short bar loaded in pure compression by a force P acting along the centroidal axis
will shorten in accordance with Hooke’s law, until the stress reaches the elastic limit of
the material. At this point, permanent set is introduced and usefulness as a machine
member may be at an end. If the force P is increased still more, the material either
becomes “barrel-like” or fractures. When there is eccentricity in the loading, the elastic
limit is encountered at smaller loads.

A strut is a short compression member such as the one shown in Fig. 4-22. The
magnitude of the maximum compressive stress in the x direction at point B in an inter-
mediate section is the sum of a simple component P/A and a flexural component
Mc/I; that is,

P+Mc P+PecA P 1+ec (4-55)
O, = — _—— —_— —_— —
A I A IA A k2

where k = (I/A)"/? and is the radius of gyration, c is the coordinate of point B, and e
is the eccentricity of loading.

Note that the length of the strut does not appear in Eq. (4-55). In order to use the
equation for design or analysis, we ought, therefore, to know the range of lengths for
which the equation is valid. In other words, how long is a short member?

The difference between the secant formula Eq. (4-50) and Eq. (4-55) is that the
secant equation, unlike Eq. (4-55), accounts for an increased bending moment due to
bending deflection. Thus the secant equation shows the eccentricity to be magnified by
the bending deflection. This difference between the two formulas suggests that one way



EXAMPLE 4-20

Solution

Answer

Figure 4-23

A strut that is part of a
workpiece clamping assembly.
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of differentiating between a “secant column” and a strut, or short compression member,
is to say that in a strut, the effect of bending deflection must be limited to a certain small
percentage of the eccentricity. If we decide that the limiting percentage is to be 1 per-
cent of e, then, from Eq. (4—44), the limiting slenderness ratio turns out to be

l AE\'?
2

This equation then gives the limiting slenderness ratio for using Eq. (4-55). If the actual
slenderness ratio is greater than (//k),, then use the secant formula; otherwise, use
Eq. (4-55).

Figure 4-23a shows a workpiece clamped to a milling machine table by a bolt tight-
ened to a tension of 2000 1bf. The clamp contact is offset from the centroidal axis of the
strut by a distance e = 0.10 in, as shown in part b of the figure. The strut, or block, is
steel, 1 in square and 4 in long, as shown. Determine the maximum compressive stress
in the block.

First we find A =bh =1(1) =1 in?, I =bh>/12 =1(1)3/12 = 0.0833 in*, k> =
I/A =0.0833/1 = 0.0833 in%, and [/k =4/(0.0833)!/2 = 13.9. Equation (4-56)
gives the limiting slenderness ratio as

I AEN'? 1(30)(106) 7"
—) =0282(—) =028 "] =488
(£),0=2(%F)  —oame o™ |
Thus the block could be as long as
[ = 48.8k = 48.8(0.0833)'/2 = 14.1 in

before it need be treated by using the secant formula. So Eq. (4-55) applies and the
maximum compressive stress is

P 14 1000 1+0'1(0'5)
k) 1 0.0833

i| = 1600 psi

P = 1000 Ibf

<— 1-in square

—>] < 0.10 in
P

(a) (b)
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4-16

%

Figure 4-25

Finite-element representation
of flange buckling of a channel

in compression.

Elastic Stability

Section 4-12 presented the conditions for the unstable behavior of long, slender columns.
Elastic instability can also occur in structural members other than columns. Compressive
loads/stresses within any long, thin structure can cause structural instabilities (buckling).
The compressive stress may be elastic or inelastic and the instability may be global or local.
Global instabilities can cause catastrophic failure, whereas local instabilities may cause
permanent deformation and function failure but not a catastrophic failure. The buckling
discussed in Sec. 4-12 was global instability. However, consider a wide flange beam in
bending. One flange will be in compression, and if thin enough, can develop localized
buckling in a region where the bending moment is a maximum. Localized buckling can
also occur in the web of the beam, where transverse shear stresses are present at the beam
centroid. Recall, for the case of pure shear stress 7, a stress transformation will show that
at45°, a compressive stress of o = —t exists. If the web is sufficiently thin where the shear
force V is a maximum, localized buckling of the web can occur. For this reason, additional
support in the form of bracing is typically applied at locations of high shear forces.'°

Thin-walled beams in bending can buckle in a torsional mode as illustrated in
Fig. 4-24. Here a cantilever beam is loaded with a lateral force, F. As F is increases
from zero, the end of the beam will deflect in the negative y direction normally accord-
ing to the bending equation, y = —FL3/(3EI). However, if the beam is long enough
and the ratio of b/h is sufficiently small, there is a critical value of F' for which the beam
will collapse in a twisting mode as shown. This is due to the compression in the bottom
fibers of the beam which cause the fibers to buckle sideways (z direction).

There are a great many other examples of unstable structural behavior, such as thin-
walled pressure vessels in compression or with outer pressure or inner vacuum, thin-walled
open or closed members in torsion, thin arches in compression, frames in compression, and
shear panels. Because of the vast array of applications and the complexity of their analyses,
further elaboration is beyond the scope of this book. The intent of this section is to make the
reader aware of the possibilities and potential safety issues. The key issue is that the
designer should be aware that if any unbraced part of a structural member is thin, and/or
long, and in compression (directly or indirectly), the possibility of buckling should be
investigated.!

For unique applications, the designer may need to revert to a numerical solution
such as using finite elements. Depending on the application and the finite-element code
available, an analysis can be performed to determine the critical loading (see Fig. 4-25).

Figure 4-24 y

Torsional buckling of a
thin-walled beam in bending.

19See C. G. Salmon, J. E. Johnson, and E. A. Malhas, Steel Structures: Design and Behavior, 5th ed.,
Prentice Hall, Upper Saddle River, NJ, 2009.

ISee S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, 1961.
See also, Z. P. Bazant and L. Cedolin, Stability of Structures, Oxford University Press, New York, 1991.
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Two-degree-of-freedom
mathematical model of an
automobile in collision with a
rigid obstruction.
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Shock and Impact

Impact refers to the collision of two masses with initial relative velocity. In some cases
it is desirable to achieve a known impact in design; for example, this is the case in the
design of coining, stamping, and forming presses. In other cases, impact occurs because
of excessive deflections, or because of clearances between parts, and in these cases it is
desirable to minimize the effects. The rattling of mating gear teeth in their tooth spaces
is an impact problem caused by shaft deflection and the clearance between the teeth.
This impact causes gear noise and fatigue failure of the tooth surfaces. The clearance
space between a cam and follower or between a journal and its bearing may result in
crossover impact and also cause excessive noise and rapid fatigue failure.

Shock is a more general term that is used to describe any suddenly applied force or
disturbance. Thus the study of shock includes impact as a special case.

Figure 4-26 represents a highly simplified mathematical model of an automobile
in collision with a rigid obstruction. Here m is the lumped mass of the engine. The
displacement, velocity, and acceleration are described by the coordinate x; and its
time derivatives. The lumped mass of the vehicle less the engine is denoted by m,, and
its motion by the coordinate x;, and its derivatives. Springs k, k>, and k3 represent the
linear and nonlinear stiffnesses of the various structural elements that compose
the vehicle. Friction and damping can and should be included, but is not shown in this
model. The determination of the spring rates for such a complex structure will almost
certainly have to be performed experimentally. Once these values—the k’s, m’s, damping
and frictional coefficients—are obtained, a set of nonlinear differential equations can be
written and a computer solution obtained for any impact velocity. For sake of illustra-
tion, assuming the springs to be linear, isolate each mass and write their equations of
motion. This results in

miy +kixp +ka(xp —x2) =0

. (4-57)
miy +k3xy —kao(x; —x2) =0

The analytical solution of the Eq. (4-57) pair is harmonic and is studied in a course on
mechanical vibrations.'? If the values of the m’s and k’s are known, the solution can be
obtained easily using a program such as MATLAB.

Suddenly Applied Loading

A simple case of impact is illustrated in Fig. 4-27a. Here a weight W falls a distance &
and impacts a cantilever of stiffness EI and length /. We want to find the maximum
deflection and the maximum force exerted on the beam due to the impact.

e

ky
AW —

D)

12See William T. Thomson and Marie Dillon Dahleh, Theory of Vibrations with Applications, 5th ed.,
Prentice Hall, Upper Saddle River, NJ, 1998.



192 Mechanical Engineering Design

Figure 4-27

(a) A weight free to fall a
distance / to free end of a

beam. (b) Equivalent spring

model.
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Figure 4-27b shows an abstract model of the system considering the beam as a sim-
ple spring. For beam 1 of Table A9, we find the spring rate to bek = F/y = 3EI/I°.
The beam mass and damping can be accounted for, but for this example will be con-
sidered negligible. If the beam is considered massless, there is no momentum transfer,
only energy. If the maximum deflection of the spring (beam) is considered to be &, the
drop of the weight is 2 4 §, and the loss of potential energy is W (h 4 §). The resulting
increalse in potential (strain) energy of the spring is %k52. Thus, for energy conserva-

tion, §k82 = W(h + §). Rearranging this gives

w w
52—273—27h =0 (a)
Solving for ¢ yields
wow 2hk\'?
=Xt (1 * W) o

The negative solution is possible only if the weight “sticks” to the beam and vibrates
between the limits of Eq. (b). Thus, the maximum deflection is

wow 2hk\ '
=g+ (1457) 4728

The maximum force acting on the beam is now found to be

2hk\'?
F=k8=W+W<1+W>

(4-59)
Note, in this equation, that if # = 0, then F' = 2W. This says that when the weight is
released while in contact with the spring but is not exerting any force on the spring, the
largest force is double the weight.

Most systems are not as ideal as those explored here, so be wary about using these
relations for nonideal systems.

PROBLEMS

Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1-1 of Sec. 1-16, p. 24.

The figure shows a torsion bar O A fixed at O, simply supported at A, and connected to a can-
tilever AB. The spring rate of the torsion bar is k7, in newton-meters per radian, and that of the
cantilever is k;, in newtons per meter. What is the overall spring rate based on the deflection y at
point B?



Problem 4-1

4-3

Problem 4-3

4-4
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For Prob. 4-1, if the simple support at point A were eliminated and the cantilever spring rate
of OA is given by k;, determine the overall spring rate of the bar based on the deflection of
point B.

A torsion-bar spring consists of a prismatic bar, usually of round cross section, that is twisted
at one end and held fast at the other to form a stiff spring. An engineer needs a stiffer one than
usual and so considers building in both ends and applying the torque somewhere in the cen-
tral portion of the span, as shown in the figure. This effectively creates two springs in paral-
lel. If the bar is uniform in diameter, that is, if d = d; = d», (a) determine how the spring rate
and the end reactions depend on the location x at which the torque is applied, (b) determine the
spring rate, the end reactions, and the maximum shear stress, if d = 0.5 in, x = 5 in, [ = 10 in,
T = 1500 Ibf - in, and G = 11.5 Mpsi.

An engineer is forced by geometric considerations to apply the torque on the spring of Prob. 4-3
at the location x = 0.4/. For a uniform-diameter spring, this would cause one leg of the span to
be underutilized when both legs have the same diameter. For optimal design the diameter of each
leg should be designed such that the maximum shear stress in each leg is the same. This problem
is to redesign the spring of part (b) of Prob. 4-3. Using x = 0.4/,/ =10 in, 7 = 1500 1bf - in,
and G = 11.5 Mpsi, design the spring such that the maximum shear stresses in each leg are equal
and the spring has the same spring rate (angle of twist) as part (b) of Prob. 4-3. Specify d, d,,
the spring rate k, and the torque and the maximum shear stress in each leg.

A bar in tension has a circular cross section and includes a tapered portion of length [, as
shown. !
(a) For the tapered portion, use Eq. (4-3) in the form of § = / [F/(AE)] dx to show that

0

. 4 Fl
_JTd1d2E
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Problem 4-5

4-6

a-7

4-8

4-9

4-10

Problem 4-10

4-11

Problem 4-11

(b) Determine the elongation of each portion if dj = 0.5 in, d> = 0.75 in,l =11 =1, = 2.0 in,
E =30 Mpsi, and F = 1000 Ibf.

Instead of a tensile force, consider the bar in Prob. 4-5 to be loaded by a torque 7.

l
(a) Use Eq. (4-5) in the form of 6 = / [T/(GJ)]dx to show that the angle of twist of the
tapered portion is 0
g 2T (d} + didy + d3)
3 Gd3d;

(b) Using the same geometry as in Prob. 4-5b with 7 = 1500 Ibf - in and G = 11.5 Mpsi, deter-
mine the angle of twist in degrees for each portion.

When a vertically suspended hoisting cable is long, the weight of the cable itself contributes to
the elongation. If a 500-ft steel cable has an effective diameter of 0.5 in and lifts a load of
5000 Ibf, determine the total elongation and the percent of the total elongation due to the cable’s
own weight.

Derive the equations given for beam 2 in Table A-9 using statics and the double-integration
method.

Derive the equations given for beam 5 in Table A-9 using statics and the double-integration
method.

The figure shows a cantilever consisting of steel angles size 100 x 100 x 12 mm mounted back
to back. Using superposition, find the deflection at B and the maximum stress in the beam.

3m
2.5kN
2m
1 kN/m
HHHHHHMHV\\ H\my¢ X
o B
=11 I

A simply supported beam loaded by two forces is shown in the figure. Select a pair of struc-
tural steel channels mounted back to back to support the loads in such a way that the deflec-
tion at midspan will not exceed % in and the maximum stress will not exceed 15 kpsi. Use
superposition.

y

450 Ibf 300 Ibf

6 ft 4 ft 10 ft C




4-12

Problem 4-12

4-13

Problem 4-13

Dimensions in millimeters.

4-14

Problem 4-14

4-15

Problem 4-15
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Using superposition, find the deflection of the steel shaft at A in the figure. Find the deflection at
midspan. By what percentage do these two values differ?

y

340 Ibf

150 Ibf/ft
.
1.5 in-dia. shaft

~<~—15in } 24 in

A rectangular steel bar supports the two overhanging loads shown in the figure. Using superposition,
find the deflection at the ends and at the center.

500 ‘

A B
Bar,b=6,h=32

An aluminum tube with outside diameter of 2 in and inside diameter of 1.5 in is cantilevered and

loaded as shown. Using the formulas in Appendix Table A-9 and superposition, find the deflec-
tion at B.

300 Ibf 200 1bf

The cantilever shown in the figure consists of two structural-steel channels size 3 in, 5.0 Ibf/ft.
Using superposition, find the deflection at A. Include the weight of the channels.

60 in |

150 Ibf
5 Ibf/in
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4-16 Using superposition for the bar shown, determine the minimum diameter of a steel shaft for
which the maximum deflection is 2 mm.

y
250 +F 250 ﬁ« 250 + 250
Problem 4-16 375N |550N  |375N
Dimensions in millimeters.
A B C

4-17 A simply supported beam has a concentrated moment M, applied at the left support and a con-
centrated force F applied at the free end of the overhang on the right. Using superposition, deter-
mine the deflection equations in regions AB and BC.

y\ |
Problem 4-17 ‘ ! i ¢ g
@'\ TB C

4-18 Calculating beam deflections using superposition is quite convenient provided you have a com-
prehensive table to refer to. Because of space limitations, this book provides a table that covers
a great deal of applications, but not all possibilities. Take for example, Prob. 4-19, which fol-
lows this problem. Problem 4-19 is not directly solvable from Table A-9, but with the addition
of the results of this problem, it is. For the beam shown, using statics and double integration,

show that
R="0 ) k=" V= Dia—v - v wa
=—Q2l—a = — =—[RIa—-x)—a =——
Y 2T AB =0 Be 2
2
MAB=%(2az—a2—1x> MBczwz—al(l—x)
wx w
= —[2ax*’Q2 —a) — Ix> — a*(2l — a)? = —a*
YAB 24Ell[ ax®(2l —a) —Ix> —a”(2l —a)’] yBc = yaB + 24El(x a)
y
1
47&*)‘
Problem 4-18 w
A 8 c_ .
WRI R,
4-19 Using the results of Prob. 4-18, use superposition to determine the deflection equations for the

three regions of the beam shown.

a
Problem 4-19 ~ w

A X
T B C T
Kl “2




4-20

Problem 4-20

4-21

Problem 4-21

4-22

Problem 4-22

4-23* to
4-28*
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Like Prob. 4-18, this problem provides another beam to add to Table A-9. For the simply sup-
ported beam shown with an overhanging uniform load, use statics and double integration to
show that

2 2

wa wa wa
Ri=—- Ro=—F @l 4 a) Vap = ——1 Ve =wl +a—x)
Map=—"Cr  Mpe=—"0ta—x?
AB = 21 BC = )
2
w w
VAB= (2= x%)  ype = [( +a —x)* — 4a>( — x)( + a) — a*]

12E11 T 24EI

Consider the uniformly loaded simply supported steel beam with an overhang as shown. The
second-area moment of the beam is I = 0.05 in*. Use superposition (with Table A—9 and the
results of Prob. 4-20) to determine the reactions and the deflection equations of the beam. Plot
the deflections.

A b b b e
AN _/\B
; 10in < 4m44J

Illustrated is a rectangular steel bar with simple supports at the ends and loaded by a force F at

the middle; the bar is to act as a spring. The ratio of the width to the thickness is to be about

b = 10h, and the desired spring scale is 1800 lbf/in.

(a) Find a set of cross-section dimensions, using preferred fractional sizes from Table A—17.

(b) What deflection would cause a permanent set in the spring if this is estimated to occur at a
normal stress of 60 kpsi?

F
1A¢] by

a< i

I 3 ft 1 Section A-A

For the steel countershaft specified in the table, find the deflection and slope of the shaft at
point A. Use superposition with the deflection equations in Table A—9. Assume the bearings con-
stitute simple supports.
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Problem, Page

Problem Number Defining
Number Shaft

4-23* 3-68, 137

4-24% 3-69, 137

4-25% 3-70, 137

4-26% 3-71, 137

4-27% 3-72, 138

4-28* 3-73, 138

4-29* to For the steel countershaft specified in the table, find the slope of the shaft at each bearing. Use
4-34* superposition with the deflection equations in Table A—9. Assume the bearings constitute simple
Supports.

Problem, Page

Problem Number Defining

Number Shaft
4-29% 3-68, 137
4-30%* 3-69, 137
4-31% 3-70, 137
4-32% 3-71, 137
4-33* 3-72, 138
4-34% 3-73, 138

4-35* to For the steel countershaft specified in the table, assume the bearings have a maximum slope spec-
4-40* ification of 0.06° for good bearing life. Determine the minimum shaft diameter.

Problem, Page

Problem Number Defining

Number Shaft
4-35% 3-68, 137
4-36* 3-69, 137
4-37* 3-70, 137
4-38* 3-71, 137
4-39%* 3-72, 138
4-40%* 3-73, 138

4-41* The cantilevered handle in the figure is made from mild steel that has been welded at the joints.

For Fy = 200 Ibf, Fy = F; =0, determine the vertical deflection (along the y axis) at the tip.
Use superposition. See the discussion on p. 102 for the twist in the rectangular cross section in
section BC.
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Problem 4-41

4-42 For the cantilevered handle in Prob. 441, let Fy = —150 1bf, F,, = 0 Ibf, F;, = —100 Ibf. Find
the deflection at the tip along the x axis.

4-43* The cantilevered handle in Prob. 3-84, p. 140, is made from mild steel. Let Fy = 250 Ibf,
Fy = F; = 0. Determine the angle of twist in bar OC, ignoring the fillets but including the
changes in diameter along the 13-in effective length. Compare the angle of twist if the bar OC is
simplified to be all of uniform 1-in diameter. Use superposition to determine the vertical deflec-
tion (along the y axis) at the tip, using the simplified bar OC.

4-44 A flat-bed trailer is to be designed with a curvature such that when loaded to capacity the trailer
bed is flat. The load capacity is to be 3000 1bf/ft between the axles, which are 25 ft apart, and the
second-area moment of the steel structure of the bed is I = 485 in*. Determine the equation for
the curvature of the unloaded bed and the maximum height of the bed relative to the axles.

4-45 The designer of a shaft usually has a slope constraint imposed by the bearings used. This limit
will be denoted as &. If the shaft shown in the figure is to have a uniform diameter d except in
the locality of the bearing mounting, it can be approximated as a uniform beam with simple sup-
ports. Show that the minimum diameters to meet the slope constraints at the left and right bear-
ings are, respectively,

1/4 1/4

L =

R =

32Fb(I* — b?)
3nElE

32Fa(® —a?)
3nElE

Problem 4-45

4-46 A steel shaft is to be designed so that it is supported by roller bearings. The basic geometry is
shown in the figure from Prob. 445, with / = 300 mm, a = 100 mm, and F = 3 kN. The allow-
able slope at the bearings is 0.001 mm/mm without bearing life penalty. For a design factor
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4-47

Problem 4-47

Dimensions in inches.

4-48

4-49

Problem 4-49

4-50* and
4-51

4-52

of 1.28, what uniform-diameter shaft will support the load without penalty? Determine the
maximum deflection of the shaft.

If the diameter of the steel beam shown is 1.25 in, determine the deflection of the beam at
x = 8in.

250 Ibf

For the beam of Prob. 4-47, plot the magnitude of the displacement of the beam in 0.1-in incre-
ments. Approximate the maximum displacement and the value of x where it occurs.

Shown in the figure is a uniform-diameter shaft with bearing shoulders at the ends; the shaft is sub-
jected to a concentrated moment M = 1000 Ibf - in. The shaft is of carbon steel and has @ = 4 in
and / = 10 in. The slope at the ends must be limited to 0.002 rad. Find a suitable diameter d.

The figure shows a rectangular member OB, made from %-in-thick aluminum plate, pinned to the
ground at one end and supported by a %-in-diameter round steel rod with hooks formed on the
ends. A load of 100 Ibf is applied as shown. Use superposition to determine the vertical deflec-
tion at point B.

C
~-in dia. —> ¢ T ~-in dia. — 100 Ibf
100 Ibf = . :
2in l finthick [ 1200 b 0 12in] Linthick
vy e l S pd |
YD S W — S PN YV P ——

* B 0 % }<77in—> B
6in 12in 6in i 12in

Problem 4-50* Problem 4-51

The figure illustrates a stepped torsion-bar spring O A with an actuating cantilever AB. Both
parts are of carbon steel. Use superposition and find the spring rate k corresponding to a force F'
acting at B.



Problem 4-52

4-53

4-54

4-55

4-56
4-57
4-58
4-59

4-60

4-61
4-62

4-63

Problem 4-63

4-64
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Consider the simply supported beam 5 with a center load in Appendix A-9. Determine the deflec-
tion equation if the stiffness of the left and right supports are k; and k», respectively.

Consider the simply supported beam 10 with an overhanging load in Appendix A-9. Determine
the deflection equation if the stiffness of the left and right supports are k; and k,, respectively.

Prove that for a uniform-cross-section beam with simple supports at the ends loaded by a single
concentrated load, the location of the maximum deflection will never be outside the range of
0.4231 < x < 0.577! regardless of the location of the load along the beam. The importance of this
is that you can always get a quick estimate of yn,x by using x =1/2.

Solve Prob. 4-10 using singularity functions. Use statics to determine the reactions.
Solve Prob. 4-11 using singularity functions. Use statics to determine the reactions.
Solve Prob. 4-12 using singularity functions. Use statics to determine the reactions.

Solve Prob. 4-21 using singularity functions to determine the deflection equation of the beam. Use
statics to determine the reactions.

Solve Prob. 4-13 using singularity functions. Since the beam is symmetric, only write the equa-
tion for half the beam and use the slope at the beam center as a boundary condition. Use statics
to determine the reactions.

Solve Prob. 4-17 using singularity functions. Use statics to determine the reactions.

Solve Prob. 4-19 using singularity functions to determine the deflection equation of the beam.
Use statics to determine the reactions.

Using singularity functions, write the deflection equation for the steel beam shown. Since the
beam is symmetric, write the equation for only half the beam and use the slope at the beam cen-
ter as a boundary condition. Plot your results and determine the maximum deflection.

w = 180 1bf/in
1.375-in diameter ¢ ¢ ¢ ¢ ¢ L L l 1.375-in diameter

1.75-in diameter

3in 10 in 3in
[~ -

Determine the deflection equation for the cantilever beam shown using singularity functions.
Evaluate the deflections at B and C and compare your results with Example 4-10.
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Problem 4-64

4-65

4-66

4-67
4-68
4-69
4-70

Problem 4-70

4-71*

4-72
4-73*

4-74*
4-75
4-76

12 >| 12

Use Castigliano’s theorem to verify the maximum deflection for the uniformly loaded beam 7 of
Appendix Table A-9. Neglect shear.

Use Castigliano’s theorem to verify the maximum deflection for the uniformly loaded cantilever
beam 3 of Appendix Table A-9. Neglect shear.

Solve Prob. 4-15 using Castigliano’s theorem.
Solve Prob. 4-52 using Castigliano’s theorem.
Determine the deflection at midspan for the beam of Prob. 4-63 using Castigliano’s theorem.

Using Castigliano’s theorem, determine the deflection of point B in the direction of the force F
for the steel bar shown.

F =15 1bf

Solve Prob. 4-41 using Castigliano’s theorem. Since Eq. (4—18) for torsional strain energy was
derived from the angular displacement for circular cross sections, it is not applicable for section
BC. You will need to obtain a new strain energy equation for the rectangular cross section from
Egs. (4-15) and (3-41).

Solve Prob. 4-42 using Castigliano’s theorem.

The cantilevered handle in Prob. 3-84 is made from mild steel. Let F, =250 Ibf and
F, = F; = 0. Using Castigliano’s theorem, determine the vertical deflection (along the y axis) at
the tip. Repeat the problem with shaft OC simplified to a uniform diameter of 1 in for its entire
length. What is the percent error from this simplification?

Solve Prob. 4-50 using Castigliano’s theorem.
Solve Prob. 4-51 using Castigliano’s theorem.

The steel curved bar shown has a rectangular cross section with a radial height # = 6 mm, and a
thickness » =4 mm. The radius of the centroidal axis is R =40 mm. A force P = 10 N is
applied as shown. Find the vertical deflection at B. Use Castigliano’s method for a curved flexural
member, and since R/h < 10, do not neglect any of the terms.



Problem 4-76

4-77
4-78

Problem 4-78

4-79

Problem 4-79

4-80

Problem 4-80
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Repeat Prob. 4-76 to find the vertical deflection at A.

For the curved steel beam shown, F' = 6.7 kips. Determine the relative deflection of the applied
forces.

f«—3 in—>] i
NKOSSSSX] —~ 1.3751in
A 0.75 in>Q\y< 1.51in

NN NNNNNN] 1.375in
T

Section A-A

«—4in—

A steel piston ring has a mean diameter of 70 mm, a radial height # = 4.5 mm, and a thickness
b = 3 mm. The ring is assembled using an expansion tool that separates the split ends a distance
8 by applying a force F as shown. Use Castigliano’s theorem and determine the force F' needed
to expand the split ends a distance § = 1 mm.

h=4.5mm

For the steel wire form shown, use Castigliano’s method to determine the horizontal reaction
forces at A and B and the deflection at C.
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4-81 and
4-82

4-83
4-84
4-85

Problem 4-85

4-86

Problem 4-86

4-87

The part shown is formed from a %—in diameter steel wire, with R = 5 in and [ = 4 in. A force is

applied with P = 1 Ibf. Use Castigliano’s method to estimate the horizontal deflection at point A.
Justify any components of strain energy that you choose to neglect.

Problem 4-81 Problem 4-82

Repeat Prob. 4-81 for the vertical deflection at point A.
Repeat Prob. 4-82 for the vertical deflection at point A.

A hook is formed from a 2-mm-diameter steel wire and fixed firmly into the ceiling as shown. A
1-kg mass is hung from the hook at point D. Use Castigliano’s theorem to determine the vertical
deflection of point D.

The figure shows a rectangular member OB, made from %—in—thick aluminum plate, pinned to the
ground at one end, and supported by a %—in—diameter round steel rod that is formed into an arc
and pinned to the ground at C. A load of 100 Ibf is applied at B. Use Castigliano’s theorem to
determine the vertical deflection at point B. Justify any choices to neglect any components of
strain energy.

100 Ibf

——m thlck

{{}L— Ga—- ._4947
Ll

Repeat Prob. 4-86 for the vertical deflection at point A.




4-88

Problem 4-88

4-89

4-90

Problem 4-90

4-91
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For the wire form shown, determine the deflection of point A in the y direction. Assume
R/h > 10 and consider the effects of bending and torsion only. The wire is steel with E =
200 GPa, v = 0.29, and has a diameter of 6 mm. Before application of the 250-N force the wire
form is in the xz plane where the radius R is 80 mm.

250 N

A 100-ft cable is made using a 12-gauge (0.1055-in) steel wire and three strands of 10-gauge
(0.1019-in) copper wire. Find the deflection of the cable and the stress in each wire if the cable
is subjected to a tension of 400 Ibf.

The figure shows a steel pressure cylinder of diameter 5 in that uses six SAE grade 4 steel bolts

having a grip of 10 in. These bolts have a proof strength (see Chap. 8) of 65 kpsi. Suppose the

bolts are tightened to 75 percent of this strength.

(a) Find the tensile stress in the bolts and the compressive stress in the cylinder walls.

(b) Repeat part (a), but assume now that a fluid under a pressure of 500 psi is introduced into the
cylinder.

Six %—in grade 4 bolts

=

I, =9in < D =5in —> I,=10in

A torsion bar of length L consists of a round core of stiffness (G J). and a shell of stiffness (G J);.
If a torque T is applied to this composite bar, what percentage of the total torque is carried by
the shell?
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4-92

Problem 4-92

4-93
4-94

Problem 4-94

(Not drawn to scale)

4-95

Problem 4-95

4-96
4-97

Problem 4-97

A rectangular aluminum bar 10 mm thick and 60 mm wide is welded to fixed supports at the ends,
and the bar supports a load W = 4 kN, acting through a pin as shown. Find the reactions at the
supports and the deflection of point A.

y
B

600 my
60 mm —-| | [<—
i w
10 mm thlck\

m

A

I
I 400 mm

-

o

Solve Prob. 4-92 using Castigliano’s method and procedure 1 from Sec. 4-10.

An aluminum step bar is loaded as shown. (a) Verify that end C deflects to the rigid wall, and
(b) determine the wall reaction forces, the stresses in each member, and the deflection of B.

0.75-in dia. 0.5-in dia.
A B c
8in | 5in
0.005 in

The steel shaft shown in the figure is subjected to a torque of 200 Ibf - in applied at point A. Find
the torque reactions at O and B; the angle of twist at A, in degrees; and the shear stress in sections
OA and AB.

1200 1bf-in 3 -in dia.

o
L—4in 6in !

Repeat Prob. 4-95 with the diameters of section OA being 0.5 in and section AB being 0.75 in.

The figure shows a %— by 1-in rectangular steel bar welded to fixed supports at each end. The bar
is axially loaded by the forces F4 = 12 kip and Fgp = 6 kip acting on pins at A and B. Assuming
that the bar will not buckle laterally, find the reactions at the fixed supports, the stress in section AB,

and the deflection of point A. Use procedure 1 from Sec. 4-10.

y
X 10 in X
<20 mHT—»ﬁ 15 in >

v A |B

c
lin Fy b—Fy x

+ in thick
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Problem 4-98

4-99

4-100

4-101

Problem 4-101

4-102

Problem 4-102

4-103
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For the beam shown, determine the support reactions using superposition and procedure 1 from
Sec. 4-10.

RFERFRTNRNRTNRY

A _QUB C
——a —>]|

Solve Prob. 4-98 using Castigliano’s theorem and procedure 1 from Sec. 4-10.

Consider beam 13 in Table A-9, but with flexible supports. Let w = 500 Ibf/ft, | = 2 ft, E = 30
Mpsi, and I = 0.85 in*. The support at the left end has a translational spring constant of
k1 = 1.5(10%) Ibf/in and a rotational spring constant of k; = 2.5(10°) Ibf - in. The right support
has a translational spring constant of k3 = 2.0(10%) Ibf/in. Using procedure 2 of Sec. 4-10,
determine the reactions at the supports and the deflection at the midpoint of the beam.

The steel beam A BC D shown is simply supported at A and supported at B and D by steel cables,
each having an effective diameter of 0.5 in. The second area moment of the beam is I = 1.2 in*.
A force of 5 kips is applied at point C. Using procedure 2 of Sec. 4-10 determine the stresses in
the cables and the deflections of B, C, and D.

o]
~
> >

b
1
N
1€
[95)
oo
=1

°rs
O/
}4;

5 kips

N
!

™ 16in 16 in 16 in
The steel beam ABC D shown is supported at C as shown and supported at B and D by shoulder
steel bolts, each having a diameter of § mm. The lengths of BE and D F are 50 mm and 65 mm,
respectively. The beam has a second area moment of 21(10%) mm®*. Prior to loading, the members
are stress-free. A force of 2 kN is then applied at point A. Using procedure 2 of Sec. 4-10,
determine the stresses in the bolts and the deflections of points A, B, and D.

2kN

AY B —Uc ré‘wl?
=

1
F
[<—75 mm 75 mm 75 mm *>{

A thin ring is loaded by two equal and opposite forces F' in part a of the figure. A free-body dia-

gram of one quadrant is shown in part b. This is a statically indeterminate problem, because the
moment M, cannot be found by statics. (a) Find the maximum bending moment in the ring due
to the forces F, and () find the increase in the diameter of the ring along the y axis. Assume that
the radius of the ring is large so that Eq. (4-41) can be used.
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Problem 4-103

4-104

4-105

4-106

Problem 4-106

4-107

(@) (b)

A round tubular column has outside and inside diameters of D and d, respectively, and a diame-
tral ratio of K = d/D. Show that buckling will occur when the outside diameter is

64 P, 12 i
D=|————"<
|:713CE(1 - K4)]

For the conditions of Prob. 4-104, show that buckling according to the parabolic formula will
occur when the outside diameter is

P s, 12 12
D=2 = -
|:7'rSy(1 - K?) * T2CE(1+ Kz)]

Link 2, shown in the figure, is 25 mm wide, has 12-mm-diameter bearings at the ends, and is cut
from low-carbon steel bar stock having a minimum yield strength of 165 MPa. The end-condition
constants are C = 1 and C = 1.2 for buckling in and out of the plane of the drawing, respectively.
(a) Using a design factor ny = 4, find a suitable thickness for the link.

(b) Are the bearing stresses at O and B of any significance?

]
2 4

i 500 mm
(,_‘/.B_ : _L <)
! 900 mm 750 mm —J

Link 3, shown schematically in the figure, acts as a brace to support the 270-1bf load. For buck-

/

ling in the plane of the figure, the link may be regarded as pinned at both ends. For out-of-plane
buckling, the ends are fixed. Select a suitable material and a method of manufacture, such as forg-
ing, casting, stamping, or machining, for casual applications of the brace in oil-field machinery.
Specify the dimensions of the cross section as well as the ends so as to obtain a strong, safe, well-
made, and economical brace.
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=

F =270 1bf

=

The hydraulic cylinder shown in the figure has a 2-in bore and is to operate at a pressure of 1500 psi.
With the clevis mount shown, the piston rod should be sized as a column with both ends rounded for
any plane of buckling. The rod is to be made of forged AISI 1030 steel without further heat treatment.

] d
I | S S
i T 1 ¥

(a) Use a design factor ngy = 2.5 and select a preferred size for the rod diameter if the column
length is 50 in.

(b) Repeat part (a) but for a column length of 16 in.

(c) What factor of safety actually results for each of the cases above?

The figure shows a schematic drawing of a vehicular jack that is to be designed to support a
maximum mass of 300 kg based on the use of a design factor ny = 3.50. The opposite-handed
threads on the two ends of the screw are cut to allow the link angle 6 to vary from 15 to 70°. The
links are to be machined from AISI 1010 hot-rolled steel bars. Each of the four links is to consist
of two bars, one on each side of the central bearings. The bars are to be 350 mm long and have a
bar width of w = 30 mm. The pinned ends are to be designed to secure an end-condition constant
of at least C = 1.4 for out-of-plane buckling. Find a suitable preferred thickness and the result-
ing factor of safety for this thickness.

R

I
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4-110

4-111

Problem 4-111
L=9in,/=3in, O, = 0°.

4-112

Problem 4-112

4-113

Problem 4-113

If drawn, a figure for this problem would resemble that for Prob. 4-90. A strut that is a standard
hollow right circular cylinder has an outside diameter of 3 in and a wall thickness of }1 in and is
compressed between two circular end plates held by four bolts equally spaced on a bolt circle
of 4.5-in diameter. All four bolts are hand-tightened, and then bolt A is tightened to a tension
of 1500 1bf and bolt C, diagonally opposite, is tightened to a tension of 9000 Ibf. The strut
axis of symmetry is coincident with the center of the bolt circles. Find the maximum compres-
sive load, the eccentricity of loading, and the largest compressive stress in the strut.

Design link CD of the hand-operated toggle press shown in the figure. Specify the cross-section
dimensions, the bearing size and rod-end dimensions, the material, and the method of processing.

Find the maximum values of the spring force and deflection of the impact system shown in the
figure if W = 30 Ibf, kK = 100 Ibf/in, and & = 2 in. Ignore the mass of the spring and solve using
energy conservation.

-

~

|—/\/\/Z~/~/~

=

As shown in the figure, the weight W, strikes W, from a height 4. If W; = 40 N, W, = 400 N,
h =200 mm, and k = 32 kN/m, find the maximum values of the spring force and the deflection
of W,. Assume that the impact between W, and W, is inelastic, ignore the mass of the spring, and
solve using energy conservation.

e [
el
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4-114 Part a of the figure shows a weight W mounted between two springs. If the free end of spring
ky is suddenly displaced through the distance x = a, as shown in part b, determine the maximum
displacement y of the weight. Let W = 5 Ibf, k1 = 10 1bf/in, k» = 20 Ibf/in, and a = 0.25 in.
Ignore the mass of each spring and solve using energy conservation.

ky T—>y ky
problem 4114 T W —"/*/‘/“/*/*r{
s

[— Q —>
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Figure 5-1

(a) Failure of a truck drive-
shaft spline due to corrosion
fatigue. Note that it was
necessary to use clear tape
to hold the pieces in place.

(b) Direct end view of failure.

In Chap. 1 we learned that strength is a property or characteristic of a mechanical
element. This property results from the material identity, the treatment and processing
incidental to creating its geometry, and the loading, and it is at the controlling or critical
location.

In addition to considering the strength of a single part, we must be cognizant
that the strengths of the mass-produced parts will all be somewhat different from the
others in the collection or ensemble because of variations in dimensions, machining,
forming, and composition. Descriptors of strength are necessarily statistical in
nature, involving parameters such as mean, standard deviations, and distributional
identification.

A static load is a stationary force or couple applied to a member. To be stationary,
the force or couple must be unchanging in magnitude, point or points of application,
and direction. A static load can produce axial tension or compression, a shear load, a
bending load, a torsional load, or any combination of these. To be considered static, the
load cannot change in any manner.

In this chapter we consider the relations between strength and static loading in order
to make the decisions concerning material and its treatment, fabrication, and geometry
for satisfying the requirements of functionality, safety, reliability, competitiveness,
usability, manufacturability, and marketability. How far we go down this list is related
to the scope of the examples.

“Failure” is the first word in the chapter title. Failure can mean a part has sepa-
rated into two or more pieces; has become permanently distorted, thus ruining its
geometry; has had its reliability downgraded; or has had its function compromised,
whatever the reason. A designer speaking of failure can mean any or all of these pos-
sibilities. In this chapter our attention is focused on the predictability of permanent
distortion or separation. In strength-sensitive situations the designer must separate
mean stress and mean strength at the critical location sufficiently to accomplish his
or her purposes.

Figures 5—1 to 5-5 are photographs of several failed parts. The photographs exem-
plify the need of the designer to be well-versed in failure prevention. Toward this end
we shall consider one-, two-, and three-dimensional stress states, with and without
stress concentrations, for both ductile and brittle materials.

(@) (b



Figure 5-2

Impact failure of a lawn-mower
blade driver hub. The blade
impacted a surveying pipe
marker.

Figure 5-3

Failure of an overhead-pulley
retaining bolt on a weightlifting
machine. A manufacturing
error caused a gap that forced
the bolt to take the entire
moment load.

Failures Resulting from Static Loading

Figure 5-4

Chain test fixture that failed in one cycle. To alleviate complaints of excessive wear, the manufacturer decided to
case-harden the material. (a) Two halves showing fracture; this is an excellent example of brittle fracture initiated
by stress concentration. (b) Enlarged view of one portion to show cracks induced by stress concentration at the

support-pin holes.
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Figure 5-5

Valve-spring failure caused by
spring surge in an oversped
engine. The fractures exhibit
the classic 45° shear failure.

Static Strength

Ideally, in designing any machine element, the engineer should have available the results
of a great many strength tests of the particular material chosen. These tests should be
made on specimens having the same heat treatment, surface finish, and size as the element
the engineer proposes to design; and the tests should be made under exactly the same
loading conditions as the part will experience in service. This means that if the part is to
experience a bending load, it should be tested with a bending load. If it is to be subjected
to combined bending and torsion, it should be tested under combined bending and torsion.
If it is made of heat-treated AISI 1040 steel drawn at 500°C with a ground finish, the
specimens tested should be of the same material prepared in the same manner. Such tests
will provide very useful and precise information. Whenever such data are available for
design purposes, the engineer can be assured of doing the best possible job of engineering.

The cost of gathering such extensive data prior to design is justified if failure of the
part may endanger human life or if the part is manufactured in sufficiently large quan-
tities. Refrigerators and other appliances, for example, have very good reliabilities
because the parts are made in such large quantities that they can be thoroughly tested
in advance of manufacture. The cost of making these tests is very low when it is divided
by the total number of parts manufactured.

You can now appreciate the following four design categories:

1 Failure of the part would endanger human life, or the part is made in extremely
large quantities; consequently, an elaborate testing program is justified during
design.

The part is made in large enough quantities that a moderate series of tests is feasible.
3 The part is made in such small quantities that testing is not justified at all; or the
design must be completed so rapidly that there is not enough time for testing.

4 The part has already been designed, manufactured, and tested and found to be
unsatisfactory. Analysis is required to understand why the part is unsatisfactory

and what to do to improve it.

(8]
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Figure 5-6

An idealized stress-strain
curve. The dashed line depicts
a strain-strengthening material.
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More often than not it is necessary to design using only published values of yield
strength, ultimate strength, percentage reduction in area, and percentage elongation,
such as those listed in Appendix A. How can one use such meager data to design against
both static and dynamic loads, two- and three-dimensional stress states, high and low
temperatures, and very large and very small parts? These and similar questions will be
addressed in this chapter and those to follow, but think how much better it would be to
have data available that duplicate the actual design situation.

Stress Concentration

Stress concentration (see Sec. 3—13) is a highly localized effect. In some instances it
may be due to a surface scratch. If the material is ductile and the load static, the design
load may cause yielding in the critical location in the notch. This yielding can involve
strain strengthening of the material and an increase in yield strength at the small criti-
cal notch location. Since the loads are static and the material is ductile, that part can
carry the loads satisfactorily with no general yielding. In these cases the designer sets
the geometric (theoretical) stress-concentration factor K, to unity.

The rationale can be expressed as follows. The worst-case scenario is that of an
idealized non—strain-strengthening material shown in Fig. 5-6. The stress-strain curve
rises linearly to the yield strength Sy, then proceeds at constant stress, which is equal to
Sy. Consider a filleted rectangular bar as depicted in Fig. A-15-5, where the cross-
section area of the small shank is 1 in”. If the material is ductile, with a yield point of
40 kpsi, and the theoretical stress-concentration factor (SCF) K, is 2,

* A load of 20 kip induces a nominal tensile stress of 20 kpsi in the shank as depicted
at point A in Fig. 5-6. At the critical location in the fillet the stress is 40 kpsi, and the
SCF is K = 0max/0nom = 40/20 = 2.

* A load of 30 kip induces a nominal tensile stress of 30 kpsi in the shank at point B.
The fillet stress is still 40 kpsi (point D), and the SCF K = oyax/0nom = Sy/0 =
40/30 = 1.33.

* At a load of 40 kip the induced tensile stress (point C) is 40 kpsi in the shank.
At the critical location in the fillet, the stress (at point E) is 40 kpsi. The SCF
K = 0max/Onom = Sy/O' =40/40 = 1.
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For materials that strain-strengthen, the critical location in the notch has a higher S, .
The shank area is at a stress level a little below 40 kpsi, is carrying load, and is very
near its failure-by-general-yielding condition. This is the reason designers do not
apply K, in static loading of a ductile material loaded elastically, instead setting
K, =1.

When using this rule for ductile materials with static loads, be careful to assure
yourself that the material is not susceptible to brittle fracture (see Sec. 5-12) in the
environment of use. The usual definition of geometric (theoretical) stress-concentration
factor for normal stress K, and shear stress K, is given by Eq. pair (3—48) as

Omax = K;Onom (O)
Tmax = KrsThom (b)

Since your attention is on the stress-concentration factor, and the definition of opom Or
Thom 1S given in the graph caption or from a computer program, be sure the value of
nominal stress is appropriate for the section carrying the load.

As shown in Fig. 2-2b, p. 33, brittle materials do not exhibit a plastic range. The
stress-concentration factor given by Eq. (a) or (b) could raise the stress to a level to
cause fracture to initiate at the stress raiser, and initiate a catastrophic failure of the
member.

An exception to this rule is a brittle material that inherently contains microdiscon-
tinuity stress concentration, worse than the macrodiscontinuity that the designer has in
mind. Sand molding introduces sand particles, air, and water vapor bubbles. The grain
structure of cast iron contains graphite flakes (with little strength), which are literally
cracks introduced during the solidification process. When a tensile test on a cast iron is
performed, the strength reported in the literature includes this stress concentration. In
such cases K, or K;; need not be applied.

An important source of stress-concentration factors is R. E. Peterson, who com-
piled them from his own work and that of others.! Peterson developed the style of
presentation in which the stress-concentration factor K, is multiplied by the nominal
stress opom to estimate the magnitude of the largest stress in the locality. His approxi-
mations were based on photoelastic studies of two-dimensional strips (Hartman and
Levan, 1951; Wilson and White, 1973), with some limited data from three-dimensional
photoelastic tests of Hartman and Levan. A contoured graph was included in the
presentation of each case. Filleted shafts in tension were based on two-dimensional
strips. Table A—15 provides many charts for the theoretical stress-concentration factors
for several fundamental load conditions and geometry. Additional charts are also avail-
able from Peterson.’

Finite element analysis (FEA) can also be applied to obtain stress-concentration
factors. Improvements on K, and K, for filleted shafts were reported by Tipton, Sorem,
and Rolovic.?

IR. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951;
no. 3, March 1951; no. 5, May 1951; no. 6, June 1951; no. 7, July 1951.

>Walter D. Pilkey and Deborah Pilkey, Peterson’s Stress-Concentration Factors, 3rd ed, John Wiley & Sons,
New York, 2008.

3S. M. Tipton, J. R. Sorem Jr., and R. D. Rolovic, “Updated Stress-Concentration Factors for Filleted Shafts in
Bending and Tension,” Trans. ASME, Journal of Mechanical Design, vol. 118, September 1996, pp. 321-327.
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Failure Theories

Section 5-1 illustrated some ways that loss of function is manifested. Events such as
distortion, permanent set, cracking, and rupturing are among the ways that a machine
element fails. Testing machines appeared in the 1700s, and specimens were pulled, bent,
and twisted in simple loading processes.

If the failure mechanism is simple, then simple tests can give clues. Just what is
simple? The tension test is uniaxial (that’s simple) and elongations are largest in the axial
direction, so strains can be measured and stresses inferred up to “failure.” Just what is
important: a critical stress, a critical strain, a critical energy? In the next several sections,
we shall show failure theories that have helped answer some of these questions.

Unfortunately, there is no universal theory of failure for the general case of mate-
rial properties and stress state. Instead, over the years several hypotheses have been
formulated and tested, leading to today’s accepted practices. Being accepted, we will
characterize these “practices” as theories as most designers do.

Structural metal behavior is typically classified as being ductile or brittle, although
under special situations, a material normally considered ductile can fail in a brittle
manner (see Sec. 5-12). Ductile materials are normally classified such that &, > 0.05
and have an identifiable yield strength that is often the same in compression as in ten-
sion (Sy, = Sy = S,). Brittle materials, ¢, < 0.05, do not exhibit an identifiable yield
strength, and are typically classified by ultimate tensile and compressive strengths, S,
and S,,., respectively (where S, is given as a positive quantity). The generally accepted
theories are:

Ductile materials (yield criteria)

e Maximum shear stress (MSS), Sec. 54
 Distortion energy (DE), Sec. 5-5
¢ Ductile Coulomb-Mohr (DCM), Sec. 5-6

Brittle materials (fracture criteria)

e Maximum normal stress (MNS), Sec. 5-8
¢ Brittle Coulomb-Mohr (BCM), Sec. 5-9
e Modified Mohr (MM), Sec. 5-9

It would be inviting if we had one universally accepted theory for each material
type, but for one reason or another, they are all used. Later, we will provide rationales
for selecting a particular theory. First, we will describe the bases of these theories and
apply them to some examples.

Maximum-Shear-Stress Theory
for Ductile Materials

The maximum-shear-stress (MSS) theory predicts that yielding begins whenever the
maximum shear stress in any element equals or exceeds the maximum shear stress in a
tension-test specimen of the same material when that specimen begins to yield. The
MSS theory is also referred to as the Tresca or Guest theory.

Many theories are postulated on the basis of the consequences seen from tensile
tests. As a strip of a ductile material is subjected to tension, slip lines (called Liider
lines) form at approximately 45° with the axis of the strip. These slip lines are the
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beginning of yield, and when loaded to fracture, fracture lines are also seen at angles
approximately 45° with the axis of tension. Since the shear stress is maximum at 45°
from the axis of tension, it makes sense to think that this is the mechanism of failure. It
will be shown in the next section, that there is a little more going on than this. However,
it turns out the MSS theory is an acceptable but conservative predictor of failure; and
since engineers are conservative by nature, it is quite often used.

Recall that for simple tensile stress, o = P/A, and the maximum shear stress
occurs on a surface 45° from the tensile surface with a magnitude of 7,,,x = 0 /2. So the
maximum shear stress at yield is Tmax = S, /2. For a general state of stress, three prin-
cipal stresses can be determined and ordered such that o7 > 0, > 03. The maximum
shear stress is then T, = (07 — 03)/2 (see Fig. 3—-12). Thus, for a general state of
stress, the maximum-shear-stress theory predicts yielding when

— S
Tiax = a1 5 3 > TV or o1 —03> 8, (5-1)

Note that this implies that the yield strength in shear is given by
Ssy = 0.58, (5-2)

which, as we will see later is about 15 percent low (conservative).

For design purposes, Eq. (5—1) can be modified to incorporate a factor of safety, n.
Thus,

Tmax = S or o] —o03 = S (5-3)
2n n

Plane stress is a very common state of stress in design. However, it is extremely
important to realize that plane stress is a three-dimensional state of stress. Plane stress
transformations in Sec. 3—6 are restricted to the in-plane stresses only, where the in-
plane principal stresses are given by Eq. (3—13) and labeled as o and o5. It is true that
these are the principal stresses in the plane of analysis, but out of plane there is a third
principal stress and it is always zero for plane stress. This means that if we are going to
use the convention of ordering o] > 0, > o3 for three-dimensional analysis, upon
which Eq. (5-1) is based, we cannot arbitrarily call the in-plane principal stresses o
and o, until we relate them with the third principal stress of zero. To illustrate the MSS
theory graphically for plane stress, we will first label the principal stresses given by
Eq. (3-13) as 04 and op, and then order them with the zero principal stress according
to the convention o7 > 0, > o03. Assuming that o4 > o, there are three cases to con-
sider when using Eq. (5-1) for plane stress:

Case 1: 04 > o > 0. For this case, o) = 04 and o3 = 0. Equation (5-1)
reduces to a yield condition of
0A = Sy (5_4)
Case 2: o4 > 0> op. Here, 0y = 04 and 03 = o5, and Eq. (5-1) becomes
op —Op = Sy (5-5)
Case 3: 0> o4 > op. For this case, 0; = 0 and 03 = o, and Eq. (5-1) gives
op = _Sy (5_6)
Equations (5-4) to (5-6) are represented in Fig. 5-7 by the three lines indicated in the
o4, 0p plane. The remaining unmarked lines are cases for op > 04, which completes
the stress yield envelope but are not normally used. The maximum-shear-stress theory

predicts yield if a stress state is outside the shaded region bordered by the stress yield
envelope. In Fig. 5-7, suppose point a represents the stress state of a critical stress element



Figure 5-7

The maximum-shear-stress
(MSS) theory yield envelope
for plane stress, where o4 and
op are the two nonzero
principal stresses.
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of a member. If the load is increased, it is typical to assume that the principal stresses
will increase proportionally along the line from the origin through point a. Such a load
line is shown. If the stress situation increases along the load line until it crosses the
stress failure envelope, such as at point b, the MSS theory predicts that the stress ele-
ment will yield. The factor of safety guarding against yield at point a is given by the
ratio of strength (distance to failure at point b) to stress (distance to stress at point a),
thatis n = Ob/Oa.

Note that the first part of Eq. (5-3), Tmax = S, /2n, is sufficient for design purposes
provided the designer is careful in determining T« For plane stress, Eq. (3—14) does
not always predict Ty,,x. However, consider the special case when one normal stress is
zero in the plane, say o, and 7., have values and o, = 0. It can be easily shown that this
is a Case 2 problem, and the shear stress determined by Eq. (3—14) is Ty,.x. Shaft design
problems typically fall into this category where a normal stress exists from bending
and/or axial loading, and a shear stress arises from torsion.

Distortion-Energy Theory for Ductile Materials

The distortion-energy theory predicts that yielding occurs when the distortion strain
energy per unit volume reaches or exceeds the distortion strain energy per unit volume
for yield in simple tension or compression of the same material.

The distortion-energy (DE) theory originated from the observation that ductile
materials stressed hydrostatically (equal principal stresses) exhibited yield strengths
greatly in excess of the values given by the simple tension test. Therefore it was postu-
lated that yielding was not a simple tensile or compressive phenomenon at all, but,
rather, that it was related somehow to the angular distortion of the stressed element.
To develop the theory, note, in Fig. 5-8a, the unit volume subjected to any three-
dimensional stress state designated by the stresses oy, 03, and o3. The stress state shown
in Fig. 5-8b is one of hydrostatic normal stresses due to the stresses o,y acting in each
of the same principal directions as in Fig. 5-8a. The formula for oy, is simply

oy +oy+03
Oy = —5 (a)
3
Thus the element in Fig. 5-8b undergoes pure volume change, that is, no angular dis-
tortion. If we regard o,, as a component of o}, 0,, and o3, then this component can be
subtracted from them, resulting in the stress state shown in Fig. 5-8c¢. This element is
subjected to pure angular distortion, that is, no volume change.
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Figure 5-8

(a) Element with triaxial stresses; this element undergoes both volume
change and angular distortion. (b) Element under hydrostatic normal
stresses undergoes only volume change. (c¢) Element has angular
distortion without volume change.

The strain energy per unit volume for simple tension is u = %ea. For the element
of Fig. 5-8a the strain energy per unit volume is u = %[610'1 + €05 + €303].
Substituting Eq. (3—19) for the principal strains gives

1

U= 3E [U% + a% + og — 2v(o10% + 0203 + 0301)] (b)

The strain energy for producing only volume change u, can be obtained by substitut-
ing o,y for oy, 02, and o3 in Eq. (b). The result is

3 2

uv — O-ZIV

2E

(1 —2v) (c)

If we now substitute the square of Eq. (a) in Eq. (¢) and simplify the expression, we get

_ 1—2v
T 6k

(012 + 022 + 032 + 20107 + 20503 + 20301) (5-7)

Then the distortion energy is obtained by subtracting Eq. (5-7) from Eq. (). This
gives

e [(ol — )’ + (02 = 03 + (03 — m)z} (5-8)

ta=H—ih =3 2

Note that the distortion energy is zero if oy = 0, = 03.
For the simple tensile test, at yield, o1 = S, and 0, = 03 = 0, and from Eq. (5-8)
the distortion energy is

l+vS2

3E Y 59

Ug =

So for the general state of stress given by Eq. (5-8), yield is predicted if Eq. (5-8)
equals or exceeds Eq. (5-9). This gives

2 2 _ 27172
[(01 02)" + (02 — 03)" + (03 01)] _

5-10
> (5-10)
If we had a simple case of tension o, then yield would occur when o > §,. Thus, the
left of Eq. (5-10) can be thought of as a single, equivalent, or effective stress for the
entire general state of stress given by oy, 02, and o3. This effective stress is usually



Figure 5-9

The distortion-energy (DE)
theory yield envelope for plane
stress states. This is a plot

of points obtained from

Eq. (5-13) with o’ = S,.
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called the von Mises stress, o', named after Dr. R. von Mises, who contributed to the
theory. Thus Eq. (5-10), for yield, can be written as

o' =8, (5-11)
where the von Mises stress is

o = [(ol — 02+ (02 = 03" + (03 — 01)2} "

5 (5-12)

For plane stress, the von Mises stress can be represented by the principal stresses
o4, 0p, and zero. Then from Eq. (5-12), we get

o' = (0} —oa0p + aé)l/z (5-13)

Equation (5-13) is a rotated ellipse in the o4, o plane, as shown in Fig. 5-9 with
o’ = §,. The dotted lines in the figure represent the MSS theory, which can be seen to
be more restrictive, hence, more conservative.*
Using xyz components of three-dimensional stress, the von Mises stress can be
written as
1

o = E [(ax — ay)2 + (oy — 0.)> + (0, — o) + 6(rxzy + T?z + Tzzx)]l/Z (5-14)

and for plane stress,
o = (crx2 — 0,0y + 03 + 3tx2y)1/2 (5-15)
The distortion-energy theory is also called:

e The von Mises or von Mises—Hencky theory
* The shear-energy theory
e The octahedral-shear-stress theory

Understanding octahedral shear stress will shed some light on why the MSS is conser-
vative. Consider an isolated element in which the normal stresses on each surface are

“The three-dimensional equations for DE and MSS can be plotted relative to three-dimensional oy, 02, 03,
coordinate axes. The failure surface for DE is a circular cylinder with an axis inclined at 45° from each
principal stress axis, whereas the surface for MSS is a hexagon inscribed within the cylinder. See Arthur P.
Boresi and Richard J. Schmidt, Advanced Mechanics of Materials, 6th ed., John Wiley & Sons, New York,
2003, Sec. 4.4.
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Figure 5-10

Octahedral surfaces.

equal to the hydrostatic stress o,,. There are eight surfaces symmetric to the principal
directions that contain this stress. This forms an octahedron as shown in Fig. 5-10. The
shear stresses on these surfaces are equal and are called the octahedral shear stresses
(Fig. 5-10 has only one of the octahedral surfaces labeled). Through coordinate trans-
formations the octahedral shear stress is given by’

1" (5-16)

1
Toat = 3 [(61 — 02)* + (02 — 03)* + (03 — 01)°
Under the name of the octahedral-shear-stress theory, failure is assumed to occur when-
ever the octahedral shear stress for any stress state equals or exceeds the octahedral
shear stress for the simple tension-test specimen at failure.
As before, on the basis of the tensile test results, yield occurs when o1 = S, and
o0y = o3 = 0. From Eq. (5-16) the octahedral shear stress under this condition is
V2
Toct = _Sy (5_] 7)
3
When, for the general stress case, Eq. (5-16) is equal or greater than Eq. (5-17), yield
is predicted. This reduces to

[(01 —02)* + (02 — 03)* + (03 — 01)2]
2

1/2
> S, (5-18)

which is identical to Eq. (5-10), verifying that the maximum-octahedral-shear-stress
theory is equivalent to the distortion-energy theory.

The model for the MSS theory ignores the contribution of the normal stresses on
the 45° surfaces of the tensile specimen. However, these stresses are P/2A, and not the
hydrostatic stresses which are P/3A. Herein lies the difference between the MSS and
DE theories.

The mathematical manipulation involved in describing the DE theory might tend
to obscure the real value and usefulness of the result. The equations given allow the
most complicated stress situation to be represented by a single quantity, the von Mises
stress, which then can be compared against the yield strength of the material through
Eq. (5-11). This equation can be expressed as a design equation by

o' == (5-19)

SFor a derivation, see Arthur P. Boresi, op. cit., pp. 36-37.
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The distortion-energy theory predicts no failure under hydrostatic stress and agrees
well with all data for ductile behavior. Hence, it is the most widely used theory for duc-
tile materials and is recommended for design problems unless otherwise specified.

One final note concerns the shear yield strength. Consider a case of pure shear z,,,
where for plane stress o, = o, = 0. For yield, Eq. (5-11) with Eq. (5-15) gives

1/2 Sy
(Bzs) =S,  or Ty = 7% = 0.577S, (5-20)
Thus, the shear yield strength predicted by the distortion-energy theory is
Ssy = 0.5778, (5-21)

which as stated earlier, is about 15 percent greater than the 0.5 S, predicted by the MSS
theory. For pure shear, 7, the principal stresses from Eq. (3—13) are 04 = —op = Tyy.
The load line for this case is in the third quadrant at an angle of 45° from the o4, op
axes shown in Fig. 5-9.

A hot-rolled steel has a yield strength of S, = S, = 100 kpsi and a true strain at fracture
of ey = 0.55. Estimate the factor of safety for the following principal stress states:

(a) o =70 kpsi, o, = 70 kpsi, 1, = 0 kpsi

(b) o = 60 kpsi, o, = 40 kpsi, 7, = —15 kpsi

(¢) ox = 0 kpsi, o, = 40 kpsi, 7, = 45 kpsi

(d) o, = —40 kpsi, o, = —60 kpsi, 7,, = 15 kpsi

(e) o1 = 30 kpsi, o, = 30 kpsi, o3 = 30 kpsi

Since &r > 0.05 and S,; and S,. are equal, the material is ductile and both the
distortion-energy (DE) theory and maximum-shear-stress (MSS) theory apply. Both
will be used for comparison. Note that cases a to d are plane stress states.

(a) Since there is no shear stress on this stress element, the normal stresses are
equal to the principal stresses. The ordered principal stresses are o4 = o = 70,
op = o, =70, 03 = 0 kpsi.

DE From Eq. (5-13),
o’ = [70* — 70(70) + 70*1"/? = 70 kpsi

From Eq. (5-19),
100

S
2= =143
o’ 70

MSS  Noting that the two nonzero principal stresses are equal, Ty, will be from the
largest Mohr’s circle, which will incorporate the third principal stress at zero. From
Eq. (3-16),

01 — 03 70 — 0

T = 5 = > = 35 kpsi

From Eq. (5-3),

Sy/2 100/2
Tmax 35

n =
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(b) From Eq. (3—13), the nonzero principal stresses are

4 60 — 40\ *
a0 = 2T Oj:\/< - >+(—15)2=68.O,32.Okpsi

2

The ordered principal stresses are o4 = 01 = 68.0, o = 0, = 32.0, 03 = 0 kpsi.

DE o' = [68> — 68(32) + 682]/* = 59.0 kpsi
S, 100
n="2=_" _170
o' 59.0

MSS Noting that the two nonzero principal stresses are both positive, Tyax Will be
from the largest Mohr’s circle which will incorporate the third principle stress at zero.
From Eq. (3-16),

o] — 03 68.0—0

Tmax = ) ) =340 kpSl
S
ne /2 1002
Brrxz 34.0

(c¢) This time, we shall obtain the factors of safety directly from the xy components
of stress.

DE From Eq. (5-15),
o' = (02 — 0x0y + 02 +312) 2= [(40% +345)*]""* = 87.6 kpsi

S, 100
n=—-2=—"-=1.14
o’ 87.6

MSS  Taking care to note from a quick sketch of Mohr’s circle that one nonzero princi-
pal stress will be positive while the other one will be negative, T,,,x can be obtained from
the extreme-value shear stress given by Eq. (3—14) without finding the principal stresses.

o -0\, 0-40\* .
Tmax = T S Ty = T 4452 =49.2 kpSl

Sy/2 _100/2 o
Tmax | 492

n—

For comparison purposes later in this problem, the nonzero principal stresses can be
obtained from Eq. (3—13) to be 70.0 kpsi and —30 kpsi.
(d) From Eq. (3—13), the nonzero principal stresses are

—40+ (=60) \/(—40—(—60)

2
) + (15)? = —32.0, —68.0 kpsi

OA, OB = ) )
The ordered principal stresses are o) = 0, 04 = 0, = —32.0, 05 = 03 = —68.0 kpsi.
DE o' = [(=32)> — (—32)(—68) + (—68)*]"/* = 59.0 kpsi

=—=1.70
59.0

n —=

S, 100
O./
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Figure 5-11

Load lines for Example 5-1.
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MSS  From Eq. (3-16),
o] — 03 0 — (—68.0)

Tmax = ) = ) = 34.0 kpSl
Sy/2 _ 1002
n —= = — = 1.
T 34.0

(e) The ordered principal stresses are o7 = 30, 0, = 30, 03 = 30 kpsi

DE From Eq. (5-12),

. 2 . 2 _ 271/2
o [(30 30)2 + (30 230) + (30 — 30) } o ks
s, 100
n=—=— 00
o
MSS  From Eq. (5-3),
S, 100

n= = — 00
o] — 03 30 — 30

A tabular summary of the factors of safety is included for comparisons.
(a) (b) (<) (d) (e)

IDIE) 1.43 1.70 1.14 1.70 o0
MSS 1.43 1.47 1.02 1.47 o0

227

Since the MSS theory is on or within the boundary of the DE theory, it will always pre-
dict a factor of safety equal to or less than the DE theory, as can be seen in the table.
For each case, except case (e), the coordinates and load lines in the o4, op plane are
shown in Fig. 5—-11. Case (e) is not plane stress. Note that the load line for case (a) is
the only plane stress case given in which the two theories agree, thus giving the same

factor of safety.

Tp

-—- Load lines
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Figure 5-12

Three Mohr circles, one for the
uniaxial compression test, one
for the test in pure shear, and
one for the uniaxial tension test,
are used to define failure by the
Mohr hypothesis. The strengths
S and S, are the compressive
and tensile strengths,
respectively; they can be used
for yield or ultimate strength.

Mechanical Engineering Design

Coulomb-Mohr Theory for Ductile Materials

Not all materials have compressive strengths equal to their corresponding tensile
values. For example, the yield strength of magnesium alloys in compression may be
as little as 50 percent of their yield strength in tension. The ultimate strength of gray
cast irons in compression varies from 3 to 4 times greater than the ultimate tensile
strength. So, in this section, we are primarily interested in those theories that can
be used to predict failure for materials whose strengths in tension and compression
are not equal.

Historically, the Mohr theory of failure dates to 1900, a date that is relevant to its
presentation. There were no computers, just slide rules, compasses, and French curves.
Graphical procedures, common then, are still useful today for visualization. The idea of
Mohr is based on three “simple” tests: tension, compression, and shear, to yielding if the
material can yield, or to rupture. It is easier to define shear yield strength as Sy, than it is
to test for it.

The practical difficulties aside, Mohr’s hypothesis was to use the results of
tensile, compressive, and torsional shear tests to construct the three circles of Fig. 5-12
defining a failure envelope tangent to the three circles, depicted as curve ABCDE in
the figure. The argument amounted to the three Mohr circles describing the stress
state in a body (see Fig. 3—12) growing during loading until one of them became tan-
gent to the failure envelope, thereby defining failure. Was the form of the failure enve-
lope straight, circular, or quadratic? A compass or a French curve defined the failure
envelope.

A variation of Mohr’s theory, called the Coulomb-Mohr theory or the internal-friction
theory, assumes that the boundary BCD in Fig. 5-12 is straight. With this assumption only
the tensile and compressive strengths are necessary. Consider the conventional ordering of
the principal stresses such that o7 > 0, > o03. The largest circle connects o and o3, as
shown in Fig. 5-13. The centers of the circles in Fig. 5-13 are Cy, C5, and C3. Triangles
OB;C; are similar, therefore

B,C, — BiCy  B3C3 — B Cy

0C, — 0C 0C; — 0C
B,Cr, — B1C,4 B;C3; — B1C,
or, =
C G, CCs
A
Mohr failure curve B
=S, S, 7




Figure 5-13

Mohr’s largest circle for a
general state of stress.
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Coulomb-Mohr
failure line

T

where B1Cy = S;/2, B,C, = (01 — 03)/2, and B3C3 = S./2, are the radii of the right,
center, and left circles, respectively. The distance from the origin to C; is S,/2, to C3 is
S¢/2, and to C» (in the positive o direction) is (o7 + 03)/2. Thus

O] — 03 St SL- St

2 2 _ 2 2
S o1+o03 S Se
2 2 2 2

Canceling the 2 in each term, cross-multiplying, and simplifying reduces this equa-
tion to
o1 03

——-==1 5-22
5, 7S, (5-22)

where either yield strength or ultimate strength can be used.
For plane stress, when the two nonzero principal stresses are o4 > o, we have

a situation similar to the three cases given for the MSS theory, Egs. (5—4) to (5-6).
That is, the failure conditions are

Case 1: 04 > op > 0. For this case, 01 = 04 and o3 = 0. Equation (5-22)
reduces to

o =5 (5-23)
Case 2: 04 > 0 > op. Here, 01 = 04 and 03 = 03, and Eq. (5-22) becomes

o4 _ % (5-24)
S S

Case 3: 0 > 04 > op. For this case, 0 = 0 and 03 = o, and Eq. (5-22) gives
op < —Sc (5-25)
A plot of these cases, together with the normally unused cases corresponding to
op > 04, is shown in Fig. 5-14.

For design equations, incorporating the factor of safety n, divide all strengths by n.
For example, Eq. (5-22) as a design equation can be written as

01 03 1
S 5-26
S S n ( )
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Figure 5-14

Plot of the Coulomb-Mohr
theory failure envelope for
plane stress states.

EXAMPLE 5-2

Solution

Answer

Answer

T

Since for the Coulomb-Mohr theory we do not need the torsional shear strength

circle we can deduce it from Eq. (5-22). For pure shear 7, 0 = —o3 = 7. The torsional
yield strength occurs when Tp,x = S;,. Substituting o1 = —o3 = S;, into Eq. (5-22)
and simplifying gives
Sy Sye
Ssy = _oyrrye (5_27)
Sy + Sye

A 25-mm-diameter shaft is statically torqued to 230 N - m. It is made of cast 195-T6
aluminum, with a yield strength in tension of 160 MPa and a yield strength in com-
pression of 170 MPa. It is machined to final diameter. Estimate the factor of safety of
the shaft.

The maximum shear stress is given by

16T 16(230)

T=—=——"""  —75(10°) N/m? = 75 MPa
md® 7 [25(103)] 10N/

The two nonzero principal stresses are 75 and —75 MPa, making the ordered principal
stresses o7 = 75, 0, = 0, and 03 = —75 MPa. From Eq. (5-26), for yield,

1 1
01/Sy — 03/Sye  75/160 — (=75)/170

1.10

n =

Alternatively, from Eq. (5-27),

o _ SuSe _ 1600070) _ o0y o
TSy + Sy 160+ 170 '

and Ty = 75 MPa. Thus,

s 2.4
S _ 824 1.10
Tmax 75

n —=
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Figure 5-15

Experimental data superposed
on failure theories. (From

Fig. 7.11, p. 257, Mechanical
Behavior of Materials, 2nd ed.,
N. E. Dowling, Prentice Hall,
Englewood Cliffs, N.J., 1999.
Modified to show only ductile
failures.)
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Failure of Ductile Materials Summary

Having studied some of the various theories of failure, we shall now evaluate them and
show how they are applied in design and analysis. In this section we limit our studies to
materials and parts that are known to fail in a ductile manner. Materials that fail in a brit-
tle manner will be considered separately because these require different failure theories.

To help decide on appropriate and workable theories of failure, Marin® collected
data from many sources. Some of the data points used to select failure theories for duc-
tile materials are shown in Fig. 5-15.” Mann also collected many data for copper and
nickel alloys; if shown, the data points for these would be mingled with those already
diagrammed. Figure 5—15 shows that either the maximum-shear-stress theory or the
distortion-energy theory is acceptable for design and analysis of materials that would
fail in a ductile manner.

The selection of one or the other of these two theories is something that you, the
engineer, must decide. For design purposes the maximum-shear-stress theory is easy,
quick to use, and conservative. If the problem is to learn why a part failed, then the
distortion-energy theory may be the best to use; Fig. 5-15 shows that the plot of the
distortion-energy theory passes closer to the central area of the data points, and thus is
generally a better predictor of failure. However, keep in mind that though a failure curve
passing through the center of the experimental data is typical of the data, its reliability
from a statistical standpoint is about 50 percent. For design purposes, a larger factor of
safety may be warranted when using such a failure theory.

0,18, / Oct. shear Yielding (S, = S,)

O Ni-Cr-Mo steel
e  AISI 1023 steel
O  2024-T4 Al

B 3S-HAI

®Joseph Marin was one of the pioneers in the collection, development, and dissemination of material on the
failure of engineering elements. He has published many books and papers on the subject. Here the
reference used is Joseph Marin, Engineering Materials, Prentice-Hall, Englewood Cliffs, N.J., 1952.

(See pp. 156 and 157 for some data points used here.)

"Note that some data in Fig. 5-15 are displayed along the top horizontal boundary where o3 > 4. This is often
done with failure data to thin out congested data points by plotting on the mirror image of the line o = 04.
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EXAMPLE 5-3

| Figure 5-16

Solution

For ductile materials with unequal yield strengths, S,; in tension and S,. in com-
pression, the Mohr theory is the best available. However, the theory requires the results
from three separate modes of tests, graphical construction of the failure locus, and fit-
ting the largest Mohr’s circle to the failure locus. The alternative to this is to use the
Coulomb-Mohr theory, which requires only the tensile and compressive yield strengths
and is easily dealt with in equation form.

This example illustrates the use of a failure theory to determine the strength of a mechan-
ical element or component. The example may also clear up any confusion existing
between the phrases strength of a machine part, strength of a material, and strength of
a part at a point.

A certain force F applied at D near the end of the 15-in lever shown in Fig. 5-16,
which is quite similar to a socket wrench, results in certain stresses in the cantilevered
bar OABC. This bar (OABC) is of AISI 1035 steel, forged and heat-treated so that it has
a minimum (ASTM) yield strength of 81 kpsi. We presume that this component would
be of no value after yielding. Thus the force F required to initiate yielding can be
regarded as the strength of the component part. Find this force.

We will assume that lever DC is strong enough and hence not a part of the problem. A 1035
steel, heat-treated, will have a reduction in area of 50 percent or more and hence is a duc-
tile material at normal temperatures. This also means that stress concentration at shoulder
A need not be considered. A stress element at A on the top surface will be subjected to a
tensile bending stress and a torsional stress. This point, on the 1-in-diameter section, is the
weakest section, and governs the strength of the assembly. The two stresses are

M 32M  32(14F)
I/c  wd3 w13

= 142.6F

Ox

Tr 16T _ 16(15F)
J  md® m(13)

=T764F

Tox =




Answer

EXAMPLE 5-4

Solution
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Employing the distortion-energy theory, we find, from Eq. (5-15), that

o' = (02 +372) """ = [(142.6 F)> + 3(76.4F)*] "> = 194.5F

Equating the von Mises stress to S, we solve for /" and get

o S _ 81000

= = =416 Ibf
194.5 194.5

In this example the strength of the material at point A is S, = 81 kpsi. The strength of
the assembly or component is F = 416 1bf.

Let us apply the MSS theory for comparison. For a point undergoing plane stress
with only one nonzero normal stress and one shear stress, the two nonzero principal
stresses will have opposite signs, and hence the maximum shear stress is obtained from
the Mohr’s circle between them. From Eq. (3—14)

2 142.6F \*
S /(%) +fzx=/< 5 ) + (T6.4F)? = 104.5F

Setting this equal to S, /2, from Eq. (5-3) with n = 1, and solving for F, we get

~81000/2

= 388 Ibf
104.5

which is about 7 percent less than found for the DE theory. As stated earlier, the MSS
theory is more conservative than the DE theory.

The cantilevered tube shown in Fig. 5-17 is to be made of 2014 aluminum alloy treated
to obtain a specified minimum yield strength of 276 MPa. We wish to select a stock-size
tube from Table A—8 using a design factor n; = 4. The bending load is F' = 1.75 kN,
the axial tension is P = 9.0 kN, and the torsion is 7 = 72 N - m. What is the realized
factor of safety?

The critical stress element is at point A on the top surface at the wall, where the bend-
ing moment is the largest, and the bending and torsional stresses are at their maximum
values. The critical stress element is shown in Fig. 5-17b. Since the axial stress and
bending stress are both in tension along the x axis, they are additive for the normal
stress, giving

A 1 A I

P Mc 9 120(1.75)(d,/2) 9  105d,
Ux=Z+TC A79)@/2) _ 9 | (1)

where, if millimeters are used for the area properties, the stress is in gigapascals.
The torsional stress at the same point is

_Tr _72(d,/2) _ 36d,

= — 2
Tx = 7 7 (2)
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| Figure 5-17

Answer

I

(b)

For accuracy, we choose the distortion-energy theory as the design basis. The von Mises
stress from Eq. (5-15), is

o' = (o] + 3r3x)l/2 (3)
On the basis of the given design factor, the goal for o is
Sy 0.276
o' <=2 ="""=0.0690 GPa (4)
ng 4

where we have used gigapascals in this relation to agree with Eqs. (1) and (2).

Programming Eqs. (1) to (3) on a spreadsheet and entering metric sizes from
Table A-8 reveals that a 42 x 5-mm tube is satisfactory. The von Mises stress is found
to be o’ = 0.06043 GPa for this size. Thus the realized factor of safety is

S, 0276

o’ 0.06043

For the next size smaller, a 42 x 4-mm tube, o’ = 0.07105 GPa giving a factor of
safety of

S 0.276

== =
o’ 0.07105




Figure 5-18

Graph of maximum-normal-
stress (MNS) theory failure
envelope for plane stress states.

5-8
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Ty

uc ut

uc

Maximum-Normal-Stress Theory
for Brittle Materials

The maximum-normal-stress (MNS) theory states that failure occurs whenever one of
the three principal stresses equals or exceeds the strength. Again we arrange the prin-
cipal stresses for a general stress state in the ordered form o7 > 0, > o03. This theory
then predicts that failure occurs whenever

op = Sut or 03 < _Suc (5_28)

where S,; and S, are the ultimate tensile and compressive strengths, respectively, given
as positive quantities.

For plane stress, with the principal stresses given by Eq. (3—13), with o4 > op,
Eq. (5-28) can be written as

(o) Sut or op =< _Suc (5_29)

which is plotted in Fig. 5-18.
As before, the failure criteria equations can be converted to design equations. We
can consider two sets of equations where o4 > op as
S S
o = 2 or op = —— (5-30)
n n
As will be seen later, the maximum-normal-stress theory is not very good at pre-
dicting failure in the fourth quadrant of the o4, o plane. Thus, we will not recommend
the theory for use. It has been included here mainly for historical reasons.

Modifications of the Mohr Theory
for Brittle Materials

We will discuss two modifications of the Mohr theory for brittle materials: the Brittle-
Coulomb-Mohr (BCM) theory and the modified Mohr (MM) theory. The equations
provided for the theories will be restricted to plane stress and be of the design type
incorporating the factor of safety.
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Figure 5-19 5, MPa
Biaxial fracture data of gray 3001
cast iron compared with max. normal Sur
various failure criteria. : _--"
. . 1 N\0‘(\( -
(Dowling, N. E., Mechanical 1 o g r; “Mons -
Behavior of Materials, 2nd ed., i : 2= oo™ s
1999, p. 261. Reprinted by | ™ | ! | ! ! L u“ o, MPa
.o —700 =300 0 h 300
permission of Pearson /
Education, Inc., Upper Saddle ~ K
River, New Jersey.) s JI
SN TR
]
2
Y o%
- 1 2
00 ) b!
1 1
L 1/8 !
O Gray cast-iron data II :
1 1
1 % 1
) 1
/° 1
1
______ 1
7Suc
=700 —

The Coulomb-Mohr theory was discussed earlier in Sec. 5—-6 with Egs. (5-23) to
(5-25). Written as design equations for a brittle material, they are:

Brittle-Coulomb-Mohr
Sy
O’Az—t op >0 >0 (5—310)
n
oA o 1
4 _ B _ 2 >0 > 5-31b
Su S om AEEET ot
SML‘
op = —— 0>04 >o0p (5-31¢)
n

On the basis of observed data for the fourth quadrant, the modified Mohr theory
expands the fourth quadrant with the solid lines shown in the second and fourth quad-
rants of Fig. 5-19.

Modified Mohr
Su
oa=""  op=0520
" (5-32a)
op >0>o0p and —B§1
OA
(Suc - Sut) OA OB

_ZB _ >0 > d |= 1 5-32b
SueSut Sue 74 =08 A A g ( )

SllC
op = —— 0>o04>o0p (5-32¢)

n

Data are still outside this extended region. The straight line introduced by the modified
Mohr theory, foros > 0 > o and |op /04| > 1, can be replaced by a parabolic relation
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which can more closely represent some of the data.® However, this introduces a nonlin-
ear equation for the sake of a minor correction, and will not be presented here.

Consider the wrench in Ex. 5-3, Fig. 5-16, as made of cast iron, machined to dimen-
sion. The force F required to fracture this part can be regarded as the strength of the
component part. If the material is ASTM grade 30 cast iron, find the force F' with

(a) Coulomb-Mohr failure model.

(b) Modified Mohr failure model.

We assume that the lever DC is strong enough, and not part of the problem. Since grade
30 cast iron is a brittle material and cast iron, the stress-concentration factors K, and K
are set to unity. From Table A-24, the tensile ultimate strength is 31 kpsi and the com-
pressive ultimate strength is 109 kpsi. The stress element at A on the top surface will be
subjected to a tensile bending stress and a torsional stress. This location, on the 1-in-
diameter section fillet, is the weakest location, and it governs the strength of the assem-
bly. The normal stress o, and the shear stress at A are given by

M 32(14F)
0, = Ki— =K, — (1) — 142.6F
I/c wd3 ()3
Tr 167 16(15F)
erKs_ZKS—: 172764F
by = K7 =K s = D03

From Eq. (3-13) the nonzero principal stresses o4 and o are

0A,0B =

1426F +0 \/( 142.6F — 0

2
> > ) + (76.4F)? = 175.8F, —33.2F

This puts us in the fourth-quadrant of the o4, o plane.
(a) For BCM, Eq. (5-31b) applies with n = 1 for failure.

ox op 1758F (=332F)
Sy See  31(10%)  109(103)

Solving for F yields

F =167 Ibf

(b) For MM, the slope of the load line is |op/o4| =33.2/175.8 =0.189 < 1.
Obviously, Eq. (5-32a) applies.
oA 175.8F

S, 31105

F =176 Ibf

As one would expect from inspection of Fig. 5-19, Coulomb-Mohr is more conservative.

8See J. E. Shigley, C. R. Mischke, R. G. Budynas, Mechanical Engineering Design, Tth ed., McGraw-Hill,
New York, 2004, p. 275.
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Figure 5-20

A plot of experimental data
points obtained from tests on
cast iron. Shown also are the
graphs of three failure theories
of possible usefulness for
brittle materials. Note points A,
B, C, and D. To avoid
congestion in the first quadrant,
points have been plotted for

o > op as well as for the
opposite sense. (Source of
data: Charles F. Walton (ed.),
ITron Castings Handbook,

Iron Founders’ Society, 1971,
pp. 215, 216, Cleveland, Ohio.)
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Failure of Brittle Materials Summary

We have identified failure or strength of brittle materials that conform to the usual
meaning of the word brittle, relating to those materials whose true strain at fracture
is 0.05 or less. We also have to be aware of normally ductile materials that for some
reason may develop a brittle fracture or crack if used below the transition tempera-
ture. Figure 5-20 shows data for a nominal grade 30 cast iron taken under biaxial
stress conditions, with several brittle failure hypotheses shown, superposed. We note
the following:

 In the first quadrant the data appear on both sides and along the failure curves of
maximum-normal-stress, Coulomb-Mohr, and modified Mohr. All failure curves are
the same, and data fit well.

* In the fourth quadrant the modified Mohr theory represents the data best, whereas the
maximum-normal-stress theory does not.

¢ In the third quadrant the points A, B, C, and D are too few to make any suggestion
concerning a fracture locus.

Selection of Failure Criteria

For ductile behavior the preferred criterion is the distortion-energy theory, although
some designers also apply the maximum-shear-stress theory because of its simplicity
and conservative nature. In the rare case when S, # S, the ductile Coulomb-Mohr
method is employed.

For brittle behavior, the original Mohr hypothesis, constructed with tensile, compres-
sion, and torsion tests, with a curved failure locus is the best hypothesis we have. However,
the difficulty of applying it without a computer leads engineers to choose modifications,



Figure 5-21

Failure theory selection
flowchart.
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~— Brittle behavior Ductile behavior

Yes

Conservative?

Mod. Mohr Brittle Coulomb-Mohr Ductile Coulomb-Mohr
(MM) (BCM) (DCM)

Eq. (5-32) Eq. (5-31) Eq. (5-26) Conservative? Yes
Distortion-energy Maximum shear stress
(DE) (MSS)
Egs. (5-15) Eq. (5-3)
and (5-19)

namely, Coulomb Mohr, or modified Mohr. Figure 5-21 provides a summary flowchart for
the selection of an effective procedure for analyzing or predicting failures from static
loading for brittle or ductile behavior. Note that the maximum-normal-stress theory is
excluded from Fig. 5-21 as the other theories better represent the experimental data.

Introduction to Fracture Mechanics

The idea that cracks exist in parts even before service begins, and that cracks can grow
during service, has led to the descriptive phrase “damage-tolerant design.” The focus of
this philosophy is on crack growth until it becomes critical, and the part is removed
from service. The analysis tool is linear elastic fracture mechanics (LEFM). Inspection
and maintenance are essential in the decision to retire parts before cracks reach cata-
strophic size. Where human safety is concerned, periodic inspections for cracks are
mandated by codes and government ordinance.

We shall now briefly examine some of the basic ideas and vocabulary needed for
the potential of the approach to be appreciated. The intent here is to make the reader
aware of the dangers associated with the sudden brittle fracture of so-called ductile
materials. The topic is much too extensive to include in detail here and the reader is
urged to read further on this complex subject.’

°References on brittle fracture include:

H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed., ASME Press,
New York, 2000.

D. Broek, Elementary Engineering Fracture Mechanics, 4th ed., Martinus Nijhoff, London, 1985.

D. Broek, The Practical Use of Fracture Mechanics, Kluwar Academic Pub., London, 1988.

David K. Felbeck and Anthony G. Atkins, Strength and Fracture of Engineering Solids, 2nd ed.,
Prentice-Hall, Englewood Cliffs, N.J., 1995.

Kare Hellan, Introduction to Fracture Mechanics, McGraw-Hill, New York, 1984.
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The use of elastic stress-concentration factors provides an indication of the average
load required on a part for the onset of plastic deformation, or yielding; these factors
are also useful for analysis of the loads on a part that will cause fatigue fracture.
However, stress-concentration factors are limited to structures for which all dimensions
are precisely known, particularly the radius of curvature in regions of high stress con-
centration. When there exists a crack, flaw, inclusion, or defect of unknown small radius
in a part, the elastic stress-concentration factor approaches infinity as the root radius
approaches zero, thus rendering the stress-concentration factor approach useless.
Furthermore, even if the radius of curvature of the flaw tip is known, the high local
stresses there will lead to local plastic deformation surrounded by a region of elastic
deformation. Elastic stress-concentration factors are no longer valid for this situation,
so analysis from the point of view of stress-concentration factors does not lead to cri-
teria useful for design when very sharp cracks are present.

By combining analysis of the gross elastic changes in a structure or part that occur
as a sharp brittle crack grows with measurements of the energy required to produce new
fracture surfaces, it is possible to calculate the average stress (if no crack were present)
that will cause crack growth in a part. Such calculation is possible only for parts with
cracks for which the elastic analysis has been completed, and for materials that crack in a
relatively brittle manner and for which the fracture energy has been carefully measured.
The term relatively brittle is rigorously defined in the test procedures,'* but it means,
roughly, fracture without yielding occurring throughout the fractured cross section.

Thus glass, hard steels, strong aluminum alloys, and even low-carbon steel below
the ductile-to-brittle transition temperature can be analyzed in this way. Fortunately,
ductile materials blunt sharp cracks, as we have previously discovered, so that fracture
occurs at average stresses of the order of the yield strength, and the designer is prepared
for this condition. The middle ground of materials that lie between “relatively brittle”
and “ductile” is now being actively analyzed, but exact design criteria for these materi-
als are not yet available.

Quasi-Static Fracture

Many of us have had the experience of observing brittle fracture, whether it is the break-
ing of a cast-iron specimen in a tensile test or the twist fracture of a piece of blackboard
chalk. It happens so rapidly that we think of it as instantaneous, that is, the cross section
simply parting. Fewer of us have skated on a frozen pond in the spring, with no one near
us, heard a cracking noise, and stopped to observe. The noise is due to cracking. The
cracks move slowly enough for us to see them run. The phenomenon is not instantaneous,
since some time is necessary to feed the crack energy from the stress field to the crack for
propagation. Quantifying these things is important to understanding the phenomenon “in
the small.” In the large, a static crack may be stable and will not propagate. Some level of
loading can render the crack unstable, and the crack propagates to fracture.

The foundation of fracture mechanics was first established by Griffith in 1921
using the stress field calculations for an elliptical flaw in a plate developed by Inglis in
1913. For the infinite plate loaded by an applied uniaxial stress o in Fig. 5-22, the max-
imum stress occurs at (£a, 0) and is given by

(Uy)max = (l + 2%>U (5—33)

1°BS 5447:1977 and ASTM E399-78.



| Figure 5-22

Figure 5-23

Crack propagation modes.
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Note that when a = b, the ellipse becomes a circle and Eq. (5-33) gives a stress-
concentration factor of 3. This agrees with the well-known result for an infinite plate with
a circular hole (see Table A—15-1). For a fine crack, b/a — 0, and Eq. (5-34) predicts
that (0y)max — 00. However, on a microscopic level, an infinitely sharp crack is a
hypothetical abstraction that is physically impossible, and when plastic deformation
occurs, the stress will be finite at the crack tip.

Griffith showed that the crack growth occurs when the energy release rate from
applied loading is greater than the rate of energy for crack growth. Crack growth can be
stable or unstable. Unstable crack growth occurs when the rate of change of the energy
release rate relative to the crack length is equal to or greater than the rate of change of
the crack growth rate of energy. Griffith’s experimental work was restricted to brittle
materials, namely glass, which pretty much confirmed his surface energy hypothesis.
However, for ductile materials, the energy needed to perform plastic work at the crack
tip is found to be much more crucial than surface energy.

Crack Modes and the Stress Intensity Factor

Three distinct modes of crack propagation exist, as shown in Fig. 5-23. A tensile stress
field gives rise to mode I, the opening crack propagation mode, as shown in Fig. 5-23a.
This mode is the most common in practice. Mode II is the sliding mode, is due to
in-plane shear, and can be seen in Fig. 5-23b. Mode 11l is the tearing mode, which
arises from out-of-plane shear, as shown in Fig. 5-23c¢. Combinations of these modes
can also occur. Since mode I is the most common and important mode, the remainder
of this section will consider only this mode.

N

| AN

(a) Mode T (b) Mode 11 (c) Mode IIT
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Figure 5-24

Mode I crack model.

o

Consider a mode I crack of length 2a in the infinite plate of Fig. 5-24. By using
complex stress functions, it has been shown that the stress field on a dx dy element in
the vicinity of the crack tip is given by

_ a 0 | —si 0 . 30 (5-34]

ax_alzrcos2 sin > sin — a
0 0 30

oy =0,/ 2a_r c0s 5 <1 + sin 3 sin 7) (5-34b)

% 0 30
Ty =0,/ Za_r sin > cos 3 cos 5 (5-34c)
_Jo (for plane stress) .
O = { v(oy + oy) (for plane strain) (5-34d)

The stress o, near the tip, with 6 =0, is

a
0‘y|9:0=O“IZ (a)

As with the elliptical crack, we see that o |g—o — 00 as r — 0, and again the concept
of an infinite stress concentration at the crack tip is inappropriate. The quantity
aylgzox/ﬂ = 0/a, however, does remain constant as r — 0. It is common practice to
define a factor K called the stress intensity factor given by

K =0+ /ma (b)

where the units are MPa,/m or kpsiv/in. Since we are dealing with a mode I crack,
Eq. (b) is written as
K; =o+ma (5-35)

The stress intensity factor is not to be confused with the static stress-concentration
factors K, and K, defined in Secs. 3—-13 and 5-2.
Thus Egs. (5-34) can be rewritten as

K, (% <1 .0 . 39) (5-364]
oy = cos — | 1 — sin — sin — -36a
2 2 2 2

K 0 0 36
oy = L cos— <1 + sin = sin —) (5-36b)
V2mr 2 2 2



Figure 5-25

Off-center crack in a plate in
longitudinal tension; solid
curves are for the crack tip
at A; dashed curves are for
the tip at B.
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Tyy = ﬁ sin 5 cos 3 cos > (5-36¢)
_]0 (for plane stress) )
0; = { v(oy +0y) (for plane strain) (5-36d)

The stress intensity factor is a function of geometry, size and shape of the crack,
and the type of loading. For various load and geometric configurations, Eq. (5-35) can
be written as

K; = Bo/ma (5-37)

where f is the stress intensity modification factor. Tables for 8 are available in the lit-
erature for basic configurations.'! Figures 5-25 to 5-30 present a few examples of 3 for
mode I crack propagation.

"See, for example:

H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed., ASME Press,
New York, 2000.

G. C. Sib, Handbook of Stress Intensity Factors for Researchers and Engineers, Institute of Fracture and
Solid Mechanics, Lehigh University, Bethlehem, Pa., 1973.

Y. Murakami, ed., Stress Intensity Factors Handbook, Pergamon Press, Oxford, U.K., 1987.

W. D. Pilkey, Formulas for Stress, Strain, and Structural Matrices, 2nd ed. John Wiley & Sons,
New York, 2005.



Figure 5-26

Plate loaded in longitudinal
tension with a crack at the
edge; for the solid curve there
are no constraints to bending;
the dashed curve was obtained
with bending constraints
added.

Figure 5-27

Beams of rectangular cross
section having an edge crack.
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Figure 5-28

Plate in tension containing a
circular hole with two cracks.

Figure 5-29

A cylinder loading in axial
tension having a radial crack of
depth a extending completely
around the circumference of
the cylinder.
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Fracture Toughness

When the magnitude of the mode I stress intensity factor reaches a critical value,
K., crack propagation initiates. The critical stress intensity factor K. is a material
property that depends on the material, crack mode, processing of the material, temper-
ature, loading rate, and the state of stress at the crack site (such as plane stress versus
plane strain). The critical stress intensity factor K. is also called the fracture toughness
of the material. The fracture toughness for plane strain is normally lower than that for
plane stress. For this reason, the term K, is typically defined as the mode I, plane strain
fracture toughness. Fracture toughness K. for engineering metals lies in the range
20 < K;. <200 MPa - /m; for engineering polymers and ceramics, 1 < K;. <
5 MPa - \/m. For a 4340 steel, where the yield strength due to heat treatment ranges
from 800 to 1600 MPa, K. decreases from 190 to 40 MPa - \/m.

Table 5-1 gives some approximate typical room-temperature values of K;. for
several materials. As previously noted, the fracture toughness depends on many factors
and the table is meant only to convey some typical magnitudes of K;.. For an actual
application, it is recommended that the material specified for the application be certi-
fied using standard test procedures [see the American Society for Testing and Materials
(ASTM) standard E399].
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Figure 5-30

Cylinder subjected to internal
pressure p, having a radial
crack in the longitudinal
direction of depth a. Use

Eq. (4-51) for the tangential
stress at r = ry.

Table 5-1

Values of Kj. for Some
Engineering Materials
at Room Temperature

3.4

1.0
0 0.2 0.4 0.6 0.8

a/(r,—r;) ratio

One of the first problems facing the designer is that of deciding whether the condi-
tions exist, or not, for a brittle fracture. Low-temperature operation, that is, operation
below room temperature, is a key indicator that brittle fracture is a possible failure
mode. Tables of transition temperatures for various materials have not been published,
possibly because of the wide variation in values, even for a single material. Thus, in
many situations, laboratory testing may give the only clue to the possibility of a brittle
fracture. Another key indicator of the possibility of fracture is the ratio of the yield
strength to the ultimate strength. A high ratio of S, /S, indicates there is only a small

Material Ki, MPa/m Sy, MPa
Aluminum
2024 26 455
7075 24 495
7178 33 490
Titanium
Ti-6AL-4V 115 910
Ti-6AL-4V 55 1035
Steel
4340 99 860
4340 60 1515

52100 14 2070
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ability to absorb energy in the plastic region and hence there is a likelihood of brittle
fracture.
The strength-to-stress ratio K;./K; can be used as a factor of safety as

_ KI(:
K,

n (5-38)

A steel ship deck plate is 30 mm thick and 12 m wide. It is loaded with a nominal uni-
axial tensile stress of 50 MPa. It is operated below its ductile-to-brittle transition tem-
perature with K;. equal to 28.3 MPa. If a 65-mm-long central transverse crack is
present, estimate the tensile stress at which catastrophic failure will occur. Compare this
stress with the yield strength of 240 MPa for this steel.

For Fig. 5-25, with d = b, 2a = 65 mm and 26 = 12 m, so that d/b =1 and a/d =
65/12(10%) = 0.00542. Since a/d is so small, B = 1, so that

K; =o+/ma =50y/7(32.5 x 10-3) = 16.0 MPa +/m

From Eq. (5-38),

K;. 283
n= =— =177
K 16.0
The stress at which catastrophic failure occurs is
K. 28.3
0, = 26 = 222 (50) = 88.4 MPa
K 16.0

The yield strength is 240 MPa, and catastrophic failure occurs at 88.4/240 = 0.37, or
at 37 percent of yield. The factor of safety in this circumstance is K;./K; =
28.3/16 = 1.77 and not 240/50 = 4.8.

A plate of width 1.4 m and length 2.8 m is required to support a tensile force in the
2.8-m direction of 4.0 MN. Inspection procedures will detect only through-thickness
edge cracks larger than 2.7 mm. The two Ti-6AL-4V alloys in Table 5—1 are being con-
sidered for this application, for which the safety factor must be 1.3 and minimum
weight is important. Which alloy should be used?

(a) We elect first to estimate the thickness required to resist yielding. Since o = P /wt,
we have t = P/wo. For the weaker alloy, we have, from Table 5-1, S, = 910 MPa.
Thus,

Sy 910
Oul = = = — = 700 MPa
n 1.3
Thus
P 40010

= = ————— = 4.08 mm or greater
woyr  1.4(700)
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Answer

For the stronger alloy, we have, from Table 5-1,

1035
Oq)1 = ﬁ = 796 MPa

and so the thickness is

P 40010)°
T woa 1.4(796)

(b) Now let us find the thickness required to prevent crack growth. Using Fig. 5-26, we
have

= 3.59 mm or greater

R_ZB2_ a2 00193
b 1.4 b 1.4(10%)
Corresponding to these ratios we find from Fig. 5-26 that 8 = 1.1, and K; = 1.10\/7a.
K.  115/10° K.

~K; 1lloJma o= 1.ln/7a
From Table 5-1, K;. = 115 MPa +/m for the weaker of the two alloys. Solving for o with
n = 1 gives the fracture stress

115

o =
1.1y7(2.7 x 10-3)

which is greater than the yield strength of 910 MPa, and so yield strength is the basis
for the geometry decision. For the stronger alloy S, = 1035 MPa, with n = 1 the frac-
ture stress is

= 1135 MPa

K 55

7Tk T 10 Jr@a x 109)

which is less than the yield strength of 1035 MPa. The thickness 7 is

P 4.000%)
woa  1.4(542.9/1.3)

This example shows that the fracture toughness K;. limits the geometry when the
stronger alloy is used, and so a thickness of 6.84 mm or larger is required. When the
weaker alloy is used the geometry is limited by the yield strength, giving a thickness of
only 4.08 mm or greater. Thus the weaker alloy leads to a thinner and lighter weight
choice since the failure modes differ.

= 542.9 MPa

=

= 6.84 mm or greater

Stochastic Analysis'?2

Reliability is the probability that machine systems and components will perform their
intended function satisfactorily without failure. Up to this point, discussion in this chap-
ter has been restricted to deterministic relations between static stress, strength, and the
design factor. Stress and strength, however, are statistical in nature and very much tied
to the reliability of the stressed component. Consider the probability density functions

"2Review Chap. 20 before reading this section.



Figure 5-31

Plot of density functions
showing how the interference
of S and o is used to obtain
the stress margin m. (a) Stress
and strength distributions.

(b) Distribution of interference;
the reliability R is the area

of the density function for

m greater than zero; the
interference is the area (1 — R).
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for stress and strength, o and S, shown in Fig. 5-31a. The mean values of stress and
strength are i, and wg, respectively. Here, the “average” factor of safety is

i=X (o)
Ho
The margin of safety for any value of stress o and strength S is defined as
m=S—o (b)

The average part will have a margin of safety of m = ug — .. However, for the over-
lap of the distributions shown by the shaded area in Fig. 5-31a, the stress exceeds the
strength, the margin of safety is negative, and these parts are expected to fail. This
shaded area is called the interference of o and S.

Figure 5-31b shows the distribution of m, which obviously depends on the distri-
butions of stress and strength. The reliability that a part will perform without failure, R,
is the area of the margin of safety distribution for m > 0. The interference is the area
1 — R where parts are expected to fail. We next consider some typical cases involving
stress-strength interference.

Normal-Normal Case

Consider the normal distributions, S = N(us, 65) and ¢ = N(i,, 05). The stress
margin is m = S — o, and will be normally distributed because the addition or sub-
traction of normals is normal. Thus m = N(u,,, 6,,). Reliability is the probability p that
m > 0. That is,

R=plS>0)=pS—0>0)=pim=>0) (5-39)

To find the chance that m > 0 we form the z variable of m and substitute m = O [See
Eq. (20-16)]. Noting that jt,, = s — [, and 6,, = (62 + 6212, we write

m_Mm_O_Mm__M _ Hs — Ko (5_40)
6. 6w 6w (62 2\ 1/2
JS+00)
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Equation (5-40) is called the normal coupling equation. The reliability associated with
z1s given by

o 1 M2

The body of Table A-10 gives R when z > 0 and (1 — R = F) when z < 0. Noting that
n=us/s, square both sides of Eq. (5-40), and introduce Cs and C, where
Cs = 65/ius and Cy = 6, /14s. Solve the resulting quadratic for 71 to obtain

1 /1-(1-22¢3) (1-22¢2)
1 —22C}

(5-42)
The plus sign is associated with R > 0.5, and the minus sign with R < 0.5.
Lognormal-Lognormal Case

Consider the lognormal distributions S = LN(us, 65) and o = LN(u,, 65). If we
interfere their companion normals using Eqs. (20-18) and (20-19), we obtain

pns =Inps —Iny/1+ C3

&1,15 = ln(1+C§)

Mino = ln/Lo —11’1‘/ 1 +C§

Sino = y/In (1 + C2)

(strength)
and

(stress)

Using Eq. (5—40) for interfering normal distributions gives

(Ms /1+C§>
In{ — 3
Mins = Mg Mo\ 1+ C

G2s+a2)”  m[(1+C3) (1+C2)]

7=— (5-43)

The reliability R is expressed by Eq. (5—41). The design factor n is the random variable
that is the quotient of S/o. The quotient of lognormals is lognormal, so pursuing the
z variable of the lognormal n, we note

_ Hs

c o C3+C? 5 — Cop
Lo 1+C§ n nMn

Mn n

The companion normal to n = LN(u,,, 6,,), from Egs. (20-18) and (20-19), has a mean
and standard deviation of

py=Inp, —In\/1+C2  6,=,/In(1+C32)

The z variable for the companion normal y distribution is

YT Ky
Gy
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Failure will occur when the stress is greater than the strength, when n < 1, or when
y < 0.

0—py Hy 111 Mn — \/H—Cz : ln ('un/\/rc'%) (5-44)
7= —= == :

%y o JIn(1+C2) In(1+C3)

Solving for pu, gives
Gy
Uy =1 = exp |:—Z\/ln (1+C2)+1In \/1 + C,%} = exp |:C,, <— Z+ 7)] (5-45)

Equations (5—42) and (5-45) are remarkable for several reasons:

* They relate design factor n to the reliability goal (through z) and the coefficients of
variation of strength and stress.

* They are not functions of the means of stress and strength.

* They estimate the design factor necessary to achieve the reliability goal before
decisions involving means are made. The Cgs depends slightly on the particular
material. The C, has the coefficient of variation (COV) of the load, and that is gen-
erally given.

A round cold-drawn 1018 steel rod has an 0.2 percent yield strength S, = N(78.4, 5.90)
kpsi and is to be subjected to a static axial load of P = N(50, 4.1) kip. What value of
the design factor 7 corresponds to a reliability of 0.999 against yielding (z = —3.09)?
Determine the corresponding diameter of the rod.

Cs =5.90/78.4 = 0.0753, and
P 4P

T A nd®
Since the COV of the diameter is an order of magnitude less than the COV of the load
or strength, the diameter is treated deterministically:
4.1

C, =Cp=—=0.082
50

From Eq. (5-42),

1+ \/1 —[1 =(=3.09)°(0.0753%) ][ 1 —(—3.09)°(0.082%)]
i = = 1416
1 —(—3.09)°(0.0753%)

The diameter is found deterministically:

4p 4
d= = (50000)  _ 1.072 in
w8,/ (78 400)/1.416
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Check

EXAMPLE 5-9

Solution

Check

S, = N(78.4, 5.90) kpsi, P = N(50, 4.1) kip, and d = 1.072 in. Then
_wd>  7w(1.072%)

A = 0.9026 in’
4 4
P 50 000
6:—:( ):55400psi
A~ 0.9026
Cp=C _ 4l =0.082
P=%r =5 =

6, = C,6 = 0.082(55 400) = 4540 psi

o5 = 5.90 kpsi

From Eq. (5—40) 784 — 554

(5.902 +4.542)172
From Appendix Table A—10, R = ®(—3.09) = 0.999.

7= = —3.09

Rework Ex. 5-8 with lognormally distributed stress and strength.

Cs =5.90/78.4 =0.0753, and C, = Cp = 4.1/50 = 0.082. Then
P 4P

g == ——

=0.1110

Cs+C2  [0.0753% +0.082
1+Cc2 1 +0.0822

From Table A-10, z = —3.09. From Eq. (5-45),

i = exp [—(—3.09)\/1n(1 +0.1112) +1Inv1 + 0.1112] = 1.416

4P 4
d= [—— = OO0 _ 1 07231
w8y /n m(78400)/1.416
S, = LN(78.4,5.90), P = LN(50, 4.1) kip. Then
_wd>  7w(1.0723%)

A= = 0.9031
4 4
_ P 50000 :
o= 1= 09031 — 55 365 psi
4.1
Co =Cp=— =0.082
50

6, = Co e = 0.082(55 367) = 4540 psi

78.4 1 +0.0822
55.365\ 1+ 0.07532
7= = —3.1343

~ /In[(1 + 0.07532)(1 + 0.0822)]
Appendix Table A—10 gives R = 0.99950.

From Eq. (5-43),




Figure 5-32

(a) PDF of the strength
distribution; (b) PDF of the
load-induced stress
distribution.
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Interference—General

In the previous segments, we employed interference theory to estimate reliability when the
distributions are both normal and when they are both lognormal. Sometimes, however, it
turns out that the strength has, say, a Weibull distribution while the stress is distributed
lognormally. In fact, stresses are quite likely to have a lognormal distribution, because the
multiplication of variates that are normally distributed produces a result that approaches
lognormal. What all this means is that we must expect to encounter interference problems
involving mixed distributions and we need a general method to handle the problem.

It is quite likely that we will use interference theory for problems involving distri-
butions other than strength and stress. For this reason we employ the subscript 1 to
designate the strength distribution and the subscript 2 to designate the stress distribu-
tion. Figure 5-32 shows these two distributions aligned so that a single cursor x can be
used to identify points on both distributions. We can now write

Probability that
(stress is less ) =dp(oc <x)=dR = F>,(x)dF;(x)
than strength

By substituting 1 — R, for F, and —d R, for d F|, we have
dR = —[1 — Ry(x)]dR(x)

The reliability for all possible locations of the cursor is obtained by integrating x
from —o0 to 0o; but this corresponds to an integration from 1 to 0 on the reliability R;.
Therefore

0
R = —/ [1 = Ra(x)] dRy(x)
1

which can be written

1
R=1 —/ RrdRy (5-46)
0
£1(S)
dF\(x) = f1(x)dx
S
—>| | dx
(a)
x
£ e Cursor
Fy(x)
\<Rz(x)

o

)
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R, R,

A

R, 1 R, 1
(a) (b)
Figure 5-33

Curve shapes of the R R; plot. In each case the shaded area

is equal to 1 — R and is obtained by numerical integration.
(a) Typical curve for asymptotic distributions; (b) curve shape
obtained from lower truncated distributions such as the Weibull.

where

Ry(x) :/ f1($)dS (5-47)

Ra(x) = / (o) do (5-48)

For the usual distributions encountered, plots of R; versus R, appear as shown in
Fig. 5-33. Both of the cases shown are amenable to numerical integration and com-
puter solution. When the reliability is high, the bulk of the integration area is under the
right-hand spike of Fig. 5-33a.

Important Design Equations

The following equations and their locations are provided as a summary. Note for plane
stress: The principal stresses in the following equations that are labeled o4 and op rep-
resent the principal stresses determined from the two-dimensional Eq. (3—13).

Maximum Shear Theory

— S
p. 220 Ty = o = =2 (5-3)

Distortion-Energy Theory
Von Mises stress, p. 223

- 2 N 2 - 271/2
o — |:(01 02)" + (02 203) + (03 —01) } (5-12)
1
p-223 o' = [ =0 +(0y — 0+ (0~ 0 + 60, + T+ 2)]"?
(5-14)
Plane stress, p. 223
o = (oi —op0p + 05)1/2 (5-13)

p. 223 o' = (GX2 — 0.0y + oyz + 31)62},)1/2 (5-15)
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Yield design equation, p. 224

Sy
o' == (5-19)
n
Shear yield strength, p. 225
Ssy = 0.577 Sy (5-21)
Coulomb-Mohr Theory
o1 03 1
. 225 —— == 5-26
p S TS " n (5-2¢)

where §; is tensile yield (ductile) or ultimate tensile (brittle), and S; is compressive
yield (ductile) or ultimate compressive (brittle) strengths.

Modified Mohr (Plane Stress)

Sut
o4 =— o4 >0 >0
n
(5-32a)
B
o4 >0>0p and —| <1
o4
(S =S I)O’ A op 1 op
p.236  weTow)OA 95 _ 1 S 0>0, and |— >1  (5-32b)
Suc Sut Suc n OA
SMC
op = —— 0>o04>o0p (5-32¢)
n
Failure Theory Flowchart
Fig. 5-21, p. 239
~— Brittle behavior Ductile behavior
Conservative? es
Mod. Mohr Brittle Coulomb-Mohr Ductile Coulomb-Mohr
(MM) (BCM) (DCM)
Eq. 5-32) Eq. 5-31) Eq. (5-26) Conservative? Yes
Distortion-energy Maximum shear stress
(DE) (MSS)
Egs. (5-15) Eq. (5-3)

and (5-19)
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Fracture Mechanics
p. 243 K; = Boma (5-37)

where g is found in Figs. 5-25 to 5-30 (pp. 243 to 246)

247 Kic
. n —=
p X,

(5-38)
where K. is found in Table 5-1 (p. 246)

Stochastic Analysis

Mean factor of safety defined as n = ugs/ms (s and u, are mean strength and stress,
respectively)

Normal-Normal Case

1+ \/1 — (1 - 22C2)(1 — 22C2)
1 — z2C}

where z can be found in Table A-10, Cs = 65/us, and Cy = 04/ lho -

p. 250 i = (5-42)

Lognormal-Lognormal Case

C
oo _ 2 2| =~ — i
p. 251 n—exp[ z,/ln(1+Cn)+ln,/1—|—an|—exp[Cn( z+ 2>j|

(5-45)
c o Ci+C;
14+ C2

where

n

(See other definitions in normal-normal case.)

PROBLEMS

Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1-1 of Sec. 1-16, p. 24.

A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 350 MPa.
Using the distortion-energy and maximum-shear-stress theories determine the factors of safety
for the following plane stress states:

(a) oy = 100 MPa, o, = 100 MPa

(b) ox = 100 MPa, o, = 50 MPa

(¢c) ox = 100 MPa, 7,y = —75 MPa

(d) ox = =50 MPa, 6y, = —75 MPa, 7,y = —50 MPa

(e) ox = 100 MPa, oy = 20 MPa, 7, = —20 MPa

Repeat Prob. 5-1 with the following principal stresses obtained from Eq. (3—13):
(a) o4 = 100 MPa, o = 100 MPa

(b) 04 = 100 MPa, op = —100 MPa

(¢) 04 = 100 MPa, o = 50 MPa

(d) o4 = 100 MPa, op = —50 MPa

(e) o4 = —50 MPa, op = —100 MPa
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Repeat Prob. 5-1 for a bar of AISI 1030 hot-rolled steel and:
(a) ox =25 kpsi, oy = 15 kpsi

(b) ox = 15 kpsi, oy = —15 kpsi

(c) ox = 20 kpsi, 7oy = —10 kpsi

(d) ox = —12 kpsi, oy = 15 kpsi, 74y, = —9 kpsi

(e) ox = —24 kpsi, oy = =24 kpsi, 1oy = —15 kpsi

Repeat Prob. 5-1 for a bar of AISI 1015 cold-drawn steel with the following principal stresses
obtained from Eq. (3—13):

(a) o4 = 30 kpsi, op = 30 kpsi

(b) oo =30 kpsi, op = —30 kpsi

(c) o4 = 30kpsi, op = 15 kpsi

(d) oo = =30 kpsi, op = —15 kpsi

(e) o4 = —50kpsi, op = 10 kpsi

Repeat Prob. 5-1 by first plotting the failure loci in the o4, o5 plane to scale; then, for each stress
state, plot the load line and by graphical measurement estimate the factors of safety.

Repeat Prob. 5-3 by first plotting the failure loci in the o4, o5 plane to scale; then, for each stress
state, plot the load line and by graphical measurement estimate the factors of safety.

An AISI 1018 steel has a yield strength, Sy, = 295 MPa. Using the distortion-energy theory for
the given state of plane stress, (a) determine the factor of safety, (b) plot the failure locus, the load
line, and estimate the factor of safety by graphical measurement.

Problem Number ox (MPa) oy (MPa) Txy (MPa)
5-7 75 =35 0
5-8 —100 30 0
5-9 100 0 =25
5-10 -30 —65 40
5-11 —80 30 -10

A ductile material has the properties Sy, = 60 kpsi and Sy, = 75 kpsi. Using the ductile Coulomb-
Mohr theory, determine the factor of safety for the states of plane stress given in Prob. 5-3.

Repeat Prob. 5-12 by first plotting the failure loci in the o4, o plane to scale; then for each stress
state, plot the load line and by graphical measurement estimate the factor of safety.

An AISI 4142 steel Q&T at 800°F exhibits Sy, = 235 kpsi, Sy = 285 kpsi, and &7 = 0.07. For
the given state of plane stress, (a) determine the factor of safety, (b) plot the failure locus and the
load line, and estimate the factor of safety by graphical measurement.

5-17 —80 —125 50
5-18 125 80 =75
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5-19

5-20

5-21 to
5-25

5-26 to
5-30

5-31 to
5-35

5-36

A brittle material has the properties S,; = 30 kpsi and S, = 90 kpsi. Using the brittle Coulomb-
Mohr and modified-Mohr theories, determine the factor of safety for the following states of
plane stress.

(a) oy =25 kpsi, oy = 15 kpsi

(b) oy = 15 kpsi, oy = —15 kpsi

(c) ox =20 kpsi, 7yy = —10 kpsi

(d) ox = —15kpsi, oy = 10 kpsi, 7,y = —15 kpsi

(e) ox = —20 kpsi, oy = —20 kpsi, 7y, = —15 kpsi

Repeat Prob. 5-19 by first plotting the failure loci in the o4, op plane to scale; then for each stress

state, plot the load line and by graphical measurement estimate the factor of safety.

For an ASTM 30 cast iron, (@) find the factors of safety using the BCM and MM theories,
(b) plot the failure diagrams in the o4, op plane to scale and locate the coordinates of the stress
state, and (c) estimate the factors of safety from the two theories by graphical measurements

along the load line.

A cast aluminum 195-T6 exhibits S,; = 36 kpsi, Sy = 35 kpsi, and &7 = 0.045. For the given
state of plane stress, (a) using the Coulomb-Mohr theory, determine the factor of safety, (b) plot
the failure locus and the load line, and estimate the factor of safety by graphical measurement.

Problem Number ox (kpsi) oy (kpsi) Txy (kpsi)
5-26 15 —10 0
5-27 —15 10 0
5-28 12 0 -8
5-29 —10 —15 10
5-30 15 8 -8

Repeat Probs. 5-26 to 5-30 using the modified-Mohr theory.

Problem number I 5-31 5-32 5-33 5-34 5-35

Repeat problem I 5-26 5-27 5-28 5-29 5-30

This problem illustrates that the factor of safety for a machine element depends on the particular
point selected for analysis. Here you are to compute factors of safety, based upon the distortion-
energy theory, for stress elements at A and B of the member shown in the figure. This bar is
made of AISI 1006 cold-drawn steel and is loaded by the forces F' = 0.55 kN, P = 4.0 kN,
and 7 =25N - m.
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For the beam in Prob. 3-44, p. 133, determine the minimum yield strength that should be con-
sidered to obtain a minimum factor of safety of 2 based on the distortion-energy theory.

A 1020 CD steel shaft is to transmit 20 hp while rotating at 1750 rpm. Determine the minimum
diameter for the shaft to provide a minimum factor of safety of 3 based on the maximum-shear-
stress theory.

For the problem specified in the table, build upon the results of the original problem to determine
the minimum factor of safety for yielding. Use both the maximum-shear-stress theory and the
distortion-energy theory, and compare the results. The material is 1018 CD steel.

Problem Number Original Problem, Page Number

5-39% 3-68, 137
5-40% 3-69, 137
5-41% 3-70, 137
5-42% 3-71, 137
5-43% 3-72, 138
5-44* 3-73, 138
5-45% 3-74, 138
5-46%* 3-76, 139
5-47% 3-77, 139
5-48* 3-79, 139
5-49% 3-80, 139
5-50% 3-81, 140
5-51% 3-82, 140
5-52% 3-83, 140
5-53% 3-84, 140
5-54% 3-85, 141

5-55% 3-86, 141
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5-56*

5-57
5-58

5-59

5-60

5-61

5-62
5-63

Problem 5-63

5-64

5-65*

Build upon the results of Probs. 3-84 and 3—87 to compare the use of a low-strength, ductile mate-
rial (1018 CD) in which the stress-concentration factor can be ignored to a high-strength but more
brittle material (4140 Q&T @ 400°F) in which the stress-concentration factor should be included.
For each case, determine the factor of safety for yielding using the distortion-energy theory.

Design the lever arm CD of Fig. 5-16 by specifying a suitable size and material.

A spherical pressure vessel is formed of 16-gauge (0.0625-in) cold-drawn AISI 1020 sheet steel.
If the vessel has a diameter of 15 in, use the distortion-energy theory to estimate the pressure
necessary to initiate yielding. What is the estimated bursting pressure?

This problem illustrates that the strength of a machine part can sometimes be measured in units
other than those of force or moment. For example, the maximum speed that a flywheel can reach
without yielding or fracturing is a measure of its strength. In this problem you have a rotating ring
made of hot-forged AISI 1020 steel; the ring has a 6-in inside diameter and a 10-in outside diameter
and is 1.5 in thick. Using the distortion-energy theory, determine the speed in revolutions per
minute that would cause the ring to yield. At what radius would yielding begin? [Note: The maxi-
mum radial stress occurs at 7 = (r,7;)'/?; see Eq. (3-55).]

A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures.
This cylinder has a 3 % -in OD, a 0.065-in wall thickness, and v = 0.334. The purchase order spec-
ifies a minimum yield strength of 46 kpsi. Using the distortion-energy theory, determine the factor
of safety if the pressure-release valve is set at 500 psi.

A cold-drawn AISI 1015 steel tube is 300 mm OD by 200 mm ID and is to be subjected to an
external pressure caused by a shrink fit. Using the distortion-energy theory, determine the maxi-
mum pressure that would cause the material of the tube to yield.

What speed would cause fracture of the ring of Prob. 5-59 if it were made of grade 30 cast iron?

The figure shows a shaft mounted in bearings at A and D and having pulleys at B and C. The
forces shown acting on the pulley surfaces represent the belt tensions. The shaft is to be made of
AISI 1035 CD steel. Using a conservative failure theory with a design factor of 2, determine the

minimum shaft diameter to avoid yielding.

By modern standards, the shaft design of Prob. 5-63 is poor because it is so long. Suppose it is
redesigned by halving the length dimensions. Using the same material and design factor as in
Prob. 5-63, find the new shaft diameter.

Build upon the results of Prob. 3—40, p. 132, to determine the factor of safety for yielding based
on the distortion-energy theory for each of the simplified models in parts ¢, d, and e of the figure



5-66*

5-67

Problem 5-67

5-68

5-69

5-70

5-71
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for Prob. 3—40. The pin is machined from AISI 1018 hot-rolled steel. Compare the three models
from a designer’s perspective in terms of accuracy, safety, and modeling time.

For the clevis pin of Prob. 3—40, p. 132, redesign the pin diameter to provide a factor of safety of
2.5 based on a conservative yielding failure theory, and the most conservative loading model from
parts c, d, and e of the figure for Prob. 3—40. The pin is machined from AISI 1018 hot-rolled steel.

A split-ring clamp-type shaft collar is shown in the figure. The collar is 50 mm OD by 25 mm
ID by 12 mm wide. The screw is designated as M 6 X 1. The relation between the screw tight-
ening torque 7, the nominal screw diameter d, and the tension in the screw F; is approximately
T = 0.2 F;d. The shaft is sized to obtain a close running fit. Find the axial holding force F, of
the collar as a function of the coefficient of friction and the screw torque.

Suppose the collar of Prob. 5-67 is tightened by using a screw torque of 20 N - m. The collar

material is AISI 1035 steel heat-treated to a minimum tensile yield strength of 450 MPa.

(a) Estimate the tension in the screw.

(b) By relating the tangential stress to the hoop tension, find the internal pressure of the shaft on
the ring.

(c) Find the tangential and radial stresses in the ring at the inner surface.

(d) Determine the maximum shear stress and the von Mises stress.

(e) What are the factors of safety based on the maximum-shear-stress and the distortion-energy
theories?

In Prob. 5-67, the role of the screw was to induce the hoop tension that produces the clamping.
The screw should be placed so that no moment is induced in the ring. Just where should the screw
be located?

A tube has another tube shrunk over it. The specifications are:

1D 1.250 £ 0.003 in 2.001 £ 0.0004 in
OD 2.002 £ 0.0004 in 3.000 £ 0.004 in

Both tubes are made of a plain carbon steel.

(a) Find the nominal shrink-fit pressure and the von Mises stresses at the fit surface.

(b) If the inner tube is changed to solid shafting with the same outside dimensions, find the
nominal shrink-fit pressure and the von Mises stresses at the fit surface.

Two steel tubes have the specifications:

1D 20 £ 0.050 mm 39.98 £ 0.008 mm
OD 40 £ 0.008 mm 65 £ 0.10 mm
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These are shrink-fitted together. Find the nominal shrink-fit pressure and the von Mises stress in
each body at the fit surface.

5-72  Repeat Prob. 5-71 for maximum shrink-fit conditions.

5-73 A solid steel shaft has a gear with ASTM grade 20 cast-iron hub (E = 14.5 Mpsi) shrink-fitted
to it. The shaft diameter is 2.001 £ 0.0004 in. The specifications for the gear hub are

+0.0004

in
— 0.0000

ID with an OD of 4.00 £ é in. Using the midrange values and the modified Mohr theory,
estimate the factor of safety guarding against fracture in the gear hub due to the shrink fit.

5-74 Two steel tubes are shrink-fitted together where the nominal diameters are 40, 45, and 50 mm.
Careful measurement before fitting determined the diametral interference between the tubes to be
0.062 mm. After the fit, the assembly is subjected to a torque of 900 N - m and a bending-moment
of 675 N - m. Assuming no slipping between the cylinders, analyze the outer cylinder at the inner
and outer radius. Determine the factor of safety using distortion energy with Sy = 415 MPa.

5-75  Repeat Prob. 5-74 for the inner tube.

5-76 to For the problem given in the table, the specifications for the press fit of two cylinders are given
5-81 in the original problem from Chap. 3. If both cylinders are hot-rolled AISI 1040 steel, determine
the minimum factor of safety for the outer cylinder based on the distortion-energy theory.

Problem Number Original Problem, Page Number

5-76 3-110, 143
5-77 3-111, 143
5-78 3-112, 143
5-79 3-113, 143
5-80 3-114, 143
5-81 3-115, 143

5-82 For Eqgs. (5-36) show that the principal stresses are given by

Ki cos 0 1+ sin 0
oy = _ —
: 2r 2 2

K cos(9 (1 s'n0>
0y = - — sin —
: 2 2 2

0 (plane stress)

03 = 2 0
— vK; cos — (plane strain)
Tr 2

5-83 Use the results of Prob. 5-82 for plane strain near the tip with 6 =0 and v = % If the yield
strength of the plate is S,, what is o when yield occurs?
(a) Use the distortion-energy theory.
(b) Use the maximum-shear-stress theory. Using Mohr’s circles, explain your answer.
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5-88
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A plate 100 mm wide, 200 mm long, and 12 mm thick is loaded in tension in the direction of the
length. The plate contains a crack as shown in Fig. 5-26 with the crack length of 16 mm. The
material is steel with K. = 80 MPa - ./m, and Sy = 950 MPa. Determine the maximum possi-
ble load that can be applied before the plate (a) yields, and (b) has uncontrollable crack growth.

A cylinder subjected to internal pressure p; has an outer diameter of 14 in and a 1-in wall thick-
ness. For the cylinder material, K;. = 72 kpsi - v/in, Sy = 170 kpsi, and S;,; = 192 kpsi. If the
cylinder contains a radial crack in the longitudinal direction of depth 0.5 in determine the pres-
sure that will cause uncontrollable crack growth.

A carbon steel collar of length 1 in is to be machined to inside and outside diameters, respec-
tively, of

D; = 0.750 £ 0.0004 in D, =1.125£0.002 in

This collar is to be shrink-fitted to a hollow steel shaft having inside and outside diameters,
respectively, of

d; =0.375 £0.002 in d, =0.752 £ 0.0004 in

These tolerances are assumed to have a normal distribution, to be centered in the spread interval,
and to have a total spread of +4 standard deviations. Determine the means and the standard devi-
ations of the tangential stress components for both cylinders at the interface.

Suppose the collar of Prob. 5-44 has a yield strength of S, = N(95.5, 6.59) kpsi. What is the
probability that the material will not yield?

A carbon steel tube has an outside diameter of 75 mm and a wall thickness of 3 mm. The tube is
to carry an internal hydraulic pressure given as p = N(40, 2) MPa. The material of the tube has
a yield strength of Sy = N(350, 29) MPa. Find the reliability using thin-wall theory.
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In Chap. 5 we considered the analysis and design of parts subjected to static loading.
The behavior of machine parts is entirely different when they are subjected to time-
varying loading. In this chapter we shall examine how parts fail under variable loading
and how to proportion them to successfully resist such conditions.

Introduction to Fatigue in Metals

In most testing of those properties of materials that relate to the stress-strain diagram,
the load is applied gradually, to give sufficient time for the strain to fully develop.
Furthermore, the specimen is tested to destruction, and so the stresses are applied only
once. Testing of this kind is applicable, to what are known as static conditions; such
conditions closely approximate the actual conditions to which many structural and
machine members are subjected.

The condition frequently arises, however, in which the stresses vary with time or
they fluctuate between different levels. For example, a particular fiber on the surface of
arotating shaft subjected to the action of bending loads undergoes both tension and com-
pression for each revolution of the shaft. If the shaft is part of an electric motor rotating
at 1725 rev/min, the fiber is stressed in tension and compression 1725 times each minute.
If, in addition, the shaft is also axially loaded (as it would be, for example, by a helical
or worm gear), an axial component of stress is superposed upon the bending component.
In this case, some stress is always present in any one fiber, but now the level of stress is
fluctuating. These and other kinds of loading occurring in machine members produce
stresses that are called variable, repeated, alternating, or fluctuating stresses.

Often, machine members are found to have failed under the action of repeated or
fluctuating stresses; yet the most careful analysis reveals that the actual maximum
stresses were well below the ultimate strength of the material, and quite frequently even
below the yield strength. The most distinguishing characteristic of these failures is that
the stresses have been repeated a very large number of times. Hence the failure is called
a fatigue failure.

When machine parts fail statically, they usually develop a very large deflection,
because the stress has exceeded the yield strength, and the part is replaced before fracture
actually occurs. Thus many static failures give visible warning in advance. But a fatigue
failure gives no warning! It is sudden and total, and hence dangerous. It is relatively sim-
ple to design against a static failure, because our knowledge is comprehensive. Fatigue is
a much more complicated phenomenon, only partially understood, and the engineer seek-
ing competence must acquire as much knowledge of the subject as possible.

A fatigue failure has an appearance similar to a brittle fracture, as the fracture sur-
faces are flat and perpendicular to the stress axis with the absence of necking. The frac-
ture features of a fatigue failure, however, are quite different from a static brittle fracture
arising from three stages of development. Stage I is the initiation of one or more micro-
cracks due to cyclic plastic deformation followed by crystallographic propagation
extending from two to five grains about the origin. Stage I cracks are not normally dis-
cernible to the naked eye. Stage II progresses from microcracks to macrocracks forming
parallel plateau-like fracture surfaces separated by longitudinal ridges. The plateaus are
generally smooth and normal to the direction of maximum tensile stress. These surfaces
can be wavy dark and light bands referred to as beach marks or clamshell marks, as seen
in Fig. 6-1. During cyclic loading, these cracked surfaces open and close, rubbing
together, and the beach mark appearance depends on the changes in the level or fre-
quency of loading and the corrosive nature of the environment. Stage Il occurs during
the final stress cycle when the remaining material cannot support the loads, resulting in



Figure 6-1

Fatigue failure of a bolt due to

repeated unidirectional bending.

The failure started at the thread
root at A, propagated across
most of the cross section shown
by the beach marks at B,
before final fast fracture at C.
(From ASM Handbook,

Vol. 12: Fractography,

2nd printing, 1992, ASM
International, Materials Park,
OH 44073-0002, fig 50, p. 120.
Reprinted by permission of
ASM International®,
www.asminternational.org.)
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a sudden, fast fracture. A stage III fracture can be brittle, ductile, or a combination of
both. Quite often the beach marks, if they exist, and possible patterns in the stage III frac-
ture called chevron lines, point toward the origins of the initial cracks.

There is a good deal to be learned from the fracture patterns of a fatigue failure.'
Figure 6-2 shows representations of failure surfaces of various part geometries under
differing load conditions and levels of stress concentration. Note that, in the case of
rotational bending, even the direction of rotation influences the failure pattern.

Fatigue failure is due to crack formation and propagation. A fatigue crack will typ-
ically initiate at a discontinuity in the material where the cyclic stress is a maximum.
Discontinuities can arise because of:

* Design of rapid changes in cross section, keyways, holes, etc. where stress concen-
trations occur as discussed in Secs. 3—13 and 5-2.

» Elements that roll and/or slide against each other (bearings, gears, cams, etc.) under
high contact pressure, developing concentrated subsurface contact stresses (Sec. 3—19)
that can cause surface pitting or spalling after many cycles of the load.

e Carelessness in locations of stamp marks, tool marks, scratches, and burrs; poor joint
design; improper assembly; and other fabrication faults.

* Composition of the material itself as processed by rolling, forging, casting, extrusion,
drawing, heat treatment, etc. Microscopic and submicroscopic surface and subsurface
discontinuities arise, such as inclusions of foreign material, alloy segregation, voids,
hard precipitated particles, and crystal discontinuities.

Various conditions that can accelerate crack initiation include residual tensile stresses,
elevated temperatures, temperature cycling, a corrosive environment, and high-frequency
cycling.

The rate and direction of fatigue crack propagation is primarily controlled by local-
ized stresses and by the structure of the material at the crack. However, as with crack
formation, other factors may exert a significant influence, such as environment, tem-
perature, and frequency. As stated earlier, cracks will grow along planes normal to the

'See the ASM Handbook, Fractography, ASM International, Metals Park, Ohio, vol. 12, 9th ed., 1987.
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Figure 6_2 ~——————— High nominal stress - Low nominal stress —
No stress Mild stress Severe stress No stress Mild stress Severe stress
Schematics of fatigue fracture “concentration * concentration ' concentration ' concentration ' concentration " concentration

surfaces produced in smooth
and notched components with
round and rectangular cross
sections under various loading
conditions and nominal stress
levels. (From ASM Metals
Handbook, Vol. 11: Failure
Analysis and Prevention, 7986,
ASM International, Materials
Park, OH 44073-0002, fig 18,
p. 111. Reprinted by permission
of ASM International®,
www.asminternational.org.)

) Torsion _—
Fast-fracture zone [II7 Beach marks [ Stress-concentration notch
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Figure 6-3

Fatigue fracture of an AISI
4320 drive shaft. The fatigue
failure initiated at the end of
the keyway at points B and
progressed to final rupture at C.
The final rupture zone is small,
indicating that loads were low.
(From ASM Handbook,

Vol. 12: Fractography,

2nd printing, 1992, ASM
International, Materials Park,
OH 44073-0002, fig 51, p. 120.
Reprinted by permission of
ASM International®,
www.asminternational.org.)

Figure 6-4

Fatigue fracture surface of an
AISI 8640 pin. Sharp corners
of the mismatched grease
holes provided stress
concentrations that

initiated two fatigue cracks
indicated by the arrows.
(From ASM Handbook,

Vol. 12: Fractography,

2nd printing, 1992, ASM
International, Materials Park,
OH 44073-0002, fig 520,

p. 331. Reprinted by permission
of ASM International®,
www.asminternational.org.)
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maximum tensile stresses. The crack growth process can be explained by fracture
mechanics (see Sec. 6-06).

A major reference source in the study of fatigue failure is the 21-volume
ASM Metals Handbook. Figures 6-1 to 6-8, reproduced with permission from ASM
International, are but a minuscule sample of examples of fatigue failures for a great
variety of conditions included in the handbook. Comparing Fig. 6-3 with Fig. 6-2, we
see that failure occurred by rotating bending stresses, with the direction of rotation
being clockwise with respect to the view and with a mild stress concentration and low
nominal stress.
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Figure 6-5

Fatigue fracture surface of a
forged connecting rod of

AISI 8640 steel. The fatigue
crack origin is at the left edge, at
the flash line of the forging, but
no unusual roughness of the
flash trim was indicated. The
fatigue crack progressed
halfway around the oil hole

at the left, indicated by the
beach marks, before final fast
fracture occurred. Note the
pronounced shear lip in the
final fracture at the right edge.
(From ASM Handbook,

Vol. 12: Fractography,

2nd printing, 1992, ASM
International, Materials Park,
OH 44073-0002, fig 523, p. 332.
Reprinted by permission of
ASM International®,
www.asminternational.org.)

Figure 6-6

Fatigue fracture surface of a 200-mm (8-in) diameter piston rod of an alloy
steel steam hammer used for forging. This is an example of a fatigue fracture
caused by pure tension where surface stress concentrations are absent and a
crack may initiate anywhere in the cross section. In this instance, the initial
crack formed at a forging flake slightly below center, grew outward
symmetrically, and ultimately produced a brittle fracture without warning.
(From ASM Handbook, Vol. 12: Fractography, 2nd printing, 1992, ASM
International, Materials Park, OH 44073-0002, fig 570, p. 342. Reprinted by
permission of ASM International®, www.asminternational.org.)
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Figure 6-7

Figure 6-8

Aluminum alloy 7075-T73
landing-gear torque-arm
assembly redesign to eliminate
fatigue fracture at a lubrication
hole. (a) Arm configuration,
original and improved design
(dimensions given in inches).
(b) Fracture surface where
arrows indicate multiple crack
origins. (From ASM Metals
Handbook, Vol. 11: Failure
Analysis and Prevention, 7986,
ASM International, Materials
Park, OH 44073-0002, fig 23,
p. 114. Reprinted

by permission of ASM
International®,

www.asminternational.org.)

Fatigue failure of an ASTM A186 steel double-flange trailer wheel caused by stamp marks. (@) Coke-oven car wheel showing position of
stamp marks and fractures in the rib and web. (b) Stamp mark showing heavy impression and fracture extending along the base of the lower
row of numbers. (c) Notches, indicated by arrows, created from the heavily indented stamp marks from which cracks initiated along the top
at the fracture surface. (From ASM Metals Handbook, Vol. 11: Failure Analysis and Prevention, /986, ASM International, Materials Park,
OH 44073-0002, fig 51, p. 130. Reprinted by permission of ASM International®, www.asminternational.org.)

Aluminum alloy 7075-T73

Primary-fracture
surface

1.750-in.-dia
bushing,
0.090-in. wall

Lubrication hole

Secondary
fracture

3.62 dia

Original design

4.94 Rockwell B 85.5
255 —
—

Improved design

Detail A
(a)
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Approach to Fatigue Failure in Analysis and Design

As noted in the previous section, there are a great many factors to be considered, even
for very simple load cases. The methods of fatigue failure analysis represent a combi-
nation of engineering and science. Often science fails to provide the complete answers
that are needed. But the airplane must still be made to fly—safely. And the automobile
must be manufactured with a reliability that will ensure a long and troublefree life and
at the same time produce profits for the stockholders of the industry. Thus, while sci-
ence has not yet completely explained the complete mechanism of fatigue, the engineer
must still design things that will not fail. In a sense this is a classic example of the true
meaning of engineering as contrasted with science. Engineers use science to solve their
problems if the science is available. But available or not, the problem must be solved,
and whatever form the solution takes under these conditions is called engineering.

In this chapter, we will take a structured approach in the design against fatigue
failure. As with static failure, we will attempt to relate to test results performed on sim-
ply loaded specimens. However, because of the complex nature of fatigue, there is
much more to account for. From this point, we will proceed methodically, and in stages.
In an attempt to provide some insight as to what follows in this chapter, a brief descrip-
tion of the remaining sections will be given here.

Fatigue-Life Methods (Secs. 6-3 to 6-6)

Three major approaches used in design and analysis to predict when, if ever, a cyclically
loaded machine component will fail in fatigue over a period of time are presented. The
premises of each approach are quite different but each adds to our understanding of the
mechanisms associated with fatigue. The application, advantages, and disadvantages of
each method are indicated. Beyond Sec. 66, only one of the methods, the stress-life
method, will be pursued for further design applications.

Fatigue Strength and the Endurance Limit (Secs. 6-7 and 6-8)

The strength-life (S-N) diagram provides the fatigue strength Sy versus cycle life N of a
material. The results are generated from tests using a simple loading of standard laboratory-
controlled specimens. The loading often is that of sinusoidally reversing pure bending.
The laboratory-controlled specimens are polished without geometric stress concentra-
tion at the region of minimum area.

For steel and iron, the S-N diagram becomes horizontal at some point. The strength
at this point is called the endurance limit S, and occurs somewhere between 10° and 10’
cycles. The prime mark on S refers to the endurance limit of the controlled laboratory
specimen. For nonferrous materials that do not exhibit an endurance limit, a fatigue
strength at a specific number of cycles, S ;, may be given, where again, the prime denotes
the fatigue strength of the laboratory-controlled specimen.

The strength data are based on many controlled conditions that will not be the same
as that for an actual machine part. What follows are practices used to account for the
differences between the loading and physical conditions of the specimen and the actual
machine part.

Endurance Limit Modifying Factors (Sec. 6-9)

Modifying factors are defined and used to account for differences between the speci-
men and the actual machine part with regard to surface conditions, size, loading, tem-
perature, reliability, and miscellaneous factors. Loading is still considered to be simple
and reversing.
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Stress Concentration and Notch Sensitivity (Sec. 6-10)

The actual part may have a geometric stress concentration by which the fatigue behav-
ior depends on the static stress-concentration factor and the component material’s
sensitivity to fatigue damage.

Fluctuating Stresses (Secs. 6-11 to 6-13)

These sections account for simple stress states from fluctuating load conditions that are
not purely sinusoidally reversing axial, bending, or torsional stresses.

Combinations of Loading Modes (Sec. 6-14)

Here a procedure based on the distortion-energy theory is presented for analyzing
combined fluctuating stress states, such as combined bending and torsion. Here it is
assumed that the levels of the fluctuating stresses are in phase and not time varying.

Varying, Fluctuating Stresses; Cumulative

Fatigue Damage (Sec. 6-15)

The fluctuating stress levels on a machine part may be time varying. Methods are pro-
vided to assess the fatigue damage on a cumulative basis.

Remaining Sections

The remaining three sections of the chapter pertain to the special topics of surface
fatigue strength, stochastic analysis, and road maps with important equations.

Fatigue-Life Methods

The three major fatigue life methods used in design and analysis are the stress-life
method, the strain-life method, and the linear-elastic fracture mechanics method. These
methods attempt to predict the life in number of cycles to failure, N, for a specific level
of loading. Life of 1 < N < 10 cycles is generally classified as low-cycle fatigue,
whereas high-cycle fatigue is considered to be N > 10° cycles.

The stress-life method, based on stress levels only, is the least accurate approach,
especially for low-cycle applications. However, it is the most traditional method, since
it is the easiest to implement for a wide range of design applications, has ample sup-
porting data, and represents high-cycle applications adequately.

The strain-life method involves more detailed analysis of the plastic deformation at
localized regions where the stresses and strains are considered for life estimates. This
method is especially good for low-cycle fatigue applications. In applying this method,
several idealizations must be compounded, and so some uncertainties will exist in the
results. For this reason, it will be discussed only because of its value in adding to the
understanding of the nature of fatigue.

The fracture mechanics method assumes a crack is already present and detected. It
is then employed to predict crack growth with respect to stress intensity. It is most prac-
tical when applied to large structures in conjunction with computer codes and a peri-
odic inspection program.

The Stress-Life Method

To determine the strength of materials under the action of fatigue loads, specimens are
subjected to repeated or varying forces of specified magnitudes while the cycles or
stress reversals are counted to destruction. The most widely used fatigue-testing device
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Figure 6-9

Test-specimen geometry for the
R. R. Moore rotating-beam
machine. The bending moment
is uniform, M = Fa, over

the curved length and at the
highest-stressed section at the

mid-point of the beam.

Figure 6-10

An S-N diagram plotted from
the results of completely
reversed axial fatigue tests.
Material: UNS G41300 steel,
normalized; S,; = 116 kpsi;
maximum S, = 125 kpsi.
(Data from NACA Tech. Note
3866, December 1966.)

is the R. R. Moore high-speed rotating-beam machine. This machine subjects the specimen
to pure bending (no transverse shear) by means of weights. The specimen, shown in
Fig. 6-9, is very carefully machined and polished, with a final polishing in an axial
direction to avoid circumferential scratches. Other fatigue-testing machines are avail-
able for applying fluctuating or reversed axial stresses, torsional stresses, or combined
stresses to the test specimens.

To establish the fatigue strength of a material, quite a number of tests are necessary
because of the statistical nature of fatigue. For the rotating-beam test, a constant bend-
ing load is applied, and the number of revolutions (stress reversals) of the beam required
for failure is recorded. The first test is made at a stress that is somewhat under the ulti-
mate strength of the material. The second test is made at a stress that is less than that
used in the first. This process is continued, and the results are plotted as an S-N diagram
(Fig. 6-10). This chart may be plotted on semilog paper or on log-log paper. In the case
of ferrous metals and alloys, the graph becomes horizontal after the material has been
stressed for a certain number of cycles. Plotting on log paper emphasizes the bend in
the curve, which might not be apparent if the results were plotted by using Cartesian
coordinates.

The ordinate of the S-N diagram is called the fatigue strength Sy; a statement of
this strength value must always be accompanied by a statement of the number of cycles
N to which it corresponds.
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Figure 6-11

S-N bands for representative
aluminum alloys, excluding
wrought alloys with

Sur < 38 kpsi. (From R. C.
Juvinall, Engineering
Considerations of Stress,
Strain and Strength. Copyright
© 1967 by The McGraw-Hill
Companies, Inc. Reprinted by
permission.)
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Wrought

Permanent mold cast

Sand cast

Peak alternating bending stress S, kpsi (log)

0} 10* 10° 10° 107 108 10°
Life N, cycles (log)

Soon we shall learn that S-N diagrams can be determined either for a test specimen
or for an actual mechanical element. Even when the material of the test specimen and
that of the mechanical element are identical, there will be significant differences
between the diagrams for the two.

In the case of the steels, a knee occurs in the graph, and beyond this knee failure
will not occur, no matter how great the number of cycles. The strength corresponding
to the knee is called the endurance limit S,, or the fatigue limit. The graph of Fig. 610
never does become horizontal for nonferrous metals and alloys, and hence these mate-
rials do not have an endurance limit. Figure 6-11 shows scatter bands indicating the S-N
curves for most common aluminum alloys excluding wrought alloys having a tensile
strength below 38 kpsi. Since aluminum does not have an endurance limit, normally the
fatigue strength Sy is reported at a specific number of cycles, normally N = 5(10%)
cycles of reversed stress (see Table A—24).

The S-N diagram is usually obtained by completely reversed stress cycles, in which
the stress level alternates between equal magnitudes of tension and compression. We
note that a stress cycle (N = 1) constitutes a single application and removal of a load
and then another application and removal of the load in the opposite direction. Thus
N = % means the load is applied once and then removed, which is the case with the
simple tension test.

The body of knowledge available on fatigue failure from N =1 to N = 1000
cycles is generally classified as low-cycle fatigue, as indicated in Fig. 6-10. High-cycle
fatigue, then, is concerned with failure corresponding to stress cycles greater than 10°
cycles.

We also distinguish a finite-life region and an infinite-life region in Fig. 6—10. The
boundary between these regions cannot be clearly defined except for a specific material;
but it lies somewhere between 10° and 107 cycles for steels, as shown in Fig. 6-10.

As noted previously, it is always good engineering practice to conduct a testing
program on the materials to be employed in design and manufacture. This, in fact, is a
requirement, not an option, in guarding against the possibility of a fatigue failure.
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Because of this necessity for testing, it would really be unnecessary for us to proceed
any further in the study of fatigue failure except for one important reason: the desire to
know why fatigue failures occur so that the most effective method or methods can be
used to improve fatigue strength. Thus our primary purpose in studying fatigue is to
understand why failures occur so that we can guard against them in an optimum man-
ner. For this reason, the analytical design approaches presented in this book, or in any
other book, for that matter, do not yield absolutely precise results. The results should be
taken as a guide, as something that indicates what is important and what is not impor-
tant in designing against fatigue failure.

As stated earlier, the stress-life method is the least accurate approach especially
for low-cycle applications. However, it is the most traditional method, with much
published data available. It is the easiest to implement for a wide range of design
applications and represents high-cycle applications adequately. For these reasons the
stress-life method will be emphasized in subsequent sections of this chapter.
However, care should be exercised when applying the method for low-cycle applications,
as the method does not account for the true stress-strain behavior when localized
yielding occurs.

The Strain-Life Method

The best approach yet advanced to explain the nature of fatigue failure is called by some
the strain-life method. The approach can be used to estimate fatigue strengths, but when
it is so used it is necessary to compound several idealizations, and so some uncertain-
ties will exist in the results. For this reason, the method is presented here only because
of its value in explaining the nature of fatigue.

A fatigue failure almost always begins at a local discontinuity such as a notch,
crack, or other area of stress concentration. When the stress at the discontinuity exceeds
the elastic limit, plastic strain occurs. If a fatigue fracture is to occur, there must exist
cyclic plastic strains. Thus we shall need to investigate the behavior of materials sub-
ject to cyclic deformation.

In 1910, Bairstow verified by experiment Bauschinger’s theory that the elastic lim-
its of iron and steel can be changed, either up or down, by the cyclic variations of stress.’
In general, the elastic limits of annealed steels are likely to increase when subjected to
cycles of stress reversals, while cold-drawn steels exhibit a decreasing elastic limit.

R. W. Landgraf has investigated the low-cycle fatigue behavior of a large number
of very high-strength steels, and during his research he made many cyclic stress-strain
plots.® Figure 612 has been constructed to show the general appearance of these plots
for the first few cycles of controlled cyclic strain. In this case the strength decreases
with stress repetitions, as evidenced by the fact that the reversals occur at ever-smaller
stress levels. As previously noted, other materials may be strengthened, instead, by
cyclic stress reversals.

The SAE Fatigue Design and Evaluation Steering Committee released a report in
1975 in which the life in reversals to failure is related to the strain amplitude Ag/2.*

’L. Bairstow, “The Elastic Limits of Iron and Steel under Cyclic Variations of Stress,” Philosophical
Transactions, Series A, vol. 210, Royal Society of London, 1910, pp. 35-55.

R. W. Landgraf, Cyclic Deformation and Fatigue Behavior of Hardened Steels, Report no. 320, Department
of Theoretical and Applied Mechanics, University of Illinois, Urbana, 1968, pp. 84-90.

*Technical Report on Fatigue Properties, SAE 11099, 1975.



Figure 6-12

True stress—true strain
hysteresis loops showing the
first five stress reversals of a
cyclic-softening material. The
graph is slightly exaggerated
for clarity. Note that the slope
of the line AB is the modulus
of elasticity E. The stress
range is Ao, Ag, is the
plastic-strain range, and

Ag, is the elastic strain range.
The total-strain range is

Ae = Agp + Aeg,.

Figure 6-13

A log-log plot showing how
the fatigue life is related to
the true-strain amplitude for
hot-rolled SAE 1020 steel.
(Reprinted with permission
from SAE J1099_200208

© 2002 SAE International.)
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The report contains a plot of this relationship for SAE 1020 hot-rolled steel; the graph
has been reproduced as Fig. 6-13. To explain the graph, we first define the following
terms:

o Fatigue ductility coefficient &} is the true strain corresponding to fracture in one re-
versal (point A in Fig. 6-12). The plastic-strain line begins at this point in Fig. 6-13.

o Fatigue strength coefficient o}, is the true stress corresponding to fracture in one
reversal (point A in Fig. 6-12). Note in Fig. 6-13 that the elastic-strain line begins at
or/E.

e Fatigue ductility exponent c is the slope of the plastic-strain line in Fig. 613 and is
the power to which the life 2N must be raised to be proportional to the true plastic-
strain amplitude. If the number of stress reversals is 2N, then N is the number of
cycles.
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* Fatigue strength exponent b is the slope of the elastic-strain line, and is the power to
which the life 2NV must be raised to be proportional to the true-stress amplitude.

Now, from Fig. 612, we see that the total strain is the sum of the elastic and plastic
components. Therefore the total strain amplitude is half the total strain range

Ae  Ag,  Agp

2 - 2 T2 (a)
The equation of the plastic-strain line in Fig. 613 is
A .
=L = e C@N)’ (6-1)
The equation of the elastic strain line is
Ag, o b
— = —=(2N 6-2
> £ (2N) (6-2)
Therefore, from Eq. (a), we have for the total-strain amplitude
A / .
78 - %F(zN)” + £, 2N)° (6-3)

which is the Manson-Coffin relationship between fatigue life and total strain.’> Some
values of the coefficients and exponents are listed in Table A-23. Many more are
included in the SAE J1099 report.®

Though Eq. (6-3) is a perfectly legitimate equation for obtaining the fatigue life of
a part when the strain and other cyclic characteristics are given, it appears to be of lit-
tle use to the designer. The question of how to determine the total strain at the bottom
of a notch or discontinuity has not been answered. There are no tables or charts of strain-
concentration factors in the literature. It is possible that strain-concentration factors will
become available in research literature very soon because of the increase in the use of
finite-element analysis. Moreover, finite element analysis can of itself approximate the
strains that will occur at all points in the subject structure.’

The Linear-Elastic Fracture Mechanics Method

The first phase of fatigue cracking is designated as stage I fatigue. Crystal slip that
extends through several contiguous grains, inclusions, and surface imperfections is pre-
sumed to play a role. Since most of this is invisible to the observer, we just say that stage
I involves several grains. The second phase, that of crack extension, is called stage II
fatigue. The advance of the crack (that is, new crack area is created) does produce evi-
dence that can be observed on micrographs from an electron microscope. The growth of

°J. F. Tavernelli and L. E. Coffin, Jr., “Experimental Support for Generalized Equation Predicting Low Cycle
Fatigue,” and S. S. Manson, discussion, Trans. ASME, J. Basic Eng., vol. 84, no. 4, pp. 533-537.

5See also, Landgraf, Ibid.

"For further discussion of the strain-life method see N. E. Dowling, Mechanical Behavior of Materials,
2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1999, Chap. 14.



Figure 6-14

The increase in crack length a
from an initial length of a; as a
function of cycle count for
three stress ranges, (Ao)3 >
(Ao)y > (Ao)y.
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the crack is orderly. Final fracture occurs during stage I1I fatigue, although fatigue is not
involved. When the crack is sufficiently long that K1 = Kj. for the stress amplitude
involved, where K. is the critical stress intensity for the undamaged metal, then there is
sudden, catastrophic failure of the remaining cross section in tensile overload (see
Sec. 5-12). Stage III fatigue is associated with rapid acceleration of crack growth then
fracture.

Crack Growth

Fatigue cracks nucleate and grow when stresses vary and there is some tension in
each stress cycle. Consider the stress to be fluctuating between the limits of oy, and
Omax, Where the stress range is defined as Ao = Opmax — Omin- From Eq. (5-37) the
stress intensity is given by K| = Bo+/ma. Thus, for Ao, the stress intensity range per
cycle is

AKy = B(Omax — O'min)\/”_ = ,BAO'\/% (6-4)

To develop fatigue strength data, a number of specimens of the same material are tested
at various levels of Ao. Cracks nucleate at or very near a free surface or large discon-
tinuity. Assuming an initial crack length of a;, crack growth as a function of the num-
ber of stress cycles N will depend on Ao, that is, AKj. For AK} below some threshold
value (AKp)n a crack will not grow. Figure 6-14 represents the crack length a as a
function of N for three stress levels (Ao)s > (Ao), > (Ao);, where (AKp)3 >
(AKy)2 > (AKy); for a given crack size. Notice the effect of the higher stress range in
Fig. 6-14 in the production of longer cracks at a particular cycle count.

When the rate of crack growth per cycle, da/dN in Fig. 6-14, is plotted as shown
in Fig. 6-15, the data from all three stress range levels superpose to give a sigmoidal
curve. The three stages of crack development are observable, and the stage II data are
linear on log-log coordinates, within the domain of linear elastic fracture mechanics
(LEFM) validity. A group of similar curves can be generated by changing the stress
ratio R = opin/0max Of the experiment.

Here we present a simplified procedure for estimating the remaining life of a cycli-
cally stressed part after discovery of a crack. This requires the assumption that plane strain

(Ao, (Ao), (Ao),

/.

dN

Crack length a

a;

Log N

Stress cycles N
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Figure 6-15

When da/dN is measured

in Fig. 6-14 and plotted on
log-log coordinates, the data
for different stress ranges
superpose, giving rise to a
sigmoid curve as shown.
(AKq)q, is the threshold value
of AKj, below which a crack
does not grow. From threshold
to rupture an aluminum alloy
will spend 85-90 percent of
life in region I, 5-8 percent in
region II, and 1-2 percent

in region III.

Table 6-1

Conservative Values of
Factor C and Exponent
m in Eq. (6-5) for
Various Forms of Steel
(R = 0max/Omin = 0)

Lo
Region I Region II
Crack Crack
initiation propagation Region 11T
i Crack
Increasing
stress ratio unstable
R \
KC
(AK)g, l l
Log AK

in/cycle
Material ’ %‘Iem ’ 7)',,,
(MPa,/m) (kpﬂﬂ)
Ferritic-pearlitic steels 6.89(10~1%) 3.60(10~10) 3.00
Martensitic steels 1.36(10710) 6.60(107%) 225
Austenitic stainless steels 5.61(10~12) 3.00(10~10) 3.25

From J. M. Barsom and S. T. Rolfe, Fatigue and Fracture Control in Structures, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 1987, pp. 288-291, Copyright ASTM International. Reprinted with permission.

conditions prevail.® Assuming a crack is discovered early in stage II, the crack growth in
region II of Fig. 6-15 can be approximated by the Paris equation, which is of the form
da
— =C(AKD" 6-5
N (AKy) (6-5)
where C and m are empirical material constants and AKj is given by Eq. (6-4).
Representative, but conservative, values of C and m for various classes of steels are
listed in Table 6-1. Substituting Eq. (6—4) and integrating gives

Ny 1 [ da
o v ==z, Gaavmor oo

Here q; is the initial crack length, ay is the final crack length corresponding to failure,
and Ny is the estimated number of cycles to produce a failure affer the initial crack is
formed. Note that 8 may vary in the integration variable (e.g., see Figs. 5-25 to 5-30).

8Recommended references are: Dowling, op. cit.; J. A. Collins, Failure of Materials in Mechanical Design,
John Wiley & Sons, New York, 1981; H. O. Fuchs and R. L. Stephens, Metal Fatigue in Engineering, John
Wiley & Sons, New York, 1980; and Harold S. Reemsnyder, “Constant Amplitude Fatigue Life Assessment
Models,” SAE Trans. 820688, vol. 91, Nov. 1983.
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| Figure 6-16

Solution

Fatigue Failure Resulting from Variable Loading 281

If this should happen, then Reemsnyder’ suggests the use of numerical integration
employing the algorithm
8aj = C(AK])T (SN)j

aj+] = aj + 8aj

Njs1 = N, + 8N, (6-7)

Ny =) 6N;

Here 8a; and § N; are increments of the crack length and the number of cycles. The pro-
cedure is to select a value of N}, using a; determine 8 and compute AKj, determine
daj, and then find the next value of a. Repeat the procedure until a = ay.

The following example is highly simplified with 8 constant in order to give some
understanding of the procedure. Normally, one uses fatigue crack growth computer pro-
grams such as NASA/FLAGRO 2.0 with more comprehensive theoretical models to
solve these problems.

The bar shown in Fig. 6-16 is subjected to a repeated moment 0 < M < 1200 1bf - in.
The bar is AISI 4430 steel with S, = 185 kpsi, S, = 170 kpsi, and Ki. = 73 kpsi\/iz.
Material tests on various specimens of this material with identical heat treatment
indicate worst-case constants of C = 3.8(10~!!)(in/cycle)/ (kpsi«/i_n)m and m = 3.0.
As shown, a nick of size 0.004 in has been discovered on the bottom of the bar. Estimate
the number of cycles of life remaining.

The stress range Ao is always computed by using the nominal (uncracked) area. Thus
! bh? . 0.25(0.5)?

= 7 —0.01042 in®
c 6 6 n
Therefore, before the crack initiates, the stress range is
_AM 1200

Ao = = 115.2(10%) psi = 115.2 kpsi

I/c ~ 0.01042
which is below the yield strength. As the crack grows, it will eventually become long
enough such that the bar will completely yield or undergo a brittle fracture. For the ratio
of S, /Sy itis highly unlikely that the bar will reach complete yield. For brittle fracture,
designate the crack length as ay. If B =1, then from Eq. (5-37) with Ky = Kj., we
approximate ay as

1/ Kie \>. 1/ 73\
aj=——-) ==(——=) =0.1278in
i\ [Bies: x \115.2

N o W

KNick

Op. cit.
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Answer

o~/

From Fig. 5-27, we compute the ratio ay/h as

12
4 _ 01278 _ 156
no 05

Thus ay/h varies from near zero to approximately 0.256. From Fig. 5-27, for this range
B is nearly constant at approximately 1.07. We will assume it to be so, and re-evaluate
ar as

1 73 2
af = —|—=——=—) =0.112in
7 \1.07(115.2)

Thus, from Eq. (6-6), the estimated remaining life is

Ne— l/'“f da _ 1 0012 da
'=c ), Baogmaym 380107 1) Joow [1.07(115.2)/mal’
5.047(10%) 112

= 64.7 (10%) cycles

Ja

0.004

The Endurance Limit

The determination of endurance limits by fatigue testing is now routine, though a lengthy
procedure. Generally, stress testing is preferred to strain testing for endurance limits.

For preliminary and prototype design and for some failure analysis as well, a quick
method of estimating endurance limits is needed. There are great quantities of data in
the literature on the results of rotating-beam tests and simple tension tests of specimens
taken from the same bar or ingot. By plotting these as in Fig. 6—17, it is possible to see
whether there is any correlation between the two sets of results. The graph appears to
suggest that the endurance limit ranges from about 40 to 60 percent of the tensile
strength for steels up to about 210 kpsi (1450 MPa). Beginning at about S,; = 210 kpsi
(1450 MPa), the scatter appears to increase, but the trend seems to level off, as sug-
gested by the dashed horizontal line at S, = 105 kpsi.

We wish now to present a method for estimating endurance limits. Note that esti-
mates obtained from quantities of data obtained from many sources probably have a
large spread and might deviate significantly from the results of actual laboratory tests of
the mechanical properties of specimens obtained through strict purchase-order specifi-
cations. Since the area of uncertainty is greater, compensation must be made by employ-
ing larger design factors than would be used for static design.

For steels, simplifying our observation of Fig. 617, we will estimate the endurance
limit as

0.58, Sur <200 kpsi (1400 MPa)
S, = { 100 kpsi Sur > 200 kpsi (6-8)
700 MPa Sur > 1400 MPa

where S, is the minimum tensile strength. The prime mark on S, in this equation refers
to the rotating-beam specimen itself. We wish to reserve the unprimed symbol S, for the
endurance limit of an actual machine element subjected to any kind of loading. Soon
we shall learn that the two strengths may be quite different.



6-8

Fatigue Failure Resulting from Variable Loading 283

°_-
140 P
Q-‘)//
) R °
Se” -
120 O Carbon steels -~ g b
® Alloy steels P i’ ok
+ Wrought irons :/6’_ % e

= 100 ¢ o ® el 105 kpsi
”i o ° o ®
:/, .
S L4
g 80
3
g
5 60
=]
(=
o

40

o
puesy
20 ’//
7,
//
0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Tensile strength S,

ut>

kpsi

Figure 6-17

Graph of endurance limits versus tensile strengths from actual test results for a large number of wrought
irons and steels. Ratios of Sé/ Sy of 0.60, 0.50, and 0.40 are shown by the solid and dashed lines. Note
also the horizontal dashed line for S, = 105 kpsi. Points shown having a tensile strength greater than
210 kpsi have a mean endurance limit of S, = 105 kpsi and a standard deviation of 13.5 kpsi. (Collated
from data compiled by H. J. Grover, S. A. Gordon, and L. R. Jackson in Fatigue of Metals and Structures,
Bureau of Naval Weapons Document NAVWEPS 00-25-534, 1960; and from Fatigue Design Handbook,
SAE, 1968, p. 42.)

Steels treated to give different microstructures have different S./S,, ratios. It
appears that the more ductile microstructures have a higher ratio. Martensite has a very
brittle nature and is highly susceptible to fatigue-induced cracking; thus the ratio is low.
When designs include detailed heat-treating specifications to obtain specific micro-
structures, it is possible to use an estimate of the endurance limit based on test data for
the particular microstructure; such estimates are much more reliable and indeed should
be used.

The endurance limits for various classes of cast irons, polished or machined, are
given in Table A-24. Aluminum alloys do not have an endurance limit. The fatigue
strengths of some aluminum alloys at 5(10%) cycles of reversed stress are given in
Table A-24.

Fatigue Strength

As shown in Fig. 6-10, a region of low-cycle fatigue extends from N = 1 to about
10° cycles. In this region the fatigue strength Sy is only slightly smaller than the tensile
strength S,;. An analytical approach has been given by Shigley, Mischke, and Brown'”

197, E. Shigley, C. R. Mischke, and T. H. Brown, Jr., Standard Handbook of Machine Design, 3rd ed.,
McGraw-Hill, New York, 2004, pp. 29.25-29.27.
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for both high-cycle and low-cycle regions, requiring the parameters of the Manson-
Coffin equation plus the strain-strengthening exponent m. Engineers often have to work
with less information.

Figure 6-10 indicates that the high-cycle fatigue domain extends from 10° cycles
for steels to the endurance limit life N,, which is about 10° to 107 cycles. The purpose
of this section is to develop methods of approximation of the S-N diagram in the high-
cycle region, when information may be as sparse as the results of a simple tension test.
Experience has shown high-cycle fatigue data are rectified by a logarithmic transform
to both stress and cycles-to-failure. Equation (6-2) can be used to determine the fatigue
strength at 10* cycles. Defining the specimen fatigue strength at a specific number of
cycles as (S_;-)N = EAg,/2, write Eq. (6-2) as

Sy = or(2N)? (6-9)
At 10° cycles,
(S = 0fp(2- 10%)f = fS,

where fis the fraction of S, represented by (S}-)loz cycles. Solving for f gives
oF 3\b
f=-=2-10") (6-10)
Sut
Now, from Eq. (2-15), 0. = 0pe™, with ¢ = ¢’ If this true-stress—true-strain equation
is not known, the SAE approximation'' for steels with Hz < 500 may be used:

o = Sur + 50 kpsi or 0r = Sy + 345 MPa (6-11)

To find b, substitute the endurance strength and corresponding cycles, S, and N,,
respectively into Eq. (6-9) and solving for b

_log(0}/S.)
log (2N,)

(6-12)

Thus, the equation S} =op (2N)? is known. For example, if S, = 105 kpsi and
S/ = 52.5 kpsi with N, = 10° cycles,

Eq. (6-11) of = 105 + 50 = 155 kpsi
log(155/52.5
Eq. (6-12) _ _10e(35/525) _ ) (746
log (2 - 10°)
155 B
Eg. (6-10) f=1gs (210977 = 0837

and for Eq. (6-9), with S} = (S})N,

S = 155Q2N)~00M6 = 147 N~0.0746 (a)

" Fatigue Design Handbook, vol. 4, Society of Automotive Engineers, New York, 1958, p. 27.
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Fatigue strength fraction, f,
of S, at 10° cycles for
S, = S, = 0.55,; at 10° cycles.
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The process given for finding f can be repeated for various ultimate strengths.
Figure 6-18 is a plot of ffor 70 < §,,; < 200 kpsi. To be conservative, for S, < 70kpsi,
let f=0.9.

For an actual mechanical component, S, is reduced to S, (see Sec. 6-9) which is
less than 0.5 S,,. However, unless actual data is available, we recommend using the
value of f found from Fig. 6-18. Equation (a), for the actual mechanical component, can
be written in the form

S;=aN’ (6-13)

where N is cycles to failure and the constants ¢ and b are defined by the points 103,
(S f) 103 and 109, S, with (S f)l f Su:. Substituting these two points in Eq. (6-13) gives

0=
2
(S 614
Se
L fSu )
b_—§10g< s, ) (6-15)

If a completely reversed stress oy, is given, setting Sy = oy in Eq. (6-13), the number
of cycles-to-failure can be expressed as

N = (G:V)Ub (6-16)

Note that the typical S-N diagram, and thus Eq. (6-16), is only applicable for com-
pletely reversed loading. For general fluctuating loading situations, it is necessary to
obtain a completely reversed stress that may be considered to be equivalent in fatigue
damage as the actual fluctuating stress (see Ex. 6-12, p. 313).

Low-cycle fatigue is often defined (see Fig. 6-10) as failure that occurs in a range
of 1 < N < 10° cycles. On a log-log plot such as Fig. 6-10 the failure locus in this
range is nearly linear below 10° cycles. A straight line between 10°, fSu and 1, S,
(transformed) is conservative, and it is given by

Sy > S, NPEDB 1 <N <10° (6-17)
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EXAMPLE 6-2

Solution

Answer

Answer

Answer

Given a 1050 HR steel, estimate

(a) the rotating-beam endurance limit at 10° cycles.

(b) the endurance strength of a polished rotating-beam specimen corresponding to 10*
cycles to failure

(c) the expected life of a polished rotating-beam specimen under a completely reversed
stress of 55 kpsi.

(a) From Table A-20, S,; = 90 kpsi. From Eq. (6-8),

S, =0.5(90) = 45kpsi
(b) From Fig. 6-18, for S,; = 90 kpsi, f = 0.86. From Eq. (6-14),

[0.86(90)]
q=—"7"7

75 = 133.1 kpsi

From Eq. (6-15),
1 |:O.86(90)
log| ———

b=—-
45

:| = —0.0785
3

Thus, Eq. (6-13) is
S} =133.1 N700785

For 10* cycles to failure, S = 133.1( 10400785 — 64.6 kpsi
(c) From Eq. (6-16), with oy, = 55 kpsi,

55 1/—0.0785
N = (ﬁ) =77 500 = 7.75(10%) cycles

Keep in mind that these are only estimates. So expressing the answers using three-place
accuracy is a little misleading.

Endurance Limit Modifying Factors

We have seen that the rotating-beam specimen used in the laboratory to determine
endurance limits is prepared very carefully and tested under closely controlled condi-
tions. It is unrealistic to expect the endurance limit of a mechanical or structural mem-
ber to match the values obtained in the laboratory. Some differences include

* Material: composition, basis of failure, variability

* Manufacturing: method, heat treatment, fretting corrosion, surface condition, stress
concentration

e Environment: corrosion, temperature, stress state, relaxation times

* Design: size, shape, life, stress state, speed, fretting, galling
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Marin'? identified factors that quantified the effects of surface condition, size, loading,
temperature, and miscellaneous items. The question of whether to adjust the endurance
limit by subtractive corrections or multiplicative corrections was resolved by an exten-
sive statistical analysis of a 4340 (electric furnace, aircraft quality) steel, in which a
correlation coefficient of 0.85 was found for the multiplicative form and 0.40 for the
additive form. A Marin equation is therefore written as

Se = kokpkckakoky S, (6-18)

where k, = surface condition modification factor
kp, = size modification factor
k. = load modification factor
kq = temperature modification factor
k, = reliability factor'
kr = miscellaneous-effects modification factor
S, = rotary-beam test specimen endurance limit

S, = endurance limit at the critical location of a machine part in the
geometry and condition of use

When endurance tests of parts are not available, estimations are made by applying
Marin factors to the endurance limit.

Surface Factor k,

The surface of a rotating-beam specimen is highly polished, with a final polishing in the
axial direction to smooth out any circumferential scratches. The surface modification
factor depends on the quality of the finish of the actual part surface and on the tensile
strength of the part material. To find quantitative expressions for common finishes of
machine parts (ground, machined, or cold-drawn, hot-rolled, and as-forged), the coordi-
nates of data points were recaptured from a plot of endurance limit versus ultimate
tensile strength of data gathered by Lipson and Noll and reproduced by Horger.'* The
data can be represented by

ky = aS?, (6-19)

where S, is the minimum tensile strength and a and b are to be found in Table 6-2.

125 oseph Marin, Mechanical Behavior of Engineering Materials, Prentice-Hall, Englewood Cliffs, N.J.,
1962, p. 224.

BComplete stochastic analysis is presented in Sec. 6-17. Until that point the presentation here is one of a
deterministic nature. However, we must take care of the known scatter in the fatigue data. This means that
we will not carry out a true reliability analysis at this time but will attempt to answer the question: What is
the probability that a known (assumed) stress will exceed the strength of a randomly selected component
made from this material population?

14C. J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental Stress Analysis, vol. 3,
no. 2, 1946, p. 29. Reproduced by O. J. Horger (ed.), Metals Engineering Design ASME Handbook,
McGraw-Hill, New York, 1953, p. 102.
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Table 6-2

Parameters for Marin
Surface Modification
Factor, Eq. (6-19)

EXAMPLE 6-3

Solution

Answer

Factor a Exponent
Surface Finish Sut, kpsi Sut, MPa b
Ground 1.34 1.58 —0.085
Machined or cold-drawn 2.70 4.51 —0.265
Hot-rolled 14.4 57.7 —0.718
As-forged 39.9 272. —0.995

From C.J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental
Stress Analysis, vol. 3, no. 2, 1946 p. 29. Reproduced by O.J. Horger (ed.) Metals
Engineering Design ASME Handbook, McGraw-Hill, New York. Copyright © 1953 by
The McGraw-Hill Companies, Inc. Reprinted by permission.

A steel has a minimum ultimate strength of 520 MPa and a machined surface.
Estimate k.

From Table 6-2, a = 4.51 and b = —0.265. Then, from Eq. (6-19)

k, = 4.51(520)7%2% = 0.860

Again, it is important to note that this is an approximation as the data is typically
quite scattered. Furthermore, this is not a correction to take lightly. For example, if in
the previous example the steel was forged, the correction factor would be 0.540, a sig-
nificant reduction of strength.

Size Factor k;

The size factor has been evaluated using 133 sets of data points.'* The results for bend-
ing and torsion may be expressed as

(d/0.3)70107 = 0.8794 0107 0.11 <d <2in
Ky — 0.914=01%7 2<d<10in (6-20)
(d)7.62)7%107 = 12440107 279 <d <51 mm
1.51d=%157 51 <d <254 mm
For axial loading there is no size effect, so
kp =1 (6-21)

but see k..

One of the problems that arises in using Eq. (6-20) is what to do when a round bar

in bending is not rotating, or when a noncircular cross section is used. For example,
what is the size factor for a bar 6 mm thick and 40 mm wide? The approach to be used

5Charles R. Mischke, “Prediction of Stochastic Endurance Strength,” Trans. of ASME, Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 109, no. 1, January 1987, Table 3.
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Solution

Answer
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here employs an equivalent diameter d, obtained by equating the volume of material
stressed at and above 95 percent of the maximum stress to the same volume in the
rotating-beam specimen.'® It turns out that when these two volumes are equated,
the lengths cancel, and so we need only consider the areas. For a rotating round section,
the 95 percent stress area is the area in a ring having an outside diameter d and an inside
diameter of 0.95d. So, designating the 95 percent stress area A gs,, we have

Avss, = T1d* = (0954)"] = 0.0766d” (6-22)

This equation is also valid for a rotating hollow round. For nonrotating solid or hollow
rounds, the 95 percent stress area is twice the area outside of two parallel chords hav-
ing a spacing of 0.95d, where d is the diameter. Using an exact computation, this is

Ao 9se = 0.010464° (6-23)

With d, in Eq. (6-22), setting Egs. (6-22) and (6-23) equal to each other enables us to
solve for the effective diameter. This gives

d, = 0.370d (6-24)

as the effective size of a round corresponding to a nonrotating solid or hollow round.
A rectangular section of dimensions & x b has Aggs, = 0.05hb. Using the same
approach as before,

d, = 0.808(hb)'/? (6-25)

Table 6-3 provides Agos, areas of common structural shapes undergoing non-
rotating bending.

A steel shaft loaded in bending is 32 mm in diameter, abutting a filleted shoulder 38 mm
in diameter. The shaft material has a mean ultimate tensile strength of 690 MPa.
Estimate the Marin size factor k;, if the shaft is used in

(a) A rotating mode.

(b) A nonrotating mode.

(a) From Eq. (6-20)

d —0.107 32 —0.107
ky = — =(= =0.858
b <7.62) (7.62)

(b) From Table 6-3,
d, = 0.37d = 0.37(32) = 11.84 mm
From Eq. (6-20),

L 11.84 ‘0'“’7_0954
b=\ 7.62 -

"®See R. Kuguel, “A Relation between Theoretical Stress-Concentration Factor and Fatigue Notch Factor
Deduced from the Concept of Highly Stressed Volume,” Proc. ASTM, vol. 61, 1961, pp. 732-748.
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Table 6-3

Ap.955 Areas of Common
Nonrotating Structural
Shapes

A0.955 = 0.01046d 2
d, = 0.370d

I
T | A0.950 = 0.05hb

L d, = 0.808+/hb

0.10at¢ axis 1-1

A =
0950 { 0.05ba 1y > 0.025a axis 2-2

0.05ab axis 1-1
~l0.052xa +0.11p(b —x)  axis2-2

A0.950

Loading Factor k.

When fatigue tests are carried out with rotating bending, axial (push-pull), and torsional
loading, the endurance limits differ with S,,. This is discussed further in Sec. 6-17.
Here, we will specify average values of the load factor as

1 bending
k. =1 0.85 axial (6-26)
0.59 torsion'’

Temperature Factor k,

When operating temperatures are below room temperature, brittle fracture is a strong
possibility and should be investigated first. When the operating temperatures are higher
than room temperature, yielding should be investigated first because the yield
strength drops off so rapidly with temperature; see Fig. 2-9. Any stress will induce
creep in a material operating at high temperatures; so this factor must be considered too.

'"Use this only for pure torsional fatigue loading. When torsion is combined with other stresses, such as
bending, k. = 1 and the combined loading is managed by using the effective von Mises stress as in Sec. 5-5.
Note: For pure torsion, the distortion energy predicts that (kc)iorsion = 0.577.



Table 6-4

Effect of Operating
Temperature on the
Tensile Strength of
Steel.* (S; = tensile
strength at operating
temperature;

Sgr = tensile strength
at room temperature;
0.099 <6 <0.110)
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20 1.000 70 1.000

50 1.010 100 1.008
100 1.020 200 1.020
150 1.025 300 1.024
200 1.020 400 1.018
250 1.000 500 0.995
300 0.975 600 0.963
350 0.943 700 0.927
400 0.900 800 0.872
450 0.843 900 0.797
500 0.768 1000 0.698
550 0.672 1100 0.567
600 0.549

*Data source: Fig. 2-9.

Finally, it may be true that there is no fatigue limit for materials operating at high tem-
peratures. Because of the reduced fatigue resistance, the failure process is, to some
extent, dependent on time.

The limited amount of data available show that the endurance limit for steels
increases slightly as the temperature rises and then begins to fall off in the 400 to 700°F
range, not unlike the behavior of the tensile strength shown in Fig. 2-9. For this reason
it is probably true that the endurance limit is related to tensile strength at elevated tem-
peratures in the same manner as at room temperature.'® It seems quite logical, therefore,
to employ the same relations to predict endurance limit at elevated temperatures as are
used at room temperature, at least until more comprehensive data become available. At
the very least, this practice will provide a useful standard against which the perfor-
mance of various materials can be compared.

Table 64 has been obtained from Fig. 2-9 by using only the tensile-strength data.
Note that the table represents 145 tests of 21 different carbon and alloy steels. A fourth-
order polynomial curve fit to the data underlying Fig. 2-9 gives

kg = 0.975 4 0.432(107*)Tr — 0.115(107) T2

(6-27)
+0.104(107%) T} — 0.595(107'H) T}
where 70 < Tr < 1000°F.
Two types of problems arise when temperature is a consideration. If the rotating-
beam endurance limit is known at room temperature, then use

S
ky = —L

= 6-28
Ser (6-28)

8For more, see Table 2 of ANSI/ASME B106. 1M-1985 shaft standard, and E. A. Brandes (ed.), Smithell’s
Metals Reference Book, 6th ed., Butterworth, London, 1983, pp. 22—134 to 22—136, where endurance limits
from 100 to 650°C are tabulated.
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EXAMPLE 6-5

Solution

Answer

Answer

from Table 64 or Eq. (6-27) and proceed as usual. If the rotating-beam endurance limit
is not given, then compute it using Eq. (6-8) and the temperature-corrected tensile
strength obtained by using the factor from Table 6—4. Then use k; = 1.

A 1035 steel has a tensile strength of 70 kpsi and is to be used for a part that sees 450°F
in service. Estimate the Marin temperature modification factor and (S, )4s0° if
(a) The room-temperature endurance limit by test is (S,)7¢c = 39.0 kpsi.
(b) Only the tensile strength at room temperature is known.
(a) First, from Eq. (6-27),
kg = 0.975 + 0.432(1073)(450) — 0.115(107°)(450%)
+0.104(107%)(450°) — 0.595(107'%)(450*) = 1.007
Thus,
(Sg)450C = kd(Sé)mO = 1007(390) =393 kpSl
(b) Interpolating from Table 64 gives

450 — 400
= 1.007

S7/S - =1.018 0.995 —1.018) ——— =
(S7/SRT)450 + ( )500_400

Thus, the tensile strength at 450°F is estimated as
(Sut)aso> = (S7/Sr1)as0° (Sur)70° = 1.007(70) = 70.5 kpsi
From Eq. (6-8) then,
(Se)as0° = 0.5(Syr)450° = 0.5(70.5) = 35.2 kpsi

Part a gives the better estimate due to actual testing of the particular material.

Reliability Factor k,

The discussion presented here accounts for the scatter of data such as shown in
Fig. 6-17 where the mean endurance limit is shown to be S,/S,, = 0.5, or as given by
Eq. (6-8). Most endurance strength data are reported as mean values. Data presented
by Haugen and Wirching'? show standard deviations of endurance strengths of less than
8 percent. Thus the reliability modification factor to account for this can be written as

ke=1-10.08z, (6-29)

where z, is defined by Eq. (20-16) and values for any desired reliability can be deter-
mined from Table A—10. Table 6-5 gives reliability factors for some standard specified
reliabilities.

For a more comprehensive approach to reliability, see Sec. 6-17.

"E. B. Haugen and P. H. Wirsching, “Probabilistic Design,” Machine Design, vol. 47, no. 12, 1975,
pp. 10-14.



Table 6-5

Reliability Factors k,
Corresponding to

8 Percent Standard
Deviation of the
Endurance Limit

Figure 6-19

The failure of a case-hardened
part in bending or torsion. In
this example, failure occurs in
the core.
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Reliability, %

Transformation Variate z, Reliability Factor k.

50 0 1.000
90 1.288 0.897
95 1.645 0.868
99 2.326 0.814
99.9 3.091 0.753
99.99 3.719 0.702
99.999 4265 0.659
99.9999 4753 0.620
S, (case)

470'0”'4»‘

Core

S, (core)

Miscellaneous-Effects Factor k¢

Though the factor k¢ is intended to account for the reduction in endurance limit due to
all other effects, it is really intended as a reminder that these must be accounted for,
because actual values of k; are not always available.

Residual stresses may either improve the endurance limit or affect it adversely.
Generally, if the residual stress in the surface of the part is compression, the endurance
limit is improved. Fatigue failures appear to be tensile failures, or at least to be caused
by tensile stress, and so anything that reduces tensile stress will also reduce the possi-
bility of a fatigue failure. Operations such as shot peening, hammering, and cold rolling
build compressive stresses into the surface of the part and improve the endurance limit
significantly. Of course, the material must not be worked to exhaustion.

The endurance limits of parts that are made from rolled or drawn sheets or bars,
as well as parts that are forged, may be affected by the so-called directional character-
istics of the operation. Rolled or drawn parts, for example, have an endurance limit
in the transverse direction that may be 10 to 20 percent less than the endurance limit in
the longitudinal direction.

Parts that are case-hardened may fail at the surface or at the maximum core radius,
depending upon the stress gradient. Figure 6-19 shows the typical triangular stress dis-
tribution of a bar under bending or torsion. Also plotted as a heavy line in this figure are
the endurance limits S, for the case and core. For this example the endurance limit of the
core rules the design because the figure shows that the stress o or 7, whichever applies,
at the outer core radius, is appreciably larger than the core endurance limit.
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Corrosion

It is to be expected that parts that operate in a corrosive atmosphere will have a lowered
fatigue resistance. This is, of course, true, and it is due to the roughening or pitting of
the surface by the corrosive material. But the problem is not so simple as the one of
finding the endurance limit of a specimen that has been corroded. The reason for this is
that the corrosion and the stressing occur at the same time. Basically, this means that in
time any part will fail when subjected to repeated stressing in a corrosive atmosphere.
There is no fatigue limit. Thus the designer’s problem is to attempt to minimize the fac-
tors that affect the fatigue life; these are:

* Mean or static stress

e Alternating stress

* Electrolyte concentration

e Dissolved oxygen in electrolyte

* Material properties and composition
* Temperature

* Cyclic frequency

 Fluid flow rate around specimen

e Local crevices

Electrolytic Plating

Metallic coatings, such as chromium plating, nickel plating, or cadmium plating, reduce
the endurance limit by as much as 50 percent. In some cases the reduction by coatings
has been so severe that it has been necessary to eliminate the plating process. Zinc
plating does not affect the fatigue strength. Anodic oxidation of light alloys reduces
bending endurance limits by as much as 39 percent but has no effect on the torsional
endurance limit.

Metal Spraying
Metal spraying results in surface imperfections that can initiate cracks. Limited tests
show reductions of 14 percent in the fatigue strength.

Cyclic Frequency

If, for any reason, the fatigue process becomes time-dependent, then it also becomes
frequency-dependent. Under normal conditions, fatigue failure is independent of fre-
quency. But when corrosion or high temperatures, or both, are encountered, the cyclic
rate becomes important. The slower the frequency and the higher the temperature, the
higher the crack propagation rate and the shorter the life at a given stress level.

Frettage Corrosion

The phenomenon of frettage corrosion is the result of microscopic motions of tightly
fitting parts or structures. Bolted joints, bearing-race fits, wheel hubs, and any set of
tightly fitted parts are examples. The process involves surface discoloration, pitting, and
eventual fatigue. The frettage factor k; depends upon the material of the mating pairs
and ranges from 0.24 to 0.90.



Figure 6-20

Notch-sensitivity charts for
steels and UNS A92024-T
wrought aluminum alloys
subjected to reversed bending
or reversed axial loads. For
larger notch radii, use the
values of ¢ corresponding

to the r = 0.16-in (4-mm)
ordinate. (From George Sines
and J. L. Waisman (eds.), Metal
Fatigue, McGraw-Hill, New
York. Copyright © 1969 by The
McGraw-Hill Companies, Inc.
Reprinted by permission.)
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Stress Concentration and Notch Sensitivity

In Sec. 3—-13 it was pointed out that the existence of irregularities or discontinuities,
such as holes, grooves, or notches, in a part increases the theoretical stresses signifi-
cantly in the immediate vicinity of the discontinuity. Equation (3—48) defined a stress-
concentration factor K, (or K;;), which is used with the nominal stress to obtain the
maximum resulting stress due to the irregularity or defect. It turns out that some mate-
rials are not fully sensitive to the presence of notches and hence, for these, a reduced
value of K, can be used. For these materials, the effective maximum stress in fatigue is,

(6-30)

where K is a reduced value of K; and oy is the nominal stress. The factor K¢ is com-
monly called a fatigue stress-concentration factor, and hence the subscript f. So it is
convenient to think of K as a stress-concentration factor reduced from K; because of
lessened sensitivity to notches. The resulting factor is defined by the equation

Omax = KfUO or Tmax = Kfsr()

K maximum stress in notched specimen (o]
= - - a
4 stress in notch-free specimen

Notch sensitivity q is defined by the equation
_Kp—1
K —1

Kpo—1

AR -31
T (6-31)

q or {shear =

where ¢ is usually between zero and unity. Equation (6-31) shows that if ¢ = 0, then
K; =1, and the material has no sensitivity to notches at all. On the other hand, if
q =1, then Ky = K, and the material has full notch sensitivity. In analysis or design
work, find K; first, from the geometry of the part. Then specify the material, find ¢, and
solve for Ky from the equation

Kf =1+q(K;, —1) or Kfs =1 + gshear (Kys — 1) (6-32)

Notch sensitivities for specific materials are obtained experimentally. Published
experimental values are limited, but some values are available for steels and aluminum.
Trends for notch sensitivity as a function of notch radius and ultimate strength are
shown in Fig. 6-20 for reversed bending or axial loading, and Fig. 6-21 for reversed

Notch radius r, mm
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Figure 6-21

Notch-sensitivity curves for
materials in reversed torsion.
For larger notch radii,

use the values of gshear
corresponding to » = 0.16 in
(4 mm).

EXAMPLE 6-6

Notch radius r, mm
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torsion. In using these charts it is well to know that the actual test results from which
the curves were derived exhibit a large amount of scatter. Because of this scatter it is
always safe to use K, = K, if there is any doubt about the true value of g. Also, note

that g is not far from unity for large notch radii.
Figure 6-20 has as its basis the Neuber equation, which is given by
K =14 21 (6-33)
I 14+ /a/r
where /a is defined as the Neuber constant and is a material constant. Equating
Egs. (6-31) and (6-33) yields the notch sensitivity equation
1

1= (6-34)

B

1+ =

<

correlating with Figs. 6-20 and 6-21 as
Bending or axial: /a = 0.246 — 3.08(107%)S,, + 1.51(107°)S%, — 2.67(107%)S2,
(6-354q)
Torsion:  +/a =0.190 — 2.51(107°)S,, + 1.35(107°) S;, — 2.67(107%)S;, (6-35b)
where the equations apply to steel and S, is in kpsi. Equation (6-34) used in conjunction
with Eq. pair (6-35) is equivalent to Figs. (6-20) and (6-21). As with the graphs, the
results from the curve fit equations provide only approximations to the experimental data.
The notch sensitivity of cast irons is very low, varying from O to about 0.20,
depending upon the tensile strength. To be on the conservative side, it is recommended
that the value ¢ = 0.20 be used for all grades of cast iron.

A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet
radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate K7 using:
(a) Figure 6-20.

(b) Equations (6-33) and (6-35).
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Solution From Fig. A-15-9, using D/d = 38/32 = 1.1875, r/d = 3/32 = 0.093 75, we read
the graph to find K, = 1.65.
(a) From Fig. 6-20, for S,;, = 690 MPa and r = 3 mm, g = 0.84. Thus, from Eq. (6-32)

Answer Kf=1+q(K, —1)=1+0.84(1.65—1) = 1.55
(b) From Eq. (6-35a) with S,, = 690 MPa = 100 kpsi, v/a = 0.0622+/in = 0.313./mm.
Substituting this into Eq. (6-33) with » = 3 mm gives

K, —1 . 1.65—1

1 =
g Vagr 0313
V3

= 1.55

Answer Ky =

Some designers use 1/Kras a Marin factor to reduce S,. For simple loading, infi-
nite life problems, it makes no difference whether S, is reduced by dividing it by Ky or
the nominal stress is multiplied by K. However, for finite life, since the S-N diagram
is nonlinear, the two approaches yield differing results. There is no clear evidence
pointing to which method is better. Furthermore, in Sec. 6—14, when we consider com-
bining loads, there generally are multiple fatigue stress-concentration factors occurring
at a point (e.g. Ky for bending and Kj; for torsion). Here, it is only practical to modify
the nominal stresses. To be consistent in this text, we will exclusively use the fatigue
stress-concentration factor as a multiplier of the nominal stress.

EXAMPLE 6-7  For the step-shaft of Ex. 6-6, it is determined that the fully corrected endurance limit is
S, = 280 MPa. Consider the shaft undergoes a fully reversing nominal stress in the fil-
let of (0rey)nom = 260 MPa. Estimate the number of cycles to failure.

Solution From Ex. 6-6, Ky = 1.55, and the ultimate strength is S,; = 690 MPa = 100 kpsi. The
maximum reversing stress is
(Orev)max = K7 (0rey)nom = 1.55(260) = 403 MPa
From Fig. 6-18, f = 0.845. From Egs. (6-14), (6-15), and (6-16)
L fSu)?>  [0.845(690)]

= 1214 MPa
S, 280
1. fSu 1 [0.845(690)
b=—-1 = ——log | —— 2 | = —0.1062
ER 3 Og[ 280 }
Y 403 \ /01062
A =(—=) === = 32.3(10%) cycl
nswer N ( - ) <1214> 32.3(10%) cycles

Up to this point, examples illustrated each factor in Marin’s equation and stress
concentrations alone. Let us consider a number of factors occurring simultaneously.
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EXAMPLE 6-8

Solution

Answer

Answer

A 1015 hot-rolled steel bar has been machined to a diameter of 1 in. It is to be placed
in reversed axial loading for 70 000 cycles to failure in an operating environment of
550°F. Using ASTM minimum properties, and a reliability of 99 percent, estimate the
endurance limit and fatigue strength at 70 000 cycles.

From Table A-20, S,; = 50 kpsi at 70°F. Since the rotating-beam specimen endurance
limit is not known at room temperature, we determine the ultimate strength at the ele-
vated temperature first, using Table 6—4. From Table 64,

( St ) _ 0.995 +0.963 — 0.979
550°

Skr 2
The ultimate strength at 550°F is then
(Sut)ssor = (S7/SRrT)5500 (Sur)70- = 0.979(50) = 49.0 kpsi

The rotating-beam specimen endurance limit at 550°F is then estimated from Eq. (6-8)
as

S, = 0.5(49) = 24.5 kpsi

Next, we determine the Marin factors. For the machined surface, Eq. (6—19) with
Table 6-2 gives

ks = aSt, =2.70(497°2%%) = 0.963

For axial loading, from Eq. (6-21), the size factor k;, = 1, and from Eq. (6-26) the load-
ing factor is k. = 0.85. The temperature factor k; = 1, since we accounted for the tem-
perature in modifying the ultimate strength and consequently the endurance limit. For
99 percent reliability, from Table 6-5, k, = 0.814. Finally, since no other conditions
were given, the miscellaneous factor is k= 1. The endurance limit for the part is esti-
mated by Eq. (6-18) as

S, = kakpkckakoky S,
= 0.963(1)(0.85)(1)(0.814)(1)24.5 = 16.3 kpsi

For the fatigue strength at 70 000 cycles we need to construct the S-N equation. From
p. 285, since S,; = 49 < 70kpsi, then f = 0.9. From Eq. (6-14)

_(fSw)? 109491
=TS, T 163

= 119.3 kpsi

and Eq. (6-15)

1 S, 1 0.9(49
b =—=log S Su = ——log @ 01441
3 S. 3 16.3

Finally, for the fatigue strength at 70 000 cycles, Eq. (6—13) gives

S; =a N’ = 119.3(70000) 144 = 23.9 kpsi



EXAMPLE 6-9

Solution

Figure 6-22

(a) Shaft drawing showing all
dimensions in millimeters;

all fillets 3-mm radius.

The shaft rotates and the load
is stationary; material is
machined from AIST 1050
cold-drawn steel. (b) Bending-
moment diagram.
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Figure 6-22a shows a rotating shaft simply supported in ball bearings at A and D and
loaded by a nonrotating force F of 6.8 kN. Using ASTM “minimum’ strengths, estimate
the life of the part.

From Fig. 6-22b we learn that failure will probably occur at B rather than at C or at the
point of maximum moment. Point B has a smaller cross section, a higher bending
moment, and a higher stress-concentration factor than C, and the location of maximum
moment has a larger size and no stress-concentration factor.

We shall solve the problem by first estimating the strength at point B, since the strength
will be different elsewhere, and comparing this strength with the stress at the same point.

From Table A-20 we find S,; = 690 MPa and S, = 580 MPa. The endurance limit
S/ is estimated as

S, = 0.5(690) = 345 MPa
From Eq. (6-19) and Table 6-2,
k, = 4.51(690)7°2% = 0.798
From Eq. (6-20),
ky, = (32/7.62)7%197 = 0.858
Since ke = kg = ke = kp =1,
S, = 0.798(0.858)345 = 236 MPa

To find the geometric stress-concentration factor K, we enter Fig. A—15-9 with D/d =
38/32 =1.1875 and r/d =3/32=0.09375 and read K, = 1.65. Substituting
S,: = 690/6.89 = 100 kpsi into Eq. (6-354a) yields /a = 0.0622 +/in = 0.313,/mm.
Substituting this into Eq. (6-33) gives

Kooy Kol 1651
T T M Vair T 140313/43

A B 6.8 kN C D
250 75 tIOO —><— 25 —>|
— 10 10 > |<—
g =
N s 20 [N A . 2, i
;0‘ L3 Cag L35 \j)
Rl RZ

(a)
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The next step is to estimate the bending stress at point B. The bending moment
is
225F 225(6.8)

Mp = Rix = =250 = =——"2250 = 695.5 N -
b= Rix = S0-250 = 5050 = 695.5N - m

Just to the left of B the section modulus is I /¢ = wd?/32 = 732332 = 3.217 (10°) mm>.
The reversing bending stress is, assuming infinite life,

M 695.5
Orey = Kf— = 1.55——=(10)~® = 335.1(10°) Pa = 335.1 MPa
I/c 3.217

This stress is greater than S, and less than S,. This means we have both finite life and
no yielding on the first cycle.

For finite life, we will need to use Eq. (6-16). The ultimate strength, S,, = 690
MPa = 100 kpsi. From Fig. 6-18, f = 0.844. From Eq. (6-14)

_(f Su)? _ [0.844(690)]?
TS T 236

= 1437 MPa

and from Eq. (6-15)

1 f Sur 1 0.844(690)
log log| ————

b=-3 s, )~ 236

= —= = —0.1308
; ]
From Eq. (6-16),

e\ /b (3351 /010
Answer N = (0e ) = <W> = 68(10%) cycles
a

¢-11 Characterizing Fluctuating Stresses

Fluctuating stresses in machinery often take the form of a sinusoidal pattern because
of the nature of some rotating machinery. However, other patterns, some quite irreg-
ular, do occur. It has been found that in periodic patterns exhibiting a single maxi-
mum and a single minimum of force, the shape of the wave is not important, but the
peaks on both the high side (maximum) and the low side (minimum) are important.
Thus Fiax and Fui, in a cycle of force can be used to characterize the force pattern.
It is also true that ranging above and below some baseline can be equally effective
in characterizing the force pattern. If the largest force is Fi,x and the smallest force
is Fpnin, then a steady component and an alternating component can be constructed
as follows:

Fmax+Fmin ‘Fmax_Fmin

szi Fa:
2 2

where F,, is the midrange steady component of force, and F, is the amplitude of the
alternating component of force.



Figure 6-23

Some stress-time relations:

(a) fluctuating stress with high-
frequency ripple; (b and ¢)
nonsinusoidal fluctuating
stress; (d) sinusoidal fluctuating
stress; (e) repeated stress;

(f) completely reversed
sinusoidal stress.
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Figure 6-23 illustrates some of the various stress-time traces that occur. The com-
ponents of stress, some of which are shown in Fig. 6-23d, are

Opmin = Minimum stress o, = midrange component

Omax = Maximum stress o, = range of stress
0, = amplitude component oy = static or steady stress
The steady, or static, stress is not the same as the midrange stress; in fact, it may have
any value between oy, and o, The steady stress exists because of a fixed load or pre-
load applied to the part, and it is usually independent of the varying portion of the load.
A helical compression spring, for example, is always loaded into a space shorter than
the free length of the spring. The stress created by this initial compression is called the
steady, or static, component of the stress. It is not the same as the midrange stress.

We shall have occasion to apply the subscripts of these components to shear stresses
as well as normal stresses.

The following relations are evident from Fig. 6-23:

Omax + Omin
Oy = —————
2
(6-36)
Omax — Omin
Oy E—
2
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In addition to Eq. (6-36), the stress ratio

Omin

R = (6-37)
Umax
and the amplitude ratio
A=t (6-38)
Om

are also defined and used in connection with fluctuating stresses.

Equations (6-36) utilize symbols o, and o,, as the stress components at the loca-
tion under scrutiny. This means, in the absence of a notch, o, and o,, are equal to the
nominal stresses o,, and o,,, induced by loads F, and F,,, respectively; in the presence
of a notch they are Kro,, and Kyo,,, respectively, as long as the material remains
without plastic strain. In other words, the fatigue stress-concentration factor K is
applied to both components.

When the steady stress component is high enough to induce localized notch yield-
ing, the designer has a problem. The first-cycle local yielding produces plastic strain
and strain-strengthening. This is occurring at the location where fatigue crack nucle-
ation and growth are most likely. The material properties (S, and S,;) are new and
difficult to quantify. The prudent engineer controls the concept, material and condition
of use, and geometry so that no plastic strain occurs. There are discussions concerning
possible ways of quantifying what is occurring under localized and general yielding
in the presence of a notch, referred to as the nominal mean stress method, residual
stress method, and the like.?® The nominal mean stress method (set o, = K04, and
Om = Opp) gives roughly comparable results to the residual stress method, but both are
approximations.

There is the method of Dowling21 for ductile materials, which, for materials with a
pronounced yield point and approximated by an elastic—perfectly plastic behavior
model, quantitatively expresses the steady stress component stress-concentration factor
Kym as

Kfm = Kf Kf|o-max,0| < Sy
S, — Ko,
Kpm=2—L22 Kflommol > S (6-39)
[Omol
Ky =0 K¢|0max.o — Omin,o| > 28y

For the purposes of this book, for ductile materials in fatigue,

* Avoid localized plastic strain at a notch. Set o, = K0, , and 0, = K70y,.

* When plastic strain at a notch cannot be avoided, use Eqgs. (6-39); or conservatively,
seto, = Kyo,, and use K, = 1, that is, 0,, = 0.

2R. C. Juvinall, Stress, Strain, and Strength, McGraw-Hill, New York, 1967, articles 14.9-14.12; R. C.
Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, 4th ed., Wiley, New York, 2006,
Sec. 8.11; M. E. Dowling, Mechanical Behavior of Materials, 2nd ed., Prentice Hall, Englewood Cliffs,
N.J., 1999, Secs. 10.3-10.5.

2'Dowling, op. cit., pp. 437-438.
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Figure 6-24

Modified Goodman diagram
showing all the strengths and
the limiting values of all the
stress components for a
particular midrange stress.
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Fatigue Failure Criteria for Fluctuating Stress

Now that we have defined the various components of stress associated with a part sub-
jected to fluctuating stress, we want to vary both the midrange stress and the stress
amplitude, or alternating component, to learn something about the fatigue resistance of
parts when subjected to such situations. Three methods of plotting the results of such
tests are in general use and are shown in Figs. 6-24, 6-25, and 6-26.

The modified Goodman diagram of Fig. 6-24 has the midrange stress plotted along
the abscissa and all other components of stress plotted on the ordinate, with tension in
the positive direction. The endurance limit, fatigue strength, or finite-life strength,
whichever applies, is plotted on the ordinate above and below the origin. The midrange-
stress line is a 45° line from the origin to the tensile strength of the part. The modified
Goodman diagram consists of the lines constructed to S, (or Sy) above and below the
origin. Note that the yield strength is also plotted on both axes, because yielding would
be the criterion of failure if oy, exceeded S,.

Another way to display test results is shown in Fig. 6-25. Here the abscissa repre-
sents the ratio of the midrange strength S, to the ultimate strength, with tension plot-
ted to the right and compression to the left. The ordinate is the ratio of the alternating
strength to the endurance limit. The line BC then represents the modified Goodman
criterion of failure. Note that the existence of midrange stress in the compressive region
has little effect on the endurance limit.

The very clever diagram of Fig. 6-26 is unique in that it displays four of the stress
components as well as the two stress ratios. A curve representing the endurance limit
for values of R beginning at R = —1 and ending with R = 1 begins at S, on the o, axis
and ends at S,, on the o,, axis. Constant-life curves for N = 10° and N = 10* cycles

I
I
I
I
|
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Stress
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Midrange stress

Parallel

AN
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Figure 6-26

Master fatigue diagram created
for AISI 4340 steel having

Syt =158 and S, = 147 kpsi.
The stress components at A are
Omin = 20, omax = 120,

o, = 70, and o, = 50, all in
kpsi. (Source: H. J. Grover,
Fatigue of Aircraft Structures,
U.S. Government Printing
Office, Washington, D.C., 1966,
pp. 317, 322. See also J. A.
Collins, Failure of Materials in
Mechanical Design, Wiley,
New York, 1981, p. 216.)
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Figure 6-25

Plot of fatigue failures for midrange stresses in both tensile and compressive regions. Normalizing
the data by using the ratio of steady strength component to tensile strength S, /S, steady strength
component to compressive strength Sy, /Sy and strength amplitude component to endurance limit
Sa/ S, enables a plot of experimental results for a variety of steels. [Data source: Thomas J. Dolan,
“Stress Range,” Sec. 6.2 in O. J. Horger (ed.), ASME Handbook—Metals Engineering Design,
McGraw-Hill, New York, 1953.]
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have been drawn too. Any stress state, such as the one at A, can be described by the min-
imum and maximum components, or by the midrange and alternating components. And
safety is indicated whenever the point described by the stress components lies below the
constant-life line.



Figure 6-27

Fatigue diagram showing
various criteria of failure. For
each criterion, points on or
“above” the respective line
indicate failure. Some point A
on the Goodman line, for
example, gives the strength S,
as the limiting value of o,
corresponding to the strength
S, which, paired with o,,, is
the limiting value of o,.
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When the midrange stress is compression, failure occurs whenever o, = S, or
whenever oy = Sy, as indicated by the left-hand side of Fig. 6-25. Neither a fatigue
diagram nor any other failure criteria need be developed.

In Fig. 627, the tensile side of Fig. 6-25 has been redrawn in terms of strengths,
instead of strength ratios, with the same modified Goodman criterion together with four
additional criteria of failure. Such diagrams are often constructed for analysis and
design purposes; they are easy to use and the results can be scaled off directly.

The early viewpoint expressed on a o0, 0, diagram was that there existed a locus
which divided safe from unsafe combinations of ¢,, and o,. Ensuing proposals included
the parabola of Gerber (1874), the Goodman (1890)? (straight) line, and the Soderberg
(1930) (straight) line. As more data were generated it became clear that a fatigue criterion,
rather than being a “fence,” was more like a zone or band wherein the probability of fail-
ure could be estimated. We include the failure criterion of Goodman because

e Itis a straight line and the algebra is linear and easy.
It is easily graphed, every time for every problem.
It reveals subtleties of insight into fatigue problems.

e Answers can be scaled from the diagrams as a check on the algebra.

We also caution that it is deterministic and the phenomenon is not. It is biased and we
cannot quantify the bias. It is not conservative. It is a stepping-stone to understanding; it
is history; and to read the work of other engineers and to have meaningful oral exchanges
with them, it is necessary that you understand the Goodman approach should it arise.

Either the fatigue limit S, or the finite-life strength Sy is plotted on the ordinate of
Fig. 6-27. These values will have already been corrected using the Marin factors of
Eq. (6-18). Note that the yield strength S|, is plotted on the ordinate too. This serves as
a reminder that first-cycle yielding rather than fatigue might be the criterion of failure.

The midrange-stress axis of Fig. 6-27 has the yield strength S, and the tensile
strength S, plotted along it.

It is difficult to date Goodman’s work because it went through several modifications and was never
published.
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Five criteria of failure are diagrammed in Fig. 6-27: the Soderberg, the modified
Goodman, the Gerber, the ASME-elliptic, and yielding. The diagram shows that only
the Soderberg criterion guards against any yielding, but is biased low.

Considering the modified Goodman line as a criterion, point A represents a limit-
ing point with an alternating strength S, and midrange strength S,,,. The slope of the load
line shown is defined as r = S,/S,,,.

The criterion equation for the Soderberg line is

Sa  Sw

LT | 6-40

S, * A ( )
Similarly, we find the modified Goodman relation to be

Sa  Swm

— 4+ — =1 6-41

5. Su 64

Examination of Fig. 6-25 shows that both a parabola and an ellipse have a better
opportunity to pass among the midrange tension data and to permit quantification of the
probability of failure. The Gerber failure criterion is written as

Sa (Sw)’
—+(=) =1 6-42
Se ( Sur ) (6-42)
and the ASME-elliptic is written as

2 2
<§—) +<i—> =1 (6-43)
e ¥y

The Langer first-cycle-yielding criterion is used in connection with the fatigue
curve:

Sa + Sm = Sy (6_44)

The stresses no, and no,, can replace S, and S,,, where n is the design factor or factor
of safety. Then, Eq. (6—40), the Soderberg line, becomes

o, Op 1
Soderberg ST =, (6-45)
. y n

Equation (6—41), the modified Goodman line, becomes

O, On 1
mod-Goodman — + — = — (6-46)
Se  Su n
Equation (6—42), the Gerber line, becomes
2
no, no,
Gerber <4 ( ’"> =1 (6-47)
Se Sur
Equation (6-43), the ASME-elliptic line, becomes
2 2
ASME-elliptic (2%} +("%") =1 (6-48)
Se Sy

We will emphasize the Gerber and ASME-elliptic for fatigue failure criterion and the
Langer for first-cycle yielding. However, conservative designers often use the modified
Goodman criterion, so we will continue to include it in our discussions. The design
equation for the Langer first-cycle-yielding is

S
Langer static yield o, + o0, = = (6-49)
n



Table 6-6

Amplitude and Steady
Coordinates of Strength
and Important
Intersections in First
Quadrant for Modified
Goodman and Langer
Failure Criteria

Table 6-7

Amplitude and Steady
Coordinates of Strength
and Important
Intersections in First
Quadrant for Gerber and
Langer Failure Criteria
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The failure criteria are used in conjunction with a load line, r = S,/S,, = 0,/0.
Principal intersections are tabulated in Tables 6-6 to 6-8. Formal expressions for
fatigue factor of safety are given in the lower panel of Tables 6—6 to 6-—8. The first row
of each table corresponds to the fatigue criterion, the second row is the static Langer
criterion, and the third row corresponds to the intersection of the static and fatigue

Intersecting Equations Intersection Coordinates
Sa, Sw _ | _ rSeSu
Se Sut B a_rSut+Se

S S
Load liner = —* Sp = —

m r
& + S_m =1 Sa = rSy
Sy Sy I+r

S S
Load liner = —* Sp = —=

S 1+r
Say S 5, = 5y = 8) Su
Se  Su Sur — Se
S S
_a+_m:1 Sa:Sy_Smsrcrit:Sa/Sm
Sy Sy

Sa [ Sn)’ r2Si 25\’
- — =1 S = ut —1 1
Se+<Sul) “ 28, * + rSut
S S,
Load line r = -2 Sp ="
" r
Se  Sm rSy
a5 S, =
5, S, ol
S S
Load line r = -2 Sm = -
S 147
g § \2 52 25.\? S,
I (et | SmZLt 1= 1+ (= -2
S, Syt 28, Sut Se
S S
S_a+S—m=1 Sa=Sy_Smerrit=Sa/Sm
y y

Fatigue factor of safety

1/ Su\? 20mSe \ 2
nfzz(it> %a -1+ l-l-(m) om >0

Om




308 Mechanical Engineering Design

Table 6-8

Amplitude and Steady
Coordinates of Strength
and Important
Intersections in First
Quadrant for ASME-
Elliptic and Langer

Failure Criteria

EXAMPLE 6-10

Solution

Intersecting Equations Intersection Coordinates

S r2s2s2
T 821282

S
Load line 7 = Sa/Sp Sp ="
-
&4_% =1 Sq = I’Sy
S, S, 1+4+r
Load line r = S,/ Sy =
oad e r = 9,4 m m — 1+r
2 2 2
Sa " Sm . _ 28,8,
S, s, ] = TS24 82
S, S
S_'j S_T =1 SmZSy_Smrcrit:Su/Sm

Fatigue factor of safety

1
M_Jmmf+wwxf

criteria. The first column gives the intersecting equations and the second column the
intersection coordinates.

There are two ways to proceed with a typical analysis. One method is to assume
that fatigue occurs first and use one of Egs. (6-45) to (6-48) to determine n or size,
depending on the task. Most often fatigue is the governing failure mode. Then
follow with a static check. If static failure governs then the analysis is repeated using
Eq. (6-49).

Alternatively, one could use the tables. Determine the load line and establish which
criterion the load line intersects first and use the corresponding equations in the tables.

Some examples will help solidify the ideas just discussed.

A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part
is to withstand a fluctuating tensile load varying from O to 16 kip. Because of the ends,
and the fillet radius, a fatigue stress-concentration factor K is 1.85 for 10° or larger
life. Find S, and S, and the factor of safety guarding against fatigue and first-cycle
yielding, using (@) the Gerber fatigue line and (b) the ASME-elliptic fatigue line.

We begin with some preliminaries. From Table A-20, S,; = 100 kpsi and S, = 84 kpsi.
Note that F,, = F,, = 8 kip. The Marin factors are, deterministically,
k, = 2.70(100)~%265 = 0.797: Eq. (6-19), Table 6-2, p. 288

k, = 1 (axial loading, see k)



Answer

Answer

Answer

Figure 6-28

Principal points A, B, C, and D
on the designer’s diagram
drawn for Gerber, Langer, and
load line.
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k. = 0.85: Eq. (6-26), p. 290

kg =ke =k =1

Se = 0.797(1)0.850(1)(1)(1)0.5(100) = 33.9kpsi: Egs. (6-8), (6-18), p. 282, p. 287
The nominal axial stress components o,, and o, are

4 4(®) 4.53 kpsi 4F 4(®) 4.53 kpsi
= = =4, Si Omo = —5 = = 4. 81
a2 W 52 P a2 0 w152 P

Ua 0

Applying K¢ to both components o,, and o,,, constitutes a prescription of no notch
yielding:
0, = Krou, = 1.85(4.53) = 8.38 kpsi = oy,

(a) Let us calculate the factors of safety first. From the bottom panel from Table 6-7 the
factor of safety for fatigue is

1 /100 /8.38 2(8.38)33.97
np=--— — ) -1+ ,/1+ 2(8.38)33.9 = 3.66
T 21\8.38 33.9 100(8.38)
From Eq. (6—49) the factor of safety guarding against first-cycle yield is

Sy 84 B
o, +0, 8.38+838

Thus, we see that fatigue will occur first and the factor of safety is 3.68. This can be
seen in Fig. 628 where the load line intersects the Gerber fatigue curve first at point B.
If the plots are created to true scale it would be seen thatny = OB/OA.

From the first panel of Table 6-7, r = o, /0, = 1,

5.01

ny =

(1)2100? 2(33.9) 7 ,
L N — 30.7 kpsi
2(33.9) (1100
100 —
84
Z
=~ -
&
]
£ s0f Load line
g C
S
§ | Langer line
» 339 B
B — | ¢
} } D ///rcri(
00—/~~~ il e Gerber
I |- I fatigue curve
A =T \
838 — _—=T
L= | | |
0= 1 1 1l L1 1 [ 1 1
0 838 30.7 42 50 64 84 100

Midrange stress o, , kpsi

m>
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S, 307 )
Answer === — = 30.7 kpsi
r

As a check on the previous result, ny = OB/OA = S,/0, = Su/om, = 30.7/8.38 =
3.66 and we see total agreement.

We could have detected that fatigue failure would occur first without drawing
Fig. 6-28 by calculating r..;;. From the third row third column panel of Table 6-7, the
intersection point between fatigue and first-cycle yield is

s 1002 . - 2(33.9)\2 L8 64,0 kosi
= _ - — — = . S1
2(33.9) 100 33.9 &

Sy =Sy — S = 84 — 64 = 20 kpsi

The critical slope is thus

=22 220 ga1
TR
which is less than the actual load line of » = 1. This indicates that fatigue occurs before
first-cycle-yield.
(b) Repeating the same procedure for the ASME-elliptic line, for fatigue

1

A _ =3.75
nswer nf \/(8.38/33.9)2 + (8.38/84)*

Again, this is less than n, = 5.01 and fatigue is predicted to occur first. From the first
row second column panel of Table 68, with r = 1, we obtain the coordinates S, and
S, of point B in Fig. 6-29 as

Figure 6-29

Principal points A, B, C, and D

on the designer’s diagram

drawn for ASME-elliptic, By
Langer, and load lines.

100 —

Stress amplitude o, kpsi
wn
(=}
T

Load line
C
L= ——
| Langer line
B
B4 ——————= : ‘ g
| \ 2
% | | | ASME-elliptic line
| I I
A | | |
8.38 ——, | | |
| | | |
0 Ll | Ll il | | | | | |
0 838 314 42 50 60.5 84 100

Midrange stress o;,,, kpsi
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EXAMPLE 6-11

Solution
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[(1)233.92(84)2 . S, 314 .
S, = [~ TRON gy akpsi, S, =22 =" —314k
33.92 + (1)2842 PSh - om = 28 = pst

To verify the fatigue factor of safety, ny = S,/0, = 31.4/8.38 = 3.75.
As before, let us calculate rqj. From the third row second column panel of
Table 6-8,

2(84)33.9%
= 28H339° 23.5kpsi, S, =S, — S, =84 —23.5 = 60.5kpsi
33.92 4 842 :
S, 235
Foit = — = —— = (.388
S, 60.5

which again is less than » = 1, verifying that fatigue occurs first with n, = 3.75.

The Gerber and the ASME-elliptic fatigue failure criteria are very close to each
other and are used interchangeably. The ANSI/ASME Standard B106.1M-1985 uses
ASME-elliptic for shafting.

A flat-leaf spring is used to retain an oscillating flat-faced follower in contact with a
plate cam. The follower range of motion is 2 in and fixed, so the alternating component
of force, bending moment, and stress is fixed, too. The spring is preloaded to adjust to
various cam speeds. The preload must be increased to prevent follower float or jump.
For lower speeds the preload should be decreased to obtain longer life of cam and
follower surfaces. The spring is a steel cantilever 32 in long, 2 in wide, and % in thick,
as seen in Fig. 6-30a. The spring strengths are S, = 150 kpsi, S, = 127 kpsi, and S, =
28 kpsi fully corrected. The total cam motion is 2 in. The designer wishes to preload
the spring by deflecting it 2 in for low speed and 5 in for high speed.

(a) Plot the Gerber-Langer failure lines with the load line.

(b) What are the strength factors of safety corresponding to 2 in and 5 in preload?

We begin with preliminaries. The second area moment of the cantilever cross section is

bk 2(0.25)°

I="— = = 0.00260 in*
12 12

Since, from Table A-9, beam 1, force F and deflection y in a cantilever are related by
F =3EIy/D then stress o and deflection y are related by

_ Mc  32Fc  32(Q3Ely)c 96Ecy ¥

TTTTT T 1T Th
96Ec _ 96(30 - 10°)0.125
where K = —=- = ( 323) — 10.99(10%) psi/in = 10.99 kpsi/in

Now the minimums and maximums of y and o can be defined by
ymin=8 ymax=2+8
Omin = K6 Omax = K(2 +9)
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Figure 6-30

Cam follower retaining spring. i
(a) Geometry; (b) designer’s 2in > | J 4
fatigue diagram for Ex. 6-11. A

32in |

6 =2 in preload

6 =5 in preload

150 —

100

Langer line

w
[=)

Amplitude stress component g, kpsi

Gerber line

11 33 50 65.9 100 116 116.9127 150
Steady stress component o, kpsi

(b)

The stress components are thus

KQ+8) — Ks

aa=%=K=10.99kpsi
KQ+8) + K8

gm:%zmua):lo.%(wa)

Fors = 0, 04 = 0y = 10.99 = 11 kpsi
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Solution
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For § =2 in, o, = 11 kpsi, 0, = 10.99(1 4 2) = 33 kpsi

For § = 5 in, o, = 11 kpsi, o, = 10.99(1 4+ 5) = 65.9 kpsi
(a) A plot of the Gerber and Langer criteria is shown in Fig. 6-30b. The three preload
deflections of 0, 2, and 5 in are shown as points A, A’, and A”. Note that since o, is
constant at 11 kpsi, the load line is horizontal and does not contain the origin. The

intersection between the Gerber line and the load line is found from solving Eq. (6—42)
for S, and substituting 11 kpsi for S,:

Se 11 .
Sm = Sut 11— S_e =150,/1 — % = 1169kpS1

The intersection of the Langer line and the load line is found from solving Eq. (6—44)
for S, and substituting 11 kpsi for S,:

Sn =38y =8, =127 — 11 = 116 kpsi
The threats from fatigue and first-cycle yielding are approximately equal.
(b) For 6 =2 in,

A\ 116.9 116
ng=—=——=2354 ny = —— =352
Om 33 33
and for § = 5 in,
116.9 116
ng=——=177 n,=——=176
65.9 ’ 65.9

A steel bar undergoes cyclic loading such that o,,x = 60 kpsi and opmin = —20 kpsi. For
the material, S,, = 80 kpsi, S, = 65 kpsi, a fully corrected endurance limit of S, =
40 kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using:

(a) Modified Goodman criterion.

(b) Gerber criterion.

From the given stresses,

60 — (=20 60 + (=20
o, = # = 40 kpsi Oy = L = 20 kpsi
2 2
(a) For the modified Goodman criterion, Eq. (6—46), the fatigue factor of safety based

on infinite life is

1 1
"=, =% 20 08

Om
Se * Sut 40 + 80
This indicates a finite life is predicted. The S-N diagram is only applicable for completely
reversed stresses. To estimate the finite life for a fluctuating stress, we will obtain an
equivalent completely reversed stress that is expected to be as damaging as the fluctuat-
ing stress. A commonly used approach is to assume that since the modified Goodman
line represents all stress situations with a constant life of 10° cycles, other constant-life
lines can be generated by passing a line through (S,;, 0) and a fluctuating stress point
(o, 04)- The point where this line intersects the o, axis represents a completely reversed
stress (since at this point o, = 0), which predicts the same life as the fluctuating stress.
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Answer

Answer

This completely reversed stress can be obtained by replacing S, with oy in Eq. (6—46)
for the modified Goodman line resulting in

o 40 .

Orey = o = 20 =533 kpSl
1-2m ==
S 80

From the material properties, Eqs. (6—14) to (6—-16), p. 285, give
" (fSu)* _ 10.980)?

= 129.6 kpsi
5 40 .
1 S 1 0.9(80
b=—=log L = ——log (80) = —0.0851
3 Se 3 40
Gy 1/b iy —1/0.0851
N=< a ) - (129.6) il

Substituting oy, into Eq. (1) yields

333 —1/0.0851
N = < ) = 3.4(10%) cycles

129.6
(b) For Gerber, similar to part (a), from Eq. (6-47),
a 40 .
Oreyv = g = =42.7 kpSl

2 2
2
1 — Im 1 — _0
. Sut 80
Again, from Eq. (1),

427 —1/0.0851
N = <T§6) = 4.6(10°) cycles

Comparing the answers, we see a large difference in the results. Again, the modified
Goodman criterion is conservative as compared to Gerber for which the moderate dif-
ference in Sy is then magnified by a logarithmic S, N relationship.

For many brittle materials, the first quadrant fatigue failure criteria follows a con-
cave upward Smith-Dolan locus represented by
S, 1 —S8,/S.
Pa _ # (6-50)
Se 14 Su/Su
or as a design equation,
no, 1 —now/Su
—_— = (6-51)
Se 1 + nam/SLlT
For a radial load line of slope r, we substitute S,/r for S,, in Eq. (6-50) and solve for
S,, obtaining the intersect

rSu + S. 4rSur Se
Sy =———1-1 1+ —— 6-52
T2 [ TS S»Z} =

The fatigue diagram for a brittle material differs markedly from that of a ductile material
because:
* Yielding is not involved since the material may not have a yield strength.

e Characteristically, the compressive ultimate strength exceeds the ultimate tensile
strength severalfold.
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* First-quadrant fatigue failure locus is concave-upward (Smith-Dolan), for example,
and as flat as Goodman. Brittle materials are more sensitive to midrange stress, being
lowered, but compressive midrange stresses are beneficial.

* Not enough work has been done on brittle fatigue to discover insightful generalities,
so we stay in the first and a bit of the second quadrant.

The most likely domain of designer use is in the range from —S,; < 0,, < S,;. The
locus in the first quadrant is Goodman, Smith-Dolan, or something in between. The por-
tion of the second quadrant that is used is represented by a straight line between the
points —S,,;, S,; and 0, S,, which has the equation

S
S, =S, + (S_e — 1) S —Su <8, <0 (for cast iron) (6-53)

ut
Table A-24 gives properties of gray cast iron. The endurance limit stated is really
kqkyS, and only corrections k., k4, k., and ky need be made. The average k. for axial
and torsional loading is 0.9.

A grade 30 gray cast iron is subjected to a load F applied to a 1 by %-in cross-section
link with a %-in-diameter hole drilled in the center as depicted in Fig. 6-31a. The sur-
faces are machined. In the neighborhood of the hole, what is the factor of safety guard-
ing against failure under the following conditions:

(a) The load F = 1000 Ibf tensile, steady.

(b) The load is 1000 Ibf repeatedly applied.

(¢) The load fluctuates between —1000 1bf and 300 1bf without column action.

Use the Smith-Dolan fatigue locus.

Alternating stress, o,

S

ut

r=-1.86

777777 S, =18.5 kpsi

@
Figure 6-31

-9.95 0 7.63 10 20 30 S,

Midrange stress d;,,, kpsi

(b)

The grade 30 cast-iron part in axial fatigue with (a) its geometry displayed and () its designer’s fatigue diagram for the

circumstances of Ex. 6-13.
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Solution Some preparatory work is needed. From Table A-24, S,; = 31 kpsi, S,. = 109 kpsi,
kqkp,S, = 14 kpsi. Since k. for axial loading is 0.9, then S, = (k.k;S.)k. = 14(0.9) =
12.6 kpsi. From Table A—15-1, A = t(w — d) = 0.375(1 — 0.25) = 0.281 in?, d/w =
0.25/1 = 0.25, and K, = 2.45. The notch sensitivity for cast iron is 0.20 (see p. 296),

SO
Kr=14q(K, —1)=140202.45—1) =129
K/F, 1.2900 K;F, 1.29(1000
(@) o, = —14 — @ _p Oy = =L — ( )(10—3)=4.59kpsi
A 0.281 A 0.281
and
Su 310
Answer n=-"4_-"-675
om 459
F 1000
(b) F,=F,=— = —— =500 Ibf
2 2
K:F, 1.29(500 .
0, =0y, = 1% — ( )(10—3) = 2.30 kpsi
A 0.281
7= 2 =l
O,

From Eq. (6-52),

()31 +12.6 4(1)31(12.6) .
S,= 2 TP gy 1 2 Y 63k
2 [ +\/ T )31 + 12,61 } pst
Se 7.63
Answer n=—=—=2332
o, 2.30
1 B 1.29(650) ,
(©) Fu= 31300 = (=1000) = 6501bf 0, = ~ == (10") = 2.98 kpsi
1 1.29(—350) . .
F, == —1 = — Ibf =—— (1 =—-1.61k
n 2[300—!—( 000)] 350 1b O 0281 (107) 61 kpsi
poe_ 30 g
Om —1.61

From Eq. (6-53), S, = S. + (S¢/Su: — S, and S, = S, /r. It follows that

S, 12.6 .
Sq = 175, = ] 26 = 18.5 kpsi
l——(=—1) 1—-——(==-1
r \ Sy —1.86 \ 31
Sa 18.5
Answer n=—=——==6.20
oy, 2.98

Figure 6-31b shows the portion of the designer’s fatigue diagram that was constructed.
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Torsional Fatigue Strength
under Fluctuating Stresses

Extensive tests by Smith® provide some very interesting results on pulsating torsional
fatigue. Smith’s first result, based on 72 tests, shows that the existence of a torsional
steady-stress component not more than the torsional yield strength has no effect on
the torsional endurance limit, provided the material is ductile, polished, notch-free, and
cylindrical.

Smith’s second result applies to materials with stress concentration, notches, or
surface imperfections. In this case, he finds that the torsional fatigue limit decreases
monotonically with torsional steady stress. Since the great majority of parts will have
surfaces that are less than perfect, this result indicates Gerber, ASME-elliptic, and other
approximations are useful. Joerres of Associated Spring-Barnes Group, confirms
Smith’s results and recommends the use of the modified Goodman relation for pulsat-
ing torsion. In constructing the Goodman diagram, Joerres uses

Ssu = 0.67S,,; (6-54)

Also, from Chap. 5, Sy, = 0.577S,, from distortion-energy theory, and the mean load
factor k. is given by Eq. (6-26), or 0.577. This is discussed further in Chap. 10.

Combinations of Loading Modes

It may be helpful to think of fatigue problems as being in three categories:

e Completely reversing simple loads
 Fluctuating simple loads

* Combinations of loading modes

The simplest category is that of a completely reversed single stress which is han-
dled with the S-N diagram, relating the alternating stress to a life. Only one type of
loading is allowed here, and the midrange stress must be zero. The next category incor-
porates general fluctuating loads, using a criterion to relate midrange and alternating
stresses (modified Goodman, Gerber, ASME-elliptic, or Soderberg). Again, only one
type of loading is allowed at a time. The third category, which we will develop in this
section, involves cases where there are combinations of different types of loading, such
as combined bending, torsion, and axial.

In Sec. 6-9 we learned that a load factor k. is used to obtain the endurance limit,
and hence the result is dependent on whether the loading is axial, bending, or torsion.
In this section we want to answer the question, “How do we proceed when the loading
is a mixture of, say, axial, bending, and torsional loads?” This type of loading introduces
a few complications in that there may now exist combined normal and shear stresses,
each with alternating and midrange values, and several of the factors used in determin-
ing the endurance limit depend on the type of loading. There may also be multiple
stress-concentration factors, one for each mode of loading. The problem of how to deal
with combined stresses was encountered when developing static failure theories. The
distortion energy failure theory proved to be a satisfactory method of combining the

BJames O. Smith, “The Effect of Range of Stress on the Fatigue Strength of Metals,” Univ. of Ill. Eng. Exp.
Sta. Bull. 334, 1942.
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EXAMPLE 6-14

Solution

multiple stresses on a stress element of a ductile material into a single equivalent von
Mises stress. The same approach will be used here.

The first step is to generate rwo stress elements—one for the alternating stresses and
one for the midrange stresses. Apply the appropriate fatigue stress-concentration factors
to each of the stresses; i.e., apply (K f)vending for the bending stresses, (K )orsion for the
torsional stresses, and (K )axia for the axial stresses. Next, calculate an equivalent von
Mises stress for each of these two stress elements, o/, and o,,. Finally, select a fatigue
failure criterion (modified Goodman, Gerber, ASME-elliptic, or Soderberg) to complete
the fatigue analysis. For the endurance limit, S,, use the endurance limit modifiers,
kq, kp, and k., for bending. The torsional load factor, k. = 0.59 should not be applied as it
is already accounted for in the von Mises stress calculation (see footnote 17 on p. 290). The
load factor for the axial load can be accounted for by dividing the alternating axial stress
by the axial load factor of 0.85. For example, consider the common case of a shaft with
bending stresses, torsional shear stresses, and axial stresses. For this case, the von Mises
stress is of the form o/ = (oxz + 3rxy2) Y 2. Considering that the bending, torsional, and
axial stresses have alternating and midrange components, the von Mises stresses for the
two stress elements can be written as

(04 axial

2 12
2
0.85 :| + 3 [(Kfé‘)mrSiO“(Ta)torsion] }

UC: = [ I:(Kf)bending(o'a)bending + (Kf)axial

(6-55)

, ) ) 1/2
Oy = i [( Kf)bending(am)bending + (Kf)uxial(am)axial] +3 [(Kfs)torsion(‘[m)lorsion] }
(6-56)

For first-cycle localized yielding, the maximum von Mises stress is calculated. This
would be done by first adding the axial and bending alternating and midrange stresses to
obtain o,,x and adding the alternating and midrange shear stresses to obtain Tpm,x. Then
substitute omax and T,y into the equation for the von Mises stress. A simpler and more con-
servative method is to add Eq. (6-55) and Eq. (6-56). That is, let o,,,, = 0, + 0,,.

If the stress components are not in phase but have the same frequency, the maxima
can be found by expressing each component in trigonometric terms, using phase angles,
and then finding the sum. If two or more stress components have differing frequencies,
the problem is difficult; one solution is to assume that the two (or more) components

often reach an in-phase condition, so that their magnitudes are additive.

A rotating shaft is made of 42- x 4-mm AISI 1018 cold-drawn steel tubing and has a
6-mm-diameter hole drilled transversely through it. Estimate the factor of safety guard-
ing against fatigue and static failures using the Gerber and Langer failure criteria for the
following loading conditions:

(a) The shaft is subjected to a completely reversed torque of 120 N - m in phase with a
completely reversed bending moment of 150 N - m.

(b) The shaft is subjected to a pulsating torque fluctuating from 20 to 160 N - m and a
steady bending moment of 150 N - m.

Here we follow the procedure of estimating the strengths and then the stresses, followed
by relating the two.
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From Table A—20 we find the minimum strengths to be S,; = 440 MPa and S, =
370 MPa. The endurance limit of the rotating-beam specimen is 0.5(440) = 220 MPa.
The surface factor, obtained from Eq. (6-19) and Table 6-2, p. 287, is

kg = 4.518,02% = 4.51(440)7°2% = 0.899

From Eq. (6-20) the size factor is

d —0.107 42 —0.107
Ky = [ =5 — (= =0.833
7.62 7.62

The remaining Marin factors are all unity, so the modified endurance strength S, is
Se = 0.899(0.833)220 = 165 MPa

(a) Theoretical stress-concentration factors are found from Table A—16. Using a/D =
6/42 = 0.143 and d/D = 34/42 = 0.810, and using linear interpolation, we obtain
A =0.798 and K; = 2.366 for bending; and A = 0.89 and K,;; = 1.75 for torsion.
Thus, for bending,

A 7(0.798)
Zyer = 5= (D* —d*) = =

4 gyt — 3y o3
D = 3@ [(42)" — (34)"] = 3.31 (10”°)mm

and for torsion

TA 7(0.89
Jnet = —(D* —d*) = )

4 _ 49 _ 3 4
0 0 [(42)" — (34)"] = 155 (10")mm

Next, using Figs. 6-20 and 6-21, pp. 295-296, with a notch radius of 3 mm we find the
notch sensitivities to be 0.78 for bending and 0.81 for torsion. The two corresponding
fatigue stress-concentration factors are obtained from Eq. (6-32) as

Ky =1+q(K;—1)=1+0.78(2.366 — 1) = 2.07
Krs=1+0.81(1.75-1) =1.61
The alternating bending stress is now found to be

M 150
Oxq = Kf— =20

07———— = 93.8(10°)Pa = 93.8 MP
» 3.31(10-9) (10°)Pa a

and the alternating torsional stress is

TD 120(42)(1073) a
=161/~ 7 —26.2(10°Pa = 26.2 MP
2 2(155)(10-%) (10%)Pa 4

Tyxya = Kfs
The midrange von Mises component o,, is zero. The alternating component o, is given
by
ol = (02, +312,)"" =193.8* + 3(26.2)]'/> = 104.2 MPa

xya

Since S, = S,, the fatigue factor of safety ny is

===l
104.2 38

l’lf:

Sa 165
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Figure 6-32

Designer’s fatigue diagram for

Ex. 6-14.

Answer

Answer

Von Mises amplitude stress component o,;, MPa

305 440 500
Von Mises steady stress component o,,, MPa

The first-cycle yield factor of safety is

S 370
= —— =330

-
T e T 1056

There is no localized yielding; the threat is from fatigue. See Fig. 6-32.

(b) This part asks us to find the factors of safety when the alternating component is due
to pulsating torsion, and a steady component is due to both torsion and bending. We
have T, = (160 — 20)/2 =70 N - m and 7,, = (160 4 20)/2 = 90 N - m. The corre-
sponding amplitude and steady-stress components are

T,D 70(42)(1073) 6
=Ky, =161 = 15.3(10%)Pa = 15.3 MP
e = s 2(155)(10-9) (10°)Pa ‘
T,,D 90(42)(107%) ”
om = Ky =161 = 19.7(10%)Pa = 19.7 MP
Fy 12 e 2(155)(10-9) (10%)Pa a

The steady bending stress component o, is

M, 150
=207 ———
ey 3.31(10-%)

Oem = K = 93.8(10%)Pa = 93.8 MPa

The von Mises components ¢, and o,, are
o, =[3(15.3)*]"? = 26.5 MPa
ol =1[93.8% +3(19.7)*]"/* = 99.8 MPa

From Table 6-7, p. 307, the fatigue factor of safety is

1 [/ 440\%26.5 1+ 1s 2(99.8)1657° o
ng=—-\—<\) === 1— AN = 2o
=2\ 998/ 165 440(26.5)




Answer

Figure 6-33

Variable stress diagram
prepared for assessing
cumulative damage.
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From the same table, with r = o/ /o, = 26.5/99.8 = 0.28, the strengths can be shown
to be S, = 85.5 MPa and S,, = 305 MPa. See the plot in Fig. 6-32.
The first-cycle yield factor of safety n, is

S, 370

e A =293
o) +o0, 265+99.8

ny =

There is no notch yielding. The likelihood of failure may first come from first-cycle
yielding at the notch. See the plot in Fig. 6-32.

Varying, Fluctuating Stresses;
Cumulative Fatigue Damage

Instead of a single fully reversed stress history block composed of 7 cycles, suppose a
machine part, at a critical location, is subjected to

* A fully reversed stress o; for n; cycles, o, for ny cycles, ..., or

* A “wiggly” time line of stress exhibiting many and different peaks and valleys.

What stresses are significant, what counts as a cycle, and what is the measure of
damage incurred? Consider a fully reversed cycle with stresses varying 60, 80, 40, and
60 kpsi and a second fully reversed cycle —40, —60, —20, and —40 kpsi as depicted in
Fig. 6-33a. First, it is clear that to impose the pattern of stress in Fig. 6-33a on a part
it is necessary that the time trace look like the solid lines plus the dashed lines in Fig.
6-33a. Figure 6-33b moves the snapshot to exist beginning with 80 kpsi and ending
with 80 kpsi. Acknowledging the existence of a single stress-time trace is to discover a
“hidden” cycle shown as the dashed line in Fig. 6-33b. If there are 100 applications of
the all-positive stress cycle, then 100 applications of the all-negative stress cycle, the

100 100 |-

50

—50 -

(a) (b)
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hidden cycle is applied but once. If the all-positive stress cycle is applied alternately
with the all-negative stress cycle, the hidden cycle is applied 100 times.

To ensure that the hidden cycle is not lost, begin on the snapshot with the largest
(or smallest) stress and add previous history to the right side, as was done in Fig. 6-33b.
Characterization of a cycle takes on a max—min—-same max (or min—max—same min)
form. We identify the hidden cycle first by moving along the dashed-line trace in
Fig. 6-33b identifying a cycle with an 80-kpsi max, a 60-kpsi min, and returning to
80 kpsi. Mentally deleting the used part of the trace (the dashed line) leaves a 40, 60,
40 cycle and a —40, —20, —40 cycle. Since failure loci are expressed in terms of stress
amplitude component o, and steady component o,,, we use Eq. (6-36) to construct the
table below:

Cycle Number omax omin  0a om

80 —60 70 10
2 60 40 10 50
—20 —40 10 =30

The most damaging cycle is number 1. It could have been lost.
Methods for counting cycles include:

e Number of tensile peaks to failure.
¢ All maxima above the waveform mean, all minima below.

e The global maxima between crossings above the mean and the global minima
between crossings below the mean.

» All positive slope crossings of levels above the mean, and all negative slope cross-
ings of levels below the mean.

* A modification of the preceding method with only one count made between succes-
sive crossings of a level associated with each counting level.

» Each local max—min excursion is counted as a half-cycle, and the associated ampli-
tude is half-range.

e The preceding method plus consideration of the local mean.

* Rain-flow counting technique.

The method used here amounts to a variation of the rain-flow counting technique.
The Palmgren-MinerZ4 cycle-ratio summation rule, also called Miner’s rule, is
written

3 I”V_ —c (6-57)

where n; is the number of cycles at stress level o; and A; is the number of cycles to fail-
ure at stress level o;. The parameter ¢ has been determined by experiment; it is usually
found in the range 0.7 < ¢ < 2.2 with an average value near unity.

A Palmgren, “Die Lebensdauer von Kugellagern,” ZVDI, vol. 68, pp. 339-341, 1924; M. A. Miner,
“Cumulative Damage in Fatigue,” J. Appl. Mech., vol. 12, Trans. ASME, vol. 67, pp. A159-A164, 1945.
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Solution
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Using the deterministic formulation as a linear damage rule we write

p=%" ]”v— (6-58)

where D is the accumulated damage. When D = ¢ = 1, failure ensues.

Given a part with S, = 151 kpsi and at the critical location of the part, S, = 67.5 kpsi.
For the loading of Fig. 6-33, estimate the number of repetitions of the stress-time block
in Fig. 6-33 that can be made before failure.

From Fig. 6-18, p. 285, for S,, = 151 kpsi, f = 0.795. From Eq. (6-14),

L Sw? _ 0795015D

: e = 213.5kpsi
] .
From Eq. (6-15),

1 £ Su 1. [0.795(151)

bh=—-1 = log| =227 = —0.0833
< 3°g< Se> 3°g[ 67.5 ]
—1/0.0833
S, = 21358008y (S ! (1), (2)
Fe o —\2135 '

We prepare to add two columns to the previous table. Using the Gerber fatigue criterion,
Eq. (6-47), p. 306, with S, = S¢, and n = 1, we can write

_a
Sf = l = (Om/Sut) (3)
e o, <0

where Sy is the fatigue strength associated with a completely reversed stress, Orey,
equivalent to the fluctuating stresses [see Ex. 6-12, part (b)].

Cycle 1:r = 0,/0, = 70/10 = 7, and the strength amplitude from Table 6-7, p. 307, is

721512 . |:2(67.5)

2
— N S = 67.2 kpsi
“= 267.5) 7(151) } L
Since 0, > §,, that is, 70 > 67.2, life is reduced. From Eq. (3),

. 70
ST 1= (10/151)2

70.3 —1/0.0833
N = (ﬁ) = 619(10°) cycles

= 70.3 kpsi

and from Eq. (2)

Cycle 2: r = 10/50 = 0.2, and the strength amplitude is

_o02us1? ] 1+|:2(67.5)

2
= — = 24.2 kpsi
2(67.5) 0.2(151)

Since o, < §,, that is 10 < 24.2, then Sy = S, and indefinite life follows. Thus,
N4> .
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Answer

Figure 6-34

Use of the Miner rule to
predict the endurance limit

of a material that has been
overstressed for a finite number
of cycles.

Cycle 3: v = 10/—30 = —0.333, and since 0, < 0, Sy = S,, indefinite life follows and
N — O

Cycle Number S¢, kpsi N, cycles

1 70.3 619(10%)
2 67.5 o)
67.5 00

From Eq. (6-58) the damage per block is

D_ZE_N —_,_i_,_i N
T4 N; 619103 oo oo 619(10%)

Setting D = 1 yields N = 619(10%) cycles.

To further illustrate the use of the Miner rule, let us consider a steel having the
properties S,, = 80 kpsi, S, ; = 40 kpsi, and f = 0.9, where we have used the desig-
nation S, , instead of the more usual S, to indicate the endurance limit of the virgin, or
undamaged, material. The log S—log N diagram for this material is shown in Fig. 6-34
by the heavy solid line. From Egs. (6-14) and (6-15), p. 285, we find that a = 129.6 kpsi
and b = —0.085 091. Now apply, say, a reversed stress o7 = 60 kpsi for n; = 3000
cycles. Since o7 > S;’O, the endurance limit will be damaged, and we wish to find the
new endurance limit S, ; of the damaged material using the Miner rule. The equation of
the virgin material failure line in Fig. 6-34 in the 10° to 10° cycle range is

Sy =aN” =129.6N 0% ¥

The cycles to failure at stress level o1 = 60 kpsi are

N o1 —1/0.085 091 60 —1/0.085 091 8520 1
"=\ 1206 ~ 1206 = Sosieycles

49 -
48
|
|
o = |
@ 47 £ }
| o ‘
|
|
|
46 [
38.6*****}***}**} ********************* § */;\.r*ﬁ—,——
[ CHE Sen
|
T 1, = 0.648(10°) -
450 I I [ | [
10° 10* 10° 10°
N
L | | |
3 4 5 6
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Figure 6-34 shows that the material has a life N; = 8520 cycles at 60 kpsi, and conse-
quently, after the application of o} for 3000 cycles, there are Ny — n; = 5520 cycles of
life remaining at . This locates the finite-life strength Sy | of the damaged material, as
shown in Fig. 6-34. To get a second point, we ask the question: With n; and N, given,
how many cycles of stress 02 = S, , can be applied before the damaged material fails?
This corresponds to n, cycles of stress reversal, and hence, from Eq. (6-58), we have

noym gy (a)

N N
Solving for n; gives

N,
ny = (N nl)Nl (b)

Then
6

=[8.52(10%) =3 (10%)] 8.52(10%)

= 0.648(10°) cycles

This corresponds to the finite-life strength Sy, in Fig. 6-34. A line through S| and Sy »
is the log S—log N diagram of the damaged material according to the Miner rule. Two
points, (N — ny, o1) and (nz, o), determme the new equation for the line, Sy = a’'N b
Thus, 0y =a’(Ny —n;)?,and 0y = a n2 Dividing the two equations, taking the loga-
rithm of the results, and solving for b’ gives

log (01/02)
(*%")
log
n»
Substituting n, from Eq. (b) and simplifying gives
,_ log(o1/o2)
log (N1/N>)

For the undamaged material, N; = (0 /a)'/? and N> = (02/a)'/?, then

b =

o log (01/02) _ log (01/02)
log[(o1/a)""*/(02/a)'/"]  (1/b)log (01/02)

This means that the damaged material line has the same slope as the virgin material line,
and the two lines are parallel. The value of a’ is then found from a’ = S;/N”.

For the case we are illustrating, a’ = 60/[5.52(10)3] 70085 1 — 124 898 kpsi, and
thus the new endurance limit is S, | = a’N? = 124.898[(10)°] 9% %! = 38.6 kpsi.

Though the Miner rule is quite generally used, it fails in two ways to agree with
experiment. First, note that this theory states that the static strength S,,; is damaged, that
is, decreased, because of the application of oy; see Fig. 6-34 at N = 10° cycles.
Experiments fail to verify this prediction.

The Miner rule, as given by Eq. (6-58), does not account for the order in which the
stresses are applied, and hence ignores any stresses less than S, ;. But it can be seen in
Fig. 6-34 that a stress o3 in the range S, | < 03 < S, , would cause damage if applied
after the endurance limit had been damaged by the apphcatlon of o}.

Manson’s* approach overcomes both of the deficiencies noted for the Palmgren-
Miner method; historically it is a much more recent approach, and it is just as easy to

23S. S. Manson, A. J. Nachtigall, C. R. Ensign, and J. C. Fresche, “Further Investigation of a Relation for
Cumulative Fatigue Damage in Bending,” Trans. ASME, J. Eng. Ind., ser. B, vol. 87, No. 1, pp. 25-35,
February 1965.
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Figure 6-35

Use of the Manson method to
predict the endurance limit

of a material that has been
overstressed for a finite number
of cycles.

49
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o — |
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a o |
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45 | | [ | |
103 104 10° 10°
N
[ | | |
3 4 5 6
Log N

use. Except for a slight change, we shall use and recommend the Manson method in
this book. Manson plotted the S—log N diagram instead of a log S—log N plot as is
recommended here. Manson also resorted to experiment to find the point of conver-
gence of the S—log N lines corresponding to the static strength, instead of arbitrarily
selecting the intersection of N = 10° cycles with S = 0.9S,; as is done here. Of
course, it is always better to use experiment, but our purpose in this book has been
to use the simple test data to learn as much as possible about fatigue failure.

The method of Manson, as presented here, consists in having all log S—log N lines,
that is, lines for both the damaged and the virgin material, converge to the same point,
0.9S,; at 10° cycles. In addition, the log S—log N lines must be constructed in the same
historical order in which the stresses occur.

The data from the preceding example are used for illustrative purposes. The
results are shown in Fig. 6-35. Note that the strength Sy; corresponding to
Ni —n; = 5.52(10%) cycles is found in the same manner as before. Through this
point and through 0.9S,; at 10* cycles, draw the heavy dashed line to meet N = 10°
cycles and define the endurance limit S, | of the damaged material. Again, with two
points on the line, »' = [log(72/60)]/log[(10%)/5.52(10°)] = —0.106 722, and
a = 60/[5.52 (10%)]7%1%0722 — 150.487 kpsi. In this case, the new endurance limit is
S, = a'N! = 150.487 (10°) 1% "2 = 34.4 kpsi, which is somewhat less than that
found by the Miner method.

It is now easy to see from Fig. 635 that a reversed stress o = 36 kpsi, say, would
not harm the endurance limit of the virgin material, no matter how many cycles it might
be applied. However, if o = 36 kpsi should be applied affer the material was damaged
by o1 = 60 kpsi, then additional damage would be done.

Both these rules involve a number of computations, which are repeated every time
damage is estimated. For complicated stress-time traces, this might be every cycle.
Clearly a computer program is useful to perform the tasks, including scanning the trace
and identifying the cycles.
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Collins said it well: “In spite of all the problems cited, the Palmgren linear damage
rule is frequently used because of its simplicity and the experimental fact that other
more complex damage theories do not always yield a significant improvement in fail-
ure prediction reliability .2

Surface Fatigue Strength

The surface fatigue mechanism is not definitively understood. The contact-affected
zone, in the absence of surface shearing tractions, entertains compressive principal
stresses. Rotary fatigue has its cracks grown at or near the surface in the presence of
tensile stresses that are associated with crack propagation, to catastrophic failure. There
are shear stresses in the zone, which are largest just below the surface. Cracks seem to
grow from this stratum until small pieces of material are expelled, leaving pits on the sur-
face. Because engineers had to design durable machinery before the surface fatigue phe-
nomenon was understood in detail, they had taken the posture of conducting tests,
observing pits on the surface, and declaring failure at an arbitrary projected area of hole,
and they related this to the Hertzian contact pressure. This compressive stress did
not produce the failure directly, but whatever the failure mechanism, whatever the
stress type that was instrumental in the failure, the contact stress was an index to its
magnitude.

Buckingham®’ conducted a number of tests relating the fatigue at 10% cycles to
endurance strength (Hertzian contact pressure). While there is evidence of an endurance
limit at about 3(107) cycles for cast materials, hardened steel rollers showed no endurance
limit up to 4(10%) cycles. Subsequent testing on hard steel shows no endurance limit.
Hardened steel exhibits such high fatigue strengths that its use in resisting surface fatigue
is widespread.

Our studies thus far have dealt with the failure of a machine element by yielding,
by fracture, and by fatigue. The endurance limit obtained by the rotating-beam test is
frequently called the flexural endurance limit, because it is a test of a rotating beam. In
this section we shall study a property of mating materials called the surface endurance
shear. The design engineer must frequently solve problems in which two machine ele-
ments mate with one another by rolling, sliding, or a combination of rolling and sliding
contact. Obvious examples of such combinations are the mating teeth of a pair of gears,
a cam and follower, a wheel and rail, and a chain and sprocket. A knowledge of the sur-
face strength of materials is necessary if the designer is to create machines having a
long and satisfactory life.

When two surfaces roll or roll and slide against one another with sufficient force,
a pitting failure will occur after a certain number of cycles of operation. Authorities are
not in complete agreement on the exact mechanism of the pitting; although the subject
is quite complicated, they do agree that the Hertz stresses, the number of cycles, the sur-
face finish, the hardness, the degree of lubrication, and the temperature all influence the
strength. In Sec. 3-19 it was learned that, when two surfaces are pressed together, a
maximum shear stress is developed slightly below the contacting surface. It is postulated
by some authorities that a surface fatigue failure is initiated by this maximum shear
stress and then is propagated rapidly to the surface. The lubricant then enters the crack
that is formed and, under pressure, eventually wedges the chip loose.

7

263, A. Collins, Failure of Materials in Mechanical Design, John Wiley & Sons, New York, 1981, p. 243.
“TBarle Buckingham, Analytical Mechanics of Gears, McGraw-Hill, New York, 1949.
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To determine the surface fatigue strength of mating materials, Buckingham designed
a simple machine for testing a pair of contacting rolling surfaces in connection with his
investigation of the wear of gear teeth. Buckingham and, later, Talbourdet gathered large
numbers of data from many tests so that considerable design information is now
available. To make the results useful for designers, Buckingham defined a load-stress
factor, also called a wear factor, which is derived from the Hertz equations. Equations
(3-73) and (3-74), p. 124, for contacting cylinders are found to be

b:\/z_F(l—vlz)/E1+(l—v§)/E2

wl (1/dy) + (1/d) 16-39)
= 2F (6-60)
pmax — ﬁ

where b = half width of rectangular contact area
F = contact force
| = length of cylinders
v = Poisson’s ratio
E = modulus of elasticity
d = cylinder diameter
It is more convenient to use the cylinder radius, so let 2r = d. If we then designate

the length of the cylinders as w (for width of gear, bearing, cam, etc.) instead of / and
remove the square root sign, Eq. (6-59) becomes

C4F (1= /B + (1)) /E,

b* (6-61)
Tw 1/ri+1/r
We can define a surface endurance strength Sc using
2F
Pmax = - (6—62)
Tbhw
as
2F
Sc = —— (6-63)
wbw

which may also be called contact strength, the contact fatigue strength, or the Hertzian
endurance strength. The strength is the contacting pressure which, after a specified
number of cycles, will cause failure of the surface. Such failures are often called wear
because they occur over a very long time. They should not be confused with abrasive
wear, however. By squaring Eq. (6-63), substituting 5> from Eq. (6-61), and rearrang-

ing, we obtain
F/l 1 1—v? 1—2
“—(=4+=)=nSs2 Ly 2= 6-64

w<r1+r2) T[C|: E; * E> ! ( )

The left expression consists of parameters a designer may seek to control independently.
The central expression consists of material properties that come with the material and
condition specification. The third expression is the parameter K, Buckingham’s load-
stress factor, determined by a test fixture with values F, w, ry, r, and the number of
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cycles associated with the first tangible evidence of fatigue. In gear studies a similar
K factor is used:

Ky .
K, = 7 sin ¢ (6-65)

where ¢ is the tooth pressure angle, and the term [(1 — vlz)/El + (1 — v%)/Ez] is
defined as 1/(7C3%), so that

F /1 1
Sc=Cp,[— <— + —) (6-66)
w ry Iy

Buckingham and others reported K| for 10% cycles and nothing else. This gives only one
point on the S¢ N curve. For cast metals this may be sufficient, but for wrought steels, heat-
treated, some idea of the slope is useful in meeting design goals of other than 10% cycles.

Experiments show that K; versus N, K, versus N, and S¢ versus N data are recti-
fied by log-log transformation. This suggests that

Ki=aN»  K,=aN”  Sc=aN’
The three exponents are given by

_ log(Ky/K>) _ log(Kg1/Ky2) _ log(Sc1/Sc2)

= = = 6-67
log(N/N>) log(N{/N>) log(N{/N>) ( )

Bi
Data on induction-hardened steel on steel give (S¢)o7 = 271 kpsi and (S¢)ps =
239 kpsi, so B, from Eq. (6-67), is

_ 1og(271/239)

= —— = —0.055
log(107/108)

It may be of interest that the American Gear Manufacturers Association (AGMA) uses
B = —0.056 between 10* < N < 10'® if the designer has no data to the contrary
beyond 107 cycles.

A longstanding correlation in steels between S¢ and Hp at 10% cycles is

0.4Hp — 10 kpsi
S = 6-68
(Sc)or {2.76HB — 70 MPa (6~68]
AGMA uses
0.99(Sc)107 = 0.327Hp + 26 kpsi (6-69)

Equation (6-66) can be used in design to find an allowable surface stress by using
a design factor. Since this equation is nonlinear in its stress-load transformation, the
designer must decide if loss of function denotes inability to carry the load. If so, then
to find the allowable stress, one divides the load F' by the design factor n,:

c F 1 N 1 Cp |F [1 n 1 Sc

O = _— _ —_ = — —_ —_ —_ = —

¢ P wng \ri Jna\w\ri  n N

and ng = (Sc/o¢)?. If the loss of function is focused on stress, then ny = S¢/o¢. It is
recommended that an engineer

* Decide whether loss of function is failure to carry load or stress.

e Define the design factor and factor of safety accordingly.

* Announce what he or she is using and why.

* Be prepared to defend his or her position.
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In this way everyone who is party to the communication knows what a design factor
(or factor of safety) of 2 means and adjusts, if necessary, the judgmental perspective.

Stochastic Analysis?8

As already demonstrated in this chapter, there are a great many factors to consider in
a fatigue analysis, much more so than in a static analysis. So far, each factor has been
treated in a deterministic manner, and if not obvious, these factors are subject to vari-
ability and control the overall reliability of the results. When reliability is important,
then fatigue testing must certainly be undertaken. There is no other way. Consequently,
the methods of stochastic analysis presented here and in other sections of this book
constitute guidelines that enable the designer to obtain a good understanding of the
various issues involved and help in the development of a safe and reliable design.

In this section, key stochastic modifications to the deterministic features and equa-
tions described in earlier sections are provided in the same order of presentation.

Endurance Limit

To begin, a method for estimating endurance limits, the fensile strength correlation
method, is presented. The ratio ¢ =S,/ S, is called the fatigue ratio.?® For ferrous
metals, most of which exhibit an endurance limit, the endurance limit is used as a
numerator. For materials that do not show an endurance limit, an endurance strength at
a specified number of cycles to failure is used and noted. Gough™ reported the sto-
chastic nature of the fatigue ratio ¢ for several classes of metals, and this is shown in
Fig. 6-36. The first item to note is that the coefficient of variation is of the order 0.10
to 0.15, and the distribution varies for classes of metals. The second item to note is that
Gough’s data include materials of no interest to engineers. In the absence of testing,
engineers use the correlation that ¢ represents to estimate the endurance limit S/, from
the mean ultimate strength S

Gough'’s data are for ensembles of metals, some chosen for metallurgical interest,
and include materials that are not commonly selected for machine parts. Mischke®!
analyzed data for 133 common steels and treatments in varying diameters in rotating
bending,32 and the result was

& = 0.4454""197LN(1, 0.138)

where d is the specimen diameter in inches and LN(1, 0.138) is a unit lognormal vari-
ate with a mean of 1 and a standard deviation (and coefficient of variation) of 0.138. For
the standard R. R. Moore specimen,

by 30 = 0.445(0.30) " *197LN(1, 0.138) = 0.506LN(1, 0.138)

ZReview Chap. 20 before reading this section.

*From this point, since we will be dealing with statistical distributions in terms of means, standard
deviations, etc. A key quantity, the ultimate strength, will here be presented by its mean value, S;. This
means that certain terms that were defined earlier in terms of the minimum value of S, will change slightly.
*In J. A. Pope, Metal Fatigue, Chapman and Hall, London, 1959.

31Charles R. Mischke, “Prediction of Stochastic Endurance Strength,” Trans. ASME, Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 109, no. 1, January 1987, pp. 113-122.

?Data from H. J. Grover, S. A. Gordon, and L. R. Jackson, Fatigue of Metals and Structures, Bureau of
Naval Weapons, Document NAVWEPS 00-2500435, 1960.
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The lognormal probability
density PDF of the fatigue ratio
¢, of Gough.

Fatigue Failure Resulting from Variable Loading 331

Class No.
All metals 380
Nonferrous 152

Iron and carbon steels 111

Low-alloy steels 78

W
[ R S

Special alloy steels 39

wn

Probability density

0.3 0.4 0.5 0.6 0.7
Rotary bending fatigue ratio ¢,

Also, 25 plain carbon and low-alloy steels with S,; > 212 kpsi are described by
S, = 107LN(1, 0.139) kpsi
In summary, for the rotating-beam specimen,

0.506S,,LN(1, 0.138) kpsi or MPa  §,, < 212 kpsi (1460 MPa)
S, = { 107LN(1, 0.139) kpsi S, > 212 kpsi (6-70)
740LN(1, 0.139) MPa S, > 1460 MPa

where S,; is the mean ultimate tensile strength.

Equations (6—70) represent the state of information before an engineer has chosen
a material. In choosing, the designer has made a random choice from the ensemble of
possibilities, and the statistics can give the odds of disappointment. If the testing is lim-
ited to finding an estimate of the ultimate tensile strength mean S, with the chosen
material, Eqs. (6-70) are directly helpful. If there is to be rotary-beam fatigue testing,
then statistical information on the endurance limit is gathered and there is no need for
the correlation above.

Table 6-9 compares approximate mean values of the fatigue ratio ¢y 3o for several
classes of ferrous materials.

Endurance Limit Modifying Factors
A Marin equation can be written as

S, = kokpkckaksS, (6-71)

where the size factor &, is deterministic and remains unchanged from that given in
Sec. 6-9. Also, since we are performing a stochastic analysis, the “reliability factor” &,
is unnecessary here.

The surface factor k, cited earlier in deterministic form as Eq. (6-20), p. 288, is
now given in stochastic form by

k, =aS’LN(1,C) (S, in kpsi or MPa) (6-72)

where Table 6-10 gives values of a, b, and C for various surface conditions.
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Table 6-9

Comparison of

Approximate Values of
Mean Fatigue Ratio for
Some Classes of Metals

Table 6-10

Parameters in Marin
Surface Condition Factor

EXAMPLE 6-16

Solution

Answer

Wrought steels 0.50
Cast steels 0.40
Powdered steels 0.38
Gray cast iron 0.35
Malleable cast iron 0.40
Normalized nodular cast iron 0.33

ka = aS& LN(1, C)

Coefficient of

Ground* 1.34 1.58 —0.086 0.120
Machined or Cold-rolled 2.67 4.45 —0.265 0.058
Hot-rolled 14.5 58.1 —0.719 0.110
As-forged 39.8 271 —0.995 0.145

*Due to the wide scatter in ground surface data, an alternate function is k, = 0.878LN(1, 0.120).
Note: S in kpsi or MPa.

A steel has a mean ultimate strength of 520 MPa and a machined surface. Estimate k,,.

From Table 6-10,
k, = 4.45(520)"%2%LN(1, 0.058)
k., = 4.45(520)7°2%(1) = 0.848
61a = Ck, = (0.058)4.45(520) 2% = 0.049

so k, = LN(0.848, 0.049).

The load factor k. for axial and torsional loading is given by
(kc)axial = 1~23SL;0'0778LN(1, 0125)
(Ko)torsion = 0328531125LN(1, 0.125)

(6-73)
(6-74)

where S,; is in kpsi. There are fewer data to study for axial fatigue. Equation (6-73) was
deduced from the data of Landgraf and of Grover, Gordon, and Jackson (as cited earlier).
Torsional data are sparser, and Eq. (6-74) is deduced from data in Grover et al.
Notice the mild sensitivity to strength in the axial and torsional load factor, so k. in
these cases is not constant. Average values are shown in the last column of Table 6-11,
and as footnotes to Tables 6—12 and 6-13. Table 6—14 shows the influence of material
classes on the load factor k.. Distortion energy theory predicts (k. )orsion = 0.577 for
materials to which the distortion-energy theory applies. For bending, k. = LN(1, 0).
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Table 6-11 ke = o8s{ LN(1, C)
Parameters in Marin Mode of Average
Loading Factor Loading 4 ke
Bending 1 1 0 0 1
Axial 1.23 1.43 —0.0778 0.125 0.85
Torsion 0.328 0.258 0.125 0.125 0.59
Table 6-12 5.1, kpsi K
Average Marin Loading 50 0.907
Factor for Axial Load 100 0.860
150 0.832
200 0.814
*Average entry 0.85.
Table 6-13 guh kpsi k:
Average Marin Loading 50 0.535
Factor for Torsional 100 0.583
Load 150 0.614
200 0.636
*Average entry 0.59.
Table 6-14 N ateris Range . ! 0
Average Marin Torsional Wrought steels 0.52-0.69 31 0.60 0.03
Loading Factor . for Wrought Al 0.43-0.74 13 0.55 0.09
Several Materials Wrought Cu and alloy 0.41-0.67 7 0.56 0.10
Wrought Mg and alloy 0.49-0.60 2 0.54 0.08
Titanium 0.37-0.57 3 0.48 0.12
Cast iron 0.79-1.01 9 0.90 0.07
Cast Al, Mg, and alloy 0.71-0.91 5 0.85 0.09

Source: The table is an extension of P. G. Forrest, Fatigue of Metals, Pergamon Press, London, 1962,
Table 17, p. 110, with standard deviations estimated from range and sample size using Table A—1 in
J. B. Kennedy and A. M. Neville, Basic Statistical Methods for Engineers and Scientists, 3rd ed.,
Harper & Row, New York, 1986, pp. 54-55.
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EXAMPLE 6-17

Solution

Answer

Answer

Answer

Answer

Estimate the Marin loading factor k. for a 1-in-diameter bar that is used as follows.
(a) In bending. It is made of steel with S,, = 100LN(1, 0.035) kpsi, and the designer
intends to use the correlation S, = dy 35, to predict S.

(b) In bending, but endurance testing gave S, = SSLN(1, 0.081) kpsi.

(c) In push-pull (axial) fatigue, S,;, = LN(86.2, 3.92) kpsi, and the designer intended to
use the correlation S, = by 30S.:-

(d) In torsional fatigue. The material is cast iron, and S/, is known by test.

(a) Since the bar is in bending,

k.= (1,0)
(b) Since the test is in bending and use is in bending,

ke =(1,0)
(c) From Eq. (6-73),

(K = 1.23(86.2) " ""BLN(1, 0.125)
ke = 1.23(86.2)"*0778(1) = 0.870
6re = Ck, = 0.125(0.870) = 0.109

(d) From Table 6-15, k. = 0.90, 64 = 0.07, and

_ 007 0.08
“T090
The temperature factor k; is
k; = k,LN(1,0.11) (6-75)

where k; = kg4, given by Eq. (6-27), p. 291.

Finally, Ky is, as before, the miscellaneous factor that can come about from a great
many considerations, as discussed in Sec. 6-9, where now statistical distributions, pos-
sibly from testing, are considered.

Stress Concentration and Notch Sensitivity
Notch sensitivity g was defined by Eq. (6-31), p. 295. The stochastic equivalent is

_Kr—1
1= % -1

(6-76)

where K, is the theoretical (or geometric) stress-concentration factor, a deterministic
quantity. A study of lines 3 and 4 of Table 20-6, will reveal that adding a scalar to (or
subtracting one from) a variate x will affect only the mean. Also, multiplying (or divid-
ing) by a scalar affects both the mean and standard deviation. With this in mind, we can



Table 6-15

Heywood’s Parameter
J/a and coefficients of
variation Cky for steels

EXAMPLE 6-18

Solution

Fatigue Failure Resulting from Variable Loading 335

va(Vin),

Coefficient of
Variation Ck¢

va(vmm),

Notch Type Sut in kpsi Sut in MPa

Transverse hole 5/Su 174/S 0.10
Shoulder 4/Su 139/8,; 0.11
Groove 3/Su 104/, 0.15

relate the statistical parameters of the fatigue stress-concentration factor Ky to those of
notch sensitivity q. It follows that

K;—1 CK;
=LN :
q (K,—l K,—l)
where C = Cgy and
_ Kp—1
=% —1
. CK;
- 6-77
9q K, —1 ( )
CK
=%
-

The fatigue stress-concentration factor K has been investigated more in England than in
the United States. For Ky, consider a modified Neuber equation (after Heywood*?),
where the fatigue stress-concentration factor is given by

- K,
Ky =
T V2K - a (6-78)
K, Jr

where Table 6-15 gives values of /a and Cgy for steels with transverse holes,
shoulders, or grooves. Once Ky is described, q can also be quantified using the set
Eqgs. (6-77).

The modified Neuber equation gives the fatigue stress-concentration factor as

K; = K;LN(1, Cx,) (6-79)

Estimate Ky and q for the steel shaft given in Ex. 6-6, p. 296.

From Ex. 6-6, a steel shaft with S, = 690 MPa and a shoulder with a fillet of 3 mm
was found to have a theoretical stress-concentration factor of K, = 1.65. From
Table 6-15,

139 139

= 2 02014/
S, 690 mm

=

3R. B. Heywood, Designing Against Fatigue, Chapman & Hall, London, 1962.
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From Eq. (6-78),

K, — K, _ 1.65 _ 151
= 2K =D Ja | 2065- D000 T
K, r 165 3

which is 2.5 percent lower than what was found in Ex. 6-6.
From Table 6-15, Cx s = 0.11. Thus from Eq. (6-79),

Answer K; = 1.51 LN(1, 0.11)
From Eq. (6-77), with K, = 1.65
1.51 -1
g = =0.785
1= 1651

_ Cx, Ky 0.11(1.51)
T K -1 151-1
6, = C,q = 0.326(0.785) = 0.256

=0.326

So,
Answer q = LN(0.785, 0.256)

EXAMPLE 6-19  The bar shown in Fig. 6-37 is machined from a cold-rolled flat having an ultimate
strength of S,, = LN(87.6,5.74) kpsi. The axial load shown is completely reversed.
The load amplitude is F, = LN(1000, 120) 1bf.
(a) Estimate the reliability.
(b) Reestimate the reliability when a rotating bending endurance test shows that S, =
LN(40, 2) kpsi.

Solution (a) From Eq. (6-70), S, = 0.5065,,LN(1, 0.138) = 0.506(87.6)L.N(1, 0.138)
= 44.3LN(1, 0.138) kpsi
From Eq. (6-72) and Table 6-10,
k, = 2.675,"*%LN(1, 0.058) = 2.67(87.6)"***°LN(1, 0.058)

— 0.816LN(1, 0.058)

k=1 (axial loading)

| Figure 6-37

1000 Ibf
R —




Answer
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From Eq. (6-73),
k. = 1.235 "7LN(1, 0.125) = 1.23(87.6) **"*LN(1, 0.125)
= 0.869LN(1, 0.125)
ks =k; = (1,0)
The endurance strength, from Eq. (6-71), is
S. = k.kpyk k.K/S,
S. = 0.816LN(1, 0.058)(1)0.869LN(1, 0.125)(1)(1)44.3LN(1, 0.138)
The parameters of S, are
S, = 0.816(0.869)44.3 = 31.4 kpsi
Cse = (0.058% +0.125% 4+ 0.138%)!/2 = 0.195

so S, = 31.4LN(1, 0.195) kpsi.

In computing the stress, the section at the hole governs. Using the terminology
of Table A-15-1 we find d/w = 0.50, therefore K, =2.18. From Table 6-15,
Ja=5/S, =5/87.6=0.0571 and Ci; = 0.10. From Egs. (6-78) and (6-79) with
r = 0.375 in,

K, = K, LN (1,Cg,) = 2.18 LN(1,0.10
/= 2K -DJa (1.Cx,) = |, 2C18=1) 00571 (U
+ K, Jr 2.18 0.375

= 1.98LN(1, 0.10)

The stress at the hole is

1000LN(1, 0.12)

F
o =K, = L9LN(, 0.10—=—r=s

5 = 1.98 1000 1072 = 10.56 kpsi
o = 1. —— =] . S1
0.25(0.75) .

C, = (0.10> +0.12%) /2 = 0.156

so stress can be expressed as & = 10.56LN(1, 0.156) kpsi.**

The endurance limit is considerably greater than the load-induced stress, indicat-
ing that finite life is not a problem. For interfering lognormal-lognormal distributions,
Eq. (5-43), p. 250, gives

5 [1+c2 314 [140.1562
Inf= 3 Il 1056\ 10,1952
o\ 1+C5 : +0.
=— = — =
\/ln [(1rc2)(1+c2)] Vil +0.195) (1 +0.1567)]

From Table A-10 the probability of failure py = ®(—4.37) = .000 006 35, and the
reliability is

—4.37

R =1 —0.000 006 35 = 0.999 993 65

3*Note that there is a simplification here. The area is not a deterministic quantity. It will have a statistical
distribution also. However no information was given here, and so it was treated as being deterministic.
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(b) The rotary endurance tests are described by S, = 40LN(1, 0.05) kp§i whose mean
is less than the predicted mean in part a. The mean endurance strength S, is

S, = 0.816(0.869)40 = 28.4 kpsi
Cse = (0.058% +0.125% 4+ 0.05%) /2 = 0.147
so the endurance strength can be expressed as S, = 28.3LN(1, 0.147) kpsi. From

Eq. (5-43),
284 [140.1562
1056\ 1+ 0.1472

7=— = —4.65
VIn[(1 4 0.1472)(1 + 0.1562)]

Using Table A-10, we see the probability of failure p; = ®(—4.65) = 0.000 001 71,
and

R =1-0.000 001 71 = 0.999 998 29

an increase! The reduction in the probability of failure is (0.000 001 71 — 0.000
006 35)/0.000 006 35 = —0.73, a reduction of 73 percent. We are analyzing an existing
design, so in part (a) the factor of safety was 7 = S/& = 31.4/10.56 = 2.97. In part (b)
n = 28.4/10.56 = 2.69, a decrease. This example gives you the opportunity to see the role
of the design factor. Given knowledge of S, Cs, 0, C,, and reliability (through z), the mean
factor of safety (as a design factor) separates S and & so that the reliability goal is achieved.
Knowing n alone says nothing about the probability of failure. Looking at n = 2.97 and
n = 2.69 says nothing about the respective probabilities of failure. The tests did not reduce
S, significantly, but reduced the variation C such that the reliability was increased.

When a mean design factor (or mean factor of safety) defined as S, /& is said to
be silent on matters of frequency of failures, it means that a scalar factor of safety
by itself does not offer any information about probability of failure. Nevertheless,
some engineers let the factor of safety speak up, and they can be wrong in their
conclusions.

As revealing as Ex. 6-19 is concerning the meaning (and lack of meaning) of a
design factor or factor of safety, let us remember that the rotary testing associated with
part (b) changed nothing about the part, but only our knowledge about the part. The
mean endurance limit was 40 kpsi all the time, and our adequacy assessment had to
move with what was known.

Fluctuating Stresses

Deterministic failure curves that lie among the data are candidates for regression mod-
els. Included among these are the Gerber and ASME-elliptic for ductile materials, and,
for brittle materials, Smith-Dolan models, which use mean values in their presentation.
Just as the deterministic failure curves are located by endurance strength and ultimate
tensile (or yield) strength, so too are stochastic failure curves located by S, and by S,
or S,. Figure 6-32, p. 320, shows a parabolic Gerber mean curve. We also need to
establish a contour located one standard deviation from the mean. Since stochastic
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curves are most likely to be used with a radial load line we will use the equation given
in Table 6-7, p. 307, expressed in terms of the strength means as

2

_ 252 28,
§,= w4 1+<-> (6-80)
28, 7 Sut

Because_of the p(_)sitive corgelation between S, and S,;;, we increment S, by Cs. S,y Sy
by Cgsy;Sui» and S, by Cg,S,, substitute into Eq. (6-80), and solve for Cg, to obtain

—1+\/1+[ 25,(1 + Cs.) ]2
B (1 +CSul)2 7Sy (1 + Csur)

Sa 1+ Cs, 25
—1+ 1+< )

Oyt

: -1 (6-81)

Equation (6-81) can be viewed as an interpolation formula for Csas which falls between
Cs. and Cyg,, depending on load line slope r. Note that S, = S,LN(1, Cg,).
Similarly, the ASME-elliptic criterion of Table 6-8, p. 308, expressed in terms of

its means is

_ S,S,

Su= (6-82)

. /,.253 + §?

Similarly, we increment S, by Cs. S,, S'y by Cs, S'y, and S, by Cs, S,,, substitute into
Eq. (6-82), and solve for Cg,:

r2§§ + S’Z

Csa = (1+ Csy)(1 + Cse) | % S B
sa = ( sy)( Se) r2S3(1+ Csy)? + 2 (1 + Cse)?

1 (6-83)

Many brittle materials follow a Smith-Dolan failure criterion, written deterministi-
cally as

nog 1 —noy/Su
e B 1 +noy,/Su

(6-84)

95}

Expressed in terms of its means,

_ 1= 80/5 (6-85)
Se 1+ 8u/Su

||QO)|

For a radial load line slope of r, we substitute S, /r for S, and solve for S,,, obtaining

_ Su+ S 4r S, S
§, = Mow O [y HOwe (6-86)
2 (rSur + S.)?

and the expression for Cg, is

rSu(1+ Csur) + So(1 + Cs.)
28,

-{—1+\/1+ 4r8uSe(1 + Cse)(1 + Csur) }_1

Sa —

(6-87)

[ Sur (1 4 Csur) + Se(1 4 Cse)]?
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EXAMPLE 6-20

Solution

A rotating shaft experiences a steady torque T = 1360LN(1, 0.05) Ibf - in, and at a
shoulder with a 1.1-in small diameter, a fatigue stress-concentration factor K, =
1.50LN(1, 0.11), K7y = 1.28LN(1, 0.11), and at that location a bending moment of
M = 1260LN(1, 0.05) Ibf - in. The material of which the shaft is machined is hot-rolled
1035 with S,,; = 86.2LN(1, 0.045) kpsi and S, = 56.0LN(1, 0.077) kpsi. Estimate the
reliability using a stochastic Gerber failure zone.

Establish the endurance strength. From Egs. (6-70) to (6-72) and Eq. (6-20), p. 288,
S, = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138) kpsi
k, = 2.67(86.2)*2%LN(1, 0.058) = 0.820LN(1, 0.058)
ky = (1.1/0.30)~%197 = 0.870
k. =k; =k; =LN(1,0)
S. = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)
S, = 0.820(0.870)43.6 = 31.1 kpsi
Cs. = (0.058% +0.138%)1/2 = 0.150
and so S, = 31.1LN(1, 0.150) kpsi.
Stress (in kpsi):

_ 32K/M,  32(1.50)LN(1,0.11)1.26LN(1, 0.05)
T ondd 7(1.1)3

_32(1.50)1.26
T x.1)3

Oq

= 14.5 kpsi

Coa = (0.112 +0.05%)'? = 0.121
16K/, T,,  16(1.28)LN(1,0.11)1.36LN(1, 0.05)

m= Tl 7(1.1)?
_ 16(1.28)1.36 .
Ty = W = 6.66 kpSl

Cem = (0.112 +0.05%)2 = 0.121

1/2

6, = (6. +3%7) " =[14.5* +3(0)*]"* = 14.5kpsi

/= (62 +3%2)"* = [0+ 3(6.66)*"/> = 11.54 kpsi

5 145
% _ 272 _ 126

r=—=
& 11.54

Strength: From Egs. (6-80) and (6-81),

_ 1.26°86.22 231.1) 7T?
§,= = gy i |2 98 9 kpsi
2G1.1) +\/ +[1.26(86.2)] ? kpsi
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[ 2(31.1)(1 +0.15) T

—14+ 1+

(1 +0.045)2 1.26(86.2)(1 + 0.045)

1+0.150 2GLD T
_1+\/1+[1.26(86.2)}

Reliability: Since S, = 28.9LN(1, 0.134) kpsi and o/, = 14.5LN(1, 0.121) kpsi,
Eq. (543), p. 250, gives

S, [1+C 280 [1+oa2r
"\a1rc 145\ 1+0.1342
== - == =-3.83
Joli+ci)(+cz)] Vil +0.34) (1 +0.1212)]

Csa = —1=0.134

From Table A-10 the probability of failure is py = 0.000 065, and the reliability is,
against fatigue,

R=1-pr=1-0.000065=0.999 935

The chance of first-cycle yielding is estimated by interfering Sy with o7, ... The
quantity o, is formed from o/, + o),. The mean of o), is o, + 0, = 14.5+
11.54 = 26.04 kpsi. The coefficient of variation of the sum is 0.121, since both
COVs are 0.121, thus C, pmax = 0.121. We interfere S, = 56LN(1, 0.077) kpsi with
o .. = 26.04LN (1, 0.121) kpsi. The corresponding z variable is

max
56 [1+0.1212
26.04\ 1+ 0.077%

7=— = —5.39
VIn[(1 + 0.0772)(1 + 0.1212)]

which represents, from Table A—10, a probability of failure of approximately 0.07358
[which represents 3.58(107%)] of first-cycle yield in the fillet.

The probability of observing a fatigue failure exceeds the probability of a yield
failure, something a deterministic analysis does not foresee and in fact could lead one
to expect a yield failure should a failure occur. Look at the o/,S, interference and the
o..xS, interference and examine the z expressions. These control the relative proba-
bilities. A deterministic analysis is oblivious to this and can mislead. Check your sta-
tistics text for events that are not mutually exclusive, but are independent, to quantify
the probability of failure:

pr = p(yield) + p(fatigue) — p(yield and fatigue)

= p(yield) + p(fatigue) — p(yield) p(fatigue)

=0.358(1077) 4+ 0.65(10~%) — 0.358(1077)0.65(10~*) = 0.650(10~*)
R =1-0.650(10"%) = 0.999 935

against either or both modes of failure.
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Figure 6-38

Designer’s fatigue diagram
for Ex. 6-20.

Amplitude stress component o, kpsi

| | | | | |
0
0 10 20 30 40 50 60 70 80 90

Steady stress component a,,,, kpsi

Examine Fig. 638, which depicts the results of Ex. 6-20. The problem distribution
of S, was compounded of historical experience with S/, and the uncertainty manifestations
due to features requiring Marin considerations. The Gerber “failure zone” displays this.
The interference with load-induced stress predicts the risk of failure. If additional infor-
mation is known (R. R. Moore testing, with or without Marin features), the stochastic
Gerber can accommodate to the information. Usually, the accommodation to additional
test information is movement and contraction of the failure zone. In its own way the sto-
chastic failure model accomplishes more precisely what the deterministic models and
conservative postures intend. Additionally, stochastic models can estimate the probability
of failure, something a deterministic approach cannot address.

The Design Factor in Fatigue

The designer, in envisioning how to execute the geometry of a part subject to the imposed

constraints, can begin making a priori decisions without realizing the impact on the

design task. Now is the time to note how these things are related to the reliability goal.
The mean value of the design factor is given by Eq. (5-45), repeated here as

i = exp [—z,/ln (1 + C}l) +1In,/1+ C,%i| =exp[C,(—z+ C,/2)] (6-88)

in which, from Table 20-6 for the quotient n = S/ o,

c — [GtE
! 14 C2

where Cy is the COV of the significant strength and C, is the COV of the significant
stress at the critical location. Note that 7z is a function of the reliability goal (through z)
and the COVs of the strength and stress. There are no means present, just measures
of variability. The nature of Cy in a fatigue situation may be Cg, for fully reversed
loading, or Cg, otherwise. Also, experience shows Cgs, > Cs, > Cg,s, S0 Cg, can be
used as a conservative estimate of Cg,. If the loading is bending or axial, the form of



EXAMPLE 6-21

Solution

$F“: 1000 Ibf

/\/

|~ 2-in D. drill

4—%in—>

/\,

$ F, = 1000 Ibf

Figure 6-39

A strap with a thickness 7 is
subjected to a fully reversed
axial load of 1000 Ibf.

Example 6-21 considers the

thickness necessary to attain a
reliability of 0.999 95 against
a fatigue failure.

o/, might be
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o o, =K

respectively. This makes the COV of ¢, namely C,’, expressible as

Coy = (Chp +C1)'"?

again a function of variabilities. The COV of S,, namely Cg,, is

CSe

(Cha+ Cio+Coy + Ci 4+ C3,

)1/2

again, a function of variabilities. An example will be useful.

A strap to be made from a cold-drawn steel strip workpiece is to carry a fully reversed
axial load F = LN(1000, 120) Ibf as shown in Fig. 6-39. Consideration of adjacent
parts established the geometry as shown in the figure, except for the thickness 7. Make a
decision as to the magnitude of the design factor if the reliability goal is to be 0.999 95,
then make a decision as to the workpiece thickness .

Let us take each a priori decision and note the consequence:

Use 1018 CD steel
Function:
Carry axial load
R >0.999 95
Machined surfaces
Hole critical
Ambient temperature
Correlation method
Hole drilled

St = 87.6 kpsi, Cs;,, = 0.0655

Cr=0.12, Cx = 0.125

z=—3.891
Cra = 0.058
Cxr=0.10, Cy: = (0.10> + 0.12%)/2 = 0.156
Cuu=0
Cs;=0.138

Cse = (0.058% +0.125% 4 0.1382)1/2 = 0.195

C3 +C 0.1952 + 0.1562
Se T oi _ [OD 07 _ 5467
1+CZ 140.1562

These eight a priori decisions have quantified the mean design factor as n = 2.65.
Proceeding deterministically hereafter we write

from which

F

e :Kvi
%a w—=dy

=||§’J|

_ _Kif 0
(w—d)S,
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To evaluate the preceding equation we need S, and K . The Marin factors are

k, = 2.678,*2LN(1, 0.058) = 2.67(87.6)"***LN(1, 0.058)

k, = 0.816

ky =1

k. = 1.235;%978LN(1, 0.125) = 0.868LN(1, 0.125)
k. = 0.868

kg =k =1

and the endurance strength is
S, = 0.816(1)(0.868)(1)(1)0.506(87.6) = 31.4 kpsi

The hole governs. From Table A-15-1 we find d/w = 0.50, therefore K, = 2.18. From
Table 6-15 /a =5/S,;, =5/87.6 = 0.0571, r = 0.1875 in. From Eq. (6-78) the
fatigue stress-concentration factor is

Ki = 218 =1.91
2(2.18 — 1) 0.0571
218  /0.1875
The thickness 7 can now be determined from Eq. (1)
K;iF 1.91(2.65)1000

r > = =0.4301
= w—d)S, _ (075 — 0.375)31 400 m

Use %—in—thick strap for the workpiece. The %—in thickness attains and, in the rounding
to available nominal size, exceeds the reliability goal.

The example demonstrates that, for a given reliability goal, the fatigue design factor
that facilitates its attainment is decided by the variabilities of the situation. Furthermore,
the necessary design factor is not a constant independent of the way the concept unfolds.
Rather, it is a function of a number of seemingly unrelated a priori decisions that are made
in giving definition to the concept. The involvement of stochastic methodology can be
limited to defining the necessary design factor. In particular, in the example, the design
factor is not a function of the design variable ¢; rather, ¢ follows from the design factor.

Road Maps and Important Design Equations
for the Stress-Life Method

As stated in Sec. 615, there are three categories of fatigue problems. The important
procedures and equations for deterministic stress-life problems are presented here.

Completely Reversing Simple Loading
1 Determine S, either from test data or

0.5S,, Sy < 200 kpsi (1400 MPa)
p. 282 S, = { 100 kpsi St > 200 kpsi (6-8)
700 MPa S, > 1400 MPa



Table 6-2

Parameters for Marin
Surface Modification
Factor, Eq. (6-19)

Table 6-5

Reliability Factor k,
Corresponding to

8 Percent Standard
Deviation of the
Endurance Limit
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2 Modify S, to determine S,.

p. 287 S, = kakbkckdkeka; (6-18)

kg = aS?, (6-19)
Factor a Exponent

Surface Finish Sut, kpsi Sut, MPa b

Ground 1.34 1.58 —0.085

Machined or cold-drawn 2.70 451 —0.265

Hot-rolled 14.4 57.7 —0.718

As-forged 39.9 272. —0.995

Rotating shaft. For bending or torsion,

(d/0.3)=%197 = 0.8794%197 0.11 <d <2in

558 o 0.9140157 2<d<10in (6-20)
P YT (d/7.62)0197 = 1244917 279 < 4 <51 mm
1.51d 70157 51 < 254 mm
For axial,
ky = 1 (6-21)

Nonrotating member. Use Table 6-3, p. 290, for d, and substitute into Eq. (6-20)
for d.

1 bending
p- 290 k. = 1 0.85 axial (6-26)
0.59 torsion

p. 291 Use Table 64 for kg, or

kg = 0.975 + 0.432(107*)Tr — 0.115(107°) T2
+0.104(107%) T2 — 0.595(10~'2) T} (6-27)

pp. 292-293, k.

50 0 1.000
90 1.288 0.897
95 1.645 0.868
99 2.326 0.814
99.9 3.091 0.753
99.99 3.719 0.702
99.999 4.265 0.659

99.9999 4.753 0.620
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pp. 293-294, ky

3 Determine fatigue stress-concentration factor, K s or Ky,. First, find K, or K;; from
Table A—-15.

p. 295 Kr=14qK, —1) or Kp=1+q(K;—1) (6-32)

Obtain g from either Fig. 6-20 or 6-21, pp. 295-296.

Alternatively,
296 Kp=14 =1 (6-33)
P F= T Ny Jagr

For /a in units of +/in, and S,; in kpsi
Bending or axial: va = 0.246 — 3.08(107%)S,, + 1.51(107%)S2, — 2.67(107%)S3,
(6-35q)
Torsion: v/a = 0.190 — 2.51(107%) S, + 1.35(107°) S, — 2.67(107%)$S;, (6-35b)
4 Apply Ky or Ky, by either dividing S, by it or multiplying it with the purely
reversing stress, not both.

5 Determine fatigue life constants a and b. If S,;, > 70 kpsi, determine f from
Fig. 6-18, p. 285. If S,,;, < 70 kpsi, let f = 0.9.

p. 285 a=(f Su)/S. (6-14)
b= —[10g(f Su/Se)1/3 (6-15)

6  Determine fatigue strength Sy at N cycles, or, N cycles to failure at a reversing
Stress Oyey
(Note: this only applies to purely reversing stresses where o, = 0).

p. 285 Sy =aN” (6-13)
N = (Ore/a)'? (6-16)

Fluctuating Simple Loading

For S,, Ky or Ky, see previous subsection.

1 Calculate o,, and o,,. Apply K to both stresses.

p. 301 Om = (Omax + Omin) /2 Oa = [Omax — Ominl/2 (6-36)
2 Apply to a fatigue failure criterion, p. 306

on, >0
Soderburg 04/Se +0um/Sy =1/n (6-45)
mod-Goodman 04/Se +0m/Su = 1/n (6-46)
Gerber 104/Se + (10 /Su)* = 1 (6-47)
ASME-elliptic (04/8)* + (00 /Sy)* = 1/n? (6-48)

on <0

p- 305 o, =S,/n
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Torsion. Use the same equations as apply for o, > 0, except replace o,, and o, with
7, and 7,, use k. = 0.59 for S,, replace S,; with S;, = 0.67S,; [Eq. (6-54), p. 317],
and replace S, with §;, = 0.577S, [Eq. (5-21), p. 297]

3 Check for localized yielding.
p. 306 oy +0,=3S8,/n (6-49)
or, for torsion, T + T = 05778, /n

4  For finite-life fatigue strength, equivalent completely reversed stress (see Ex. 612,
pp- 313-314),

04
1 - (Uln/Sul)

Oq

1- (O’m/Sut)2

mod-Goodman Orey =

Gerber Orey =

If determining the finite life N with a factor of safety n, substitute oy, /n for o, in

Eq. (6-16). That is,
1/b
N — (Urev/ n)
a

Combination of Loading Modes

See previous subsections for earlier definitions.

1 Calculate von Mises stresses for alternating and midrange stress states, o, and o,,.
When determining S., do not use k. nor divide by K, or Kr,. Apply K, and/or
K, directly to each specific alternating and midrange stress. If axial stress is
present divide the alternating axial stress by k. = 0.85. For the special case of
combined bending, torsional shear, and axial stresses

p. 318
) 1/2
’ (Ua)axial 2
o, = (Kf)bending(aa)hending + (Kf)axial 085 +3 [(Kf.v)mmion(Ta)torsion]
(6-55)
, 2 2172
0, = {[(Kf)bending(am)bending + (Kf)axial(ain)axial] + 3 [(Kfs)torsion(Tm)torsion] }
(6-56)

2 Apply stresses to fatigue criterion [see Eqgs. (6-45) to (6-48), p. 346 in previous
subsection].
3 Conservative check for localized yielding using von Mises stresses.

p. 306 o) +o! =58,/n (6-49)
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6-2

6-3

6-4

6-5

6-6
6-7

6-9

6-10

6-11

6-12

6-13

PROBLEMS

Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1-1 of Sec. 1-16, p. 24.

Problems 6-1 to 6-63 are to be solved by deterministic methods. Problems 6-64 to 6-78 are
to be solved by stochastic methods. Problems 671 to 678 are computer problems.

Deterministic Problems

A 10-mm drill rod was heat-treated and ground. The measured hardness was found to be 300 Brinell.
Estimate the endurance strength in MPa if the rod is used in rotating bending.

Estimate S, in kpsi for the following materials:

(a) AISI 1035 CD steel.

(b) AISI 1050 HR steel.

(¢) 2024 T4 aluminum.

(d) AISI 4130 steel heat-treated to a tensile strength of 235 kpsi.

A steel rotating-beam test specimen has an ultimate strength of 120 kpsi. Estimate the life of the
specimen if it is tested at a completely reversed stress amplitude of 70 kpsi.

A steel rotating-beam test specimen has an ultimate strength of 1600 MPa. Estimate the life of
the specimen if it is tested at a completely reversed stress amplitude of 900 MPa.

A steel rotating-beam test specimen has an ultimate strength of 230 kpsi. Estimate the fatigue
strength corresponding to a life of 150 kcycles of stress reversal.

Repeat Prob. 6-5 with the specimen having an ultimate strength of 1100 MPa.

A steel rotating-beam test specimen has an ultimate strength of 150 kpsi and a yield strength of
135 kpsi. It is desired to test low-cycle fatigue at approximately 500 cycles. Check if this is pos-
sible without yielding by determining the necessary reversed stress amplitude.

Derive Eq. (6-17). Rearrange the equation to solve for N.

For the interval 10> < N < 10° cycles, develop an expression for the axial fatigue strength
(S})a « for the polished specimens of 4130 used to obtain Fig. 6-10. The ultimate strength is
Sur = 125 kpsi and the endurance limit is (S)),x = 50 kpsi.

Estimate the endurance strength of a 1.5-in-diameter rod of AISI 1040 steel having a machined
finish and heat-treated to a tensile strength of 110 kpsi.

Two steels are being considered for manufacture of as-forged connecting rods. One is AISI 4340
Cr-Mo-Ni steel capable of being heat-treated to a tensile strength of 260 kpsi. The other is a plain car-
bon steel AISI 1040 with an attainable S,,, of 113 kpsi. If each rod is to have a size giving an equiva-
lent diameter d, of 0.75 in, is there any advantage to using the alloy steel for this fatigue application?

A 1-in-diameter solid round bar has a groove 0.1-in deep with a 0.1-in radius machined into it.

The bar is made of AISI 1020 CD steel and is subjected to a purely reversing torque of 1800 Ibf - in.

For the S-N curve of this material, let f = 0.9.

(a) Estimate the number of cycles to failure.

(b) If the bar is also placed in an environment with a temperature of 750°F, estimate the number
of cycles to failure.

A solid square rod is cantilevered at one end. The rod is 0.6 m long and supports a completely
reversing transverse load at the other end of +2 kN. The material is AISI 1080 hot-rolled steel.
If the rod must support this load for 10* cycles with a factor of safety of 1.5, what dimension
should the square cross section have? Neglect any stress concentrations at the support end.



6-14

6-15

6-16

Problem 6-16

Dimensions in millimeters

6-17

Problem 6-17

6-18
6-19

Problem 6-19
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A rectangular bar is cut from an AISI 1020 cold-drawn steel flat. The bar is 2.5 in wide by % in
thick and has a 0.5-in-dia. hole drilled through the center as depicted in Table A—15-1. The bar
is concentrically loaded in push-pull fatigue by axial forces F,, uniformly distributed across
the width. Using a design factor of ny = 2, estimate the largest force F, that can be applied
ignoring column action.

A solid round bar with diameter of 2 in has a groove cut to a diameter of 1.8 in, with a radius of
0.1 in. The bar is not rotating. The bar is loaded with a repeated bending load that causes the
bending moment at the groove to fluctuate between 0 and 25 000 Ibf - in. The bar is hot-rolled
AISI 1095, but the groove has been machined. Determine the factor of safety for fatigue based
on infinite life and the factor of safety for yielding.

The rotating shaft shown in the figure is machined from AISI 1020 CD steel. It is subjected to a
force of F' = 6 kN. Find the minimum factor of safety for fatigue based on infinite life. If the life
is not infinite, estimate the number of cycles. Be sure to check for yielding.

500

Fl<——175——

Eg :?R ‘ |
S
QT 20 T g 20

20— | 180 280 <—20

—35D. —50D. 25D.

The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates at 1600 rpm
and is supported in rolling bearings at A and B. The applied forces are F; = 2500 Ibf and
F> = 1000 Ibf. Determine the minimum fatigue factor of safety based on achieving infinite life.
If infinite life is not predicted, estimate the number of cycles to failure. Also check for yielding.

F, Fy

liml l’lgm )
kS ‘ 4 ‘f ‘ 1A K
— 10 in T 10 in ‘Sin f<—
Llii” %inj
A All fillets - in R. B

Solve Prob. 6-17 except with forces F; = 1200 Ibf and F» = 2400 1bf.

Bearing reactions R, and R, are exerted on the shaft shown in the figure, which rotates at
950 rev/min and supports an 8-kip bending force. Use a 1095 HR steel. Specify a diameter
d using a design factor of n, = 1.6 for a life of 10 hr. The surfaces are machined.

F=8%ip
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6-20

6-21

6-22

6-23
6-24

6-25

Problem 6-25

6-26

6-27

6-28

Problem 6-28

A bar of steel has the minimum properties S, = 40 kpsi, S, = 60 kpsi, and S, = 80 kpsi. The
bar is subjected to a steady torsional stress of 15 kpsi and an alternating bending stress of 25 kpsi.
Find the factor of safety guarding against a static failure, and either the factor of safety guarding
against a fatigue failure or the expected life of the part. For the fatigue analysis use:

(a) Modified Goodman criterion.

(b) Gerber criterion.

(c) ASME-elliptic criterion.

Repeat Prob. 620 but with a steady torsional stress of 20 kpsi and an alternating bending stress
of 10 kpsi.

Repeat Prob. 6-20 but with a steady torsional stress of 15 kpsi, an alternating torsional stress of
10 kpsi, and an alternating bending stress of 12 kpsi.

Repeat Prob. 6-20 but with an alternating torsional stress of 30 kpsi.

Repeat Prob. 620 but with an alternating torsional stress of 15 kpsi and a steady bending stress
of 15 kpsi.

The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed
axial load fluctuating between 28 kN in compression to 28 kN in tension. Estimate the fatigue
factor of safety based on achieving infinite life, and the yielding factor of safety. If infinite life is
not predicted, estimate the number of cycles to failure.

T 6-mm D.
e 25 mm 4&% —

¢ \{\
| i |
f

10 mm

Repeat Prob. 6-25 for a load that fluctuates from 12 kN to 28 kN. Use the Modified Goodman,
Gerber, and ASME-elliptic criteria and compare their predictions.

Repeat Prob. 6-25 for each of the following loading conditions:
(a) O kN to 28 kN

(b) 12 kN to 28 kN

(¢c) 28 kN to 12 kN

The figure shows a formed round-wire cantilever spring subjected to a varying force. The hard-
ness tests made on 50 springs gave a minimum hardness of 400 Brinell. It is apparent from the
mounting details that there is no stress concentration. A visual inspection of the springs indicates
that the surface finish corresponds closely to a hot-rolled finish. What number of applications is
likely to cause failure? Solve using:

(a) Modified Goodman criterion.

(b) Gerber criterion.

Fo = 40 Ibf
12in £ =20 Ibf




6-29

Problem 6-29

Dimensions in millimeters

6-30

Problem 6-30

6-31

6-32

6-33
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The figure is a drawing of a 4- by 20-mm latching spring. A preload is obtained during assem-
bly by shimming under the bolts to obtain an estimated initial deflection of 2 mm. The latch-
ing operation itself requires an additional deflection of exactly 4 mm. The material is ground
high-carbon steel, bent then hardened and tempered to a minimum hardness of 490 Bhn. The
radius of the bend is 4 mm. Estimate the yield strength to be 90 percent of the ultimate
strength.

(a) Find the maximum and minimum latching forces.

(b) Is it likely the spring will achieve infinite life?

F
140
AT

(A

- —20 —>

— Y

- Section 4
| | A-A

The figure shows the free-body diagram of a connecting-link portion having stress concentration
at three sections. The dimensions are » = 0.25 in, d = 0.40 in, 2 = 0.50 in, w; = 3.50 in, and
wy = 3.0 in. The forces F fluctuate between a tension of 5 kip and a compression of 16 kip.
Neglect column action and find the least factor of safety if the material is cold-drawn AISI 1018
steel.

»‘h’«

FMF )
D wl—éﬁf Wy — j

Section A—A

Solve Prob. 6-30 except let w; = 2.5 in, wy = 1.5 in, and the force fluctuates between a tension
of 16 kips and a compression of 4 Kips.

For the part in Prob. 630, recommend a fillet radius r that will cause the fatigue factor of safety
to be the same at the hole and at the fillet.

The torsional coupling in the figure is composed of a curved beam of square cross section that is
welded to an input shaft and output plate. A torque is applied to the shaft and cycles from zero
to T. The cross section of the beam has dimensions of % X 1_36 in, and the centroidal axis of the
beam describes a curve of the form » = 0.75 4+ 0.4375 /7, where r and 6 are in inches and
radians, respectively (0 < 6 < 4m). The curved beam has a machined surface with yield and ulti-
mate strength values of 60 and 110 kpsi, respectively.

(a) Determine the maximum allowable value of T such that the coupling will have an infinite life

with a factor of safety, n = 3, using the modified Goodman criterion.
(b) Repeat part (a) using the Gerber criterion.

(c) Using T found in part (b), determine the factor of safety guarding against yield.
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Problem 6-33

6-34
6-35

6-36

6-37* to
6-46*

(Dimensions in inches)

Repeat Prob. 6-33 ignoring curvature effects on the bending stress.

A part is loaded with a combination of bending, axial, and torsion such that the following stresses
are created at a particular location:

Bending: Completely reversed, with a maximum stress of 60 MPa
Axial: Constant stress of 20 MPa
Torsion:  Repeated load, varying from 0 MPa to 50 MPa

Assume the varying stresses are in phase with each other. The part contains a notch such that
Krpending = 1.4, Kraxit = 1.1, and K or5i0n = 2.0. The material properties are S, = 300 MPa and
S, = 400 MPa. The completely adjusted endurance limit is found to be S, = 200 MPa. Find the
factor of safety for fatigue based on infinite life. If the life is not infinite, estimate the number of
cycles. Be sure to check for yielding.

Repeat the requirements of Prob. 6-35 with the following loading conditions:
Bending:  Fluctuating stress from —40 MPa to 150 MPa
Axial: None
Torsion: ~ Mean stress of 90 MPa, with an alternating stress of 10 percent of the mean
stress

For the problem specified in the table, build upon the results of the original problem to determine
the minimum factor of safety for fatigue based on infinite life. The shaft rotates at a constant
speed, has a constant diameter, and is made from cold-drawn AISI 1018 steel.

Problem Number Original Problem, Page Number

6-37% 3-68, 137
6-38% 3-69, 137
6-39% 3-70, 137
6-40% 3-71, 137
6-41* 3-72, 138
6-42* 3-73, 138
6-43* 3-74, 138
6-44* 3-76, 139
6-45% 3-717, 139

6-46* 3-79, 139




6-47* to
6-50*

6-51* to
6-53*

6-54

6-55

6-56

Problem 6-56
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For the problem specified in the table, build upon the results of the original problem to determine
the minimum factor of safety for fatigue based on infinite life. If the life is not infinite, estimate
the number of cycles. The force F is applied as a repeated load. The material is AISI 1018 CD

steel. The fillet radius at the wall is 0.1 in, with theoretical stress concentrations of 1.5 for bend-
ing, 1.2 for axial, and 2.1 for torsion.

6-47% 3-80, 139
6-48* 3-81, 140
6-49* 3-82, 140
6-50* 3-83, 140

For the problem specified in the table, build upon the results of the original problem to determine
the minimum factor of safety for fatigue at point A, based on infinite life. If the life is not infi-
nite, estimate the number of cycles. The force F is applied as a repeated load. The material is AISI
1018 CD steel.

Problem Number Original Problem, Page Number

6-51%* 3-84, 140
6-52% 3-85, 141
6-53* 3-86, 141

Solve Prob. 617 except include a steady torque of 2500 Ibf - in being transmitted through the
shaft between the points of application of the forces.

Solve Prob. 618 except include a steady torque of 2200 Ibf - in being transmitted through the
shaft between the points of application of the forces.

In the figure shown, shaft A, made of AISI 1020 hot-rolled steel, is welded to a fixed support and is

subjected to loading by equal and opposite forces F via shaft B. A theoretical stress-concentration

factor K, of 1.6 is induced by the %—in fillet. The length of shaft A from the fixed support to the

connection at shaft B is 2 ft. The load F' cycles from 150 to 500 Ibf.

(a) For shaft A, find the factor of safety for infinite life using the modified Goodman fatigue fail-
ure criterion.

(b) Repeat part (a) using the Gerber fatigue failure criterion.

7. .
5-in dia

% in
fillet

Shaft A Shaft B
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6-57

Problem 6-57

6-58

6-59

6-60

6-61

6-62

A schematic of a clutch-testing machine is shown. The steel shaft rotates at a constant speed .
An axial load is applied to the shaft and is cycled from zero to P. The torque 7 induced by the
clutch face onto the shaft is given by

_ fP(D+d)
o 4

T

where D and d are defined in the figure and f is the coefficient of friction of the clutch face. The
shaft is machined with S, = 120 kpsi and S, = 145 kpsi. The theoretical stress-concentration
factors for the fillet are 3.0 and 1.8 for the axial and torsional loading, respectively.

Assume the load variation P is synchronous with shaft rotation. With f = 0.3, find the max-
imum allowable load P such that the shaft will survive a minimum of 10° cycles with a factor of
safety of 3. Use the modified Goodman criterion. Determine the corresponding factor of safety
guarding against yielding.

+

R=0.1in d=12in
/ X A S
( ~—

Friction pad _T_D =6in

For the clutch of Prob. 6-57, the external load P is cycled between 4.5 kips and 18 kips.
Assuming that the shaft is rotating synchronous with the external load cycle, estimate the num-
ber of cycles to failure. Use the modified Goodman fatigue failure criteria.

A flat leaf spring has fluctuating stress of omax = 360 MPa and o, = 160 MPa applied for
8 (10% cycles. If the load changes to omax = 320 MPa and oy,;, = —200 MPa, how many cycles
should the spring survive? The material is AISI 1020 CD and has a fully corrected endurance
strength of S, = 175 MPa. Assume that f = 0.9.

(a) Use Miner’s method.

(b) Use Manson’s method.

A rotating-beam specimen with an endurance limit of 50 kpsi and an ultimate strength of 140 kpsi
is cycled 20 percent of the time at 95 kpsi, 50 percent at 80 kpsi, and 30 percent at 65 kpsi. Let
f = 0.8 and estimate the number of cycles to failure.

A machine part will be cycled at 4350 MPa for 5 (10°) cycles. Then the loading will be changed
to £260 MPa for 5 (10%) cycles. Finally, the load will be changed to 225 MPa. How many
cycles of operation can be expected at this stress level? For the part, S,; = 530 MPa, f = 0.9,
and has a fully corrected endurance strength of S, = 210 MPa.

(a) Use Miner’s method.

(b) Use Manson’s method.

The material properties of a machine part are S,; = 85 kpsi, f = 0.86, and a fully corrected
endurance limit of S, = 45 kpsi. The part is to be cycled at o, = 35 kpsi and o0, = 30 kpsi



6-63

6-64

6-65

6-66

6-67
6-68

6-69
6-70

6-71

6-72

Fatigue Failure Resulting from Variable loading 355

for 12 (10%) cycles. Using the Gerber criterion, estimate the new endurance limit after
cycling.

(a) Use Miner’s method.

(b) Use Manson’s method.

Repeat Prob. 6-62 using the Goodman criterion.

Stochastic Problems

Solve Prob. 6-1 if the ultimate strength of production pieces is found to be Syr = 1030LN
(1, 0.0508) MPa.

The situation is similar to that of Prob. 6—14 wherein the imposed completely reversed axial
load F, = 3.8LN(1, 0.20) kip is to be carried by the link with a thickness to be specified by you,
the designer. Use the 1020 cold-drawn steel of Prob. 6-14 with Syr = 68LN (1, 0.28) and
Syt = 57TLN(1, 0.058) kpsi. The reliability goal must exceed 0.99. Using the correlation method,
specify the thickness 7.

A solid round steel bar is machined to a diameter of 32 mm. A groove 3 mm deep with a radius
of 3 mm is cut into the bar. The material has a mean tensile strength of 780 MPa. A completely
reversed bending moment M = 160 N - m is applied. Estimate the reliability. The size factor
should be based on the gross diameter. The bar rotates.

Repeat Prob. 6-66, with a completely reversed torsional moment of 7 = 160 N - m applied.

Al %—in—diameter hot-rolled steel bar has a %—in diameter hole drilled transversely through it. The
bar is nonrotating and is subject to a completely reversed bending moment of M = 1500 Ibf - in
in the same plane as the axis of the transverse hole. The material has a mean tensile strength of
76 kpsi. Estimate the reliability. The size factor should be based on the gross size. Use Table A—16

for K;.
Repeat Prob. 6-68, with the bar subject to a completely reversed torsional moment of 2000 Ibf - in.

The plan view of a link is the same as in Prob. 6-30; however, the forces F are completely
reversed, the reliability goal is 0.998, and the material properties are S,, = 64LN(1, 0.045) kpsi
and S, = 54LN(1, 0.077) kpsi. Treat F, as deterministic, and specify the thickness /.

Computer Problems

A i by lé-in steel bar has a %-in drilled hole located in the center, much as is shown in
Table A—15-1. The bar is subjected to a completely reversed axial load with a deterministic load
of 1200 Ibf. The material has a mean ultimate tensile strength of S,, = 80 kpsi.

(a) Estimate the reliability.

(b) Conduct a computer simulation to confirm your answer to part a.

From your experience with Prob. 671 and Ex. 6-19, you observed that for completely reversed
axial and bending fatigue, it is possible to

e Observe the COVs associated with a priori design considerations.

e Note the reliability goal.

* Find the mean design factor 71, that will permit making a geometric design decision that will

attain the goal using deterministic methods in conjunction with 7.

Formulate an interactive computer program that will enable the user to find 7,. While the mater-
ial properties S,;, S, and the load COV must be input by the user, all of the COV's associated with
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6-73

6-74

6-75
6-76

6-77

6-78

P 30, Kas Ke, Ky, and K, can be internal, and answers to questions will allow C,, and Cg, as well
as C, and 1,4, to be calculated. Later you can add improvements. Test your program with prob-
lems you have already solved.

When using the Gerber fatigue failure criterion in a stochastic problem, Egs. (6—-80) and (6-81)
are useful. They are also computationally complicated. It is helpful to have a computer subrou-
tine or procedure that performs these calculations. When writing an executive program, and it
is appropriate to find S, and Cg,, a simple call to the subroutine does this with a minimum of
effort. Also, once the subroutine is tested, it is always ready to perform. Write and test such a
program.

Repeat Problem. 6-73 for the ASME-elliptic fatigue failure locus, implementing Eqs. (6-82)
and (6-83).

Repeat Prob. 673 for the Smith-Dolan fatigue failure locus, implementing Eqs. (6—-86) and (6-87).

Write and test computer subroutines or procedures that will implement
(a) Table 6-2, returning a, b, C, and k,.

(b) Equation (6-20) using Table 64, returning k.

(c) Table 6-11, returning «, g, C, and k..

(d) Equations (6-27) and (6-75), returning kg and Ciy.

Write and test a computer subroutine or procedure that implements Eqgs. (6-76) and (6-77),
returning ¢, 6,, and C,.

Write and test a computer subroutine or procedure that implements Eq. (6—78) and Table 6-15,
returning /@, Ck s, and K.
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Introduction

A shaft is a rotating member, usually of circular cross section, used to transmit power
or motion. It provides the axis of rotation, or oscillation, of elements such as gears,
pulleys, flywheels, cranks, sprockets, and the like and controls the geometry of their
motion. An axle is a nonrotating member that carries no torque and is used to support
rotating wheels, pulleys, and the like. The automotive axle is not a true axle; the term
is a carryover from the horse-and-buggy era, when the wheels rotated on nonrotating
members. A nonrotating axle can readily be designed and analyzed as a static beam, and
will not warrant the special attention given in this chapter to the rotating shafts which are
subject to fatigue loading.

There is really nothing unique about a shaft that requires any special treatment
beyond the basic methods already developed in previous chapters. However, because of
the ubiquity of the shaft in so many machine design applications, there is some advantage
in giving the shaft and its design a closer inspection. A complete shaft design has much
interdependence on the design of the components. The design of the machine itself will
dictate that certain gears, pulleys, bearings, and other elements will have at least been
partially analyzed and their size and spacing tentatively determined. Chapter 18 provides
a complete case study of a power transmission, focusing on the overall design process. In
this chapter, details of the shaft itself will be examined, including the following:

e Material selection
* Geometric layout

e Stress and strength
Static strength
Fatigue strength

* Deflection and rigidity
Bending deflection
Torsional deflection
Slope at bearings and shaft-supported elements
Shear deflection due to transverse loading of short shafts

e Vibration due to natural frequency

In deciding on an approach to shaft sizing, it is necessary to realize that a stress analy-
sis at a specific point on a shaft can be made using only the shaft geometry in the vicinity
of that point. Thus the geometry of the entire shaft is not needed. In design it is usually
possible to locate the critical areas, size these to meet the strength requirements, and then
size the rest of the shaft to meet the requirements of the shaft-supported elements.

The deflection and slope analyses cannot be made until the geometry of the entire
shaft has been defined. Thus deflection is a function of the geometry everywhere,
whereas the stress at a section of interest is a function of local geometry. For this rea-
son, shaft design allows a consideration of stress first. Then, after tentative values for
the shaft dimensions have been established, the determination of the deflections and
slopes can be made.

Shaft Materials

Deflection is not affected by strength, but rather by stiffness as represented by the mod-
ulus of elasticity, which is essentially constant for all steels. For that reason, rigidity
cannot be controlled by material decisions, but only by geometric decisions.
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Necessary strength to resist loading stresses affects the choice of materials and
their treatments. Many shafts are made from low carbon, cold-drawn or hot-rolled steel,
such as ANSI 1020-1050 steels.

Significant strengthening from heat treatment and high alloy content are often not
warranted. Fatigue failure is reduced moderately by increase in strength, and then only
to a certain level before adverse effects in endurance limit and notch sensitivity begin
to counteract the benefits of higher strength. A good practice is to start with an inex-
pensive, low or medium carbon steel for the first time through the design calculations.
If strength considerations turn out to dominate over deflection, then a higher strength
material should be tried, allowing the shaft sizes to be reduced until excess deflection
becomes an issue. The cost of the material and its processing must be weighed against
the need for smaller shaft diameters. When warranted, typical alloy steels for heat treat-
ment include ANSI 1340-50, 3140-50, 4140, 4340, 5140, and 8650.

Shafts usually don’t need to be surface hardened unless they serve as the actual
journal of a bearing surface. Typical material choices for surface hardening include
carburizing grades of ANSI 1020, 4320, 4820, and 8620.

Cold drawn steel is usually used for diameters under about 3 inches. The nom-
inal diameter of the bar can be left unmachined in areas that do not require fitting of
components. Hot rolled steel should be machined all over. For large shafts requiring
much material removal, the residual stresses may tend to cause warping. If con-
centricity is important, it may be necessary to rough machine, then heat treat to
remove residual stresses and increase the strength, then finish machine to the final
dimensions.

In approaching material selection, the amount to be produced is a salient factor. For
low production, turning is the usual primary shaping process. An economic viewpoint
may require removing the least material. High production may permit a volume-
conservative shaping method (hot or cold forming, casting), and minimum material in
the shaft can become a design goal. Cast iron may be specified if the production quan-
tity is high, and the gears are to be integrally cast with the shaft.

Properties of the shaft locally depend on its history—cold work, cold forming,
rolling of fillet features, heat treatment, including quenching medium, agitation, and
tempering regimen.’

Stainless steel may be appropriate for some environments.

Shaft Layout

The general layout of a shaft to accommodate shaft elements, e.g., gears, bearings, and
pulleys, must be specified early in the design process in order to perform a free body
force analysis and to obtain shear-moment diagrams. The geometry of a shaft is gener-
ally that of a stepped cylinder. The use of shaft shoulders is an excellent means of
axially locating the shaft elements and to carry any thrust loads. Figure 7-1 shows an
example of a stepped shaft supporting the gear of a worm-gear speed reducer. Each
shoulder in the shaft serves a specific purpose, which you should attempt to determine
by observation.

ISee Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds-in-chief), Standard Handbook
of Machine Design, 3rd ed., McGraw-Hill, New York, 2004. For cold-worked property prediction see
Chap. 29, and for heat-treated property prediction see Chaps. 29 and 33.
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Figure 7-1

A vertical worm-gear speed
reducer. (Courtesy of the
Cleveland Gear Company.)

Figure 7-2

(a) Choose a shaft
configuration to support and
locate the two gears and two
bearings. (b) Solution uses an
integral pinion, three shaft
shoulders, key and keyway, and
sleeve. The housing locates the
bearings on their outer rings
and receives the thrust loads.
(¢) Choose fan-shaft
configuration. (d) Solution uses
sleeve bearings, a straight-
through shaft, locating collars,
and setscrews for collars, fan
pulley, and fan itself. The fan
housing supports the sleeve
bearings.

(a) (b)

The geometric configuration of a shaft to be designed is often simply a revision of
existing models in which a limited number of changes must be made. If there is no
existing design to use as a starter, then the determination of the shaft layout may have
many solutions. This problem is illustrated by the two examples of Fig. 7-2. In
Fig. 7-2a a geared countershaft is to be supported by two bearings. In Fig. 7-2¢ a
fanshaft is to be configured. The solutions shown in Fig. 7-2b and 7-2d are not neces-
sarily the best ones, but they do illustrate how the shaft-mounted devices are fixed and
located in the axial direction, and how provision is made for torque transfer from one
element to another. There are no absolute rules for specifying the general layout, but the
following guidelines may be helpful.
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Axial Layout of Components

The axial positioning of components is often dictated by the layout of the housing and
other meshing components. In general, it is best to support load-carrying components
between bearings, such as in Fig. 7-2a, rather than cantilevered outboard of the bear-
ings, such as in Fig. 7-2c¢. Pulleys and sprockets often need to be mounted outboard for
ease of installation of the belt or chain. The length of the cantilever should be kept short
to minimize the deflection.

Only two bearings should be used in most cases. For extremely long shafts carrying
several load-bearing components, it may be necessary to provide more than two bearing
supports. In this case, particular care must be given to the alignment of the bearings.

Shafts should be kept short to minimize bending moments and deflections. Some
axial space between components is desirable to allow for lubricant flow and to provide
access space for disassembly of components with a puller. Load bearing components
should be placed near the bearings, again to minimize the bending moment at the loca-
tions that will likely have stress concentrations, and to minimize the deflection at the
load-carrying components.

The components must be accurately located on the shaft to line up with other
mating components, and provision must be made to securely hold the components in
position. The primary means of locating the components is to position them against a
shoulder of the shaft. A shoulder also provides a solid support to minimize deflection
and vibration of the component. Sometimes when the magnitudes of the forces are
reasonably low, shoulders can be constructed with retaining rings in grooves, sleeves
between components, or clamp-on collars. In cases where axial loads are very small, it
may be feasible to do without the shoulders entirely, and rely on press fits, pins, or col-
lars with setscrews to maintain an axial location. See Fig. 7-2b and 7-2d for examples
of some of these means of axial location.

Supporting Axial Loads

In cases where axial loads are not trivial, it is necessary to provide a means to transfer
the axial loads into the shaft, then through a bearing to the ground. This will be partic-
ularly necessary with helical or bevel gears, or tapered roller bearings, as each of these
produces axial force components. Often, the same means of providing axial location,
e.g., shoulders, retaining rings, and pins, will be used to also transmit the axial load into
the shaft.

It is generally best to have only one bearing carry the axial load, to allow greater
tolerances on shaft length dimensions, and to prevent binding if the shaft expands due
to temperature changes. This is particularly important for long shafts. Figures 7-3
and 7-4 show examples of shafts with only one bearing carrying the axial load
against a shoulder, while the other bearing is simply press-fit onto the shaft with no
shoulder.

Providing for Torque Transmission

Most shafts serve to transmit torque from an input gear or pulley, through the shaft, to an
output gear or pulley. Of course, the shaft itself must be sized to support the torsional stress
and torsional deflection. It is also necessary to provide a means of transmitting the torque
between the shaft and the gears. Common torque-transfer elements are:

* Keys

* Splines

* Setscrews
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Figure 7-3

Tapered roller bearings used
in a mowing machine spindle.
This design represents good
practice for the situation in
which one or more torque-
transfer elements must

be mounted outboard.
(Source: Redrawn from
material furnished by The

Timken Company.)

Figure 7-4

A bevel-gear drive in
which both pinion and gear
are straddle-mounted.
(Source: Redrawn from
material furnished by

Gleason Machine Division.)

R =L
f

* Pins
e Press or shrink fits

» Tapered fits

In addition to transmitting the torque, many of these devices are designed to fail if
the torque exceeds acceptable operating limits, protecting more expensive components.

Details regarding hardware components such as keys, pins, and setscrews are
addressed in detail in Sec. 7-7. One of the most effective and economical means of
transmitting moderate to high levels of torque is through a key that fits in a groove in
the shaft and gear. Keyed components generally have a slip fit onto the shaft, so assem-
bly and disassembly is easy. The key provides for positive angular orientation of the
component, which is useful in cases where phase angle timing is important.



Figure 7-5

Arrangement showing bearing
inner rings press-fitted to shaft
while outer rings float in the
housing. The axial clearance
should be sufficient only to

allow for machinery vibrations.

Note the labyrinth seal on the
right.
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Splines are essentially stubby gear teeth formed on the outside of the shaft and on
the inside of the hub of the load-transmitting component. Splines are generally much
more expensive to manufacture than keys, and are usually not necessary for simple
torque transmission. They are typically used to transfer high torques. One feature of a
spline is that it can be made with a reasonably loose slip fit to allow for large axial
motion between the shaft and component while still transmitting torque. This is useful
for connecting two shafts where relative motion between them is common, such as in
connecting a power takeoff (PTO) shaft of a tractor to an implement. SAE and ANSI
publish standards for splines. Stress-concentration factors are greatest where the spline
ends and blends into the shaft, but are generally quite moderate.

For cases of low torque transmission, various means of transmitting torque are
available. These include pins, setscrews in hubs, tapered fits, and press fits.

Press and shrink fits for securing hubs to shafts are used both for torque transfer
and for preserving axial location. The resulting stress-concentration factor is usually
quite small. See Sec. 7-8 for guidelines regarding appropriate sizing and tolerancing to
transmit torque with press and shrink fits. A similar method is to use a split hub with
screws to clamp the hub to the shaft. This method allows for disassembly and lateral
adjustments. Another similar method uses a two-part hub consisting of a split inner
member that fits into a tapered hole. The assembly is then tightened to the shaft with
screws, which forces the inner part into the wheel and clamps the whole assembly
against the shaft.

Tapered fits between the shaft and the shaft-mounted device, such as a wheel, are
often used on the overhanging end of a shaft. Screw threads at the shaft end then permit
the use of a nut to lock the wheel tightly to the shaft. This approach is useful because it
can be disassembled, but it does not provide good axial location of the wheel on the shaft.

At the early stages of the shaft layout, the important thing is to select an appro-
priate means of transmitting torque, and to determine how it affects the overall shaft
layout. It is necessary to know where the shaft discontinuities, such as keyways, holes,
and splines, will be in order to determine critical locations for analysis.

Assembly and Disassembly

Consideration should be given to the method of assembling the components onto the
shaft, and the shaft assembly into the frame. This generally requires the largest diame-
ter in the center of the shaft, with progressively smaller diameters towards the ends to
allow components to be slid on from the ends. If a shoulder is needed on both sides of
a component, one of them must be created by such means as a retaining ring or by a
sleeve between two components. The gearbox itself will need means to physically posi-
tion the shaft into its bearings, and the bearings into the frame. This is typically accom-
plished by providing access through the housing to the bearing at one end of the shaft.
See Figs. 7-5 through 7-8 for examples.

DT>

A




366 Mechanical Engineering Design

Figure 7-6

Similar to the arrangement of
Fig. 7-5 except that the outer

bearing rings are preloaded.

T

Figure 7-8

This arrangement is similar to
Fig. 7-7 in that the left-hand
bearing positions the entire
shaft assembly. In this case
the inner ring is secured to
the shaft using a snap ring.
Note the use of a shield to
prevent dirt generated from
within the machine from

entering the bearing.

/=4

||||||||II>
el Ul
A
[/ SRy -]
Figure 7-7

In this arrangement the inner ring of the left-hand bearing is locked to the shaft between a
nut and a shaft shoulder. The locknut and washer are AFBMA standard. The snap ring in
the outer race is used to positively locate the shaft assembly in the axial direction. Note the
floating right-hand bearing and the grinding runout grooves in the shaft.

When components are to be press-fit to the shaft, the shaft should be designed so
that it is not necessary to press the component down a long length of shaft. This may
require an extra change in diameter, but it will reduce manufacturing and assembly cost
by only requiring the close tolerance for a short length.

Consideration should also be given to the necessity of disassembling the compo-
nents from the shaft. This requires consideration of issues such as accessibility of
retaining rings, space for pullers to access bearings, openings in the housing to allow
pressing the shaft or bearings out, etc.

Shaft Design for Stress

Critical Locations

It is not necessary to evaluate the stresses in a shaft at every point; a few potentially
critical locations will suffice. Critical locations will usually be on the outer surface, at
axial locations where the bending moment is large, where the torque is present, and
where stress concentrations exist. By direct comparison of various points along the
shaft, a few critical locations can be identified upon which to base the design. An
assessment of typical stress situations will help.
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Most shafts will transmit torque through a portion of the shaft. Typically the torque
comes into the shaft at one gear and leaves the shaft at another gear. A free body dia-
gram of the shaft will allow the torque at any section to be determined. The torque is
often relatively constant at steady state operation. The shear stress due to the torsion
will be greatest on outer surfaces.

The bending moments on a shaft can be determined by shear and bending moment
diagrams. Since most shaft problems incorporate gears or pulleys that introduce forces
in two planes, the shear and bending moment diagrams will generally be needed in two
planes. Resultant moments are obtained by summing moments as vectors at points of
interest along the shaft. The phase angle of the moments is not important since the
shaft rotates. A steady bending moment will produce a completely reversed moment
on a rotating shaft, as a specific stress element will alternate from compression to
tension in every revolution of the shaft. The normal stress due to bending moments
will be greatest on the outer surfaces. In situations where a bearing is located at the
end of the shaft, stresses near the bearing are often not critical since the bending
moment is small.

Axial stresses on shafts due to the axial components transmitted through helical
gears or tapered roller bearings will almost always be negligibly small compared to
the bending moment stress. They are often also constant, so they contribute little to
fatigue. Consequently, it is usually acceptable to neglect the axial stresses induced by
the gears and bearings when bending is present in a shaft. If an axial load is applied
to the shaft in some other wayj, it is not safe to assume it is negligible without check-
ing magnitudes.

Shaft Stresses

Bending, torsion, and axial stresses may be present in both midrange and alternating
components. For analysis, it is simple enough to combine the different types of stresses
into alternating and midrange von Mises stresses, as shown in Sec. 6-14, p. 317.
It is sometimes convenient to customize the equations specifically for shaft applica-
tions. Axial loads are usually comparatively very small at critical locations where
bending and torsion dominate, so they will be left out of the following equations. The
fluctuating stresses due to bending and torsion are given by

M M

O’asz Iac Oy =Kf ;nC (7—])
T,c T,nc

T, = Kfs% Ty = Kfs% (7-2)

where M,, and M, are the midrange and alternating bending moments, 7,, and 7, are
the midrange and alternating torques, and Ky and K, are the fatigue stress-concentration
factors for bending and torsion, respectively.

Assuming a solid shaft with round cross section, appropriate geometry terms can
be introduced for ¢, I, and J resulting in

32M, 32M,,
w=KZm o= kTE 73
167, 167,
Ta = Kfs— T = Kfs— (7_4)

nd3
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Combining these stresses in accordance with the distortion energy failure theory,
the von Mises stresses for rotating round, solid shafts, neglecting axial loads, are

given by
N 32K, M, \* 16K /,T,\* 2
sl t3) =g ) T\ 7-9)
s [(32KMNE L (16KT 2]
= (O’m +3Tm) 2= (7) +3 <7> (7—6)

Note that the stress-concentration factors are sometimes considered optional for the
midrange components with ductile materials, because of the capacity of the ductile
material to yield locally at the discontinuity.

These equivalent alternating and midrange stresses can be evaluated using an
appropriate failure curve on the modified Goodman diagram (See Sec. 612, p. 303, and
Fig. 6-27). For example, the fatigue failure criteria for the modified Goodman line as
expressed previously in Eq. (6—46) is

/

li
1 oo o
n Se Sut

Substitution of ¢/, and o,, from Eqgs. (7-5) and (7-6) results in

1 16 (1
- = d3{ [4(KyM,)* +3(KysTo)?]

V2 b [AK M)+ 3(K Tm)z]”z}
ut
For design purposes, it is also desirable to solve the equation for the diameter. This
results in

16n
d= (7 {S [4(KrM,)* + 3(Ky,T) ]

ut

1 2 2\’
[4(K;M,)* +3(KyT)?]

Similar expressions can be obtained for any of the common failure criteria by sub-
stituting the von Mises stresses from Eqs. (7-5) and (7-6) into any of the failure
criteria expressed by Eqs. (6—45) through (6—48), p. 306. The resulting equations for
several of the commonly used failure curves are summarized below. The names
given to each set of equations identifies the significant failure theory, followed by a
fatigue failure locus name. For example, DE-Gerber indicates the stresses are com-
bined using the distortion energy (DE) theory, and the Gerber criteria is used for the
fatigue failure.

DE-Goodman
1 1 1
n 53 { [4(KfM) + 3(KssTy) ]1/2 [4(Kme)2+3(KfsTm)2]l/2}
(7-7)
= <% { 4(KfMa)2 +3(KfsTa)2]l/2
1 NG (7-8)
+ 5 (4K M 3K ) })
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DE-Gerber
1_ 84 1+ -1 + (23Se>2- " (7-9)
n  wd3S, i ASu ]
8nA T s 1)
d= = 1+ 1+<AS;> (7-10)
where _ _
A = JHK M)+ 3K, T
B = \J4K:M,)? +3(KpT,)?
DE-ASME Elliptic

1 16 KM\ K¢ T, \> KM, \> KT\
o 4 fa +3 fsta +4 fm +3 fsdm
n_ wd? S, S, S, S,

(7-11)
1,2 /3
16 KM, \> KT, \° K My \* KT \>
d=12 g (208 Ly Bsta) |y (218 4 g Bfsim
Y Se Se Sy S_V
(7-12)

DE-Soderberg

1 16 (1 1/2 1 1/2
— = —{ —[4(K; M) + 3(K s T,)? — [4(Ky M,)* + 3(K s Th)?
n nd3{5e[(f S 3K +Syz[(f S 3K T

(7-13)

16 1
d= (_n {_ [4(Kr M) + 3K, 7))
T S
1 e (7-14)
+ S_ [4(Kme)2 + 3(KfSTm)2] })
vt

For a rotating shaft with constant bending and torsion, the bending stress is com-
pletely reversed and the torsion is steady. Equations (7-7) through (7-14) can be sim-
plified by setting M,, and T, equal to 0, which simply drops out some of the terms.

Note that in an analysis situation in which the diameter is known and the factor of
safety is desired, as an alternative to using the specialized equations above, it is always
still valid to calculate the alternating and mid-range stresses using Eqgs. (7-5) and (7-6),
and substitute them into one of the equations for the failure criteria, Egs. (6—45) through
(6-48), and solve directly for n. In a design situation, however, having the equations
pre-solved for diameter is quite helpful.

It is always necessary to consider the possibility of static failure in the first load cycle.
The Soderberg criteria inherently guards against yielding, as can be seen by noting that
its failure curve is conservatively within the yield (Langer) line on Fig. 6-27, p. 305. The
ASME Elliptic also takes yielding into account, but is not entirely conservative
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EXAMPLE 7-1

Solution

throughout its entire range. This is evident by noting that it crosses the yield line in
Fig. 6-27. The Gerber and modified Goodman criteria do not guard against yielding,
requiring a separate check for yielding. A von Mises maximum stress is calculated for this

purpose.

Ot = [(Om + 027 +3 (1w + 10)%]"°

1/2
[ 32k (M, + M) 2+3 16K s (T + TH\?]"
- wd3 wd3

(7-15)

To check for yielding, this von Mises maximum stress is compared to the yield
strength, as usual.
Sy

/
Gmax

(7-16)

ny =

For a quick, conservative check, an estimate for o, ,, can be obtained by simply
adding o, and o,,. (o, + 0,,) will always be greater than or equal to o, ., and will

max?
therefore be conservative.

At a machined shaft shoulder the small diameter d is 1.100 in, the large diameter D is
1.65 in, and the fillet radius is 0.11 in. The bending moment is 1260 1bf - in and the
steady torsion moment is 1100 Ibf - in. The heat-treated steel shaft has an ultimate
strength of S,; = 105 kpsi and a yield strength of S, = 82 kpsi. The reliability goal
is 0.99.

(a) Determine the fatigue factor of safety of the design using each of the fatigue failure
criteria described in this section.

(b) Determine the yielding factor of safety.

(@) D/d = 1.65/1.100 = 1.50, r/d = 0.11/1.100 = 0.10, K, = 1.68 (Fig. A~15-9),
K, = 1.42 (Fig. A~15-8), ¢ = 0.85 (Fig. 6-20), gshear = 0.88 (Fig. 6-21).

From Eq. (6-32),
K;=1+0.85(1.68 — 1) =1.58
Krs =1+40.88(1.42 1) =1.37

Eq. (6-8): S = 0.5(105) = 52.5kpsi
Eq. (6-19): k, = 2.70(105)~0265 = .787
1,100\ ~0107
Eq. (6-20): ky = | — = 0.870
q. (6-20) b (O.30>

ke =hky=k; =1
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Table 6-6: ke = 0.814
Se = 0.787(0.870)0.814(52.5) = 29.3 kpsi

For a rotating shaft, the constant bending moment will create a completely reversed
bending stress.

M, = 1260 Ibf - in T, = 1100 Ibf - in M,=T,=0

Applying Eq. (7-7) for the DE-Goodman criteria gives

116 [[40.58-12600°]7  [3(1.37-1100)2] " okls
n mw(l.1)3 29300 105 000 e

n=1.63 DE-Goodman

Similarly, applying Egs. (7-9), (7-11), and (7-13) for the other failure criteria,
n=1.87 DE-Gerber
n =188 DE-ASME Elliptic

n =1.56 DE-Soderberg

For comparison, consider an equivalent approach of calculating the stresses and apply-
ing the fatigue failure criteria directly. From Egs. (7-5) and (7-6),

1/2

) 32.1.58-1260\2]" _

O'a = T = 15235ps1
T o

1/2
) 16-1.37-1100\> 1" ,
O, = 3 T 29988p51
T o

Taking, for example, the Goodman failure critera, application of Eq. (6-46)
gives

1 o o, 15235 9988
2% O _ n =0.615
n S, S, 29300 105000

n=1.63

which is identical with the previous result. The same process could be used for the other
failure criteria.

(b) For the yielding factor of safety, determine an equivalent von Mises maximum
stress using Eq. (7-15).

2 271/2
() (]

S, 82000
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Sharp radius

Large radius undercut
Stress flow

Figure 7-9

S

(a)

For comparison, a quick and very conservative check on yielding can be obtained
by replacing o, with o/, + o,,. This just saves the extra time of calculating o/, if
o, and o,, have already been determined. For this example,

Sy 8000
o, +o), 15235+9988

m

3.25

nyz

which is quite conservative compared with n, = 4.50.

Estimating Stress Concentrations

The stress analysis process for fatigue is highly dependent on stress concentrations.
Stress concentrations for shoulders and keyways are dependent on size specifications
that are not known the first time through the process. Fortunately, since these elements
are usually of standard proportions, it is possible to estimate the stress-concentration
factors for initial design of the shaft. These stress concentrations will be fine-tuned in
successive iterations, once the details are known.

Shoulders for bearing and gear support should match the catalog recommendation
for the specific bearing or gear. A look through bearing catalogs shows that a typical
bearing calls for the ratio of D/d to be between 1.2 and 1.5. For a first approximation,
the worst case of 1.5 can be assumed. Similarly, the fillet radius at the shoulder needs
to be sized to avoid interference with the fillet radius of the mating component. There is
a significant variation in typical bearings in the ratio of fillet radius versus bore diameter,
with r/d typically ranging from around 0.02 to 0.06. A quick look at the stress con-
centration charts (Figures A—15-8 and A—15-9) shows that the stress concentrations for
bending and torsion increase significantly in this range. For example, with D/d = 1.5
for bending, K, = 2.7 at r/d = 0.02, and reduces to K, = 2.1 at r/d = 0.05, and
further down to K, = 1.7 at r/d = 0.1. This indicates that this is an area where some
attention to detail could make a significant difference. Fortunately, in most cases the
shear and bending moment diagrams show that bending moments are quite low near
the bearings, since the bending moments from the ground reaction forces are small.

In cases where the shoulder at the bearing is found to be critical, the designer
should plan to select a bearing with generous fillet radius, or consider providing for a
larger fillet radius on the shaft by relieving it into the base of the shoulder as shown
in Fig. 7-9a. This effectively creates a dead zone in the shoulder area that does not

Shoulder Large radius
relief groove relief groove

Bearing

Shaft

Techniques for reducing stress concentration at a shoulder supporting a bearing with a sharp radius. (a) Large radius undercut

into the shoulder. (b) Large radius relief groove into the back of the shoulder. (¢) Large radius relief groove into the small diameter.
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carry the bending stresses, as shown by the stress flow lines. A shoulder relief groove
as shown in Fig. 7-9b can accomplish a similar purpose. Another option is to cut a
large-radius relief groove into the small diameter of the shaft, as shown in Fig. 7-9c.
This has the disadvantage of reducing the cross-sectional area, but is often used in cases
where it is useful to provide a relief groove before the shoulder to prevent the grinding
or turning operation from having to go all the way to the shoulder.

For the standard shoulder fillet, for estimating K, values for the first iteration,
an r/d ratio should be selected so K, values can be obtained. For the worst end
of the spectrum, with r/d =0.02 and D/d = 1.5, K, values from the stress
concentration charts for shoulders indicate 2.7 for bending, 2.2 for torsion, and 3.0
for axial.

A keyway will produce a stress concentration near a critical point where the load-
transmitting component is located. The stress concentration in an end-milled keyseat
is a function of the ratio of the radius r at the bottom of the groove and the shaft
diameter d. For early stages of the design process, it is possible to estimate the stress
concentration for keyways regardless of the actual shaft dimensions by assuming a
typical ratio of r/d = 0.02. This gives K, = 2.14 for bending and K,; = 3.0 for
torsion, assuming the key is in place.

Figures A—15-16 and A—15-17 give values for stress concentrations for flat-
bottomed grooves such as used for retaining rings. By examining typical retaining
ring specifications in vendor catalogs, it can be seen that the groove width is typically
slightly greater than the groove depth, and the radius at the bottom of the groove is
around 1/10 of the groove width. From Figs. A—15-16 and A—15-17, stress-concentration
factors for typical retaining ring dimensions are around 5 for bending and axial, and 3
for torsion. Fortunately, the small radius will often lead to a smaller notch sensitivity,
reducing K.

Table 7-1 summarizes some typical stress-concentration factors for the first itera-
tion in the design of a shaft. Similar estimates can be made for other features. The point
is to notice that stress concentrations are essentially normalized so that they are depen-
dent on ratios of geometry features, not on the specific dimensions. Consequently, by
estimating the appropriate ratios, the first iteration values for stress concentrations can
be obtained. These values can be used for initial design, then actual values inserted once
diameters have been determined.

Table 7-1

First Iteration Estimates for Stress-Concentration Factors K, and K.

Warning: These factors are only estimates for use when actual dimensions are not yet
determined. Do not use these once actual dimensions are available.

Bending Torsional Axial

Shoulder fillet—sharp (/d = 0.02) 2.7 22 3.0
Shoulder fillet—well rounded (r/d = 0.1) 1.7 1.5 1.9
End-mill keyseat (r/d = 0.02) 2.14 3.0 —
Sled runner keyseat 1.7 — —
Retaining ring groove 5.0 3.0 5.0

Missing values in the table are not readily available.
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EXAMPLE 7-2

This example problem is part of a larger case study. See Chap. 18 for the full
context.

A double reduction gearbox design has developed to the point that the general
layout and axial dimensions of the countershaft carrying two spur gears has been
proposed, as shown in Fig. 7-10. The gears and bearings are located and supported
by shoulders, and held in place by retaining rings. The gears transmit torque
through keys. Gears have been specified as shown, allowing the tangential and
radial forces transmitted through the gears to the shaft to be determined as
follows.

Wi, = 5401bf Wi, = 24311bf
W33 = 197 Ibf Ws, = 885 Ibf

where the superscripts t and r represent tangential and radial directions,
respectively; and, the subscripts 23 and 54 represent the forces exerted
by gears 2 and 5 (hot shown) on gears 3 and 4, respectively.

Proceed with the next phase of the design, in which a suitable material
is selected, and appropriate diameters for each section of the shaft are
estimated, based on providing sufficient fatigue and static stress capacity
for infinite life of the shaft, with minimum safety factors of 1.5.

Bearing A Bearing B
Gear 3
dz =12

O dy=2.67 O

:
bedllry ¢

O

4—9»
—

O

T ——
g
2l nl vl n vy =3 = =] ohal & L & %
k<] ] I el AR I D o h P @) b el =1 = = =
Alal sl —l —lai o ) o~ %) alal = = =l =
C A D EF G H 1 J KL M B N

Figure 7-10

Shaft layout for Ex. 7-2. Dimensions in inches.
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Solution W

Perform free body diagram y l/Wz’s

analysis to get reaction forces W5,

at the bearings. l
L Ryy >

Ry, = 115.01bf : >

Ray = 356.7Ibf y A

Rpy = 725.31bf Ry

I
|
From £ M., find the torque in 7 i
the shaft between the gears, I
T = Wiy(d3/2) = 540(12/2) =

4 B
Rp; = 1776.0 Ibf }E'» e 1§ s ok
|

32401bf - in.

Generate shear-moment 655

diagrams for two planes. 115

x-z Plane

x-y Plane

Combine orthogonal planes as
vectors to get total moments,
e.g., at J, +/3996% 4+ 1632% =
4316 1bf - in.

Start with Point I, where the bending moment is high, there is a stress con-
centration at the shoulder, and the torque is present.

At I, M, =3651 1bf - in, T, = 3240 Ibf - in, M,, =T, =0
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Assume generous fillet radius for gear at I.

From Table 7-1, estimate K; = 1.7, K;; = 1.5. For quick, conservative first
pass, assume Ky = K;, Ky; = K.

Choose inexpensive steel, 1020 €D, with S,; = 68 kpsi. For S,,

Eq. (6-19) k= aSL’jt = 2.7(68)792%5 = (.883
Guess k, = 0.9. Check later when d is known.
o= tkegt =, =1

Eq. (6-18) Se = (0.883)(0.9)(0.5)(68) = 27.0 kpsi

For first estimate of the small diameter at the shoulder at point I, use the
DE-Goodman criterion of Eq. (7-8). This criterion is good for the initial design,
since it is simple and conservative. With M,, = T, = 0, Eq. (7-8) reduces to
1/2 1/3

60 (2(,m) | [3(KnTh)]

ar=
97 Se Sllt

14 27000 68 000

4 |15 (2(1.7) Gesh) , {310.5) (3240)]2}1/2>}1/3

d =1.65in

All estimates have probably been conservative, so select the next standard size
below 1.65 in. and check, d = 1.625 in.

A typical D/d ratio for support at a shoulder is D/d = 1.2, thus, D = 1.2(1.625) =
1.95 in. Increase to D = 2.0 in. A hominal 2 in. cold-drawn shaft diameter can be
used. Check if estimates were acceptable.

D/d =2/1.625=1.23
Assume fillet radius r =d/10 = 0.16in. r/d = 0.1
K; = 1.6 (Fig. A-15-9), ¢ = 0.82 (Fig. 6-20)
Eq. (6-32) Kf=1+0.82(1.6—-1) =149
Ky = 1.35 (Fig. A=15-8), ¢; = 0.85 (Fig. 6-21)
K =1+0.85(1.35—-1) =1.30
k, = 0.883 (no change)
1.625\ 17
Eq. (6-20) ky = <W) =0.835
S. = (0.883)(0.835)(0.5)(68) = 25.1 kpsi
_ 32KyM,  32(1.49)(3651)

Eq. (7-5) o= = RS = 12910 psi

A i 3<I6KfsTm)2 Y /3(16)(1.30)(3240) T
a- (7= On = R TR 5 A i i

nd3
Using Goodman criterion
1\ ol | o 12910 8659

—_— a _— _—

n =S TS, T 25100 T 68000
nf = 1.56
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Note that we could have used Eq. (7-7) directly.
Check yielding.
Sy S5 57000
> - =
o/ o/ +o), 12910+ 8659

max

=2.64

I’Ly:

Also check this diameter at the end of the keyway, just to the right of point 1,
and at the groove at point K. From moment diagram, estimate M at end of
keyway to be M = 3750 Ibf-in.

Assume the radius at the bottom of the keyway will be the standard
r/d = 0.02, r = 0.02 d = 0.02 (1.625) = 0.0325 in.

K, = 2.14 (Table 7-1), g = 0.65 (Fig. 6-20)
Kr=1+0652.14—1)=1.74
K, = 3.0 (Table 7-1), g, = 0.71 (Fig. 6-21)
Kpo=140713 = 1) =2.42
o 32K/ M, il 32(1.74)(3750)
7 md3 7(1.625)3
T /3(16)(2.42)(3240)

= 15490 psi

K
LBt = — 16120 psi

m 16)="75 7(1.625) pst
1 o o 15490 16120

= fay Im | DR O 0854

n S T S. 25100 T 68000

l’lf = 1.17

The keyway turns out to be more critical than the shoulder. We can either
increase the diameter or use a higher strength material. Unless the deflection
analysis shows a need for larger diameters, let us choose to increase the
strength. We started with a very low strength and can afford to increase it
some to avoid larger sizes. Try 1050 €D with S,; = 100 kpsi.

Recalculate factors affected by Sy, i.e., k, = S.; ¢ = Ky — o,

k, = 2.7(100)7%2% = 0.797, S, = 0.797(0.835)(0.5)(100) = 33.3 kpsi
g=072,K; =1+0.72(2.14 — 1) = 1.82
. 32(1.82)(3750)
% T T (1625
1 16200 16120
n; 33300 | 100000

I’lf =1.54

Since the Goodman criterion is conservative, we will accept this as close enough
to the requested 1.5.

Check at the groove at K, since K, for flat-bottomed grooves are often very
high. From the torque diagram, note that no forque is present at the groove.
From the moment diagram, M, = 2398 1bf - in, M,, = T, = T,, = 0. To quickly
check if this location is potentially critical, just use Ky = K; = 5.0 as an
estimate, from Table 7-1.

32KyM,  32(5)(2398)
o‘u — = =]
nd3 m(1.625)3

= 16200 psi

=0.648

= 28460 psi
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This is low. We will look up data for a specific retaining ring to obtain Ky more
accurately. With a quick online search of a retaining ring specification using the
website www.globalspec.com, appropriate groove specifications for a retaining ring
for a shaft diameter of 1.625 in are obtained as follows: width, a = 0.068 in;
depth, t = 0.048in; and corner radius at bottom of groove, r = 0.01 in. From

Fig. A-15-16, with r/t = 0.01/0.048 = 0.208, and a/r = 0.068/0.048 = 1.42

K, =43,9 =0.65 (Fig. 6-20)
K =1+4+0.65(43—1)=3.15

32K, M,  32(3.15)(2398
o | S2K M| | 3203-19)(2398) = 17930 psi
nd? 7(1.625)3

Se 33300
B o T T703p T 100

Quickly check if point M might be critical. Only bending is present, and the moment
is small, but the diameter is small and the stress concentration is high for a sharp
fillet required for a bearing. From the moment diagram,
M, =959 Ibf - in,and M,, =T,, = T, = 0.

Estimate K, = 2.7 from Table 7-1, d = 1.0 in, and fillet radius r to fit a typical
bearing.

r/d = 0.02, r = 0.02(1) = 0.02
¢ = 0.7 (Fig. 6-20)

Ky =1+(0.7)(27—1)=2.19

32K, M,  32(2.19)(959)

L il — 21 390psi
a 7 (1)} pst
S, 33300
o 21390

Should be OK. Close enough to recheck after bearing is selected.

With the diameters specified for the critical locations, fill in trial values for
the rest of the diameters, taking into account typical shoulder heights for
bearing and gear support.

Dy =D;=10in

Dy = Dg = 1.4 in

D3 = Ds = 1.625 in

D, =2.0in
The bending moments are much less on the left end of shaft, so D;, D>, and D;
could be smaller. However, unless weight is an issue, there is little advantage to

requiring more material removal. Also, the extra rigidity may be needed to keep
deflections small.



www.globalspec.com

Table 7-2

Typical Maximum
Ranges for Slopes and
Transverse Deflections
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0.0005—0.0012 rad
0.0008—0.0012 rad
0.001—0.003 rad
0.026—0.052 rad
0.026—0.052 rad
< 0.0005 rad

Tapered roller
Cylindrical roller
Deep-groove ball
Spherical ball
Self-align ball

Uncrowned spur gear

Spur gears with P < 10 teeth/in 0.010 in
Spur gears with 11 < P < 19 0.005 in
Spur gears with 20 < P < 50 0.003 in

Deflection Considerations

Deflection analysis at even a single point of interest requires complete geometry infor-
mation for the entire shaft. For this reason, it is desirable to design the dimensions at
critical locations to handle the stresses, and fill in reasonable estimates for all other
dimensions, before performing a deflection analysis. Deflection of the shaft, both lin-
ear and angular, should be checked at gears and bearings. Allowable deflections will
depend on many factors, and bearing and gear catalogs should be used for guidance
on allowable misalignment for specific bearings and gears. As a rough guideline, typ-
ical ranges for maximum slopes and transverse deflections of the shaft centerline are
given in Table 7-2. The allowable transverse deflections for spur gears are dependent
on the size of the teeth, as represented by the diametral pitch P = number of
teeth/pitch diameter.

In Sec. 44 several beam deflection methods are described. For shafts, where the
deflections may be sought at a number of different points, integration using either
singularity functions or numerical integration is practical. In a stepped shaft, the cross-
sectional properties change along the shaft at each step, increasing the complexity of
integration, since both M and [ vary. Fortunately, only the gross geometric dimensions
need to be included, as the local factors such as fillets, grooves, and keyways do not
have much impact on deflection. Example 4—7 demonstrates the use of singularity func-
tions for a stepped shaft. Many shafts will include forces in multiple planes, requiring
either a three-dimensional analysis, or the use of superposition to obtain deflections in
two planes which can then be summed as vectors.

A deflection analysis is straightforward, but it is lengthy and tedious to carry out
manually, particularly for multiple points of interest. Consequently, practically all shaft
deflection analysis will be evaluated with the assistance of software. Any general-
purpose finite-element software can readily handle a shaft problem (see Chap. 19).
This is practical if the designer is already familiar with using the software and with how
to properly model the shaft. Special-purpose software solutions for 3-D shaft analysis
are available, but somewhat expensive if only used occasionally. Software requiring
very little training is readily available for planar beam analysis, and can be downloaded
from the internet. Example 7-3 demonstrates how to incorporate such a program for a
shaft with forces in multiple planes.
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~ EXAMPLE 7-3

This example problem is part of a larger case study. See Chap. 18 for the full
context.

In Ex. 7-2, a preliminary shaft geometry was obtained on the basis of design
for stress. The resulting shaft is shown in Fig. 7-10, with proposed diameters of

D, =D;=1in

D, = Dg = 1.4 in
D3 = Ds = 1.625 in
Dy =20in

Check that the deflections and slopes at the gears and bearings are acceptable. If
necessary, propose changes in the geometry to resolve any problems.

Solution

A simple planar beam analysis program will be used. By modeling the shaft twice,
with loads in fwo orthogonal planes, and combining the results, the shaft deflec-
tions can readily be obtained. For both planes, the material is selected (steel with
E =30 Mpsi), the shaft lengths and diameters are entered, and the bearing loca-
tions are specified. Local details like grooves and keyways are ignored, as they
will have insignificant effect on the deflections. Then the tangential gear forces
are entered in the horizontal xz plane model, and the radial gear forces are
entered in the vertical xy plane model. The software can calculate the bearing
reaction forces, and numerically integrate fo generate plots for shear, moment,
slope, and deflection, as shown in Fig. 7-11.

xy plane xz plane
A A A A
I 1 I 1
Beam length: 11.5 in Beam length: 11.5 in
N /| /
/ i / 1
Deflection Deflection
deg \ -
Slope Slope
/\ Ibf-in /\ Ibf-in
Moment Moment
I_I - 7
Ibf Ibf
Shear Shear
o
Figure 7-11
Shear, moment, slope, and deflection plots from two planes. (Source: Beam 2D Stress Analysis, Orand
Systems, Inc.)
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Point of Interest xz Plane xy Plane Total
Left bearing slope 0.02263 deg 0.01770 deg 0.02872 deg
0.000501 rad
Right bearing slope 0.05711 deg 0.02599 deg 0.06274 deg
0.001095 rad
Left gear slope 0.02067 deg 0.01162 deg 0.02371 deg
0.000414 rad
Right gear slope 0.02155 deg 0.01149 deg 0.02442 deg
0.000426 rad
Left gear deflection 0.0007568 in 0.0005153 in 0.0009155 in
Right gear deflection 0.0015870 in 0.0007535 in 0.0017567 in
Table 7-3

Slope and Deflection Values at Key Locations

The deflections and slopes at points of interest are obtained from the plots,
and combined with orthogonal vector addition, that is, § = /82, + 8)%y. Results are
shown in Table 7-3.

Whether these values are acceptable will depend on the specific bearings and
gears selected, as well as the level of performance expected. According
to the guidelines in Table 7-2, all of the bearing slopes are well below typical
limits for ball bearings. The right bearing slope is within the typical range for
cylindrical bearings. Since the load on the right bearing is relatively high, a
cylindrical bearing might be used. This constraint should be checked against
the specific bearing specifications once the bearing is selected.

The gear slopes and deflections more than satisfy the limits recommended
in Table 7-2. It is recommended fo proceed with the design, with an

deflection check.

Once deflections at various points have been determined, if any value is larger than
the allowable deflection at that point, since / is proportional to d*, a new diameter can
be found from

1/4
g Yold

Yall

where yy is the allowable deflection at that station and n, is the design factor. Similarly,
if any slope is larger than the allowable slope 8,1, a new diameter can be found from

na(dy/dx)oq |'*
(slop€)an

where (slope),y is the allowable slope. As a result of these calculations, determine the
largest dpew /doq ratio, then multiply all diameters by this ratio. The tight constraint will
be just tight, and all others will be loose. Don’t be too concerned about end journal
sizes, as their influence is usually negligible. The beauty of the method is that the
deflections need to be completed just once and constraints can be rendered loose but for
one, with diameters all identified without reworking every deflection.

(7-17)

dnew = dold

hew = dold (7-18)
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EXAMPLE 7-4

Solution

For the shaft in Ex. 7-3, it was noted that the slope at the right bearing is near the limit
for a cylindrical roller bearing. Determine an appropriate increase in diameters to bring
this slope down to 0.0005 rad.

Applying Eq. (7-17) to the deflection at the right bearing gives

1/4 1/4
oo = dgg|"@S10PC0t |y | (DO001095) |55 o
slopean (0.0005)
Multiplying all diameters by the ratio
dhew  1.216
== S =1.216
dold 1.0

gives a new set of diameters,
Dy =D;=1.2161n
Dy = Dg =1.702 in
D3 = Ds =1.976 in
Dy =2.432in

Repeating the beam deflection analysis of Ex. 7-3 with these new diameters produces
a slope at the right bearing of 0.0005 in, with all other deflections less than their previ-
ous values.

The transverse shear V at a section of a beam in flexure imposes a shearing deflec-
tion, which is superposed on the bending deflection. Usually such shearing deflection
is less than 1 percent of the transverse bending deflection, and it is seldom evaluated.
However, when the shaft length-to-diameter ratio is less than 10, the shear component
of transverse deflection merits attention. There are many short shafts. A tabular method
is explained in detail elsewhere?, including examples.

For right-circular cylindrical shafts in torsion the angular deflection 6 is given in
Eq. (4-5). For a stepped shaft with individual cylinder length /; and torque 7;, the
angular deflection can be estimated from

Til;
0= 0; = 7-19
2%=2.5 (7-19)
or, for a constant torque throughout homogeneous material, from
T [;
0 =— — 7-20
7 (7-20)

This should be treated only as an estimate, since experimental evidence shows that the
actual 6 is larger than given by Egs. (7-19) and (7-20).?

’C.R. Mischke, “Tabular Method for Transverse Shear Deflection,” Sec. 17.3 in Joseph E. Shigley, Charles
R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill,
New York, 2004.

3R. Bruce Hopkins, Design Analysis of Shafts and Beams, McGraw-Hill, New York, 1970, pp. 93-99.



Figure 7-12

(a) A uniform-diameter
shaft for Eq. (7-22). (b) A
segmented uniform-diameter
shaft for Eq. (7-23).
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If torsional stiffness is defined as k; = 7;/6; and, since 6; = T;/k; and
0 =Y 6; = > (T;/k;), for constant torque 6 = T Y (1/k;), it follows that the torsional
stiffness of the shaft k in terms of segment stiffnesses is

1 1
E:Zk_ (7-21)

Critical Speeds for Shafts

When a shaft is turning, eccentricity causes a centrifugal force deflection, which is
resisted by the shaft’s flexural rigidity E7. As long as deflections are small, no harm is
done. Another potential problem, however, is called critical speeds: at certain speeds
the shaft is unstable, with deflections increasing without upper bound. It is fortunate
that although the dynamic deflection shape is unknown, using a static deflection curve
gives an excellent estimate of the lowest critical speed. Such a curve meets the bound-
ary condition of the differential equation (zero moment and deflection at both bearings)
and the shaft energy is not particularly sensitive to the exact shape of the deflection
curve. Designers seek first critical speeds at least twice the operating speed.

The shaft, because of its own mass, has a critical speed. The ensemble of attach-
ments to a shaft likewise has a critical speed that is much lower than the shaft’s intrin-
sic critical speed. Estimating these critical speeds (and harmonics) is a task of the
designer. When geometry is simple, as in a shaft of uniform diameter, simply supported,
the task is easy. It can be expressed* as

x\* [EI 7\* [gEI
o=(=),—=(=). /= (7-22)
l m [ Ay

where m is the mass per unit length, A the cross-sectional area, and y the specific
weight. For an ensemble of attachments, Rayleigh’s method for lumped masses gives®

w] = 78 Z wi';}i (7—23)
Z w; y;

where w; is the weight of the ith location and y; is the deflection at the ith body location.
It is possible to use Eq. (7-23) for the case of Eq. (7-22) by partitioning the shaft into
segments and placing its weight force at the segment centroid as seen in Fig. 7-12.

y

(@)

(b)

*William T. Thomson and Marie Dillon Dahleh, Theory of Vibration with Applications, Prentice Hall,
Sthed., 1998, p. 273.

SThomson, op. cit., p. 357.
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Figure 7-13

The influence coefficient §;;
is the deflection at i due to a
unit load at j.

y Unit load

%xiﬁ
X )

A

Computer assistance is often used to lessen the difficulty in finding transverse deflections
of a stepped shaft. Rayleigh’s equation overestimates the critical speed.

To counter the increasing complexity of detail, we adopt a useful viewpoint.
Inasmuch as the shaft is an elastic body, we can use influence coefficients. An influence
coefficient is the transverse deflection at location i on a shaft due to a unit load at loca-
tion j on the shaft. From Table A-9-6 we obtain, for a simply supported beam with a
single unit load as shown in Fig. 7-13,

bjxi (12 _p2 2)

GEN" T i =
8ij = (7-24)
(- x;
M(lei —a? —x7) Xj > a;
6E1l o

For three loads the influence coefficients may be displayed as

d11 312 313
821 822 823
831 832 933

Maxwell’s reciprocity theorem® states that there is a symmetry about the main diago-
nal, composed of 811, 825, and 833, of the form §;; = §;;. This relation reduces the work
of finding the influence coefficients. From the influence coefficients above, one can find
the deflections y;, y», and y3 of Eq. (7-23) as follows:

yi = Fi811 + F2é12 + F3613
v2 = F1821 + F2805 + F3823 (7-25)
y3 = F1831 + F283 + F3633

The forces F; can arise from weight attached w; or centrifugal forces mia)zyi. The
equation set (7-25) written with inertial forces can be displayed as

Vi = mi@’y1811 + maw’y281n + myw’y3dis
V2 = mi@’y1821 + maw?y28s + maw’y3das

V3 = mi@’y1831 + maw* 283 + myw’ysdss

%Thomson, op. cit., p. 167.
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which can be rewritten as
(m1811 — 1/*)y1 + (m2812)y2 + (m3813)y3 = 0
(m1821)y1 + (M2dyy — 1/w)ys + (m3823)y3 = 0 (a)
(m1831)y1 + (M2832)y2 + (m3833 — 1/w®)y3 =0

Equation set (a) is three simultaneous equations in terms of y;, y», and y3. To avoid the
trivial solution y; = y, = y3 = 0, the determinant of the coefficients of y;, y,, and y3
must be zero (eigenvalue problem). Thus,

(m811 — 1/w?) my812 m3813
mi8s1 (M2 — 1/w?) m3823 =0 (7-2¢6)
mi83; m283» (m3833 — 1/w?)

which says that a deflection other than zero exists only at three distinct values of w, the
critical speeds. Expanding the determinant, we obtain

1\° 1\?
((17) — (m811 + mady + Mm3833) (;) +---=0 (7-27)

The three roots of Eq. (7-27) can be expressed as 1/w?, 1/w3, and 1/w3. Thus
Eq. (7-27) can be written in the form

LN L1\ 11y

o )\ )\ W)
Ly : + : + : Ly +--=0 (7-28)
w? 0l @) o) \e? -

Comparing Eqgs. (7-27) and (7-28) we see that

or

LI T S (7-29)
wp W, W3
If we had only a single mass m; alone, the critical speed would be given by 1/w? =
m1811. Denote this critical speed as w;; (which considers only m; acting alone).
Likewise for m, or mj3 acting alone, we similarly define the terms 1/co§2 = my8y or
1 /a)§3 = m3633, respectively. Thus, Eq. (7-29) can be rewritten as

1 1 1 1 1 1
S+ +t5=—+—=+— (7-30)

wy W, w3 W] W) Wi

If we order the critical speeds such that w; < w, < w3, then 1/w} > 1/w3, and 1/w3.
So the first, or fundamental, critical speed w; can be approximated by

R + ! + ! (7-31)
“’% “’%1 wgz a)_%3

This idea can be extended to an n-body shaft:

1. &
;ZZT (7-32)
1

=1 i
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EXAMPLE 7-5

Solution

Figure 7-14

(a) A 1-in uniform-diameter
shaft for Ex. 7-5.

(b) Superposing of equivalent
loads at the center of the shaft
for the purpose of finding the

first critical speed.

This is called Dunkerley’s equation. By ignoring the higher mode term(s), the first
critical speed estimate is lower than actually is the case.

Since Eq. (7-32) has no loads appearing in the equation, it follows that if each load
could be placed at some convenient location transformed into an equivalent load, then
the critical speed of an array of loads could be found by summing the equivalent loads,
all placed at a single convenient location. For the load at station 1, placed at the center
of span, denoted with the subscript ¢, the equivalent load is found from

R T A
Cl)ll— = =
midy; widy Wiclee
or
)
wie = ““5_” (7-33)

Consider a simply supported steel shaft as depicted in Fig. 7-14, with 1 in diameter and
a 31-in span between bearings, carrying two gears weighing 35 and 55 Ibf.

(a) Find the influence coefficients.

(b) Find Y wy and Y wy? and the first critical speed using Rayleigh’s equation,
Eq. (7-23).

(c) From the influence coefficients, find w;; and wy;.

(d) Using Dunkerley’s equation, Eq. (7-32), estimate the first critical speed.

(e) Use superposition to estimate the first critical speed.

(f) Estimate the shaft’s intrinsic critical speed. Suggest a modification to Dunkerley’s
equation to include the effect of the shaft’s mass on the first critical speed of the
attachments.

( ) :Id ”(1) - 4
y l — — _“.“4(’“011']

6E11 = 6(30)10°(0.049 09)31 = 0.2739(10°) 1bf - in®

w, =35 Ibf w, =55 Ibf
<— 7 in 13in 11 in —>
4
X
\ \
31in
(a)
Y w,, | 17.1 1bf
\
15.5in 15.5in
Wy, § 46.1 Ibf

(b)



Answer

Answer

Answer

Answer

Answer

Answer
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From Eq. set (7-24),

_ 24(NB12 242 77

= =2.061(107%) in/Ibf

0.2739(10)
1120)(312 — 112 — 207
8 = (20X ) _ 3.534(107%) in/Ibf
0.2739(10°)
NTG12 - 112 - 7?) e
B = By = — 2.224(10~%) in/Ibf
e 0.2739(10%) (1077 in.

1 2.061(107% 2.224(107%
2 2.224(107% 3.534(10°%)

Y1 = wid11 + wadpy = 35(2.061)107* + 55(2.224)10* = 0.01945 in

Y2 = wida1 + wrdy = 35(2.224)10~* + 55(3.534)10~* = 0.02722 in
(b) Z w;y; = 35(0.01945) + 55(0.02722) = 2.178 Ibf - in

> wiy? =35(0.01945)> + 55(0.02722)” = 0.05399 Ibf - in’

386.1(2.178)

w = 005399 = 124.8 rad/s, or 1192 rev/min
(¢
1 wq
— = —011
w%l 8
386.1
g — =8 — 231.4 rad/s, or 2210 rev/min
w1811 35(2061)1074
8 386.1 140.9 rad/s, or 1346 rev/mi
[0 =] =] = .J rad/s, or rev/min
2 W82 55(3.534)10—4
1 1 1 1
d =N - —6905107°
@ ? ng B14 T 1200 (107)

1
) 1 .
w) = .| ——— = 120.3 rad/s, or 1149 rev/min
6.905(1079)

which is less than part b, as expected.
(e) From Eq. (7-24),

beexee(I* = b2 — x2.)  15.5(15.5)(312 — 15.5% — 15.5%)
6E1l N 0.2739(10%)
=4.215(107%) in/Ibf

(Scc =

387

ey
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Answer

Answer

Answer

Answer

/=7

From Eq. (7-33),
1) 2.061(10~*
Wie = wll =35 ( )

See | 4.215(107%)

S 3.534(10~%)
Wae = W2 = 20 o 15(10-%)

1
= 4 386 — 120.4 rad/s, or 1150 rev/min
5> wie | 4215109 (17.11 + 46.11)

which, except for rounding, agrees with part d, as expected.
(f) For the shaft, E = 30(10°) psi, y = 0.282 Ibf/in®, and A = 7(1?)/4 = 0.7854 in’.
Considering the shaft alone, the critical speed, from Eq. (7-22), is

n\* |gEI 7 \* [386.1(30)106(0.049 09)
a)YZ — = -
‘ ! Ay 31 0.7854(0.282)

= 520.4 rad/s, or 4970 rev/min

= 17.11 Ibf

We can simply add 1 /a)s2 to the right side of Dunkerley’s equation, Eq. (1), to include
the shaft’s contribution,

1 1
— = —— 4+6.905(107%) = 7.274(107
w? 52042 + (107 (107

wy = 117.3 rad/s, or 1120 rev/min

which is slightly less than part d, as expected.
The shaft’s first critical speed wj is just one more single effect to add to Dunkerley’s
equation. Since it does not fit into the summation, it is usually written up front.

1.1 &1
_%:_2+Z_2 (7-34)

ii

Common shafts are complicated by the stepped-cylinder geometry, which makes the
influence-coefficient determination part of a numerical solution.

Miscellaneous Shaft Components

Setscrews

Unlike bolts and cap screws, which depend on tension to develop a clamping force, the
setscrew depends on compression to develop the clamping force. The resistance to axial
motion of the collar or hub relative to the shaft is called holding power. This holding
power, which is really a force resistance, is due to frictional resistance of the contact-
ing portions of the collar and shaft as well as any slight penetration of the setscrew into
the shaft.



Figure 7-15

Socket setscrews: (a) flat point;
(b) cup point; (c) oval point;
(d) cone point; (e) half-dog
point.

Table 7-4

Typical Holding Power
(Force) for Socket
Setscrews™

Source: Unbrako Division, SPS
Technologies, Jenkintown, Pa.
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Figure 7-15 shows the point types available with socket setscrews. These are also
manufactured with screwdriver slots and with square heads.

Table 74 lists values of the seating torque and the corresponding holding power for
inch-series setscrews. The values listed apply to both axial holding power, for resisting

D*—-_I'_'_' 1

(@) (b) (c)

Seating Holding
Size, Torque, Power,

#2 1.8 85
#3 5 120
#4 5 160
#5 10 200
#6 10 250
#8 20 385

#10 36 540
' 87 1000
Z 165 1500
: 290 2000
= 430 2500
! 620 3000
= 620 3500
: 1325 4000
> 2400 5000
: 5200 6000
1 7200 7000

*Based on alloy-steel screw against steel shaft, class 3A
coarse or fine threads in class 2B holes, and cup-point
socket setscrews.
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Figure 7-16

(a) Square key; (b) round key;
(c and d) round pins; (e) taper
pin; (f) split tubular spring pin.
The pins in parts (e) and

(f) are shown longer than
necessary, to illustrate the
chamfer on the ends, but their
lengths should be kept smaller
than the hub diameters to
prevent injuries due to
projections on rotating parts.

Table 7-5

Dimensions at Large End
of Some Standard Taper
Pins—Inch Series

thrust, and the tangential holding power, for resisting torsion. Typical factors of safety
are 1.5 to 2.0 for static loads and 4 to 8 for various dynamic loads.

Setscrews should have a length of about half of the shaft diameter. Note that this
practice also provides a rough rule for the radial thickness of a hub or collar.

Keys and Pins

Keys and pins are used on shafts to secure rotating elements, such as gears, pulleys, or
other wheels. Keys are used to enable the transmission of torque from the shaft to the
shaft-supported element. Pins are used for axial positioning and for the transfer of
torque or thrust or both.

Figure 7-16 shows a variety of keys and pins. Pins are useful when the principal
loading is shear and when both torsion and thrust are present. Taper pins are sized
according to the diameter at the large end. Some of the most useful sizes of these are
listed in Table 7-5. The diameter at the small end is

d =D —0.0208L (7-35)

where d = diameter at small end, in
D = diameter at large end, in

L = length, in

(d) (e)

Commercial

4/0 0.1103 0.1083 0.1100 0.1090
2/0 0.1423 0.1403 0.1420 0.1410
0 0.1573 0.1553 0.1570 0.1560
2 0.1943 0.1923 0.1940 0.1930
4 0.2513 0.2493 0.2510 0.2500
6 0.3423 0.3403 0.3420 0.3410
8 0.4933 0.4913 0.4930 0.4920




Table 7-6

Inch Dimensions for
Some Standard Square-
and Rectangular-Key
Applications

Source: Joseph E. Shigley,
“Unthreaded Fasteners,”
Chap. 24 in Joseph E. Shigley,
Charles R. Mischke, and
Thomas H. Brown, Jr. (eds.),
Standard Handbook of
Machine Design, 3rd ed.,

McGraw-Hill, New York, 2004.
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7

Over To (Incl.) w h Keyway Depth
H z 3 3 3
16 16 32 32 64
7 9 1 3 3
16 16 8 32 64

1 1 1

g § 16

9 7 3 1 1
76 8 i6 8 6
3 3 3

16 16 32

7 11 1 3 3
8 4 4 16 32
1 1 1

) i 3

11 13 S 1 1
4 8 16 4 8
El s s

16 16 32

3 3 3 1 1
13 13 g I g
3 3 3

8 8 16

3 1 1 3 3
13 23 3 8 G
1 1 1

2 2 4

1 3 5 7 7
23 23 g 16 3
5 5 H

8 8 16

3 1 3 1 1
23 33 I 2 i
3 3 3

3 i 3

For less important applications, a dowel pin or a drive pin can be used. A large vari-
ety of these are listed in manufacturers’ catalogs.’

The square key, shown in Fig. 7-16a, is also available in rectangular sizes. Standard
sizes of these, together with the range of applicable shaft diameters, are listed in
Table 7-6. The shaft diameter determines standard sizes for width, height, and key depth.
The designer chooses an appropriate key length to carry the torsional load. Failure of the
key can be by direct shear, or by bearing stress. Example 7-6 demonstrates the process to
size the length of a key. The maximum length of a key is limited by the hub length of the
attached element, and should generally not exceed about 1.5 times the shaft diameter to
avoid excessive twisting with the angular deflection of the shaft. Multiple keys may be
used as necessary to carry greater loads, typically oriented at 90° from one another.
Excessive safety factors should be avoided in key design, since it is desirable in an over-
load situation for the key to fail, rather than more costly components.

Stock key material is typically made from low carbon cold-rolled steel, and is
manufactured such that its dimensions never exceed the nominal dimension. This
allows standard cutter sizes to be used for the keyseats. A setscrew is sometimes used
along with a key to hold the hub axially, and to minimize rotational backlash when the
shaft rotates in both directions.

"See also Joseph E. Shigley, “Unthreaded Fasteners,” Chap. 24. In Joseph E. Shigley, Charles R. Mischke, and
Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.
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Figure 7-17

(a) Gib-head key;
(b) Woodruff key.

Taperl inover 12 in
) - w
%_(J LA 5

»{w |

The gib-head key, in Fig. 7-17a, is tapered so that, when firmly driven, it acts to
prevent relative axial motion. This also gives the advantage that the hub position can be
adjusted for the best axial location. The head makes removal possible without access to
the other end, but the projection may be hazardous.

The Woodruff key, shown in Fig. 7-17b, is of general usefulness, especially when a
wheel is to be positioned against a shaft shoulder, since the keyslot need not be machined
into the shoulder stress concentration region. The use of the Woodruff key also yields bet-
ter concentricity after assembly of the wheel and shaft. This is especially important at high
speeds, as, for example, with a turbine wheel and shaft. Woodruff keys are particularly use-
ful in smaller shafts where their deeper penetration helps prevent key rolling. Dimensions
for some standard Woodruff key sizes can be found in Table 7-7, and Table 7-8 gives the
shaft diameters for which the different keyseat widths are suitable.

Pilkey® gives values for stress concentrations in an end-milled keyseat, as a func-
tion of the ratio of the radius r at the bottom of the groove and the shaft diameter d.
For fillets cut by standard milling-machine cutters, with a ratio of r/d = 0.02,
Peterson’s charts give K, = 2.14 for bending and K,; = 2.62 for torsion without the
key in place, or K;; = 3.0 for torsion with the key in place. The stress concentration
at the end of the keyseat can be reduced somewhat by using a sled-runner keyseat,
eliminating the abrupt end to the keyseat, as shown in Fig. 7-17. It does, however, still
have the sharp radius in the bottom of the groove on the sides. The sled-runner key-
seat can only be used when definite longitudinal key positioning is not necessary. It is
also not as suitable near a shoulder. Keeping the end of a keyseat at least a distance

SW. D. Pilkey, Peterson’s Stress-Concentration Factors, 2nd ed., John Wiley & Sons, New York, 1997,
pp. 408-4009.
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Table 7-7 Key Size Height Offset Keyseat Depth

Dimensions of Woodruff w D [ e Shaft Hub

Keys—Inch Series L ! 0.109 & 0.0728 0.0372
& 2 0.172 = 0.1358 0.0372
2 3 0.172 = 0.1202 0.0529
2 ! 0.203 z 0.1511 0.0529
2 2 0.250 = 0.1981 0.0529
L ! 0.203 2 0.1355 0.0685
L 2 0.250 = 0.1825 0.0685
! 2 0.313 = 0.2455 0.0685
2 3 0.250 + 0.1669 0.0841
3 2 0.313 = 0.2299 0.0841
2 I 0.375 = 0.2919 0.0841
i 3 0.313 = 0.2143 0.0997
2 I 0.375 = 0.2763 0.0997
2 1 0.438 = 0.3393 0.0997
1 z 0.375 = 0.2450 0.1310
: 1 0.438 = 0.3080 0.1310
! 11 0.547 2 0.4170 0.1310
2 1 0.438 = 0.2768 0.1622
2 11 0.547 2 0.3858 0.1622
2 13 0.641 = 0.4798 0.1622
2 13 0.547 2 0.3545 0.1935
2 11 0.641 Z 0.4485 0.1935

Table 7-8 Keyseat Shaft Diameter, in

Sizes of Woodruff Keys Width, in From To (inclusive)
Suitable for Various %6 % %
Shaft Diameters 3 3 7
32 8 8
3 3 3
5 i
6 6 2
P8 o
5 2
P :
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Figure 7-18

Typical uses for retaining rings.
(a) External ring and (b) its
application; (c) internal ring
and (d) its application.

EXAMPLE 7-6

Solution

| Figure 7-19

L
mll

S

Retaining ring

(a) (b) (c) (d)

of d/10 from the start of the shoulder fillet will prevent the two stress concentrations
from combining with each other.”

Retaining Rings

A retaining ring is frequently used instead of a shaft shoulder or a sleeve to axially posi-
tion a component on a shaft or in a housing bore. As shown in Fig. 7-18, a groove is
cut in the shaft or bore to receive the spring retainer. For sizes, dimensions, and axial
load ratings, the manufacturers’ catalogs should be consulted.

Appendix Tables A—15-16 and A—15-17 give values for stress-concentration fac-
tors for flat-bottomed grooves in shafts, suitable for retaining rings. For the rings to seat
nicely in the bottom of the groove, and support axial loads against the sides of the
groove, the radius in the bottom of the groove must be reasonably sharp, typically about
one-tenth of the groove width. This causes comparatively high values for stress-
concentration factors, around 5 for bending and axial, and 3 for torsion. Care should be
taken in using retaining rings, particularly in locations with high bending stresses.

A UNS G10350 steel shaft, heat-treated to a minimum yield strength of 75 kpsi, has a
diameter of 117—6 in. The shaft rotates at 600 rev/min and transmits 40 hp through a gear.
Select an appropriate key for the gear.

A %-in square key is selected, UNS G10200 cold-drawn steel being used. The design
will be based on a yield strength of 65 kpsi. A factor of safety of 2.80 will be employed
in the absence of exact information about the nature of the load.

The torque is obtained from the horsepower equation

_ 63025H (63 025)(40)

T = 42001bf - i
n 600 "
From Fig. 7-19, the force F at the surface of the shaft is
T 4200
=—=——— =58501bf
r 1.4375/2

By the distortion-energy theory, the shear strength is
Ssy = 0.5778, = (0.577)(65) = 37.5 kpsi

°Ibid, p. 381.
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Failure by shear across the area ab will create a stress of T = F/tl. Substituting the
strength divided by the factor of safety for T gives
Sy F 37.5(10)° 5850

n tl 2.80 0.3751

or [ = 1.16 in. To resist crushing, the area of one-half the face of the key is used:

S, F 65(10)° 5850

= — or =]
n tl/2 2.80 0.3751/2

and / = 1.34 in. The hub length of a gear is usually greater than the shaft diameter, for
stability. If the key, in this example, is made equal in length to the hub, it would there-
fore have ample strength, since it would probably be 1% in or longer.

Limits and Fits

The designer is free to adopt any geometry of fit for shafts and holes that will ensure the
intended function. There is sufficient accumulated experience with commonly recurring
situations to make standards useful. There are two standards for limits and fits in the
United States, one based on inch units and the other based on metric units.'® These differ
in nomenclature, definitions, and organization. No point would be served by separately
studying each of the two systems. The metric version is the newer of the two and is well
organized, and so here we present only the metric version but include a set of inch con-
versions to enable the same system to be used with either system of units.

In using the standard, capital letters always refer to the hole; lowercase letters are
used for the shafft.

The definitions illustrated in Fig. 7-20 are explained as follows:

* Basic size is the size to which limits or deviations are assigned and is the same for
both members of the fit.
* Deviation is the algebraic difference between a size and the corresponding basic size.

e Upper deviation is the algebraic difference between the maximum limit and the
corresponding basic size.

* Lower deviation is the algebraic difference between the minimum limit and the
corresponding basic size.

e Fundamental deviation is either the upper or the lower deviation, depending on
which is closer to the basic size.

* Tolerance is the difference between the maximum and minimum size limits of a part.

e [International tolerance grade numbers (IT) designate groups of tolerances such that
the tolerances for a particular IT number have the same relative level of accuracy but
vary depending on the basic size.

* Hole basis represents a system of fits corresponding to a basic hole size. The funda-
mental deviation is H.

Ypreferred Limits and Fits for Cylindrical Parts, ANSI B4.1-1967. Preferred Metric Limits and Fits, ANSI
B4.2-1978.
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Figure 7-20

Definitions applied to a
cylindrical fit.

Upper deviation, §, —>| |<— Max. size, d,,, —>

Lower deviation, 8§, —| l<— Min. size, d.

‘min

International tolerance
grade, Ad (IT number) ~ |

Fundamental deviation, —=
& (letter)

(<— Basic size, D(d) —>
Lower deviation, 8, —>| <—

Upper deviation, §, —»| -

> y+ Fundamental deviation,
International tolerance l S (letter)
grade, AD (IT number)

f<—— Min. size, D_. —>

min

(«<—— Max. size, D, ,, —>|

* Shaft basis represents a system of fits corresponding to a basic shaft size. The
fundamental deviation is h. The shaft-basis system is not included here.

The magnitude of the tolerance zone is the variation in part size and is the same
for both the internal and the external dimensions. The tolerance zones are specified in
international tolerance grade numbers, called IT numbers. The smaller grade numbers
specify a smaller tolerance zone. These range from ITO to IT16, but only grades IT6 to
IT11 are needed for the preferred fits. These are listed in Tables A—11 to A—14 for basic
sizes up to 16 in or 400 mm.

The standard uses folerance position letters, with capital letters for internal dimensions
(holes) and lowercase letters for external dimensions (shafts). As shown in Fig. 7-20, the
fundamental deviation locates the tolerance zone relative to the basic size.

Table 7-9 shows how the letters are combined with the tolerance grades to estab-
lish a preferred fit. The ISO symbol for the hole for a sliding fit with a basic size of
32 mm is 32H7. Inch units are not a part of the standard. However, the designation
(l% in) H7 includes the same information and is recommended for use here. In both
cases, the capital letter H establishes the fundamental deviation and the number 7 defines
a tolerance grade of IT7.

For the sliding fit, the corresponding shaft dimensions are defined by the symbol
32g6 [(12 in)g6].

The fundamental deviations for shafts are given in Tables A—11 and A—13. For
letter codes ¢, d, f, g, and h,

Upper deviation = fundamental deviation
Lower deviation = upper deviation — tolerance grade

For letter codes k, n, p, s, and u, the deviations for shafts are

Lower deviation = fundamental deviation
Upper deviation = lower deviation + tolerance grade
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Table 7-9

Type of Fit  Description Symbol
Descriptions of Preferred Clearance Loose running fit: for wide commercial tolerances or Hll/cll
Fits Using the Basic allowances on external members
Hole System Free running fit: not for use where accuracy is H9/d9
Source: Preferred Metric essentlal, _but good for large ter_nperature variations,
Limits and Fits, ANSI high running speeds, or heavy journal pressures
B4.2-1978. See also BS 4500. Close running fit: for running on accurate machines H8/t7

and for accurate location at moderate speeds and
journal pressures

Sliding fit: where parts are not intended to run freely, H7/g6
but must move and turn freely and locate accurately
Locational clearance fit: provides snug fit for location H7/h6
of stationary parts, but can be freely assembled and
disassembled

Transition Locational transition fit: for accurate location, a H7/k6

compromise between clearance and interference

Locational transition fit: for more accurate location H7/n6
where greater interference is permissible

Interference Locational interference fit: for parts requiring rigidity H7/p6
and alignment with prime accuracy of location but
without special bore pressure requirements

Medium drive fit: for ordinary steel parts or shrink fits on H7/s6
light sections, the tightest fit usable with cast iron

Force fit: suitable for parts that can be highly stressed H7/u6
or for shrink fits where the heavy pressing forces required
are impractical

The lower deviation H (for holes) is zero. For these, the upper deviation equals the
tolerance grade.
As shown in Fig. 7-20, we use the following notation:

D = basic size of hole
d = basic size of shaft
8, = upper deviation
8; = lower deviation
ér = fundamental deviation
A D = tolerance grade for hole
Ad = tolerance grade for shaft

Note that these quantities are all deterministic. Thus, for the hole,
Do = D+ AD Duin =D (7-36)
For shafts with clearance fits c, d, f, g, and h,
dmax = d + F dpin =d + 8 — Ad (7-37)
For shafts with interference fits k, n, p, s, and u,

dmin =d + 6F dmax =d + 6 + Ad (7-38)
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EXAMPLE 7-7

Solution

Answer

Answer

Answer

Answer

EXAMPLE 7-8

Solution

Answer

Answer

Answer

Answer

Find the shaft and hole dimensions for a loose running fit with a 34-mm basic size.

From Table 7-9, the ISO symbol is 34H11/c11. From Table A-11, we find that toler-
ance grade IT11 is 0.160 mm. The symbol 34H11/c11 therefore says that AD = Ad =
0.160 mm. Using Eq. (7-36) for the hole, we get

Duax = D + AD = 34 4+ 0.160 = 34.160 mm

Dyin = D = 34.000 mm
The shaft is designated as a 34c11 shaft. From Table A—12, the fundamental deviation
is 7 = —0.120 mm. Using Eq. (7-37), we get for the shaft dimensions
dmax =d+ (SF =34+ (—0120) = 33.880 mm

dmin = d + 6p — Ad = 34 4 (—0.120) — 0.160 = 33.720 mm

Find the hole and shaft limits for a medium drive fit using a basic hole size of 2 in.

The symbol for the fit, from Table 7-8, in inch units is (2 in)H7/s6. For the hole, we use
Table A—13 and find the IT7 grade to be AD = 0.0010 in. Thus, from Eq. (7-36),

Diax = D + AD =2 4 0.0010 = 2.0010 in

Duin = D = 2.0000 in

The IT6 tolerance for the shaft is Ad = 0.0006 in. Also, from Table A—14, the
fundamental deviation is 6 = 0.0017 in. Using Eq. (7-38), we get for the shaft that

dpin =d + 8 =2+ 0.0017 = 2.0017 in

dmax =d +0p + Ad =24 0.0017 + 0.0006 = 2.0023 in

Stress and Torque Capacity in Interference Fits

Interference fits between a shaft and its components can sometimes be used effectively
to minimize the need for shoulders and keyways. The stresses due to an interference fit
can be obtained by treating the shaft as a cylinder with a uniform external pressure, and
the hub as a hollow cylinder with a uniform internal pressure. Stress equations for these
situations were developed in Sec. 3—16, and will be converted here from radius terms
into diameter terms to match the terminology of this section.
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The pressure p generated at the interface of the interference fit, from Eq. (3—56)
converted into terms of diameters, is given by

8

= 7_39
P=a iy @ d (& +d° (7-39)
e ")t \a—ez "
or, in the case where both members are of the same material,
d2 d*(d?* — d?
( )(d> — d?) 7-40)
ng d? — di2

where d is the nominal shaft diameter, d; is the inside diameter (if any) of the shaft,
d, is the outside diameter of the hub, E is Young’s modulus, and v is Poisson’s ratio, with
subscripts o and i for the outer member (hub) and inner member (shaft), respectively.
The term § is the diametral interference between the shaft and hub, that is, the differ-
ence between the shaft outside diameter and the hub inside diameter.

8 = dghaic — dhub (7-41)

Since there will be tolerances on both diameters, the maximum and minimum pres-
sures can be found by applying the maximum and minimum interferences. Adopting the
notation from Fig. 7-20, we write

amin = dmin — Dmax (7_42)
(Smax = dmax — Dmin (7_43)

where the diameter terms are defined in Eqgs. (7-36) and (7-38). The maximum inter-
ference should be used in Eq. (7-39) or (7-40) to determine the maximum pressure to
check for excessive stress.

From Egs. (3-58) and (3-59), with radii converted to diameters, the tangential
stresses at the interface of the shaft and hub are

d> + d?
Ot shaft = —Pm (7‘44)
d2 +d?
Ot.hub = Py 3 (7-45)
The radial stresses at the interface are simply
Oy, shaft = — P (7-46)
Or hub = — P (7_47)

The tangential and radial stresses are orthogonal, and should be combined using a
failure theory to compare with the yield strength. If either the shaft or hub yields during
assembly, the full pressure will not be achieved, diminishing the torque that can be trans-
mitted. The interaction of the stresses due to the interference fit with the other stresses in
the shaft due to shaft loading is not trivial. Finite-element analysis of the interface would
be appropriate when warranted. A stress element on the surface of a rotating shaft will
experience a completely reversed bending stress in the longitudinal direction, as well as
the steady compressive stresses in the tangential and radial directions. This is a three-
dimensional stress element. Shear stress due to torsion in shaft may also be present. Since
the stresses due to the press fit are compressive, the fatigue situation is usually actually
improved. For this reason, it may be acceptable to simplify the shaft analysis by ignoring
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7-2

Problem 7-2

Section of a shaft containing a
grinding-relief groove. Unless
otherwise specified, the diameter at
the root of the groove d, = d — 2r,
and though the section of diameter d
is ground, the root of the groove is
still a machined surface.

the steady compressive stresses due to the press fit. There is, however, a stress concen-
tration effect in the shaft bending stress near the ends of the hub, due to the sudden change
from compressed to uncompressed material. The design of the hub geometry, and there-
fore its uniformity and rigidity, can have a significant effect on the specific value of the
stress-concentration factor, making it difficult to report generalized values. For first esti-
mates, values are typically not greater than 2.

The amount of torque that can be transmitted through an interference fit can be esti-
mated with a simple friction analysis at the interface. The friction force is the product
of the coefficient of friction f and the normal force acting at the interface. The normal
force can be represented by the product of the pressure p and the surface area A of inter-
face. Therefore, the friction force Fy is

Fr=fN = f(pA) = flp2n(d/2)I] = nfpld (7-48)

where [ is the length of the hub. This friction force is acting with a moment arm of d/2
to provide the torque capacity of the joint, so

T = Frd/2 = nfpld(d/2)
T = (n/2) fpld? (7-49)

The minimum interference, from Eq. (7-42), should be used to determine the min-
imum pressure to check for the maximum amount of torque that the joint should be
designed to transmit without slipping.

PROBLEMS

Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
Table 1-1 of Sec. 1-16, p. 24.

A shaft is loaded in bending and torsion such that M, =70N-m, T, =45N-m, M,, =
55N-m, and 7, = 35 N - m. For the shaft, S, = 700 MPa and S, = 560 MPa, and a fully cor-
rected endurance limit of S, = 210 MPa is assumed. Let Ky = 2.2 and Ky, = 1.8. With a design
factor of 2.0 determine the minimum acceptable diameter of the shaft using the

(a) DE-Gerber criterion.

(b) DE-elliptic criterion.

(c) DE-Soderberg criterion.

(d) DE-Goodman criterion.

Discuss and compare the results.

The section of shaft shown in the figure is to be designed to approximate relative sizes of
d = 0.75D and r = D /20 with diameter d conforming to that of standard metric rolling-bearing
bore sizes. The shaft is to be made of SAE 2340 steel, heat-treated to obtain minimum strengths
in the shoulder area of 175 kpsi ultimate tensile strength and 160 kpsi yield strength with a Brinell
hardness not less than 370. At the shoulder the shaft is subjected to a completely reversed bend-
ing moment of 600 Ibf - in, accompanied by a steady torsion of 400 Ibf - in. Use a design factor
of 2.5 and size the shaft for an infinite life.

f
SR E=




7-3

Problem 7-3

7-4

Problem 7-4

Material moves under the roll.
Dimensions in inches.
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The rotating solid steel shaft is simply supported by bearings at points B and C and is driven
by a gear (not shown) which meshes with the spur gear at D, which has a 150-mm pitch diam-
eter. The force F from the drive gear acts at a pressure angle of 20°. The shaft transmits a torque
to point A of T4 =340 N - m. The shaft is machined from steel with S, =420 MPa and
Sur = 560 MPa. Using a factor of safety of 2.5, determine the minimum allowable diameter of
the 250-mm section of the shaft based on (a) a static yield analysis using the distortion energy
theory and (b) a fatigue-failure analysis. Assume sharp fillet radii at the bearing shoulders for
estimating stress-concentration factors.

A geared industrial roll shown in the figure is driven at 300 rev/min by a force F acting on a
3-in-diameter pitch circle as shown. The roll exerts a normal force of 30 Ibf/in of roll length on
the material being pulled through. The material passes under the roll. The coefficient of friction
is 0.40. Develop the moment and shear diagrams for the shaft modeling the roll force as (a) a
concentrated force at the center of the roll, and (b) a uniformly distributed force along the roll.
These diagrams will appear on two orthogonal planes.

3 dia.

Design a shaft for the situation of the industrial roll of Prob. 74 with a design factor of 2 and a
reliability goal of 0.999 against fatigue failure. Plan for a ball bearing on the left and a cylindri-
cal roller on the right. For deformation use a factor of safety of 2.
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7-6

Problem 7-6

Bearing shoulder fillets 0.030 in,
others % in. Sled-runner keyway is
3% in long. Dimensions in inches.

7-7* to
7-16*

7-17

The figure shows a proposed design for the industrial roll shaft of Prob. 7—4. Hydrodynamic
film bearings are to be used. All surfaces are machined except the journals, which are
ground and polished. The material is 1035 HR steel. Perform a design assessment. Is the design
satisfactory?

1
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For the problem specified in the table, build upon the results of the original problem to obtain a

preliminary design of the shaft by performing the following tasks.

(a) Sketch a general shaft layout, including means to locate the components and to transmit the
torque. Estimates for the component widths are acceptable at this point.

(b) Specify a suitable material for the shaft.

(c) Determine critical diameters of the shaft based on infinite fatigue life with a design factor
of 1.5. Check for yielding.

(d) Make any other dimensional decisions necessary to specify all diameters and axial dimen-
sions. Sketch the shaft to scale, showing all proposed dimensions.

(e) Check the deflections at the gears, and the slopes at the gears and the bearings for satisfaction
of the recommended limits in Table 7-2. Assume the deflections for any pulleys are not
likely to be critical. If any of the deflections exceed the recommended limits, make appro-

priate changes to bring them all within the limits.

7-T* 3-68, 137
7-8%* 3-69, 137
7-9% 3-70, 137
7-10% 3-71, 137
7-11% 3-72, 138
7-12% 3-73, 138
7-13* 3-74, 138
7-14% 3-76, 139
7-15% 3-77, 139
7-16* 3-79, 139

In the double-reduction gear train shown, shaft a is driven by a motor attached by a flexible

coupling attached to the overhang. The motor provides a torque of 2500 Ibf - in at a speed of

1200 rpm. The gears have 20° pressure angles, with diameters shown on the figure. Use an

AISI 1020 cold-drawn steel. Design one of the shafts (as specified by the instructor) with a design

factor of 1.5 by performing the following tasks.

(a) Sketch a general shaft layout, including means to locate the gears and bearings, and to trans-
mit the torque.

(b) Perform a force analysis to find the bearing reaction forces, and generate shear and bending
moment diagrams.

(c) Determine potential critical locations for stress design.



Problem 7-17

Dimensions in inches.

7-18

Problem 7-18

Shoulder fillets at bearing seat
0.030-in radius, others é—in radius,
except right-hand bearing seat
transition, % in. The material

is 1030 HR. Keyways 3 in wide by
% in deep. Dimensions in inches.

7-19*
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(d) Determine critical diameters of the shaft based on fatigue and static stresses at the critical
locations.

(e) Make any other dimensional decisions necessary to specify all diameters and axial dimen-
sions. Sketch the shaft to scale, showing all proposed dimensions.

(f) Check the deflection at the gear, and the slopes at the gear and the bearings for satisfaction of
the recommended limits in Table 7-2.

(g) If any of the deflections exceed the recommended limits, make appropriate changes to bring
them all within the limits.

In the figure is a proposed shaft design to be used for the input shaft a in Prob. 7-17. A ball bear-

ing is planned for the left bearing, and a cylindrical roller bearing for the right.

(a) Determine the minimum fatigue factor of safety by evaluating at any critical locations. Use
a fatigue failure criteria that is considered to be typical of the failure data, rather than one
that is considered conservative. Also ensure that the shaft does not yield in the first load
cycle.

(b) Check the design for adequacy with respect to deformation, according to the recommenda-
tions in Table 7-2.

8
— r 0.354 ﬂ h 0.453
1.875 1.875
1.574 PN y v PN 1.574 T 1.500
) p— T
A ‘ e f
9 ‘
11 ‘ 6

The shaft shown in the figure is proposed for the application defined in Prob. 3-72, p. 138. The
material is AISI 1018 cold-drawn steel. The gears seat against the shoulders, and have hubs with
setscrews to lock them in place. The effective centers of the gears for force transmission are
shown. The keyseats are cut with standard endmills. The bearings are press-fit against the shoul-
ders. Determine the minimum fatigue factor of safety.
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Problem 7-19*

All fillets % in. Dimensions in inches.

7-20*

7-21*

Problem 7-21*

All fillets 2 mm. Dimensions in mm.

7-22*

7-23

Problem 7-23

Dimensions in inches.
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Continue Prob. 7-19 by checking that the deflections satisfy the suggested minimums for bear-
ings and gears in Table 7-2. If any of the deflections exceed the recommended limits, make
appropriate changes to bring them all within the limits.

The shaft shown in the figure is proposed for the application defined in Prob. 3-73, p. 138. The
material is AISI 1018 cold-drawn steel. The gears seat against the shoulders, and have hubs with
setscrews to lock them in place. The effective centers of the gears for force transmission are
shown. The keyseats are cut with standard endmills. The bearings are press-fit against the shoul-
ders. Determine the minimum fatigue factor of safety.
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Continue Prob. 7-21 by checking that the deflections satisfy the suggested minimums for bear-
ings and gears in Table 7-2. If any of the deflections exceed the recommended limits, make
appropriate changes to bring them all within the limits.

The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway,
and is supported by two deep-groove ball bearings. The shaft is made from AISI 1020 cold-drawn
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7-24

Problem 7-24

Dimensions in millimeters.

7-25

Problem 7-25

Dimensions in millimeters.

7-26
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steel. At steady-state speed, the gear transmits a radial load of 230 Ibf and a tangential load of
633 Ibf at a pitch diameter of 8 in.

(a) Determine fatigue factors of safety at any potentially critical locations.

(b) Check that deflections satisfy the suggested minimums for bearings and gears.

An AISI 1020 cold-drawn steel shaft with the geometry shown in the figure carries a transverse
load of 7 kN and a torque of 107 N - m. Examine the shaft for strength and deflection. If the
largest allowable slope at the bearings is 0.001 rad and at the gear mesh is 0.0005 rad, what is the
factor of safety guarding against damaging distortion? What is the factor of safety guarding
against a fatigue failure? If the shaft turns out to be unsatisfactory, what would you recommend
to correct the problem?

7kN
155 5
45
30 3 oy 40 35 30
20
A p— t t vy
1 4
<30 > % % T % f % f <30 >
fe— 55— 60 —>
115 <10 85
150
375

All fillets 2 mm

A shaft is to be designed to support the spur pinion and helical gear shown in the figure on two
bearings spaced 700 mm center-to-center. Bearing A is a cylindrical roller and is to take only
radial load; bearing B is to take the thrust load of 900 N produced by the helical gear and its share
of the radial load. The bearing at B can be a ball bearing. The radial loads of both gears are in the
same plane, and are 2.7 kN for the pinion and 900 N for the gear. The shaft speed is 1200 rev/min.
Design the shaft. Make a sketch to scale of the shaft showing all fillet sizes, keyways, shoulders,
and diameters. Specify the material and its heat treatment.

G brg ﬂ 50 h ¢ brg
(<100>|

<—175 400 125 >

A heat-treated steel shaft is to be designed to support the spur gear and the overhanging worm
shown in the figure. A bearing at A takes pure radial load. The bearing at B takes the worm-thrust
load for either direction of rotation. The dimensions and the loading are shown in the figure; note
that the radial loads are in the same plane. Make a complete design of the shaft, including a sketch
of the shaft showing all dimensions. Identify the material and its heat treatment (if necessary).
Provide an assessment of your final design. The shaft speed is 310 rev/min.
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Problem 7-26

Dimensions in millimeters.

7-27

Problem 7-27

Dimensions in inches.

7-28

7-29

7-30
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A bevel-gear shaft mounted on two 40-mm 02-series ball bearings is driven at 1720 rev/min by
a motor connected through a flexible coupling. The figure shows the shaft, the gear, and the bear-
ings. The shaft has been giving trouble—in fact, two of them have already failed—and the down
time on the machine is so expensive that you have decided to redesign the shaft yourself rather
than order replacements. A hardness check of the two shafts in the vicinity of the fracture of the two
shafts showed an average of 198 Bhn for one and 204 Bhn of the other. As closely as you can esti-
mate the two shafts failed at a life measure between 600 000 and 1 200 000 cycles of operation.
The surfaces of the shaft were machined, but not ground. The fillet sizes were not measured, but
they correspond with the recommendations for the ball bearings used. You know that the load is
a pulsating or shock-type load, but you have no idea of the magnitude, because the shaft drives
an indexing mechanism, and the forces are inertial. The keyways are % in wide by % in deep.
The straight-toothed bevel pinion drives a 48-tooth bevel gear. Specify a new shaft in sufficient
detail to ensure a long and trouble-free life.

~3
Shaft failed here */

1§dia.j - [lédiaA
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A 25-mm-diameter uniform steel shaft is 600 mm long between bearings.
(a) Find the lowest critical speed of the shaft.

(b) If the goal is to double the critical speed, find the new diameter.

(c) A half-size model of the original shaft has what critical speed?

Demonstrate how rapidly Rayleigh’s method converges for the uniform-diameter solid shaft of
Prob. 7-28, by partitioning the shaft into first one, then two, and finally three elements.

Compare Eq. (7-27) for the angular frequency of a two-disk shaft with Eq. (7-28), and note that
the constants in the two equations are equal.

(a) Develop an expression for the second critical speed.

(b) Estimate the second critical speed of the shaft addressed in Ex. 7-5, parts a and b.
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7-32

Problem 7-32

Dimensions in inches.

7-33

7-34*

7-35*

7-36

7-37

7-38

7-39

7-40

7-41
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For a uniform-diameter shaft, does hollowing the shaft increase or decrease the critical
speed?

The shaft shown in the figure carries a 18-lbf gear on the left and a 32-1bf gear on the right.
Estimate the first critical speed due to the loads, the shaft’s critical speed without the loads, and
the critical speed of the combination.

18 Ibf 32 bt
2.000 l 2'172 2‘163 l 2.000
v v
} I b

A
— | |
<2
9
14
15
16

A transverse drilled and reamed hole can be used in a solid shaft to hold a pin that locates and
holds a mechanical element, such as the hub of a gear, in axial position, and allows for the trans-
mission of torque. Since a small-diameter hole introduces high stress concentration, and a larger
diameter hole erodes the area resisting bending and torsion, investigate the existence of a pin
diameter with minimum adverse affect on the shaft. Then formulate a design rule. (Hint: Use
Table A-16.)

The shaft shown in Prob. 7-19 is proposed for the application defined in Prob. 3-72, p. 138.
Specify a square key for gear B, using a factor of safety of 1.1.

The shaft shown in Prob. 7-21 is proposed for the application defined in Prob. 3-73, p. 138.
Specity a square key for gear B, using a factor of safety of 1.1.

A guide pin is required to align the assembly of a two-part fixture. The nominal size of the pin is
15 mm. Make the dimensional decisions for a 15-mm basic size locational clearance fit.

An interference fit of a cast-iron hub of a gear on a steel shaft is required. Make the dimensional
decisions for a 1.75-in basic size medium drive fit.

A pin is required for forming a linkage pivot. Find the dimensions required for a 45-mm basic
size pin and clevis with a sliding fit.

A journal bearing and bushing need to be described. The nominal size is 1.25 in. What dimen-
sions are needed for a 1.25-in basic size with a close running fit if this is a lightly loaded journal
and bushing assembly?

A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to
35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational
interference fit.

A shaft diameter is carefully measured to be 1.5020 in. A bearing is selected with a catalog spec-
ification of the bore diameter range from 1.500 in to 1.501 in. Determine if this is an acceptable
selection if a locational interference fit is desired.
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7-42

A gear and shaft with nominal diameter of 35 mm are to be assembled with a medium drive fit,

as specified in Table 7-9. The gear has a hub, with an outside diameter of 60 mm, and an overall

length of 50 mm. The shaft is made from AISI 1020 CD steel, and the gear is made from steel

that has been through hardened to provide S, = 700 MPa and S, = 600 MPa.

(a) Specify dimensions with tolerances for the shaft and gear bore to achieve the desired fit.

(b) Determine the minimum and maximum pressures that could be experienced at the interface
with the specified tolerances.

(c) Determine the worst-case static factors of safety guarding against yielding at assembly for the
shaft and the gear based on the distortion energy failure theory.

(d) Determine the maximum torque that the joint should be expected to transmit without slipping,
i.e., when the interference pressure is at a minimum for the specified tolerances.
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The helical-thread screw was undoubtably an extremely important mechanical inven-
tion. It is the basis of power screws, which change angular motion to linear motion
to transmit power or to develop large forces (presses, jacks, etc.), and threaded fas-
teners, an important element in nonpermanent joints.

This book presupposes a knowledge of the elementary methods of fastening. Typ-
ical methods of fastening or joining parts use such devices as bolts, nuts, cap screws,
setscrews, rivets, spring retainers, locking devices, pins, keys, welds, and adhesives.
Studies in engineering graphics and in metal processes often include instruction on var-
ious joining methods, and the curiosity of any person interested in mechanical engi-
neering naturally results in the acquisition of a good background knowledge of fasten-
ing methods. Contrary to first impressions, the subject is one of the most interesting in
the entire field of mechanical design.

One of the key targets of current design for manufacture is to reduce the number
of fasteners. However, there will always be a need for fasteners to facilitate disas-
sembly for whatever purposes. For example, jumbo jets such as Boeing’s 747 require
as many as 2.5 million fasteners, some of which cost several dollars apiece. To keep
costs down, aircraft manufacturers, and their subcontractors, constantly review new
fastener designs, installation techniques, and tooling.

The number of innovations in the fastener field over any period you might care
to mention has been tremendous. An overwhelming variety of fasteners are available
for the designer’s selection. Serious designers generally keep specific notebooks on
fasteners alone. Methods of joining parts are extremely important in the engineering
of a quality design, and it is necessary to have a thorough understanding of the per-
formance of fasteners and joints under all conditions of use and design.

Thread Standards and Definitions

The terminology of screw threads, illustrated in Fig. 8—1, is explained as follows:

The pitch is the distance between adjacent thread forms measured parallel to
the thread axis. The pitch in U.S. units is the reciprocal of the number of thread forms
per inch N.

The major diameter d is the largest diameter of a screw thread.

The minor (or root) diameter d, is the smallest diameter of a screw thread.

The pitch diameter d,, is a theoretical diameter between the major and minor
diameters.

The lead 1, not shown, is the distance the nut moves parallel to the screw axis when
the nut is given one turn. For a single thread, as in Fig. 81, the lead is the same as
the pitch.

A multiple-threaded product is one having two or more threads cut beside each
other (imagine two or more strings wound side by side around a pencil). Standard-
ized products such as screws, bolts, and nuts all have single threads; a double-threaded
screw has a lead equal to twice the pitch, a triple-threaded screw has a lead equal to
3 times the pitch, and so on.

All threads are made according to the right-hand rule unless otherwise noted.
That is, if the bolt is turned clockwise, the bolt advances toward the nut.

The American National (Unified) thread standard has been approved in this coun-
try and in Great Britain for use on all standard threaded products. The thread angle
is 60° and the crests of the thread may be either flat or rounded.

Figure 8-2 shows the thread geometry of the metric M and MJ profiles. The M
profile replaces the inch class and is the basic ISO 68 profile with 60° symmetric



Figure 8-1

Terminology of screw threads.
Sharp vee threads shown for
clarity; the crests and roots are
actually flattened or rounded
during the forming operation.

Figure 8-2

Basic profile for metric M
and M threads.
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threads. The MJ profile has a rounded fillet at the root of the external thread and a
larger minor diameter of both the internal and external threads. This profile is espe-
cially useful where high fatigue strength is required.

Tables 8—1 and 8-2 will be useful in specifying and designing threaded parts.
Note that the thread size is specified by giving the pitch p for metric sizes and by
giving the number of threads per inch N for the Unified sizes. The screw sizes in
Table 8-2 with diameter under i in are numbered or gauge sizes. The second column
in Table 82 shows that a No. 8 screw has a nominal major diameter of 0.1640 in.

A great many tensile tests of threaded rods have shown that an unthreaded rod
having a diameter equal to the mean of the pitch diameter and minor diameter will have
the same tensile strength as the threaded rod. The area of this unthreaded rod is called
the tensile-stress area A; of the threaded rod; values of A; are listed in both tables.

Two major Unified thread series are in common use: UN and UNR. The differ-
ence between these is simply that a root radius must be used in the UNR series.
Because of reduced thread stress-concentration factors, UNR series threads have
improved fatigue strengths. Unified threads are specified by stating the nominal major
diameter, the number of threads per inch, and the thread series, for example, % in-18
UNREF or 0.625 in-18 UNRFE.

Metric threads are specified by writing the diameter and pitch in millimeters, in
that order. Thus, M12 x 1.75 is a thread having a nominal major diameter of 12 mm
and a pitch of 1.75 mm. Note that the letter M, which precedes the diameter, is the
clue to the metric designation.
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Table 8-1 Nominal Coarse-Pitch Series Fine-Pitch Series
Diameters and Areas of Maijor Tensile- Minor- Tensile- Minor-
C Pitch and Fi Diameter Pitch Stress Diameter Pitch Stress Diameter
oarse-Pitch and Fine- d Area A; Ared A, Area A; Area A,
Pitch Metric Threads* mm mm?2 mm? mm mm? mm?

8 1.25 36.6 32.8 1 39.2 36.0
10 1.5 58.0 52.3 1.25 61.2 56.3
12 1.75 84.3 76.3 1.25 92.1 86.0
14 2 115 104 1.5 125 116
16 2 157 144 1.5 167 157
20 2.5 245 225 1.5 272 259
24 3 353 324 2 384 365
30 35 561 519 2 621 596
36 4 817 759 2 915 884
42 4.5 1120 1050 2 1260 1230
48 5 1470 1380 2 1670 1630
56 5.5 2030 1910 2 2300 2250
64 6 2680 2520 2 3030 2980
72 6 3460 3280 2 3860 3800
80 6 4340 4140 1.5 4850 4800
90 6 5590 5360 2 6100 6020

100 6 6990 6740 2 7560 7470
110 2 9180 9080

*The equations and data used to develop this table have been obtained from ANSI B1.1-1974 and B18.3.1-1978.
The minor diameter was found from the equation d, = d —1.226 869p, and the pitch diameter from d), = d —
0.649 519p. The mean of the pitch diameter and the minor diameter was used to compute the tensile-stress area.

Square and Acme threads, whose profiles are shown in Fig. 8-3a and b, respec-
tively, are used on screws when power is to be transmitted. Table 8-3 lists the pre-
ferred pitches for inch-series Acme threads. However, other pitches can be and often
are used, since the need for a standard for such threads is not great.

Modifications are frequently made to both Acme and square threads. For instance,
the square thread is sometimes modified by cutting the space between the teeth so as
to have an included thread angle of 10 to 15°. This is not difficult, since these threads
are usually cut with a single-point tool anyhow; the modification retains most of the
high efficiency inherent in square threads and makes the cutting simpler. Acme threads



Screws, Fasteners, and the Design of Nonpermanent Joints 413

Table 8-2

Diameters and Area of Unified Screw Threads UNC and UNF*

Coarse Series—UNC Fine Series—UNF
Nominal Tensile- Minor- Tensile- Minor-
Maior Threads Stress Diameter Threads Stress Diameter
Size Diameter per Inch Area A; Area A, per Inch Area A; Area A,
Designation in N ] in2 N in2 in
0 0.0600 80 0.001 80 0.001 51
1 0.0730 64 0.002 63 0.002 18 72 0.002 78 0.002 37
2 0.0860 56 0.003 70 0.003 10 64 0.003 94 0.003 39
3 0.0990 48 0.004 87 0.004 06 56 0.005 23 0.004 51
4 0.1120 40 0.006 04 0.004 96 48 0.006 61 0.005 66
5 0.1250 40 0.007 96 0.006 72 44 0.008 80 0.007 16
6 0.1380 32 0.009 09 0.007 45 40 0.010 15 0.008 74
8 0.1640 32 0.014 0 0.011 96 36 0.014 74 0.012 85
10 0.1900 24 0.017 5 0.014 50 32 0.0200 0.017 5
12 0.2160 24 0.024 2 0.020 6 28 0.025 8 0.022 6
% 0.2500 20 0.0318 0.026 9 28 0.036 4 0.032 6
% 0.3125 18 0.052 4 0.045 4 24 0.058 0 0.052 4
% 0.3750 16 0.0775 0.067 8 24 0.087 8 0.080 9
% 0.4375 14 0.106 3 0.093 3 20 0.1187 0.109 0
% 0.5000 13 0.1419 0.1257 20 0.1599 0.148 6
% 0.5625 12 0.182 0.162 18 0.203 0.189
% 0.6250 11 0.226 0.202 18 0.256 0.240
% 0.7500 10 0.334 0.302 16 0.373 0.351
% 0.8750 9 0.462 0.419 14 0.509 0.480
1 1.0000 8 0.606 0.551 12 0.663 0.625
1 % 1.2500 7 0.969 0.890 12 1.073 1.024
1% 1.5000 6 1.405 1.294 12 1.581 1.521

*This table was compiled from ANSI B1.1-1974. The minor diameter was found from the equation d, = d — 1.299 038p, and the pitch diameter
from dj, = d — 0.649 519p. The mean of the pitch diameter and the minor diameter was used to compute the tensile-stress area.

Figure 8-3 ~—p—>] ‘&p
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Table 8-3
ol 5 3 1 5 37 1 1 3 1
. din| 3 % § 2 § § g 1 1y 1z 13 2 27 3
Preferred Pitches for
ol 1 1 1 1 1 1 1 1 1 1 1 1 1
Acme Threads pnifs 14 T 0 § 6 6 5 5 & & & 3 2
are sometimes modified to a stub form by making the teeth shorter. This results in a
larger minor diameter and a somewhat stronger screw.
8-2 The Mechanics of Power Screws
A power screw is a device used in machinery to change angular motion into linear
motion, and, usually, to transmit power. Familiar applications include the lead screws
of lathes, and the screws for vises, presses, and jacks.

An application of power screws to a power-driven jack is shown in Fig. 8—4. You
should be able to identify the worm, the worm gear, the screw, and the nut. Is the
worm gear supported by one bearing or two?

Figure 8-4

The Joyce worm-gear screw
jack. (Courtesy Joyce-Dayton
Corp., Dayton, Ohio.)




Figure 8-5

Portion of a power screw.

Figure 8-6

Force diagrams: (a) lifting the
load; (b) lowering the load.
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In Fig. 8-5 a square-threaded power screw with single thread having a mean
diameter d,,, a pitch p, a lead angle X, and a helix angle v is loaded by the axial
compressive force F. We wish to find an expression for the torque required to raise
this load, and another expression for the torque required to lower the load.

First, imagine that a single thread of the screw is unrolled or developed (Fig. 8-6)
for exactly a single turn. Then one edge of the thread will form the hypotenuse of a right
triangle whose base is the circumference of the mean-thread-diameter circle and whose
height is the lead. The angle A, in Figs. 8-5 and 86, is the lead angle of the thread. We
represent the summation of all the axial forces acting upon the normal thread area by F.
To raise the load, a force Py acts to the right (Fig. 8—6a), and to lower the load, P, acts
to the left (Fig. 8—6b). The friction force is the product of the coefficient of friction f
with the normal force N, and acts to oppose the motion. The system is in equilibrium
under the action of these forces, and hence, for raising the load, we have

ZszPR—NsinA—chosk:O

(a)
ZFy =—F — fNsinA+Ncosh=0
In a similar manner, for lowering the load, we have
Y Fy=—P,—Nsini+ fNcosi=0
(b)

Y Fy=—F+ fNsin+Ncosh=0
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Since we are not interested in the normal force N, we eliminate it from each of these
sets of equations and solve the result for P. For raising the load, this gives

F(sinA + fcos})
Pr = - (c)
cosA — fsini

and for lowering the load,

F(fcosh—sinA)
P =
L cosA+ fsinA (d)

Next, divide the numerator and the denominator of these equations by cos A and use
the relation tanA = [/md,, (Fig. 8-6). We then have, respectively,

Fl(/mdn) + []
1 - (fl/ndm)
F[f_ (l/ndm)]

o= T Flymdy Y

Pr = (e)

Finally, noting that the torque is the product of the force P and the mean radius d,, /2,
for raising the load we can write

Ty

:de <l+nfdm> (8-1)

2 \nd, - fl

where Ty is the torque required for two purposes: to overcome thread friction and to
raise the load.
The torque required to lower the load, from Eq. (f), is found to be

Fdy (7fdy —1
T, = S 8-2
L= <rrdm+ fl) (8-2)

This is the torque required to overcome a part of the friction in lowering the load. It may
turn out, in specific instances where the lead is large or the friction is low, that the load
will lower itself by causing the screw to spin without any external effort. In such cases,
the torque 7; from Eq. (8-2) will be negative or zero. When a positive torque is
obtained from this equation, the screw is said to be self-locking. Thus the condition
for self-locking is

wfd, > 1

Now divide both sides of this inequality by 7 d,,. Recognizing that / /7 d,, = tan A, we
get

f >tani (8-3)

This relation states that self-locking is obtained whenever the coefficient of thread
friction is equal to or greater than the tangent of the thread lead angle.

An expression for efficiency is also useful in the evaluation of power screws. If
we let f =0 in Eq. (8-1), we obtain

Fl

To= —
0 2

(9)



Figure 8-7

(a) Normal thread force is

increased because of angle ;

(b) thrust collar has frictional
diameter d,.
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which, since thread friction has been eliminated, is the torque required only to raise
the load. The efficiency is therefore
_h_ F (8-4)
TR 2 TR

The preceding equations have been developed for square threads where the nor-
mal thread loads are parallel to the axis of the screw. In the case of Acme or other
threads, the normal thread load is inclined to the axis because of the thread angle 2«
and the lead angle A. Since lead angles are small, this inclination can be neglected
and only the effect of the thread angle (Fig. 8—7a) considered. The effect of the angle
« is to increase the frictional force by the wedging action of the threads. Therefore
the frictional terms in Eq. (8—1) must be divided by cos «. For raising the load, or for
tightening a screw or bolt, this yields

_de I+ nfd,seca
T2 wd, — flseca

In using Eq. (8-5), remember that it is an approximation because the effect of the
lead angle has been neglected.

For power screws, the Acme thread is not as efficient as the square thread, because
of the additional friction due to the wedging action, but it is often preferred because
it is easier to machine and permits the use of a split nut, which can be adjusted to
take up for wear.

Usually a third component of torque must be applied in power-screw applications.
When the screw is loaded axially, a thrust or collar bearing must be employed between
the rotating and stationary members in order to carry the axial component. Figure 8-7b
shows a typical thrust collar in which the load is assumed to be concentrated at the
mean collar diameter d.. If f, is the coefficient of collar friction, the torque required is

_ Ffd,
2
For large collars, the torque should probably be computed in a manner similar to that
employed for disk clutches.

Nominal body stresses in power screws can be related to thread parameters as follows.
The maximum nominal shear stress T in torsion of the screw body can be expressed as

TR (8_5 )

T(? (8_6)

16T
T = m (8_7)
d,
O
o .
F F F/2 l l F/2

COos

/(

Thread
200 =
angle

(a) ()
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Figure 8-8

Geometry of square thread
useful in finding bending and
transverse shear stresses at the
thread root.

The axial stress o in the body of the screw due to load F is

_F_4F (8-8)
CT AT T

in the absence of column action. For a short column the J. B. Johnson buckling
formula is given by Eq. (4—43), which is

F S, 1\ 1
- — ¢ _ (=222 ) = -9
(A)cm 5 (an> CE &

Nominal thread stresses in power screws can be related to thread parameters as
follows. The bearing stress in Fig. 8-8, o3, is

F B 2F
wdunp/2 - wdyn,p

(8-10)

op =

where 7, is the number of engaged threads. The bending stress at the root of the thread
o 1s found from
I (mwdn) (p/2)* m Fp

Z:— ———— = — a4y 2 M:—
c 6 24P 4

SO

M Fp 24 6F
oy == =2 - (8-11)
Z 4 mwd.n,p® wdonp

The transverse shear stress t at the center of the root of the thread due to load F is

3v. 3 F 3F

T=——=— =
2A  2mnd.np/2  mwd.np

(8-12)

and at the top of the root it is zero. The von Mises stress o’ at the top of the root “plane”
is found by first identifying the orthogonal normal stresses and the shear stresses. From

‘ d/” ‘

.

pl2

[

Fy
T
@
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the coordinate system of Fig. 8-8, we note

6F
oy = xdp Ty, =0
4F 16T
oy = _71'—61,.2 Ty, = n—d,3
o, =0 T,y =0

then use Eq. (5-14) of Sec. 5-5.

The screw-thread form is complicated from an analysis viewpoint. Remember the
origin of the tensile-stress area A,, which comes from experiment. A power screw lift-
ing a load is in compression and its thread pitch is shortened by elastic deformation.
Its engaging nut is in tension and its thread pitch is lengthened. The engaged threads
cannot share the load equally. Some experiments show that the first engaged thread
carries 0.38 of the load, the second 0.25, the third 0.18, and the seventh is free of load.
In estimating thread stresses by the equations above, substituting 0.38 F for F and set-
ting n, to 1 will give the largest level of stresses in the thread-nut combination.

A square-thread power screw has a major diameter of 32 mm and a pitch of 4 mm
with double threads, and it is to be used in an application similar to that in Fig. 8—4.
The given data include f = f. = 0.08, d. = 40 mm, and F = 6.4 kN per screw.
(a) Find the thread depth, thread width, pitch diameter, minor diameter, and lead.
(b) Find the torque required to raise and lower the load.

(c) Find the efficiency during lifting the load.

(d) Find the body stresses, torsional and compressive.

(e) Find the bearing stress.

(f) Find the thread bending stress at the root of the thread.

(g) Determine the von Mises stress at the root of the thread.

(h) Determine the maximum shear stress at the root of the thread.

(a) From Fig. 8-3a the thread depth and width are the same and equal to half the
pitch, or 2 mm. Also

dy=d—p/2=32—-4/2=30mm

d=d—p=32—-4=28 mm
[ =np =2(4) =8 mm

(b) Using Egs. (8-1) and (8-6), the torque required to turn the screw against the load is

Ty

_ Fdy (1+nfdy, +Ff(,dc
2 \nd, - fl 2

_6.4(30) [8+m(0.08)(30)] , 6.4(0.08)40
2 [n(30)—0.08(8)] 2

=1594+10.24 =26.18N-m
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Answer

Answer

Answer

Answer

Answer

Answer

Answer

Using Eqgs. (8-2) and (8-6), we find the load-lowering torque is

Fdy (wfdy—1\ Ff.d,
(Fa7)+

T, =
2 \nd, + fl 2

_ 6.4(30) [ 7(0.08)30 —8 | . 6.4(0.08)(40)
) [7‘[(30) +0.08(8)] 2

= —0.466 + 10.24 =9.77N - m

The minus sign in the first term indicates that the screw alone is not self-locking and
would rotate under the action of the load except for the fact that the collar friction is
present and must be overcome, too. Thus the torque required to rotate the screw “with”
the load is less than is necessary to overcome collar friction alone.

(c) The overall efficiency in raising the load is

FI 648

2T 2m(26.18)

(d) The body shear stress T due to torsional moment Ty at the outside of the screw
body is

_ 16T 16(26.18)(10°)

= = = 6.07 MP.
Ay 7(28%) a
The axial nominal normal stress o is
AF 4(6.4)10°
= = —(7) = —10.39 MPa

Cwd2 T m(28?)
(e) The bearing stress op is, with one thread carrying 0.38F,

2(0.38F)  2(0.38)(6.4)10°
- — — —12.9 MPa
wdy,(1)p w(30)(1)(4)

(f) The thread-root bending stress o, with one thread carrying 0.38F is

op =

_ 6(0.38F) _ 6(0.38)(6.4)10°

op = = = 41.5 MPa
md,(1)p 7 (28)(1)4

(g) The transverse shear at the extreme of the root cross section due to bending is
zero. However, there is a circumferential shear stress at the extreme of the root cross
section of the thread as shown in part (d) of 6.07 MPa. The three-dimensional stresses,
after Fig. 8-8, noting the y coordinate is into the page, are

o, = 41.5 MPa Ty =0
o, = —10.39 MPa 7y. = 6.07 MPa
0; = 0 Ty = 0

For the von Mises stress, Eq. (5—14) of Sec. 5-5 can be written as

o' = %{(41.5 —0)2 + [0 = (—10.39)]* 4+ (—10.39 — 41.5)% + 6(6.07)*}'/?

= 48.7 MPa
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Answer

Table 8-4

Screw Bearing
Pressure pj,

Source: H. A. Rothbart and

T. H. Brown, Jr., Mechanical
Design Handbook, 2nd ed.,
McGraw-Hill, New York, 2006.
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Alternatively, you can determine the principal stresses and then use Eq. (5—12) to find
the von Mises stress. This would prove helpful in evaluating 7.« as well. The prin-
cipal stresses can be found from Eq. (3—15); however, sketch the stress element and
note that there are no shear stresses on the x face. This means that o, is a principal
stress. The remaining stresses can be transformed by using the plane stress equation,
Eq. (3-13). Thus, the remaining principal stresses are

—10.39 —10.39\2
> i\/( > ) +6.072 =2.79, —13.18 MPa

Ordering the principal stresses gives oy, o2, 03 = 41.5, 2.79, —13.18 MPa. Substi-
tuting these into Eq. (5-12) yields

) { [41.5 — 2.79]% 4+ [2.79 — (—13.18)]* + [—13.18 — 41.5]2 }‘/2
o =
2

= 48.7 MPa

(h) The maximum shear stress is given by Eq. (3—16), where Tyax = 713, giving

o —o3 415 (—13.18)

Tmax = =27.3 MPa
max 2 2
Screw Nut
Material Material Safe pp, psi Notes
Steel Bronze 2500-3500 Low speed
Steel Bronze 1600-2500 <10 fpm
Cast iron 1800-2500 <8 fpm
Steel Bronze 800-1400 20-40 fpm
Cast iron 600-1000 20-40 fpm
Steel Bronze 150-240 >50 fpm

Ham and Ryan' showed that the coefficient of friction in screw threads is inde-
pendent of axial load, practically independent of speed, decreases with heavier lubri-
cants, shows little variation with combinations of materials, and is best for steel on
bronze. Sliding coefficients of friction in power screws are about 0.10-0.15.

Table 8—4 shows safe bearing pressures on threads, to protect the moving sur-
faces from abnormal wear. Table 8-5 shows the coefficients of sliding friction for

'Ham and Ryan, An Experimental Investigation of the Friction of Screw-threads, Bulletin 247, University of
Illinois Experiment Station, Champaign-Urbana, I11., June 7, 1932.
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Table 8-5

Coefficients of Friction f
for Threaded Pairs

Source: H. A. Rothbart and

T. H. Brown, Jr., Mechanical
Design Handbook, 2nd ed.,
McGraw-Hill, New York, 2006.

Table 8-6

Thrust-Collar Friction
Coefficients

Source: H. A. Rothbart and

T. H. Brown, Jr., Mechanical
Design Handbook, 2nd ed.,
McGraw-Hill, New York, 2006.

8-3

Material Steel Bronze Brass Cast Iron
Steel, dry 0.15-0.25 0.15-0.23 0.15-0.19 0.15-0.25
Steel, machine oil 0.11-0.17 0.10-0.16 0.10-0.15 0.11-0.17
Bronze 0.08-0.12 0.04-0.06 — 0.06-0.09

Soft steel on cast iron 0.12 0.17
Hard steel on cast iron 0.09 0.15
Soft steel on bronze 0.08 0.10
Hard steel on bronze 0.06 0.08

common material pairs. Table 8—6 shows coefficients of starting and running friction
for common material pairs.

Threaded Fasteners

As you study the sections on threaded fasteners and their use, be alert to the stochastic
and deterministic viewpoints. In most cases the threat is from overproof loading of
fasteners, and this is best addressed by statistical methods. The threat from fatigue is
lower, and deterministic methods can be adequate.

Figure 8-9 is a drawing of a standard hexagon-head bolt. Points of stress con-
centration are at the fillet, at the start of the threads (runout), and at the thread-root
fillet in the plane of the nut when it is present. See Table A—29 for dimensions. The
diameter of the washer face is the same as the width across the flats of the hexagon.
The thread length of inch-series bolts, where d is the nominal diameter, is

2d + % in L <6in
Ly = L . (8-13)
2d + 5 in L > 6in
and for metric bolts is
2d + 6 L <125 d <48
Lr={2d+12 125 < L <200 (8-14)
2d + 25 L > 200

where the dimensions are in millimeters. The ideal bolt length is one in which only
one or two threads project from the nut after it is tightened. Bolt holes may have burrs
or sharp edges after drilling. These could bite into the fillet and increase stress con-
centration. Therefore, washers must always be used under the bolt head to prevent
this. They should be of hardened steel and loaded onto the bolt so that the rounded
edge of the stamped hole faces the washer face of the bolt. Sometimes it is necessary
to use washers under the nut too.

The purpose of a bolt is to clamp two or more parts together. The clamping load
stretches or elongates the bolt; the load is obtained by twisting the nut until the bolt



Figure 8-9

Hexagon-head bolt; note the
washer face, the fillet under the
head, the start of threads, and
the chamfer on both ends. Bolt
lengths are always measured
from below the head.

Figure 8-10

Typical cap-screw heads:

(a) fillister head; (b) flat head;
(c) hexagonal socket head. Cap
screws are also manufactured
with hexagonal heads similar to
the one shown in Fig. 8-9, as
well as a variety of other head
styles. This illustration uses
one of the conventional
methods of representing
threads.
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has elongated almost to the elastic limit. If the nut does not loosen, this bolt tension
remains as the preload or clamping force. When tightening, the mechanic should, if
possible, hold the bolt head stationary and twist the nut; in this way the bolt shank
will not feel the thread-friction torque.

The head of a hexagon-head cap screw is slightly thinner than that of a hexagon-
head bolt. Dimensions of hexagon-head cap screws are listed in Table A-30.
Hexagon-head cap screws are used in the same applications as bolts and also in appli-
cations in which one of the clamped members is threaded. Three other common cap-
screw head styles are shown in Fig. 8-10.

A variety of machine-screw head styles are shown in Fig. 8-11. Inch-series
machine screws are generally available in sizes from No. 0 to about % in.

Several styles of hexagonal nuts are illustrated in Fig. 8—12; their dimensions are
given in Table A-31. The material of the nut must be selected carefully to match that
of the bolt. During tightening, the first thread of the nut tends to take the entire load;
but yielding occurs, with some strengthening due to the cold work that takes place,
and the load is eventually divided over about three nut threads. For this reason you
should never reuse nuts; in fact, it can be dangerous to do so.
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Figure 8-11

Types of heads used on
machine screws.

Figure 8-12

general; (b) washer-faced
regular nut; (¢) regular nut
chamfered on both sides;

(d) jam nut with washer face;
(e) jam nut chamfered on
both sides.

8-4

Hexagonal nuts: (a) end view,
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When a connection is desired that can be disassembled without destructive methods
and that is strong enough to resist external tensile loads, moment loads, and shear
loads, or a combination of these, then the simple bolted joint using hardened-steel
washers is a good solution. Such a joint can also be dangerous unless it is properly
designed and assembled by a trained mechanic.



Figure 8-13

A bolted connection loaded in
tension by the forces P. Note
the use of two washers. Note
how the threads extend into the
body of the connection. This is
usual and is desired. [ is the
erip of the connection.

Figure 8-14

Section of cylindrical pressure
vessel. Hexagon-head cap
screws are used to fasten the
cylinder head to the body.
Note the use of an O-ring seal.
[ is the effective grip of the
connection (see Table 8-7).
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A section through a tension-loaded bolted joint is illustrated in Fig. 8—13. Notice
the clearance space provided by the bolt holes. Notice, too, how the bolt threads
extend into the body of the connection.

As noted previously, the purpose of the bolt is to clamp the two, or more, parts
together. Twisting the nut stretches the bolt to produce the clamping force. This clamping
force is called the pretension or bolt preload. It exists in the connection after the nut has
been properly tightened no matter whether the external tensile load P is exerted or not.

Of course, since the members are being clamped together, the clamping force that
produces tension in the bolt induces compression in the members.

Figure 8-14 shows another tension-loaded connection. This joint uses cap screws
threaded into one of the members. An alternative approach to this problem (of not using
a nut) would be to use studs. A stud is a rod threaded on both ends. The stud is screwed
into the lower member first; then the top member is positioned and fastened down
with hardened washers and nuts. The studs are regarded as permanent, and so the joint
can be disassembled merely by removing the nut and washer. Thus the threaded part
of the lower member is not damaged by reusing the threads.

The spring rate is a limit as expressed in Eq. (4-1). For an elastic member such
as a bolt, as we learned in Eq. (4-2), it is the ratio between the force applied to the
member and the deflection produced by that force. We can use Eq. (4—4) and the results
of Prob. 4-1 to find the stiffness constant of a fastener in any bolted connection.

The grip | of a connection is the total thickness of the clamped material. In
Fig. 8-13 the grip is the sum of the thicknesses of both members and both washers.
In Fig. 8-14 the effective grip is given in Table 8-7.

The stiffness of the portion of a bolt or screw within the clamped zone will gen-
erally consist of two parts, that of the unthreaded shank portion and that of the
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Table 8-7

Suggested Procedure for Finding Fastener Stiffness

le— h
—>-{tlet, | 1, |

(@) (b)

Given fastener diameter d and pitch p in mm or number of threads per inch
Washer thickness: ¢ from Table A-32 or A-33
Nut thickness [Fig. (a) only]: H from Table A-31

Grip length:
For Fig. (a): | = thickness of all material squeezed
between face of bolt and face of nut

h+t/2, t<d

For Fig. (b): l={h+d/2, > d

Fastener length (round up using Table A—17%):

For Fig. (a): L>I1I+H

For Fig. (b): L>h+1.5d
Threaded length L7:  Inch series:
2d+1in, L<6in
Ly = L .
2d + 5 in, L > 6in
Metric series:
2d +6mm, L <125mm,d <48 mm
Ly =14 2d +12mm, 125 < L < 200 mm
2d + 25 mm, L > 200 mm

Length of unthreaded portion in grip: [y =L — Lt
Length of threaded portion in grip: Lh=1—1

Area of unthreaded portion: Ag = nd¥4
Area of threaded portion: A, from Table 8—1 or 82
AdAE

Fastener stiffness: =
T Adl + Adg

*Bolts and cap screws may not be available in all the preferred lengths listed in Table A—17. Large fasteners may not be available in fractional
inches or in millimeter lengths ending in a nonzero digit. Check with your bolt supplier for availability.
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threaded portion. Thus the stiffness constant of the bolt is equivalent to the stiffnesses
of two springs in series. Using the results of Prob. 4-1, we find

1 1 1 kiko
or k= —"—
ki + ks

= — 4 — 8-15
k ki +k2 ( )

for two springs in series. From Eq. (4-4), the spring rates of the threaded and
unthreaded portions of the bolt in the clamped zone are, respectively,

_AE AE

ke = = 8-16
‘ L d L, (8-16)
where A, = tensile-stress area (Tables 8—1, 8-2)
I, = length of threaded portion of grip
A, = major-diameter area of fastener
l; = length of unthreaded portion in grip
Substituting these stiffnesses in Eq. (8—15) gives
AJAE
p= (8-17)
Agly + Ay

where k, is the estimated effective stiffness of the bolt or cap screw in the clamped
zone. For short fasteners, the one in Fig. 8-14, for example, the unthreaded area is
small and so the first of the expressions in Eq. (§—16) can be used to find k. For long
fasteners, the threaded area is relatively small, and so the second expression in
Eq. (8-16) can be used. Table 8-7 is useful.

Joints—Member Stiffness

In the previous section, we determined the stiffness of the fastener in the clamped zone.
In this section, we wish to study the stiffnesses of the members in the clamped zone.
Both of these stiffnesses must be known in order to learn what happens when the
assembled connection is subjected to an external tensile loading.

There may be more than two members included in the grip of the fastener. All
together these act like compressive springs in series, and hence the total spring rate
of the members is

— =t =t =+t (8-18)

If one of the members is a soft gasket, its stiffness relative to the other members is
usually so small that for all practical purposes the others can be neglected and only
the gasket stiffness used.

If there is no gasket, the stiffness of the members is rather difficult to obtain,
except by experimentation, because the compression region spreads out between the
bolt head and the nut and hence the area is not uniform. There are, however, some
cases in which this area can be determined.

Ito” has used ultrasonic techniques to determine the pressure distribution at the mem-
ber interface. The results show that the pressure stays high out to about 1.5 bolt radii.

%Y. Ito, J. Toyoda, and S. Nagata, “Interface Pressure Distribution in a Bolt-Flange Assembly,” ASME paper
no. 77-WA/DE-11, 1977.



428 Mechanical Engineering Design

Figure 8-15

Compression of a member with
the equivalent elastic properties
represented by a frustum of a
hollow cone. Here, / represents
the grip length.
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The pressure, however, falls off farther away from the bolt. Thus Ito suggests the use
of Rotscher’s pressure-cone method for stiffness calculations with a variable cone
angle. This method is quite complicated, and so here we choose to use a simpler
approach using a fixed cone angle.

Figure 8—15 illustrates the general cone geometry using a half-apex angle «. An
angle o = 45° has been used, but Little® reports that this overestimates the clamping
stiffness. When loading is restricted to a washer-face annulus (hardened steel, cast
iron, or aluminum), the proper apex angle is smaller. Osgood* reports a range of
25° < a < 33° for most combinations. In this book we shall use o« = 30° except in
cases in which the material is insufficient to allow the frusta to exist.

Referring now to Fig. 8—15b, the contraction of an element of the cone of thick-
ness dx subjected to a compressive force P is, from Eq. (4-3),

Pd
s =" (a)
EA
The area of the element is
D\*> [d\’
A= 2 _ ‘2 = t — — | =
7y —r?) n|:<x ana—|—2> (2) j|
(b)
D+d D —d
= |xtana + —— xtanoa + ——
2 2
Substituting this in Eq. (@) and integrating gives a total contraction of
5— P /’ dx (o
T %E ), [xtana + (D +d)/2)[x tane + (D — d)/2] ¢
Using a table of integrals, we find the result to be
B P In 2ttana + D — d)(D + d) (d)
" mEdtana  (ttana + D +d)(D — d)
Thus the spring rate or stiffness of this frustum is
- P mEdtan«a
T s . Qttana+D —d)(D+d) (8-19)

" 2rtana + D +d)(D —d)

3R. E. Little, “Bolted Joints: How Much Give?” Machine Design, Nov. 9, 1967.
*C. C. Osgood, “Saving Weight on Bolted Joints,” Machine Design, Oct. 25, 1979.
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With « = 30°, this becomes

0.57747 Ed
(L1554 D —a)(D +d) (8-20)
(1.155t + D + d)(D — d)

Equation (8-20), or (8—19), must be solved separately for each frustum in the
joint. Then individual stiffnesses are assembled to obtain k,, using Eq. (8-18).

If the members of the joint have the same Young’s modulus £ with symmetrical
frusta back to back, then they act as two identical springs in series. From Eq. (8-18)
we learn that k,, = k/2. Using the grip as [ = 2t and d,, as the diameter of the washer
face, from Eq. (8—19) we find the spring rate of the members to be

wEdtan«
R (ltana +d, — d) (dy, + d) (8-21)
(ltana +d,, +d) (dy, — d)

Ky =

The diameter of the washer face is about 50 percent greater than the fastener diame-
ter for standard hexagon-head bolts and cap screws. Thus we can simplify Eq. (8-21)
by letting d,, = 1.5d. If we also use o = 30°, then Eq. (8-21) can be written as

0.5774w Ed

I 0.57741 + 0.5d (8-22)
nfls—— &
0.57741 + 2.5d

km =

It is easy to program the numbered equations in this section, and you should do so.
The time spent in programming will save many hours of formula plugging.
To see how good Eq. (8-21) is, solve it for &, /Ed:

km 7 tana
Ed _2 (Itana +dy, — d) (dy + d)
(Itana +dy, +d) (dy — d)

Earlier in the section use of o = 30° was recommended for hardened steel, cast iron,
or aluminum members. Wileman, Choudury, and Green® conducted a finite element
study of this problem. The results, which are depicted in Fig. 8-16, agree with the
a = 30° recommendation, coinciding exactly at the aspect ratio d// = 0.4. Addition-
ally, they offered an exponential curve-fit of the form

ki
= A exp(Bd/1) (8-23)

with constants A and B defined in Table 8—8. Equation (8-23) offers a simple calcu-
lation for member stiffness k,,. However, it is very important to note that the entire
Jjoint must be made up of the same material. For departure from these conditions,
Eq. (8-20) remains the basis for approaching the problem.

5J. Wileman, M. Choudury, and I. Green, “Computation of Member Stiffness in Bolted Connections,” Trans.
ASME, J. Mech. Design, vol. 113, December 1991, pp. 432-437.
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Figure 8-16 34
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Table 8-8 Material Poisson Elastic Modulus
. Used Ratio GPa Mpsi
Stiffness Parameters P
of Various Member Steel 0.291 207 30.0 0.787 15 0.628 73
Materials’ Aluminum 0.334 71 10.3 0.796 70 0.638 16
TSource: J. Wileman, Copper 0.326 119 17.3 0.795 68 0.635 53
M. Choudury, and L. Green, Gray cast iron 0.211 100 14.5 0.778 71 0.616 16
“Computation of Member .
Stiffness in Bolted General expression 0.789 52 0.629 14

Connections,” Trans. ASME,
J. Mech. Design, vol. 113,
December 1991, pp. 432—-437.

EXAMPLE 8-2  As shown in Fig. 8-17a, two plates are clamped by washer-faced % in-20 UNF x 1% in
SAE grade 5 bolts each with a standard % N steel plain washer.
(a) Determine the member spring rate &, if the top plate is steel and the bottom plate
is gray cast iron.
(b) Using the method of conical frusta, determine the member spring rate &y, if both
plates are steel.
(c) Using Eq. (8-23), determine the member spring rate k,, if both plates are steel.
Compare the results with part (b).
(d) Determine the bolt spring rate kp.

Solution From Table A-32, the thickness of a standard % N plain